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A B S T R A C T

Emerging evidence indicates that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in
brain network. Exploring alterations in the AD brain network is therefore of great importance for understanding
and treating the disease. This study employs an integrative functional near-infrared spectroscopy (fNIRS) –
electroencephalography (EEG) analysis approach to explore dynamic, regional alterations in the AD-linked brain
network. FNIRS and EEG data were simultaneously recorded from 14 participants (8 healthy controls and 6
patients with mild AD) during a digit verbal span task (DVST). FNIRS-based spatial constraints were used as
priors for EEG source localization. Graph-based indices were then calculated from the reconstructed EEG sources
to assess regional differences between the groups. Results show that patients with mild AD revealed weaker and
suppressed cortical connectivity in the high alpha band and in beta band to the orbitofrontal and parietal re-
gions. AD-induced brain networks, compared to the networks of age-matched healthy controls, were mainly
characterized by lower degree, clustering coefficient at the frontal pole and medial orbitofrontal across all
frequency ranges. Additionally, the AD group also consistently showed higher index values for these graph-based
indices at the superior temporal sulcus. These findings not only validate the feasibility of utilizing the proposed
integrated EEG-fNIRS analysis to better understand the spatiotemporal dynamics of brain activity, but also
contribute to the development of network-based approaches for understanding the mechanisms that underlie the
progression of AD.

1. Introduction

Alzheimer's disease (AD) is an irreversible, chronic neurodegen-
erative brain disease that is typically characterized by progressive im-
pairment of cognitive functions, including a marked degradation of
memory (Kumar et al., 2015). In recent years, AD has been considered
the most common form of dementia, afflicting about 5.7 million people
in United States (Association, 2018). AD is physiologically character-
ized by the pathological presence of amyloid-beta (Aβ) and hyperpho-
sphorylated tau proteins, as well as significant neurodegeneration and
deficits within neurotransmitter systems (Cohen and Klunk, 2014;
Palmqvist et al., 2015). These alterations often lead to abnormal cor-
tical activity and connectivity that can be detected by noninvasive
measurement techniques, such as electroencephalography (EEG),
functional magnetic resonance imaging (fMRI), and functional near-
infrared spectroscopy (fNIRS).

EEG presents a number of advantages when exploring neural

activity: it is non-invasive, inexpensive, clinically available, and fea-
tures a very high temporal resolution (millisecond-level) (Li et al.,
2017). By applying connectivity analyses to source-localized EEG sig-
nals, AD-linked alterations in regional connectivity have been identified
(Canuet et al., 2012; Vecchio et al., 2014; Kabbara et al., 2018). In
particular, several studies have reported abnormal functional con-
nectivity in the alpha and beta band signals of AD patients (Canuet
et al., 2012; Kabbara et al., 2018). Separately, Kabbara et al. have
showed that AD networks are characterized by lower global informa-
tion processing and higher local information processing than those of
healthy, age-matched controls (Kabbara et al., 2018). Results also re-
vealed a significant positive correlation between global efficiency,
average clustering coefficient and vulnerability in AD network and
corresponding Mini-Mental State Examination (MMSE) scores, which
supports the feasibility of using EEG-based connectivity analyses to
monitor the different stages of AD, or even preclinical AD (Hata et al.,
2016).
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A common technical challenge for EEG source localization is the ill-
posed nature of the “inverse problem”; the number of variables that
give rise to EEG signals vastly outnumbers the available measurements
(He et al., 2018). Conventional source imaging analysis typically makes
use of a pseudo-inversion to alleviate this issue (Hamalainen and
Ilmoniemi, 1994). This solution, however, relies on a maximized like-
lihood estimation and consequently suffers from complex calculation
and spatial imprecision. Attempts have therefore been made to over-
come this challenge by combining EEG data with the results from other
neuroimaging modalities, such as functional magnetic resonance ima-
ging (fMRI) (Nguyen et al., 2016). In general, traditional fMRI/EEG
integration approaches, based on Wiener filtration or Bayesian methods
(Schmidt et al., 1999; Dale et al., 2000; Phillips et al., 2002; Kajihara
et al., 2004), use an fMRI-derived BOLD activation map as spatial prior
information to constrain the source space for EEG localization. Math-
ematically, these constraints are imposed as a part of the source cov-
ariance matrix, wherein fMRI-active EEG sources are maintained while
fMRI-inactive EEG sources are penalized (Liu et al., 1998; Babiloni
et al., 2001; Liu et al., 2006). This produces source localization results
with increased spatial precision and reduced error. Beyond this, we
have also developed a Dynamic Brain Transition Network (DBTN) ap-
proach, which uses time-variant fMRI spatial constraints to optimize
fMRI-EEG integration based on a hierarchical Bayesian model (Nguyen
et al., 2016).

FMRI-EEG integration approaches achieve highly specific, accurate
results. Unfortunately, fMRI techniques face some inherent limitations;
fMRI is costly to perform, highly sensitivity to body-motion artifacts,
and requires rigorous experimental design (Lee et al., 2013). These
factors make fMRI data difficult to obtain and raise the potential for
erroneous results or artifacts, limiting the clinical diagnostic potential

of EEG-fMRI. To overcome these issues, physicians and researchers may
opt to use functional near-infrared spectroscopy (fNIRS) as supplement
to EEG source localization. Functional near-infrared spectroscopy is a
noninvasive optical imaging technique that typically utilizes two dis-
tinct wavelengths (between 600 and 1000 nm) to measure the changes
in cortical oxy- and deoxy-hemoglobin concentrations that are coupled
with neuronal metabolic activity (Scholkmann et al., 2014). As they
rely on similar cerebrovascular dynamics, the results obtained by fNIRS
are roughly analogous to those of fMRI (Ferrari and Quaresima, 2012;
Boas et al., 2014), though fNIRS systems are portable and more resilient
to motion artifacts. Furthermore, a recent study has tested and vali-
dated the use of fNIRS data as a spatial constraint to guide EEG source
localization, achieving comparable results to fMRI-constrained EEG
(Aihara et al., 2012).

In this study, a dynamic cortical connectivity mapping technique,
based on an integrative analysis of concurrently recorded EEG and
fNIRS signals, was developed and employed to identify the cortical
network changes associated with AD. Specifically, concurrent EEG and
fNIRS data were collected from both healthy controls and patients with
mild AD (mAD) during a cognitive task. EEG source imaging was then
performed using spatial priors derived from fNIRS information, and the
reconstructed time-courses of cortical activity were used to generate
connectivity networks for mild AD patients and healthy controls.
Finally, the resultant networks were compared to identify AD-linked
differences in cortical processing. It is hypothesized that the manifes-
tation of AD, even at early stages, alters the neural circuitry of the brain
when engaged in cognitive tasks, leading to “network biomarker” that
can be identified using the proposed fNIRS-constraint EEG source lo-
calization technique (Kabbara et al., 2018).

Fig. 1. Experimental design. (A) The digit verbal span task used in this study. (B) Illustration of experimental environment.
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2. Material and methods

2.1. Participants

Fourteen subjects were recruited as a part of this experiment, in-
cluding six right-handed patients with mild AD (mAD,
72.5 ± 7.34 years, 2M/4F) that were recruited from a local hospital
and eight right-handed healthy volunteers (HC, 62.75 ± 8.21 years,
6M/2F) that were recruited from the local community. Subjects were
matched for age and gender, and had no history of cerebrovascular
lesions or psychiatric disorders. No subject had previous experience
with the experimental task. The mental state of each subject was ex-
amined using the Mini-Mental State Examination (MMSE) in Chinese,
which is a 30-point questionnaire that provides a quantitative measure
of cognitive status or impairment (Folstein et al., 1975), and scores
were recorded. The experiment was approved by the Research Ethics
Board of Nanjing Ruihaibo Medical Rehabilitation Center and per-
formed in accordance with the Declaration of Helsinki. Each subject
was fully informed of the research purpose and methods, and provided
written, informed consent prior to the start of the experiment.

2.2. Experimental paradigm

A digit verbal span task was employed in this study, as shown in
Fig. 1A. The task session consisted of 30 blocks, with each block broken
down into 4× 10-s sections. Subjects first underwent an 10-s encoding
task, in which they were asked to memorize a number sequence that
displayed on a computer monitor 1.5 m in front of them (Fig. 1B). After
encoding task, the number disappeared from the screen and the subjects
were asked to stay relaxed for 10-s. This was followed by the 10-s
“retrieval” task, wherein subjects were instructed to verbally recall the
memorized number and results were recorded. The final 10 s in each
block were set aside as a rest period. To remind the subjects of the
beginning of tasks, a 1000 Hz-pure tone with 60 dB SPL-intensity was
presented 1-s before each encoding and retrieval task and lasted for
100ms through a small speaker placed beside the monitor. The back-
ground of the screen was set to green to make the subjects, especially
the AD patients feel comfortable and relaxed during the experiment
(Naz and Epps, 2004). Number sequences varied in length from 4 to 6
digits (each ranging from 1 to 9), and number lengths were varied every
10 blocks without replacement. All 30 sequences were unique and
presented randomly to minimize subject-expectancy effects. Prior to the
beginning of the experiment, subjects were seated in a comfortable
chair and asked to relax for 3min with eyes closed, during which
baseline fNIRS signals were collected. To help the participants get fa-
miliar with the experimental procedures, each participant was allowed
to practice the task for about 10min before beginning the experiment.

2.3. Data collection and preprocessing

A concurrent EEG and fNIRS measurement setup was employed in
this study. EEG data was collected using a BrainAmp DC EEG recording
system (Brain Products GmbH, Germany). Electrode placement fol-
lowed the international 10–20 convention for a 32-channel cap and
signals were recorded at a sampling rate of 500 Hz.

A multi-channel NIRScout system (NIRx Medizintechnik GmbH,
Germany) was used to measure the fNIRS signals at a sampling rate of
3.91 Hz. The inter-optode distance was fixed at 3 cm and a total of 46
measurement channels were distributed throughout the bilateral frontal
and parietal cortices, according to the international 10–20 EEG place-
ment system. The onset of each task was simultaneously recorded by
the EEG amplifiers and fNIRS acquisition system, which was used for
synchronizing two modalities during the data analysis. A schematic il-
lustration of the EEG and fNIRS channel locations is provided in Fig. 2.

In this study, considering the EEG signal would be affected by the
muscle movement when the subject is speaking in the retrieval task

(Uriguen and Garcia-Zapirain, 2015), only the EEG and fNIRS signals
recorded during the encoding task were used for analysis. EEG pre-
processing was performed using BrainVision Analyzer 2.0 software
(Brain Products, Germany). Data was first filtered from 0.5 Hz to 50 Hz,
with an extra notch filter at 50 Hz to remove any residual powerline
noise. Ocular artifact removal was then performed for each subject
using independent component analysis (ICA) and the number of re-
moved IC components was 3 and no>5 on average. Data was then re-
referenced to a common-average reference and baseline correction was
performed for each trial. Next, EEG data was segmented to form epochs
that began 2 s before the onset of the encoding stage and ended 5 s
after. Finally, artifact removal and trial rejection were performed
through manual inspection. On average, fewer than 10% of the total
number of trials were rejected per subject.

Every fNIRS channel was manually inspected and trials with large
spikes were considered “noisy” and excluded from further analysis. On
average, fewer than 10% of the total trials were rejected per subject. To
process the fNIRS signals, a 4th order Butterworth band-pass filter, with
cut-off frequencies of 0.01–0.2 Hz, was applied to remove artifacts such
as cardiac interference (0.8 Hz) and respiration (0.2–0.3 Hz) (Zhang
et al., 2005). The concentration changes of oxy- and deoxy-hemoglobin
([HbO] and [HbR]) were computed according to the Modified Beer-
Lambert Law (nirsLAB, NIRx Medizintechnik GmbH, Germany)
(Scholkmann et al., 2014). For each channel, fNIRS signal was baseline-
corrected by subtracting the mean value of the resting-state signal from
the signal during the active task. FNIRS signals from the encoding task
period were then segmented from the onset of the task to 20 s after-
wards.

2.4. Data analysis framework

2.4.1. The forward problem
In this study, a template brain model obtained from the MNI305

space was used as a common brain model for all subjects. The full
segmentation and surface reconstruction of the MNI305 MRI volume
was performed using the Freesurfer image analysis suite (publicly
available at: http://surfer.nmr.mgh.harvard.edu/), resulting in the
generation of a high-definition cortical layer and the brain, skull, and
scalp boundary surfaces. These surfaces were then used to construct a

Fig. 2. The configuration of EEG electrodes and fNIRS optodes. Grey circles
denote the EEG electrodes. Red circles denote fNIRS emitters, green circles
denote fNIRS detectors, the purple lines and numbers are defined as fNIRS
channels.
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three-compartment Boundary Element Method (BEM) model, with ap-
propriate conductivity values assigned to each compartment using the
MNE software (Gramfort et al., 2014). The high-density cortical layer
mesh was downsampled to ~16,000 vertices per hemisphere and used
as the source space, such that each vertex location corresponded to a
dipole source oriented perpendicular to the surface. A lead-field matrix
G was then computed via a forward calculation using the cortical source
space, the 3-layer BEM model. EEG and fNIRS electrode positions were
digitized and co-registered to the fiducial points on the template brain.

2.4.2. fNIRS spatial priors
The classical General Linear Model (GLM) (Calhoun et al., 2001;

Worsley et al., 2002; Poline and Brett, 2012) was employed for the
statistical analysis of preprocessed fNIRS data for each individual sub-
ject, and maps of significantly activated channels were obtained by
contrasting the encoding task and baseline. Correction for multiple
comparisons was performed using a cluster-based method (Woo et al.,
2014) to limit the Family-wise error rate (FWER) to a maximum of 0.05.
Channels with values in the fNIRS map above the p-value threshold (p-

corrected > 0.05) were deemed insignificant and omitted, ensuring that
only statistically significant voxels were used as constraints for the
subsequent source imaging routine.

The fNIRS scalp activation map was normally projected and inter-
polated onto the cortical layer. Briefly, this procedure began by as-
signing the location of each fNIRS channel (defined as the mid-point
between the emitter and detector) on the scalp layer. Next, the fNIRS
scalp locations were normally projected onto the cortical layer, fol-
lowing the method described in (Okamoto et al., 2004). Finally, the
fNIRS activation value at each channel was applied and interpolated to
the sources on the cortical layer using method described in (Takeuchi
et al., 2009).

In this study, individual fNIRS activation maps were divided into
multiple sub-maps based on clusters of neighboring locations and cor-
tical functional regions, allowing for greater spatial flexibility when
applying the fNIRS information as a constraint (see more details in
Section 3c). Specifically, active voxels were grouped into multiple sub-
sets using a connected-component labeling technique (the Dulmage-
Mendelsohn decomposition algorithm (Pothen and Fan, 1990)). Sub-
sequently, each cortical patch was divided into smaller patches based
on a predefined brain atlas to ensure that individual regions did not
cover multiple functional brain regions. The DKT40 atlas was chosen in
this protocol to define 68 functional regions of interest (ROIs) using
automatic anatomical labeling (Fischl et al., 2004), which were used for
source localization and connectivity analyses.

2.4.3. EEG source analysis with DBTN
Our recently developed spatiotemporal fMRI-constrained EEG

source imaging approach (DBTN) was employed to perform source
analysis, wherein each EEG epoch was analyzed using a sliding-window
approach (Nguyen et al., 2016).

Very briefly, the linear mapping between sensor space and source
space is described as:

= +Y GJ
C

J R
~ (0, )
~ (0, )
N

N (1)

where Y(twindow)∈ ℝm×d represents the windowed EEG signals con-
sisting of m channels and d measurement samples, G ∈ ℝm×s represents
the lead field matrix, and J(twindow)∈ ℝs×d represents the unknown
source activity of s dipole sources in the source space for the corre-
sponding time window. ԑ represents the noise component in the sensor
space with its noise covariance matrix C, and R represents the source
covariance matrix. The current density J can then be reconstructed
according to the equation:

= +J RG GRG Y( )T T C 1 (2)

where the regularization parameter, λC, represents the trade-off be-
tween model accuracy and complexity, which is traditionally de-
termined using the L-curve method (Hansen, 1992). The source cov-
ariance matrix R represents prior knowledge about the distribution of J.
Following the framework for spatiotemporal fMRI-constrained EEG
source imaging, R assumes the form of a weighted sum of multiple
spatial priors, in which each prior is constructed as a sub-map of the
fNIRS activation pattern.

=
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R is defined as the sum of N covariance components weighted by an
unknown hyperparameter λR. Each covariance component, Qi= qiqi

T, is
formed from a subset qi of the fNIRS map as explained above. The
hyperparameters λR are estimated for each EEG window Y(twindow) using
a Restricted Maximum Likelihood algorithm (see more details in
(Nguyen et al., 2016)) and the corresponding current density J(twindow)
is determined (eq. 2). In this study, the EEG time window was selected
to be 200ms long, with a 50% overlap, designed to provide a temporal
resolution suited to the study of evoked response potentials. A time-
course of cortical activity for each brain ROI was extracted by averaging
the voxel activity within the region.

2.4.4. Functional connectivity analysis
The interaction between any pair-wise set of brain regions can be

characterized by the Phase Lag Index (PLI) (Stam et al., 2007). In
general, PLI measures the difference between the instantaneous phases
of two time-series – this case, the activation time-course of the two
ROIs. Weighted PLI extends the concept of PLI by weighting phase
differences based on the magnitude of their lag (Vinck et al., 2011). The
instantaneous phase of each time-series for every time point is com-
puted by performing a Hilbert transform and isolating the resultant
phase component. Given the instantaneous phase difference between
the activities of two ROIs, ∆Φ, the wPLI is computed as

= < >wPLI |sin( )|
sin( ) (3)

In graph-theory terms, each ROI forms a “node” within the graph
and the wPLI values calculated between each pair of nodes form the
“edges”. Following this approach, a weighted undirected graph was
constructed from the obtained wPLI interaction matrix (Hatz et al.,
2015).

2.4.5. Graph-theory analysis
Based on the obtained weighted, undirected node-edge graph, sev-

eral graph-theory measures were adopted to characterize the brain
connectivity networks in healthy and mild AD patients. The metrics
used in this study included degree, clustering coefficient, and centrality
index. In general, the degree metric for a particular ROI reflects the
number of connections that link the target ROI to the rest of the net-
work. Clustering coefficient represents the ratio of connections that
exist between a node and its nearest neighbors to the maximum number
of possible connections. This serves as a summary of the local interac-
tions between a particular ROI and its neighboring ROIs. Finally, the
centrality index, called betweenness centrality, measures the number of
“shortest paths” between the other node pairs that pass through a target
node. Cortically, this indicates how influential the target region is as a
hub within the brain network. Prior to the calculation of all graph
measures, the weighted, undirected node-edge graph for each subject
was thresholded by setting the 60% of the weakest edges as 0 to remove
trivial connections. All graph measures were then computed using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Fig. 3 illus-
trates the analysis process described above.

Finally, to quantify the differences between healthy and AD net-
works in terms of graph-theory measures, including frequency and
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regional measures of degree, clustering coefficient, and centrality, sta-
tistical tests were performed using the Mann Whitney U Test also
known as Rank-Sum Wilcoxon test.

3. Results

3.1. Demographic, behavior and clinical rating scores

The demographic information for all subjects, including age,
gender, education, MMSE scores and performance in the cognitive task,
are summarized in Table 1. There were no significant difference be-
tween healthy controls and MAD patients in terms of age (p= .072),
gender (p= .119), education (p= .9). However, the patient group
showed significantly lower scores on the MMSE (p < .001) and per-
formed poorer in the digital verbal span task (p= .014) relative to
healthy controls.

3.2. EEG response to cognition task

The grand-averaged EEG response to the encoding task in each
channel was done by averaging all trials over all subjects in each group
and shown in Fig. 4. Traces of EEG activity are presented for the frontal
region (channel AFF1 and AFF2), parietal region (channel Pz), and the
occipital region (channel O1 and O2).

For both HC and mAD groups, brain responses to the auditory alert
stimuli (t=0ms) were observed at around 200ms. Minimal differences
were observed between the responses of the two groups at this stage.
Drastic differences started emerged ~1100ms after the onset of the
encoding task (t=1100ms), when the HC group showed a peak in
activity at the frontal and occipital regions that was reduced in or ab-
sent from the mAD group. We performed two sample t-tests to assess the
difference between two groups in terms of the mean amplitude of au-
ditory-evoked response (0–400ms) and mean amplitude of task-evoked
response (1000–2000ms). The results indicated that, for all selected
channels, there was no significant difference in auditory responses
(pcorrected > .05) but significant difference in task-evoked response be-
tween two groups (pcorrected < .05).

3.3. Current source analysis guided by fNIRS priors

Fig. 5 shows the topographies of EEG signals and the corresponding
fNIRS activation maps of a representative healthy subject and an AD
patient obtained through GLM analysis and displayed on the cortical
surface after undergoing the projection and interpolation procedure. It
could be seen that the activation patterns obtained by two modalities
were similar in healthy subject and patient. Specifically, the activation

Fig. 3. The overall schematic for EEG source analysis guided by fNRIS spatial priors and subsequent brain connectivity analysis.

Table 1
The demographic information of all subjects. The “*” indicated a significant
difference between two groups. The “+” indicated the result was obtained via
Chi-square test.

Characteristic HC (n=8) Mild AD (n=6) p-Value

Ages (years) 62.75 ± 8.21 72.5 ± 7.34 0.072
Gender (M/F) 6M/2F 2M/4F 0.119+

MMSE 28.1 ± 1.1 19.7 ± 3.0 <0.001*
Education (years) 11 ± 2.51 11.17 ± 2.79 0.9
Performance 30 24 ± 5.97 0.014*
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pattern of the HC showed an increase in activity at the frontal regions of
the brain, and higher bilateral symmetry than that of the AD patient.
Commonly activated regions included the bilateral premotor cortex, the
orbitofrontal cortex, frontal pole, precentral gyrus and occipital lobe. In
general, differences between the activated cortical regions of the
healthy and AD brains pertained more to the frontal regions (frontal
pole, orbital frontal).

The spatiotemporal patterns of cortical activity associated with the
memory-encoding task are depicted in Fig. 6. Overall, the activation
pattern showed high similarity between the HC and AD patient groups.
Major differences were observed at the activity of the frontal regions
from 400ms to 600ms, 1200ms to 1400ms, and 1400ms to 1600ms.
The detailed time-courses of cortical activity at the 68 regions of in-
terest were used as a basis for subsequent brain connectivity analysis.

3.4. Connectivity and graph theory analysis

The connectivity analysis for each subject yielded a weighted un-
directed graph, and two-tailed t-testing was performed to identify
which regional connections (edges) were different between the HC and
mAD groups. Fig. 7 shows the significant differences in connectivity
structure across all frequency bands between both groups. The mAD
group consistently showed weaker cortical connectivity to the orbito-
frontal and parietal regions. Specifically, weaker connections in the low
alpha (8–10 Hz) and high alpha (10–13 Hz) frequency range (Fig. 7A
and B) included: parietal↔ frontal-pole, parietal↔ orbital-frontal, and
frontal↔ superior-temporal. Connectivity within the beta frequency
range (13–30 Hz) showed greater suppression in the mAD group than in
the HC group, particularly in the case of inter-hemispheric interactions
(Fig. 7C). Specific alterations in the beta range included: parietal↔
frontal-pole, bilateral occipital lobes, and bilateral orbitofrontal lobes.
Noticeably, the mAD group exhibited a bilateral interaction between
left and right temporal regions that was significantly stronger than that
observed in the HC group. Considering the results across frequency
bands, it appears that inter-hemispheric connections were more likely
to be weakened in AD patients.

Graph theory was then applied to provide quantitative measure of
the revealed network properties. Fig. 8 and the Table 2 show the de-
gree, clustering coefficient, and centrality indices for the brain regions

that showed statistically significant differences (puncorrected < .05) be-
tween the HC and mAD groups, particularly at frontopolar, orbito-
frontal and temporal regions. Due to the small sample size and large
number of nodes in this study, we didn't perform multiple comparison
correction after the Mann Whitney U Test. As the results indicate, the
HC group showed significantly higher index values for degree and
clustering coefficient at the frontal pole (FP), medial-orbitofrontal
(MOF), and postcentral (PostC) cortices, which were consistent across
all frequency ranges. In contrast, the mAD group showed higher degree
and clustering coefficient at the superior temporal sulcus (BSTS) across
all frequency bands. Significant difference in centrality between two
groups was only seen in alpha band, with HC group revealed higher
centrality at medial-orbitofrontal (MOF) and pars orbitalis (pORB) in
low alpha band and lower index values at inferior parietal (IPL), in-
ferior temporal (ITG) and lateral occipital (LOG) areas in high alpha
band. Interestingly, the regional differences regarding graph measures
between two groups were more prominent in the left hemisphere (Fig. 8
and Table 2).

4. Discussion

Alzheimer's disease, as a form of dementia, presents with a number
of cognitive symptoms that disrupt daily life. AD-linked impairments
can be complex in nature and typically show progressive deterioration
over the course of the disease. While the exact mechanisms that give
rise to AD symptoms remain largely unknown, new imaging approaches
have advanced our ability to noninvasively detect cortical activity and
connections. The research presented here has sought to show the fea-
sibility of DBTN-based EEG-fNIRS integrated imaging to explore cor-
tical dynamics and potential neural biomarkers in AD. By capitalizing
on the temporal resolution of EEG and spatial resolution of fNIRS,
cortical functional connectivity was investigated in the low alpha, high
alpha and beta frequency ranges. Secondary analysis was performed
based on the principles of graph theory, which allowed regional net-
work properties to be numerically quantified. Specific interest was paid
to the measures of degree, clustering coefficient, and centrality, and
results were compared to the networks derived from healthy subjects.
The body of results presented here then provides both insight into the
functional changes that accompany AD onset and evidence that

Fig. 4. EEG grand-average results for the HC group (red) and mAD group (blue), at the frontal channels (AFF1 and AFF2), parietal channel (Pz), and occipital
channels (O1 and O2).
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regional graph-based measures are markedly changed in mild AD.
To perform a full, in-depth investigation of cortical dynamics, it was

first necessary to simultaneously collect data from both EEG and fNIRS.
Examination of the EEG results revealed two primary peaks of interest;
one occurring at ~200–300ms and a second arising at ~1100ms
(Fig. 4). Based on the experimental paradigm, it is believed that the first
peak constitutes an auditory evoked potential, with possible P300
components, while the late peak is believed to represent cognitive task-
related potential. Directly comparing how these peaks manifested in the
HC and mAD groups presented a noteworthy contrast – the amplitude of
the task-based peak (1100ms) was greatly reduced in AD patients,
while the amplitude of the auditory evoked potential (~300ms) re-
mained largely the same. This indicates that stereotypical, stimulus-
linked ERPs are resilient to AD-linked cognitive deficits, while signals
linked to encoding stimulus are diminished. These findings align with
previous studies that have reported significantly reductions in the
signal amplitude of MCI/AD patients when compared to healthy con-
trols in cognitive tasks (Daffner et al., 2001; Saito et al., 2001), ex-
hibiting the functional differences that accompany cognition impair-
ment. In addition to superficial EEG signals, the reconstructed EEG

source current activity, with spatial constraint from fNIRS signals,
further uncovered a convincing spatiotemporal patterns of cortical ac-
tivity associated with the memory-encoding task between healthy
controls and AD patients. As demonstrated in Fig. 6, compared to
healthy controls, AD patients revealed an altered distribution that
featured more activity along the central sulcus and frontal area. The
result presented here generally aligns with previous studies that iden-
tified activity in the middle frontal gyrus, dorsal lateral prefrontal
cortex (DLPFC) and inferior parietal cortex during digit verbal span task
(Sun et al., 2005; Tian et al., 2014), validating the ability of the pro-
posed fNIRS-EEG integration approach to characterize the spatio-
temporal dynamics of AD-linked brain network.

Having effectively completed unimodal analyses, the DBTN frame-
work was adapted and applied to investigate cortical dynamics and
connectivity. Weighted phase lag index (wPLI) values were calculated
between the time courses at each pair of ROIs, with results effectively
indicating the different brain networks between groups. On the whole,
the mAD group showed reduced functional connectivity when com-
pared to their healthy counterparts (Fig. 7). The most apparent network
alterations were observed in the high alpha and beta bands, with the

Fig. 5. Representative EEG topographies (1300ms) and fNIRS activation maps for the healthy subject (A) and mild AD patient (B) during the encoding task. The
fNIRS activation maps were projected and interpolated onto the cortical surface. Color scheme represents the t-statistic (pcorrected < .05).
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low alpha connectivity map showing relatively fewer alterations
(Fig. 7). Furthermore, changes showed that marked lateralization-sig-
nificantly reduced connections were observed more often in the left
hemisphere than right in high alpha and beta bands (Fig. 7B, C). In
particular, the left frontal pole and orbitofrontal cortices appeared to
show major reduced connections. The importance of these cortical re-
gions has been suggested by previous literature as well (Johnson et al.,
2000; Salat et al., 2001; Babiloni et al., 2009). For example, Johnson
reported a significant positive correlation between atrophy and acti-
vation in left frontal area in AD patients, which may account for the
cognition decline of AD patients (Johnson et al., 2000). Reductions in
the bilateral connections of AD patients, such as the connections be-
tween the left and right frontal cortices in the beta band (Fig. 7C),
provide additional evidence that hemispheric integration is reduced in
AD cohort. Similar findings of hemispheric asymmetrical connectivity
patterns were also previously reported (Sanz-Arigita et al., 2010;
Kabbara et al., 2018). Finally, results from the AD patients found a pair
of significantly increased wPLI values in the beta band. These increases
were associated with the right temporal lobe and connected with the
left temporal and right parietal areas, indicating that AD-linked cog-
nitive impairments do not simply inhibit the global connectivity net-
work. The unique nature of this connection may make it a specific point

of interest as a potential biomarker. Previous studies have further
identified two marked patterns of cortical properties in AD; temporal
lobe atrophy and a reduction in the temporal and occipito-temporal
beta power and mean frequency (Jelic et al., 2000; Visser et al., 2002;
Pini et al., 2016). As wPLI characterizes the synchronization between
regions (and stability thereof), it is reasonable to conclude that the
relatively symmetrical degradation of the temporal lobe and the coin-
cident reduction of beta frequency in AD may contribute to an increase
in apparent wPLI values. With this in mind, monitoring the wPLI values
between the temporal lobes or temporal-parietal lobes may provide
advanced warning of the characteristic changes in AD. Furthermore, it
should the noted that the interhemispheric nature of these interactions
minimizes the chance for crosstalk and volume conduction, making the
potential biomarker more resilient and accurate.

The direct measurement of wPLI provides a very detailed perspec-
tive of which cortical regions interact during the cognitive task and how
these interactions vary in patients with AD. Unfortunately, the large
amount of data from pure connectivity results makes it difficult to
identify specific, meaningful differences between HC and the AD group.
As a result, we applied graph theoretical measures to the identified
connectivity structures and generated descriptive summary statistics for
the identified networks, easing discrimination and highlighting

Fig. 6. Source current activity for a (A) healthy control and (B) mild AD patient associated with the encoding task, averaged for every 200ms time-step. Color scale
reflects the reconstructed current density, normalized to the respective maximum.

Fig. 7. Differences in brain connectivity structure between the HC and mAD groups (puncorrected < .05), reflected by wPLI measures in the low alpha band (A), high
alpha band (B) and beta band (C). Edges in blue represent a weaker connection strength in the mAD group compared to HC group, and edges in red represent stronger
connection strength in mAD group. Note that each dot denotes a node in the network, which is a predefined ROI in the cortex. The color scheme for nodes are
arbitrary and used only to aid visualization.
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potential biomarkers for diagnosis of AD. It should be noticed that
small-worldness, computed from clustering coefficient and shortest
path length of the network, is recently proposed to characterize global
properties (high segregation and integration) of a brain network (Watts
and Strogatz, 1998; Bassett and Bullmore, 2006, 2017) and has been
well-explored by previous AD studies using multiple neuroimaging
techniques, such as fMRI and EEG (Toussaint et al., 2014; Wang et al.,
2016). However, this fNIRS-EEG integration study solely focused on
regional analysis using node-based measures to identify regional al-
terations in particular regions associated with AD, providing more re-
gional information of the brain network compared to the global prop-
erty conveyed by small-worldness. Node-based measures, including

degree, clustering coefficient, and centrality were used as a part of this
study, and each exhibited significant differences between the HC and
AD groups across frequency ranges, as indicated in Fig. 8 and Table 2.
Degree, which indicates the number of connections within a region,
showed significant differences in a number of regions, particularly in
the right superior temporal sulcus (BSTS-R, low alpha, high alpha and
beta bands), left medial orbitofrontal (MOF-L, low alpha and beta
bands), and left frontal pole (FP-L, low alpha, high alpha and beta
bands) regions. Clustering coefficient showed a greater number of sig-
nificant differences in all frequency ranges, particularly in the bilateral
frontal pole (FP-L and FP-R) and right superior temporal sulcus (BSTS-
R). Frequency-specific differences in clustering coefficient were found
in the left medial orbitofrontal (MOF-L, low alpha and high alpha),
right postcentral (PostC-R) and left pars orbitalis (pORB-L, beta) re-
gions. Finally, centrality showed the most lateralized significance, in-
cluding differences in the left inferior parietal, medial orbitofrontal,
pars orbitalis, inferior temporal and lateral occipital areas within alpha
band. Notably, centrality in the low and high alpha bands appeared to
be increased in parietal, occipital, and temporal locations, areas that
did not show significance in any other comparisons. These results in-
dicate the potential of EEG-fNIRS-based neural biomarkers for the early
characterization of AD, with regional indices appearing to be particu-
larly impacted by cognitive decline. In particular, the left frontopolar
regions showed significant decreases for degree and clustering coeffi-
cient in each frequency band, highlighting it as a particular region with
discriminatory potential. On the contrary, the right superior temporal
sulcus showed significant increases for these two measures in the each
frequency band, making them potential markers of interest as well.
These results reinforce the findings that can be observed from syn-
chronization index (such as wPLI) measurements alone (Stam et al.,
2009; Engels et al., 2015) and evidence a fundamental shift in network
structure as hubs of activity transition from frontal to temporal loca-
tions over the course of AD onset. While these studies have focused
largely on AD-linked changes within the default mode network, the
present feasibility study has focused on cortical networks activated
during a memory-based task. Considering that memory deficit is a de-
fining characteristic of AD and that the prefrontal cortices are heavily
implicated in memory processing, the regional alterations observed
here are considered reasonable and evince the capability of integrated
EEG-fNIRS approach in the detection of task-induced network changes.

Though this research has effectively used EEG-fNIRS to uncover
potentially impactful dynamics of activity, there are several limitations
that should be acknowledged. First, the source localization here was
performed using a generic head template with default electrode loca-
tions. Although the generic model still features a realistic anatomy, the

Fig. 8. Regional graph theory measures for the connectivity networks of the HC
(blue) and mAD groups (orange). Only regions revealed significant difference
between two groups are shown for low alpha band (A), high alpha band (B) and
beta band (C) (puncorrected < .05). BSTS: bankssts; IPL: inferior parietal; MOF:
medial orbitofrontal; pORB: pars orbitalis; PostC: postcentral; FP: frontal pole;
ITG: inferior temporal; LOG: lateral occipital; L: left hemisphere; R: right
hemisphere.

Table 2
Summary of differences among graph measures between healthy and AD net-
works in different frequency bands. BSTS: bankssts; IPL: inferior parietal; MOF:
medial orbitofrontal; pORB: pars orbitalis; PostC: postcentral; FP: frontal pole;
ITG: inferior temporal; LOG: lateral occipital; L: left hemisphere; R: right
hemisphere.

Index Low alpha High alpha Beta

Degree Regions p-Value Regions p-Value Regions p-Value
BSTS-R 0.026 BSTS-R 0.026 BSTS-R 0.026
MOF-L 0.048 ITG-L 0.013 MOF-L 0.017
FP-L 0.048 LOG-L 0.022 PostC_L 0.048

FP-L 0.043 FP-L 0.017
Clustering coefficient BSTS-R 0.026 BSTS-R 0.026 BSTS-R 0.026

MOF-L 0.013 MOF-L 0.004 FP-L 0.013
PostC_R 0.009 pORB-L 0.030 FP-R 0.030
FP-L 0.009 FP-L 0.009
FP-R 0.047 FP-R 0.047

Centrality IPL-L 0.017 ITG-L 0.004
MOF-L 0.004 LOG-L 0.030
pORB-L 0.030
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lack of subject-specificity blinds the current method to individual dif-
ferences in anatomy or cap setup. Considering this, it would be useful
for future research to obtain anatomical MRI for the subject, which can
be used to customize the model and forward calculation. Second, the
fNIRS setup for this study was not able to provide full coverage due to a
limited number of optodes. To minimize the effect of insufficient cov-
erage, the cap setup here was designed to cover key regions of interest,
and the proposed fNIRS-EEG integration approach was previously de-
monstrated to be highly robust against “false-positive prior” (i.e. active
regions in fNIRS but not in EEG) and “missing prior” (i.e. missing re-
gions from fNIRS activation map but active in EEG) as described in
detailed in (Aihara et al., 2012). However, we acknowledge that gaps in
coverage may still limit the prior information of fNIRS and reduce
source localization accuracy, it is therefore suggested that future re-
search utilize a setup with full coverage when possible. Finally, this
study focused solely on evaluating the feasibility of utilizing fNIRS-EEG
integration approach to explore dynamic alterations in the AD-linked
brain network compared to healthy population. The preliminary results,
though achieved based on the limited sample size, are believed to have
provided sufficient evidence to support our feasibility evaluation. When
attempting early detection of AD, however, it will be important to
differentiate between each of these pathological conditions, including
MCI or preclinical stage of AD that contribute to the development of
AD. It will then be necessary to expand subject base and population in
the future if true, defining neural biomarkers are to be obtained.

5. Conclusion

The complimentary properties and easy application of EEG and
fNIRS has led to a significant research focus on their multimodal
combination. This paper presents a feasibility study for the integration
of EEG and fNIRS, using a spatiotemporally accurate integration
method first established in EEG-fMRI to explore the alterations of AD
networks compared to healthy controls. Following this approach, var-
iations in regional connectivity were assessed and used to uncover
frequency-linked differences between healthy controls and mild AD
patients. Graph theory measures were then applied and a number of
regional and frequency-specific features were identified. While more
verifications will be necessary, this study has shown the potential for
the inexpensive and portable assessment of possible AD neural bio-
markers that are associated with brain connectivity network. With
further research and definition, technique proposed in this paper may
advance the detection and treatment of AD, improving outcomes and
reducing costs for both individuals and healthcare providers.
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