

Naturally Occurring Chromone Glycosides: Sources, Bioactivities, and Spectroscopic Features

Yhiya Amen ^{1,2,†}, Marwa Elsbaey ^{2,†}, Ahmed Othman ^{1,3,†}, Mahmoud Sallam ^{3,†} and Kuniyoshi Shimizu ^{1,*}

- ¹ Department of Agro-Environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; yhiaamen@mans.edu.eg (Y.A.); ah.othman@azhar.edu.eg (A.O.)
- ² Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; marwaelsebaey1611@mans.edu.eg
- ³ Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt; m.sallam@azhar.edu.eg
- * Correspondence: shimizu@agr.kyushu-u.ac.jp; Tel.: +81-92-802-4675
- + Authors contributed equally to this work.

Abstract: Chromone glycosides comprise an important group of secondary metabolites. They are widely distributed in plants and, to a lesser extent, in fungi and bacteria. Significant biological activities, including antiviral, anti-inflammatory, antitumor, antimicrobial, etc., have been discovered for chromone glycosides, suggesting their potential as drug leads. This review compiles 192 naturally occurring chromone glycosides along with their sources, classification, biological activities, and spectroscopic features. Detailed biosynthetic pathways and chemotaxonomic studies are also described. Extensive spectroscopic features for this class of compounds have been thoroughly discussed, and detailed ¹³C-NMR data of compounds **1–192**, have been added, except for those that have no reported ¹³C-NMR data.

Keywords: chromone glycosides; chemical structure; activity; benzo-γ-pyrone; ¹³C-NMR data

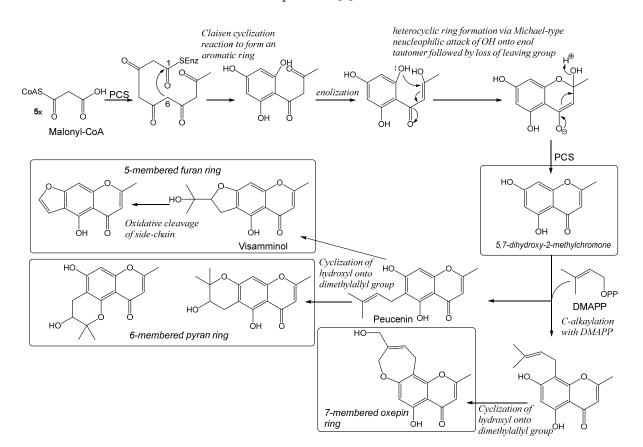
1. Introduction

Chromone glycosides are a class of secondary metabolites with various medicinal properties. They are widely distributed in many plant genera and, to a lesser extent, in some fungal species and other sources [1]. Several biological activities have been reported for various chromone glycosides. For example, aloesin and its analogues, from Aloe, are used in cosmetic preparations to treat hyperpigmentation induced by UV radiation, owing to their role in inhibition of tyrosinase enzyme [2,3]. Additionally, 8-[C- β -D-[2-O-(E)cinnamoyl]glucopyranosyl]-2-[(R)-2-hydroxypropyl]-7-methoxy-5-methylchromone), isolated from certain Aloe species, was reported to have potent topical anti-inflammatory activity comparable to the effect of hydrocortisone without affecting thymus weight [3]. Macrolobin, from Macrolobium latifolium, has a remarkable acetylcholinesterase inhibitory activity with an IC₅₀ value of 0.8 μ M. Uncinosides A and B, isolated from the Chinese herbal medicine Selaginella uncinata, showed potent anti-RSV (respiratory syncytial virus) activity with IC_{50} values of 6.9 and 1.3 μ g/mL. Taking into consideration the broad biological activities of chromone glycosides, this review summarizes the naturally occurring chromone glycosides and categorizes these compounds on their structural basis, in addition to their sources, bioactivities and spectroscopic features. Importantly, this review will shed more light toward the NMR features of chromone glycosides to help natural product researchers in the identification of various chemical structures. Scientific databases as SciFinder, PubMed, and Google Scholar were used to collect the relevant literature data.

Citation: Amen, Y.; Elsbaey, M.; Othman, A.; Sallam, M.; Shimizu, K. Naturally Occurring Chromone Glycosides: Sources, Bioactivities, and Spectroscopic Features. *Molecules* 2021, 26, 7646. https://doi.org/ 10.3390/molecules26247646

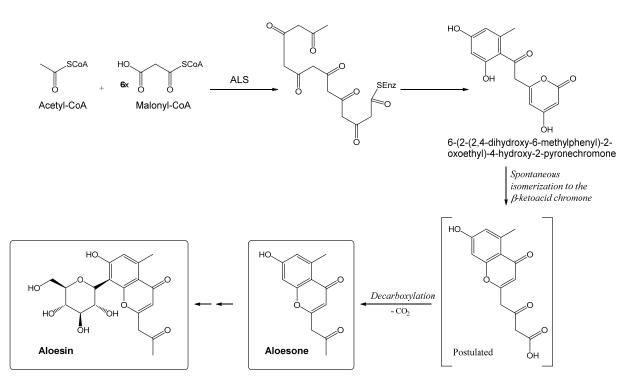
Academic Editor: Jacqueline Aparecida Takahashi

Received: 16 November 2021 Accepted: 13 December 2021 Published: 16 December 2021


Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

2. Biosynthesis


Chromones are biosynthesized through the acetic acid pathway by the condensation of five acetate molecules. These compounds, generally, have a methyl group at C-2 and are oxygenated at C-5 and C-7 [4]. Pentaketide Chromone Synthase (PCS) is a key enzyme in the biosynthesis process that catalyzes the formation of a pentaketide chromone (5,7-dihydroxy-2-methylchrome) from five-step decarboxylative condensations of malonyl-CoA, followed by the Claisen cyclization reaction to form an aromatic ring. However, it is unclear whether the heterocyclic ring closure of the pentaketide chromone is enzymatic or not, because the ring closure can take place due to spontaneous Michael-like ring closure, as in the case of flavanone formation from chalcone in vitro. PCS also accepts acetyl-CoA, resulting from decarboxylation of malonyl-CoA, as a starter substrate, but it is a poor substrate for PCS [5]. The pentaketide chromone has been isolated from several plants and is known to be the biosynthetic precursor of the chromone derivatives with additional heterocyclic rings (e.g., furano-, pyrano- and oxepino-chromone glycosides). Scheme 1 ([6] with modifications) shows the sequence of steps utilized in the biosynthesis of these compounds, fully consistent with the biosynthetic rationale developed above. The key intermediate is 5,7-dihydroxy-2-methylchromone [5,6]. For many years, the cyclization had been postulated to involve an intermediate epoxide, such that nucleophilic attack of the phenol onto the epoxide group might lead to formation of either five-membered furan, six-membered pyran or the seven-membered oxepin heterocycles, as commonly encountered in natural products [6].

Scheme 1. Proposed mechanisms for the enzymatic formation of 5,7-dihydroxy-2-methylchromone and its derivatives.

Aloesone Synthase (ALS) (Scheme 2, [5] with modifications) is a key enzyme in the biosynthesis of heptaketide chromone aloesone derivatives, such as aloesone 7-*O*- β -D-glucopyranoside (53) in rhubarb and anti-inflammatory aloesone 8-C- β -D-glucopyranoside (aloesin, 98) in Aloe (*A. arborescens*). ALS efficiently catalyzes the formation of a hep-taketide aromatic pyrone 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-

pyronechromone from acetyl-CoA and six molecules of malonyl-CoA through an aldol cyclization. The unstable heptaketide pyrone (or acid form) would then undergo subsequent spontaneous isomerization to the β -ketoacid chromone, which is followed by decarboxylation to produce the heptaketide aloesone [5].

Scheme 2. Proposed mechanisms for the enzymatic formation of aloesone and its derivatives.

3. Taxonomy

We have reviewed the literature concerning the occurrence of chromone glycosides, and we have found that 192 different chromone glycosides have been isolated from different natural sources, including angiosperms, ferns, lichens, fungi and actinobacteria (Table 1). The occurrence of chromone glycosides is mostly confined to botanical families: Apiaceae, Fabaceae, Myrtaceae, Asphodelaceae, Ranunculaceae, Rubiaceae, Hypericaceae, Ericaceae, Amaryllidaceae, Polygonaceae and Araceae. However, few chromone glycosides are also present in Asteraceae, Eucryphiaceae, Saxifragaceae, Smilacaceae, Pentaphylaceae, Salicaceae, Meliaceae, Euphorbiaceae, Staphyleaceae, Amaranthaceae, Aquifoliaceae, Rosaceae, Bignoniaceae, Olacaceae, Pinaceae, Selaginellaceae, Gentianaceae, Cannabaceae, Euphorbiaceae, Cucurbitaceae, Thymelaeaceae and Poaceae. Many of the naturally occurring chromone-8-C-glycosides such as the well-known chromone glycoside aloesin (98) were reported from genus Aloe. Until now, chromone glycosides with additional heterocyclic moieties such as pyrano-, oxepino- and pyrido-chromone glycosides were only isolated from Saposhnikovia divaricate, Eranthis species and Schumanniophyton magnificum, respectively. Another interesting category comprises hybrids of furano-chromones with cycloartane triterpenes, which were reported from Cimicifuga foetida. Actinobacteria also constitute an important source of the chromone alkaloid aminoglycosides, which are isolated from Streptomyces, Saccharothrix and Actinomycete species.

		Family	Genus	Species	Compounds
		Ericaceae		ovatum	2
	1		Rhododendron	spinuliferum	3
	1			collettianum	55
			Calluna	vulgaris	13
			Schumanniophyton	magnificum	7, 25, 156
	•	D 1 '	Knoxia	corymbosa	20, 24, 35, 36
	2	Rubiaceae	Adina	rubescens	20
			Neonauclea	sessilifolia	26, 166
_			Gethyllis	ciliaris	10
	3	Amaryllidaceae	Pancratium	biflorum	20, 66
			1 инстиниш	maritimum	20, 47
_			Polygonum	capitatum	15
	4	Polygonaceae	Rheum	austral	50
			Mitulli	sp.	52, 53
			Ammi	visnaga	20, 140, 146
			Peucedanum	austriacum	20
Plants				japonicum	149
Plants Angiosperms)			Cnidium	monnieri	57, 58, 123–130
				juponicum	123, 124
			Bupleurum	chinense	58
			Angelica	archangelica	125
	5	Apiaceae		genuflexa	146, 149
				japonica	146, 149
			Archangelica	litoralis	125
			Saposhnikovia	divaricata	143–146, 149, 150
			Ledebouriella	seseloides	144
			Diplolophium	buchananii	144, 146, 151
			Sphallerocarpus	gracilis	144
			Glehnia	littoralis	149
				henryi	22, 23
	6	Hypericaceae	Hypericum	erectum	22, 38
				sikokumontanum	38, 39, 60, 61
				japonicum	82, 83
_			Delphinium	hybridum	28
			Cimicifuga	heracleifolia	141
	7	Ranunculaceae	Cinicijuzu	foetida	146, 147, 157–165
			Frantlia	hyemalis	131, 132, 152, 153, 154
			Eranthis	cilicica	133, 134, 153, 155

Table 1. The distribution of chromone glycosides reported through this review.

		Family	Genus	Species	Compounds
			Myrtus	communis	34
			Syzygium	aromaticum	66, 71, 80, 86
			Baeckea	frutescens	66, 67, 70, 72, 85, 87
	8	Myrtaceae	Kunzea	ambigua	67, 70, 72–74, 80, 85, 88, 8
				globulus	80
			Eucalyptus	maidenii	82, 83
				grandis	83
				urograndi	83
				multijuga	51, 77
			Carrie	siamea	59
			Cassia	obtusifolia	68, 69
				spectablis	78
	9	Fabaceae		obtusifolia	84
			Macrolobium	latifolium	64
			Aspalathus	linearis	65
			Abrus	mollis	80
			Ononis	vaginalis	135
– Plants (Angiosperms)		Asphodelaceae	Aloe	vera	75, 76, 90–98, 103, 104–11 112–117, 120–122
(ingroepenne)				barbadensis	97, 98, 103, 107, 108
	10			rupestris	99
				cremnophila	101
				nobilis	111, 118, 119
_	11	Araceae	Scindapsus	officinalis	18–20, 29, 31, 32, 56, 57
_	12	Asteraceae	Mutisia	acuminate	1
_	13	Eucryphiaceae	Eucryphia	cordifolia	4
_	14	Saxifragaceae	Astilbe	thunbergii	4
—	15	Smilacaceae	Smilax	glabra	4
—	16	Pentaphylaceae	Eurya	japonica	5
—	17	Salicaceae	Salix	matsudana	6
—	18	Meliaceae	Dysoxylum	binectariferum	7
_	19	Euphorbiaceae	Acalypha	fruticose	7
—	20	Staphyleaceae	Staphylea	bumalda	7
—	21	Amaranthaceae	Salicornia	europaea	12
	22	Aquifoliaceae	Ilex	hainanensis	13
	23	Rosaceae	Dasiphora	parvifolia	16, 17
_	24	Bignoniaceae	Tecomella	undulata	20, 27
_	25	Olacaceae	Scorodocarpus	borneensis	26
_	26	Pinaceae	Pseudotsuga	sinensis	37
_	27	Selaginellaceae	Selaginella	uncinata	46, 48
_	28	Gentianaceae	Swertia	punicea	54

Table 1. Cont.

		Family	Genus	Species	Compounds
	29	Cannabaceae	Humulus	lupulus	62
	30	Euphorbiaceae	Chrozophora	prostrata	79
Plants – (Angiosperms) _	31	Cucurbitaceae	Cucumis	melo	136
	32	Thymelaeaceae	Aquilaria	sinensis	137, 139
_	33	Poaceae	Imperata	cylindrical	138
	1	Polypodiaceae	Drynaria	fortunei	7, 28, 30, 32, 33, 57
Ferns	2	Dryopteridaceae	Dryopteris	fragrans	20, 21
_	3	Onocleaceae	Matteuccia	intermedia	49
			Roccellaria	mollis	41, 42, 45
			Schismatomma	accedens	41, 42, 45
Lichens —			Roccella	galapagoensis	41, 42, 45
_			Lobodirina	cerebriformis	44
			Armillaria	tabescens	11
			Orbiocrella	sp.	40, 43
			Stemphylium	botryosum	63
				phaeoverticillatus var. takatsukiensis	168
			Streptomyces	pluricolorescens	169–171
Actinobacteria				sp.	172–178, 180
i cunobacteria				griseoruber	179
			Saccharothrix	sp.	181–183
_			Actinomycete		184–192

Table 1. Cont.

4. Chromone Glycosides

Chromone glycosides belong to a group of oxygen-containing heterocyclic compounds with a benzo-γ-pyrone skeleton. Naturally occurring chromone glycosides can be either *O*-glycosides or C-glycosides. For *O*-glycosides, the most frequently encountered group is the 7-*O*-glycosides; however, 2-, 3-, 5-, 8-, 11- and 13-*O*-glycosides also exist but to a lower extent. For an example, only one 6-*O*-glycoside **11** has been reported from nature, and from fungi, not higher plants [1]. Glycosylation can also be detected at side chains for chromones, at C-11 and C-12 as in compounds **56–59**, at the hydroxyprenyl and hydroxy-isoprenyl side chains as in **123** and **128**, respectively, or at the phenyl ethyl moiety as **139**. The most abundant among chromone glycosides is the glucoside from. However, other sugar moieties such as xylose, arabinose and rhamnose were also detected in 3-, 7- and 11-*O*-glycosides.

4.1. Chromone O-glycosides

4.1.1. 2-O-Glycosides

This category includes compound **1** (Figure 1), 2-hydroxy-5-methylchromone- β -D-glucopyranoside, isolated from the aerial parts of *Mutisia acuminata* var. *hirsuta*, a member of family Asteraceae [7]. The authors did not report biological activity for this compound.

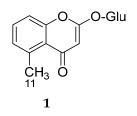


Figure 1. Structure of compound 1.

4.1.2. 3-O-Glycosides

This category includes compounds **2–5**. They share the same aglycone nucleus but with different sugar moieties at C-3. Eucryphin **4** was reported as a new compound in 1979 [8]; however, it was reported again in 1996 as a new compound under the name smiglanin [9]. In addition, 3,5,7-trihydroxychromone $3-O-\beta$ -D-xylopyranoside **2** was first reported in 2005 from *Rhodadendron ovatum* [10], but it was reported again as a new compound in 2013 [11]. Compounds **2–5** are shown in Figure 2. The sources and the reported biological activities are summarized in Table 2.

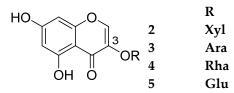


Figure 2. Structures of compounds 2–5.

Table 2. 3-O-Chromone glyce	osides with their sources	and biological activities.

No.	Compound	Source	Biological Activity
2	3,5,7-trihydroxychromone-3- O - β -D-xylopyranoside	<i>Rhododendron ovatum</i> roots [10] <i>Eurya japonica</i> stems [11]	Inhibitory effects on LPS (Lipopolysaccharide)-induced NO (Nitric Oxide) production with inhibition rate $36.24 \pm 1.29\%$ at 20 µg/mL [11]
3	3,5,7-trihydroxylchromone-3-O- α-L-arabinopyranoside	<i>Rhododendron spinuliferum</i> aerial parts [12]	Inhibition of NO production in LPS-stimulated RAW 264.7 cells with an IC ₅₀ value more than 100 mM [12]
4	Eucryphin (5,7-dihydroxy-3-(α-O-L- rhamnopyranosyl)- 4H-L-benzopyran-4-one)	Eucryphia cordifolia bark [8] Astilbe thunbergii rhizomes [13]	Norepinephrine-enhancing lipolytic effect 6.432 ± 0.014 FFA µmol/mL at 1000 µg [13] Enhancing effect on burn wound repair at 100 mg ointment per mouse [14]
	Smiglanin (3,5,7-trihydroxychromone-3- <i>O-</i> α-L-rhamnopyranoside)	Smilax glabra roots [9]	No reported biological activity
5	5,7-Dihydroxy-4H-chromen-4- one- 3-O-β-D-glucopyranoside	<i>Eurya japonica</i> stems [11]	Inhibitory effects on LPS-induced NO production with inhibition rate 53.79 \pm 1.78% at 20 $\mu g/mL$ [11]

4.1.3. 5-O-Glycosides

Among the naturally occurring 5-*O*-glycosides, Staphylosides A and B (**8–9**), isolated from *Staphylea bumalda*, are characterized by a presence of a disaccharide moiety attached to C-5. The disaccharide chain in **8** is β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside while in **9**, is α -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside. Compounds **6–10** are shown in Figure 3. The sources and the reported biological activities (if any) are summarized in Table 3.

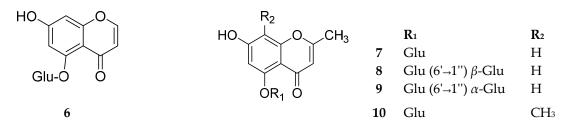


Figure 3. Structures of compounds 6–10.

No.	Compound	Source	Biological Activity
6	Matsudoside A (5-β-D-glucosyloxy-7- hydroxychromone)	Salix matsudana leaves [15]	No reported biological activity
7	Schumaniofioside A (2-methyl-5,7- dihydroxychromone 5- <i>O-β-</i> D-glucopyranoside)	Schumanniophyton magnificum root bark [16] Dysoxylum binectariferum fruits [17]. Acalypha fruticose aerial parts [18,19] Drynaria fortune rhizomes [13]	Inhibition of proinflammatory cytokines TNF- α (39.51 \pm 1.21%) and IL-6 (22.21 \pm 0.58%) at 5 μ M [17] Inhibition of NF-kB transcriptional activity and iNOS with IC ₅₀ value of 29.5 \pm 6.5 μ g/mL [19]
8	Staphyloside A	Stanludes humalds loozoo [20]	No reported high given activity
9	Staphyloside B	<i>—— Staphylea bumalda</i> leaves [20]	No reported biological activity
10	Isoeugenitol glucoside	<i>Gethyllis ciliaris</i> underground parts [21]	No reported biological activity

4.1.4. 6-O-Glycosides

Compound **11** (Figure 4) has a unique structure for bearing 4-*O*-methylglucopyranosyl unit. Chemically, it is 6-*O*-(4-*O*-methyl- β -D-glucopyranosyl)-8-hydroxy-2,7-dimethyl-4H-benzopyran-4-one, isolated from the rice culture of the fungus *Armillaria tabescens* [1]. Although such compounds are not common in higher plants, several of them have previously been isolated from fungi [1].

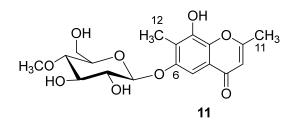
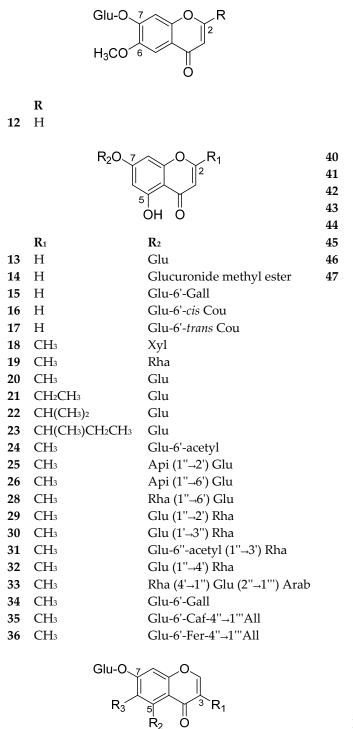
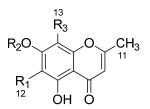
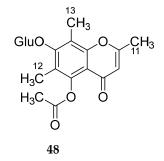
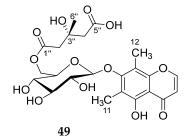
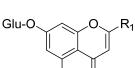




Figure 4. Structure of compound 11.


4.1.5. 7-O-Glycosides


This subclass is characterized by the presence of sugar at C-7. Hyperimone A is the same as Urachromone A (**22**), reported at nearly the same time from different co-authors from the genus Hypericum. Takanechromone A (**38**) is the same as Hyperimone B, isolated from the same genus by different co-authors. They were reported each time as new compounds. We preferred to add only ¹³C-NMR data of one set of these compounds (Table 23). Several biological activities have been reported to some members of this subclass. Compounds **12–53** are shown in Figure 5. The sources and the reported biological activities (if any) are summarized in Table 4.



	R1	R ₂	R ₃
40	CH ₃	Glu 4'-methyl	Н
41	CH ₃	Glu-2'-acetyl	Н
42	CH ₃	Glu-2',6'-di-acetyl	Н
43	Н	Glu-4'-methyl	CH ₃
44	CH ₃	Glu-2',3,6'-tri-acetyl	CH ₃
45	CH ₃	Glu-6'-acetyl	CH ₃
46	CH ₃	Glu	CH ₃
47	OCH ₃	Glu	Н

Ö

 R1
 R2

 CH3
 CH3

 CH3
 CH2COCH3

 CH3
 CH2COCH2CH(OH)CH3

 CH2COCH3
 CH3

Ŕ₂

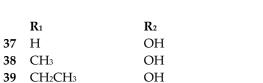


Figure 5. Structures of compounds 12–53.

50

51

52

53

No.	Compound	Source	Biological Activity
12	7- <i>O-β-</i> D-glucopyranosyl-6- methoxychromone	<i>Salicornia europaea</i> leaves and stems [25]	No reported biological activity
13	5,7-dihydroxychromone 7-O-β-D-glucopyranoside	<i>Ilex hainanensis</i> leaves [26] <i>Calluna vulgaris</i> flowers [27]	No reported biological activity
14	5,7-dihydroxychromone 7-O-β-D-glucuronide methyl ester	Davallia mariesii rhizomes [28]	No reported biological activity
15	7-O-(6'-galloyl)-β-D- glucopyranosyl-5- hydroxychromone	<i>Polygonum capitatum</i> aerial parts [29]	No reported biological activity
16	5-hydroxy-7-O-(6-O- <i>p-cis-</i> coumaroyl-β-D-glucopyranosyl)- chromone	<i>Dasiphora parvifolia</i> aerial parts [30]	No reported biological activity
17	5-hydroxy-7-O-(6-O- <i>p-trans-</i> coumaroyl-β-D-glucopyranosyl)- chromone	<i>Dasiphora parvifolia</i> aerial parts [30]	No reported biological activity
18	Officinaliside A	Scindapsus officinalis stems [31]	No reported biological activity
19	7-O-α-L-rhamnosyl-nereugenin	Scindapsus officinalis stems [31]	No reported biological activity
20	Undulatoside A (2-methyl-5,7- dihydroxychromone 7- <i>O-β</i> -D-glucopyranoside)	Scindapsus officinalis stems [31] Ammi visnaga fruits [32] Knoxia corymbosa [33] Pancratium biflorum roots [34] Panacratium biflorum flowering bulbs [35] Pancratium maritimum L. fresh bulbs [36] Peucedanum austriacum [37] Tecomella undulata bark [38] Adina rubescens leaves [39] Dryopteris fragrans [40] Staphylea bumalda leaves [20]	Immunomodulatory activity inhibited the proliferation of murine B lymphocytes in vitro at 10^{-5} M [33] Inhibition of nitric oxide production in lipopolysaccharide induced RAW 264.7 macrophages with an IC ₅₀ value of 49.8 μ M [40] Weak antimigratory activity against human metastatic prostate cancer cells (PC-3M) at 50 μ M [36]
21	Frachromone C (5-hydroxy-2-ethylchromone-7-O- β-D-glucopyranoside)	<i>Dryopteris fragrans</i> whole plant [40]	Inhibition of nitric oxide production in lipopolysaccharide induced RAW 264.7 macrophages with an IC ₅₀ value of 45.8 μ M [40]
22	Urachromone A (5-hydroxy-2- isopropylchromone-7- <i>O</i> -β-D- glucopyranoside)	Hypericum henryi aerial parts [41] Hypericum erectum [42]	No reported biological activity
	Hyperimone A		
23	Urachromone B	<i>Hypericum henryi</i> aerial parts [41]	No reported biological activity
24	Corymbosin K ₂ (7- <i>O</i> -β-D-6- acetylglucopyranosyl-5-hydroxy- 2-methylchromone)	Knoxia corymbosa [33]	Immunomodulatory activity inhibited the proliferation of murine B lymphocytes in vitro at 10^{-5} M [33]
25	Schumanniofioside B	Schumanniophyton magnificum root bark [16]	No reported biological activity
26	5-hydroxy-2-methylchromone-7- O - β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside	Neonauclea sessilifolia roots [43] Scorodocarpus borneensis leaves [44] Staphylea bumalda leaves [20]	No reported biological activity

 Table 4. 7-O-Chromone glycosides with their sources and biological activities.

No.	Compound	Source	Biological Activity
27	Undulatoside B	Tecomella undulata [45]	No reported biological activity
28	2-methyl-chromone-5,7-diol 7- O - α -L-rhamnopyranosyl-(1-6)- β -D-glucopyranoside	<i>Delphinium hybridum</i> aerial parts [46] <i>Drynaria fortunei</i> rhizomes [22]	No reported biological activity
29	Officinaliside C (7- O -[β -D-glucopyranosyl-(1-2)- α - L-rhamnopyranosyl]-5-hydroxy- 2-methyl-4H-1-benzopyran-4- one)	Scindapsus officinalis stems [31]	No reported biological activity
30	Drynachromoside C (5-hydroxy-2-methyl chromone-7- O - β -D- glucopyranosyl (1-3)- α -L-rhamnopyranoside)	Drynaria fortunei rhizomes [22]	Inhibitory activity on triglyceride accumulation at 10 μ M [22]
31	Officinaliside B (7-O-[6-acetyl-β-D- glucopyranosyl-(1-3)-α-L- rhamnopyranosyl]-5-hydroxy- 2-methyl-4H-1-benzopyran-4- one)	Scindapsus officinalis stems [31]	Inhibition of NO production in LPS-stimulated RAW 264.7 cells with an IC ₅₀ value of 16.1 μ M [31]
32	Drynachromoside A (5-hydroxy-2-methyl-4H- benzopyran-4-one-7- <i>O</i> -β-D- glucopyranosyl-(1-4)-α-L- rhamnopyranoside)	<i>Scindapsus officinalis</i> stems [31] <i>Drynaria fortunei</i> rhizomes [47]	Proliferative activity 10.1% on MC3T3-E1 (Mouse osteoblast) cells at 25 μ g/mL [47]
33	Drynachromoside D (5-hydroxy-2-methyl chromone-7- O - α -L- arabinopyranosyl(1-2)- β -D- glucopyranosyl(1-4)- α -L- rhamnopyranoside)	<i>Drynaria fortunei</i> rhizomes [22]	Inhibitory activity on triglyceride accumulation (inhibited PPAR γ , C/EBP α and aP2 expression by 50%, 43% and 37% at 10 mM) [22]
34	Undulatoside A 6'-O-gallate	Myrtus communis leaves [48]	
35	Corymbosin K3 (7-O-[6-O-(4-O- <i>trans</i> -caffeoyl-β-D- allopyranosyl)]-β-D- glucopyranosyl-5-hydroxy-2- methylchromone)	Knoxia corymbosa [33]	Immunomodulatory activity inhibited the proliferation of murine B lymphocytes <i>in vitro</i> at 10^{-5} M [33]
36	7-O-[6-O-(4-O- <i>trans</i> -feruloyl-β-D- allopyranosyl)]- β-D-glucopyranosyl-5-hydroxy-2- methylchromone	Knoxia corymbosa [33]	No reported biological activity
37	5-hydroxy-6-methylchromone-7- O - β -D-glucopyranoside	Pseudotsuga sinensis [49]	No reported biological activity
38	Takanechromone A (5,7-dihydroxy-3- methylchromone- 7- <i>O-β</i> -D-glucopyranoside)	Hypericum sikokumontanum aerial parts [50] Hypericum erectum [42]	No reported biological activity
	Hyperimone B		
39	Takanechromone B (5,7-dihydroxy-3-ethylchromone- 7-O-β-D-glucopyranoside)	<i>Hypericum sikokumontanum</i> aerial parts [50]	No reported biological activity

Table 4. Cont.

No.	Compound	Source	Biological Activity
40	7-O-(4-O-Methyl-β-D- glucopyranosyl)eugenitol	The scale-insect pathogenic fungus <i>Orbiocrella</i> sp. [23]	No reported biological activity
41	Mollin	Lichens (Roccellaria mollis, Schismatomma accedens, Roccella galapagoensis) [51]	No reported biological activity
42	Roccellin	Lichens (Roccellaria mollis, Schismatomma accedens, Roccella galapagoensis) [51]	No reported biological activity
43	7-O-(4-O-Methyl-β-D- glucopyranosyl)isoeugenitol	The scale-insect pathogenic fungus <i>Orbiocrella</i> sp. [23]	No reported biological activity
44	Lobodirin	Lobodirina cerebriformis lichen [51]	No reported biological activity
45	Galapagin	Lichens (Roccellaria mollis, Schismatomma accedens, Roccella galapagoensis) [51]	No reported biological activity
46	Uncinoside A (5-hydroxy-2,6,8- trimethylchromone 7-O-β-D-glucopyranoside)	Selaginella uncinate Herb [24]	Antiviral activity against respiratory syncytial virus (RSV) with an IC ₅₀ value of $6.9 \ \mu g/mL$, against parainfluenza type 3 virus (PIV 3) with an IC ₅₀ value of 13.8 $\ \mu g/mL$ [24]
47	Pancrichromone	Pancratium maritimum L. fresh bulbs [36]	No reported biological activity
48	Uncinoside B (5-acetyoxyl-2,6,8- trimethylchromone 7- O - β -D-glucopyranoside)	Selaginella uncinate herb [24]	Antiviral activity against respiratory syncytial virus (RSV) with an IC ₅₀ value o 1.3 μ g/mL, against parainfluenza type 3 virus (PIV 3) with an IC ₅₀ value of 20.8 μ g/mL [24]
49	Matteuinterin B	<i>Matteuccia intermedia</i> rhizomes [52]	
50	2,5-dimethylchromone-7- O - β -D-glucopyranoside	Rheum austral D. Don underground parts [53] Rumex gmelini Turcz. roots [54]	Anti-oxidant activity (DPPH radical scavenging capacity with an IC ₅₀ value of $66.9 \pm 1.3 \ \mu$ M) [53]
51	5-acetonyl-7- β -D-glucopyranosyl- 2-methylchromone	<i>Cassia multijuga</i> leaves [55,56]	No reported biological activity
52	2-methyl-5-(2'-oxo-4'- hydroxyphenyl)-7- hydroxychromone 7-O-β-D-glucopyranoside	Chinese rhubarb (Rhei Rhizoma) [57]	No reported biological activity
53	Aloesone 7-O-β-D-glucopyranoside	Chinese rhubarb (Rhei Rhizoma) [57]	No reported biological activity

Table 4. Cont.

Drynachromosides C (**30**) and D (**33**) exhibited inhibitory activity on triglyceride accumulation [22]. The effects of these compounds on mRNA expression of the three adipogenesis-related marker genes, PPAR γ , C/EBP α and Ap2, in 3T3-L1 were investigated. The mRNA expression levels of PPAR γ , C/EBP α and Ap2 were found to be dramatically downregulated. Compounds **40** and **43**, having a unique sugar unit of 4-O-methyl- β -Dglucopyranose, were isolated from the scale-insect pathogenic fungus *Orbiocrella* sp. BCC 33248 [23]. Uncinosides A (**46**) and B (**48**) [24], isolated from the Chinese herbal medicine *Selaginella uncinata*, showed potent anti-RSV (respiratory syncytial virus) activity with IC₅₀ values of 6.9 and 1.3 µg/mL, respectively. Uncinoside B (**48**) was found to have a TI value of 64.0, a large therapeutic index comparable to that of ribavirin with a TI value of 24.0, which is an approved drug for the treatment of RSV infection in humans. They also showed moderate antiviral activities against PIV 3 (parainfluenza type 3 virus) with IC₅₀ values of 13.8 and 20.8 μ g/mL and TI values of 6.0 and 4.0, respectively.

4.1.6. 8-O-Glycosides

Only two compounds **54–55** were reported in nature. They are shown in Figure 6. The sources and the reported biological activities (if any) are summarized in Table 5.

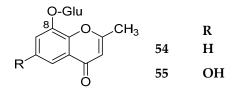


Figure 6. Structures of compounds 54-55.

Table 5. 8-O-Chromone glycosides with their sources and biological activities.

No.	Compound	Source	Biological Activity
54	8- <i>O</i> -β-D-Glucopyranosyl- 2-methylchromone	<i>Swertia punicea</i> whole herb [58]	No reported biological activity
55	8- <i>O</i> -β-D-Glucopyranosyl- 6-hydroxy-2-methyl-4H- 1-benzopyrane-4-one	Rhododendron collettianum aerial parts [59]	Inhibitory activity against tyrosinase enzyme with an IC_{50} value of 256.97 μ M [59]

4.1.7. 11- and 13-O-Glycosides

Compound **57** was reported in 2012 as Monnieriside A [60] and was then reported as Drynachromoside B [22,31,47]. Compounds **56–59** are shown in Figure 7. The sources and the reported biological activities (if any) are summarized in Table 6.

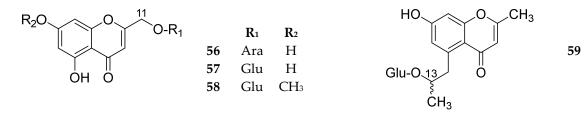


Figure 7. Structures of compounds 56–59.

Table 6. 11, 13-0	D-chromone glycosides	with their sources a	and biological activities.

No.	Compound	Source	Biological Activity
56	Officinaliside D (2-hydroxymethyl-5,7-dihydroxy-4H- benzopyran-4- one-1'-Ο-α-L-arabinopyranoside)	Scindapsus officinalis stems [31]	Inhibition of NO production in LPS-stimulated RAW 264.7 cells with an IC ₅₀ value of 19.1 μ M [31]
57	Drynachromoside B	<i>Drynaria fortune</i> rhizomes [22,47] <i>Scindapsus officinalis</i> stems [31]	Mild inhibitory activity against MC3T3-E1 (mouse osteoblast) cells at 3.125 to 100 μ g/ml [47] Triglyceride accumulation inhibitory effect at 0.1 to 10 μ M [22]
	Monnieriside A	Cnidium monnieri fruits [60]	No reported biological activity
58	Saikochromoside A	Bupleurum chinense [61] Cnidium monnieri fruits [60]	No reported biological activity
59	2-Methyl-5-propyl-7,12- dihydroxychromone-12- <i>Ο-β-</i> D- glucopyranoside	Cassia siamea stem [62]	No reported biological activity

4.1.8. Chromanone Glycosides

Chromanone glycosides or 2,3-dihydrochromone glycosides are not abundant in nature. Reviewing the literature, we encountered only four examples **60**, **61**, **62** and **63**. Their structures are shown in Figure 8. The sources and biological activities (if any) of these compounds are summarized in Table 7.

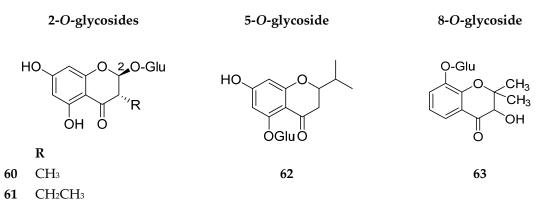


Figure 8. Structures of compounds 60–63.

Table 7. Chromanone glycosides with their sources and biological activities	Table 7. Chromanone gl	ycosides with their sources a	and biological activities.
---	------------------------	-------------------------------	----------------------------

No.	Compound	Source	Biological Activity	
60	Takanechromanone A	Hypericum sikokumontanum aerial	Anti-Helicobacter pylori at 100 µg/disc [50]	
61	Takanechromanone B	[–] parts [50]		
62	5-β-D-glucopyranosyloxy-7- hydroxy-2-isopropyl- chromanone	Humulus lupulus L. bracts [63]	No reported biological activity	
63	Stemphylin (3-hydroxy-2, 2-dimethyl-5-α-D- glucopyranoside-2, 3-dihydrochromone)	The liquid culture of the fungus <i>Stemphylium botryosum</i> [64]	Phytotoxic activity [64]	

4.2. Chromone C-Glycosides

In contrast to chromone *O*-glycosides, which are widely distributed and of common occurrence, C-glycoside derivatives are rarely found out.

4.2.1. 3-C-Glycosides

This subclass includes the unusual 5,7-dihydroxychromone- 3α -D-C-glucoside, named macrolobin, isolated from the aerial parts of *Macrolobium latifolium* [65]. Its structure is shown in Figure 9. Its source and biological activities are summarized in Table 8.

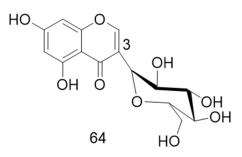


Figure 9. Structure of compound 64.

No.	Compound	Source	Biological Activity
64	Macrolobin (5,7-dihydroxychromone- 3α-D-C-glucoside)	<i>Macrolobium latifolium</i> aerial parts [65]	Inhibition of acetylcholinesterase enzyme with an IC ₅₀ value of 0.8 μ M Antimicrobial activity against <i>P. aeruginosa</i> and <i>Salmonella</i> at 0.73 and 0.44 μ M, respectively [65]

Table 8. 3-C-Chromone glycoside with its source and biological activities.

4.2.2. 6-C-Glycosides

Compounds **65–79** are shown in Figure 10. The sources and the reported biological activities (if any) are summarized in Table 9.

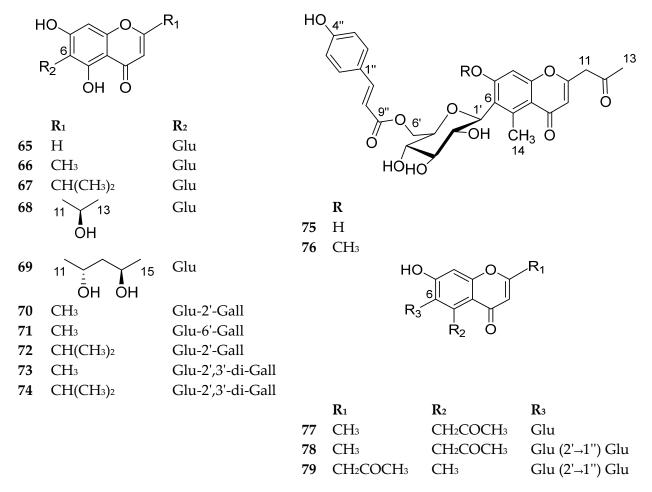
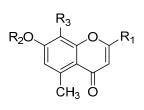


Figure 10. Structures of compounds 65–79.

No.	Compound	Source	Biological Activity
65	5,7-dihydroxy-6-C-glucosyl- chromone	Aspalathus linearis fermented rooibos (red-brownish dry leaves) [66]	No reported biological activity
66	Biflorin (6-β-C-glucopyranosyl-5,7- dihydroxy-2-methylchromone)	Pancratium Biflorum roots [34] Syzygium aromaticum L. flower buds [67,68] Baeckea frutescens leaves [69,70]	Inhibitory activity to phosphodiesterase and spared cyclic nucleotides at 10^{-9} M [34] Inhibition of LPS-induced production of nitric oxide (NO) and prostaglandin E ₂ (PGE2) in RAW 264.7 macrophages with IC ₅₀ values of 51.7 and 37.1 μ M, respectively [67]
67	6-β-C-glucopyranosyl- 5,7-dihydroxy-2- isopropylchromone	Baeckea frutescens leaves [69,70] Kunzea ambigua leaves [71]	Inhibitory activity 70.4% against EBV-EA (Epstein–Barr virus early antigen) activation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) at 500 mol ratio/TPA [71]
68	Obtusichromoneside C	Cassia obtusifolia seeds [72]	Weak inhibitory activity against human organic anion/cation transporters (OATs/OCTs) and organic anion transporting polypeptides (OATPs) at 50 µM [72]
69	Obtusichromoneside A		
70	Kunzeachromone C	<i>Kunzea ambigua</i> leaves [71] <i>Baeckea frutescens</i> leaves [70]	Inhibition of copper-induced LDL oxidation with an IC ₅₀ value of $3.35 \pm 0.36 \ \mu M$ [70]
71	6-C-β-D-(6'-O- galloyl)glucosylnoreugenin	<i>Syzygium aromaticum</i> flower buds [68,73]	Cytotoxicity against human ovarian cancer cells (A2780) with an IC ₅₀ value of $66.78 \pm 5.49 \ \mu\text{M}$ [68] Prolyl endopeptidase inhibitory effects with an IC ₅₀ value of $1.74 \pm 0.03 \ \mu\text{M}$ [73]
72	6-β-C-(2'-O- galloylglucopyranosyl)-5,7- dihydroxy- 2-isopropylchromone	Baeckea frutescens leaves [69,70] Kunzea ambigua leaves [71]	Inhibitory activity 68.4% against EBV-EA activation induced by TPA at 500 mol ratio/TPA [71] Inhibition of copper-induced LDL oxidation with an IC ₅₀ value of $3.90 \pm 0.24 \mu$ M [70]
73	Kunzeachromone D	Kunzea ambigua leaves [71]	No reported biological activity
74	Kunzeachromone A	Kunzeu umolguu leaves [71]	No reported biological activity
75	Aloeveraside B		Inhibition of urease enzyme (55% and 62%, respectively) at 1 mg/mL concentration, significant growth inhibition (70.5 and 76.4%) of the breast cancer cell line MDA-MB-231 at
76	Aloeveraside A	Aloe vera resin [74–76]	of the breast cancer cell line MDA-MB-231 at 100 μ M, and antioxidant (80% and 60%) at 1 mg/mL [74] Anti-lipid peroxidation activity with IC ₅₀ values of 432.1 \pm 0.6 and 469.5 \pm 0.4 μ mol/L, respectively [75]
77	Acetonyl-6-glycosyl -7-hydroxy -2-methylchromone	<i>Cassia multijuga</i> leaves [55,56]	No reported biological activity
78	5-acetonyl-7-hydroxy-6-C- glucopyranosyl-2-methyl chromone 2″-O-glucopyranoside	Cassia spectablis seeds [77]	No reported biological activity
79	2-acetonyl-5-methyl-7-hydroxy-6- C-glucopyranosyl chromone 2"-O-glucopyranoside	Chrozophora prostrata roots [78]	No reported biological activity


 Table 9. 6-C-Chromone glycosides with their sources and biological activities.

4.2.3. 8-C-Glycosides

Many of the naturally occurring chromone-8-C-glycosieds can be found in genus Aloe. Approximately 26 chromone-8-C-glycosides were reported in the perennial plant Aloe vera, which is a well-known pharmaceutical herb used in traditional Chinese medicine [76]. Some significant bioactive chromone-8-C-glycosides were isolated and identified in Aloe vera, including Aloesin (98), aloeresin E (109), isoaloeresin D (110), aloeresin A (114) and other derivatives. For instance, aloeresin A (114) exhibited a promising therapeutic activity toward α -glucosidase enzyme [79], while the compound isobiflorin (80), isolated from the flower buds of Syzygium aromaticum, had the capacity to inhibit LPS-induced production of nitric oxide (NO) and prostaglandin E_2 (PGE2) in RAW 264.7 macrophages [67]. A chromone-8-C-glycoside, 5,7-dihydroxy-2-isopropylchromone-8-β-D-glucoside, reported in *Hypericum japonicum*, showed an activity against Epstein–Barr virus [71]. Additionally, BACE1 (β -secretase), which is a possible potential target in the treatment of Alzheimer's disease, was inhibited by some compounds as aloesin (98) [80], 7-O-methyl-aloeresin A (115) [81] and 2'-feruloyl-7-O-methylaloesin (119) [80]. Furthermore, tyrosinase, which is the key enzyme for controlling the production of melanin, was inhibited by aloeresin E (109) and isoaloeresin D (110) [82]. The compounds 80-122 are shown in Figures 11-13. The sources and the reported biological activities (if any) are summarized in Table 10.

		R ₂	
		$R_3 7 0 R_1$	
		5 OH O	
	\mathbf{R}_1	R ₂	R 3
80	CH ₃	Glu	OH
81	CH ₃	Glu	OCH ₃
82	CH(CH ₃) ₂	Glu	OH
83		Glu	OH
84	ÖH OH	Glu	ОН
85	CH ₃	Glu-2'-Gall	OH
86	CH ₃	Glu-6'-Gall	OH
87	CH(CH ₃) ₂	Glu-2'-Gall	OH
88	CH ₃	Glu-2',3'-di-Gall	OH
89	CH(CH ₃) ₂	Glu-2',3'-di-Gall	OH

Figure 11. Structures of compounds 80-89.

90	R ₁ CH ₃	R 2 CH3	R ₃ Glu	108		R 2 CH3	R ₃ Glu-2'- <i>p</i> -methoxy-Cin
91		CH ₃	Glu	109	OH	CH₃	Glu-2'-Cin
92	ОН	Н	Glu	110	ŎH ŌH	CH₃	Glu -2'- <i>p</i> -Cou
93	ОН	CH ₃	Glu	111	ÖH	Н	Glu-2'-p-methoxy-Cinn
94		Н	Glu	112		CH ₃	Glu-2'-Caf
95	ÖH ÖH	CH ₃	Glu	113	ÖH OH	CH ₃	Glu-2'-Cin
96	ОН	CH₃	Glu	114	ÓH CH2COCH3	Н	Glu-2'- <i>p</i> -Cou
	× v			115	CH ₂ COCH ₃	CH ₃	Glu-2'- <i>p</i> -Cou
	ÓН						
97	CH ₂ COCH ₃	Н	Glucofuranose				
98	CH ₂ COCH ₃	Н	Glu				
99	CH ₂ COCH ₃	CH ₃	Glu				
100	CH ₂ COCH ₃	Н	Glu-2',3',4',6'-tetra-ace	tate			
101	CH ₂ COCH ₃	Н	Glu-2'-tigloyl				
102	СООН	Н	Glu				
103	\sim	CH ₃	Glu-2'-cin				
104	ŎH	CH ₃	Glu-2'- <i>p</i> -Cou				
105	OH	CH ₃	Glu-2'-Caf				
106	ŎĦ	CH ₃	Glu-2'-(Z)-Cou				
107	OH OH	CH ₃	Glu-2'-Cou-6'-acetyl				

Figure 12. Structures of compounds 90–115.

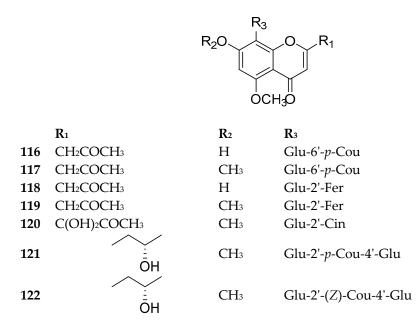


Figure 13. Structures of compounds 116–122.

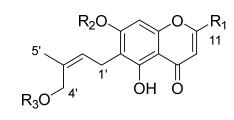
Table 10. 8-C-Chromone gl	vcosides with t	heir sources and	biological activities.

No.	Compound	Source	Biological Activity
80	Isobiflorin	Abrus mollis Hance. aerial parts [83] Syzygium aromaticum L. flower buds [67] Kunzea ambigua (SM.) Druce. leaves [71] Eucalyptus globulus leaves [84,85] Eugenia caryophyllata flower buds [86]	Inhibition of LPS-induced production of nitric oxide (NO) with an $IC_{50} > 60 \ \mu M$ and prostaglandin E2 (PGE2)) with an IC_{50} value of 46.0 μM [67]
81	7-methoxy-isobiflorin	Zhuyeqing Liquor; a famous traditional Chinese functional health liquor [87]	No reported biological activity
82	5,7-Dihydroxy-2- isopropylchromone- 8-β-D-glucoside	<i>Hypericum japonicum</i> aerial parts [71,88,89] <i>Eucalyptus maidenii</i> bark [84]	Inhibit Epstein–Barr virus early antigen induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) in Raji cells (70.4%) at 500 mol ratio/TPA [71]
83	5,7-Dihydroxy-2-(1- methylpropyl) chromone-8-β-D-glucoside	<i>Hypericum japonicum</i> aerial parts [71,88] <i>Eucalyptus grandis,</i> <i>Eucalyptus urograndi,</i> and <i>Eucalyptus maidenii</i> bark [90]	No reported biological activity
84	Obtusichromoneside B	<i>Cassia obtusifolia</i> seeds [72]	Inhibitory activity against human organic anion/cation transporters (OATs/OCTs) and organic anion transporting polypeptides (OATPs) at 50 μM [72]
85	Kunzeachromone E [8-β-C-(2'- galloylglucopyranosyl)- 5,7-dihydroxy-2- methylchromone]	Kunzea ambigua leaves [71] Baeckea frutescens leaves [70]	Inhibition activity toward copper-induced LDL oxidation with IC ₅₀ value of $3.98 \pm 0.24 \ \mu M$ [70]

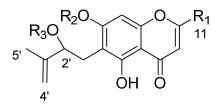
No.	Compound	Source	Biological Activity
86	8-C-β-D-(6'-O- galloyl)glucosylnoreugenin [2-Methyl-5,7-dihydroxy- chromone-8-β-D-(6'-O-galloyl)- glucopyranoside]	<i>Syzygium aromaticum</i> L. leaves [91] <i>Syzygium aromaticum</i> L. flower buds [68,73]	$\begin{array}{l} Cytotoxicity against human ovarian cancer \\ cells (A2780) with an IC_{50} value of \\ 87.50 \pm 1.56 \ \mu\text{M} \ [68] \\ \text{Significant inhibition capacity against Prolyl } \\ Endopeptidase with IC_{50} value of \\ 1.48 \pm 0.02 \ \mu\text{M} \ [73] \end{array}$
87	8-β-C-(2'-galloylglucopyranosyl)- 5,7-dihydroxy-2- isopropylchromone	Baeckea frutescens leaves [70]	Active against copper-induced LDL oxidation with an IC ₅₀ value of $3.91 \pm 0.18 \ \mu M$ [70]
88	Kunzeachromone F [2-Methyl-5,7-dihydroxy- chromone-8-β-D-(2',3'-di-O- galloyl)-glucopyranoside]	Kunzea ambigua leaves [71]	No reported biological activity
89	Kunzeachromone B [2-Isopropyl-5,7-dihydroxy- chromone-8- β -D-(2',3'-di-O- galloyl)-glucopyranoside]	Kunzea ambigua leaves [71]	No reported biological activity
90	2,5-dimethyl-8-C-β-D- glucopyranosyl-7-hydroxy- chromone	Aloe vera [92]	No reported biological activity
91	2-(E)-propenyl-7- methoxy-8-C-β-D- glucopyranosyl-5- methylchromone	Aloe vera [76,80]	BACE1 (β -secretase) inhibitory activity with an IC ₅₀ value of 20.5 μ M [80]
92	8-C- β -D-glucosyl-(R)-aloesol	Aloe vera [76,80]	BACE1 (β -secretase) inhibitory activity (39.2%) at 100 μ M [80]
93	8-C-β-D-glucosyl-7-O-methyl-(R)- aloesol	<i>Aloe vera</i> [76,80] and anerobic incubation of aloesin with bacterial mixture [93]	BACE1 (β -secretase) inhibitory activity (26.8%) at 100 μ M [80]
94	8-C- β -D-glucosyl-(S)-aloesol	<i>Aloe vera</i> [76] and anerobic incubation of aloesin with bacterial mixture [93]	No reported biological activity
95	8-C-β-D-glucosyl-7-O-methyl-(S)- aloesol	Aloe vera [76] and anerobic incubation of aloesin with bacterial mixture [93]	No reported biological activity
96	8-C-β-D-glucosyl-7- <i>O-</i> methylaloediol	Aloe vera [76,80]	No reported biological activity
97	Neoaloesin A	Aloe vera [76] Aloe barbadensis leaves [94]	No reported biological activity
98	Aloesin	Aloe vera [76,80] Aloe barbadensis leaves [95]	Antioxidant activity ($50 \pm 1 \mu M$ trolox equivalent) at 100 mg of soluble solid/L solution [95] BACE1 inhibitory activity (37.5%) at 100 μM [80] Suppresses hyperpigmentation (40%) at 100 mg/g polyethylene glycol [2]
99	7-O-methylaloesin	Aloe rupestris leaves exudate [96]	No reported biological activity
100	Aloesin-2",3",4",6"-tetra-O- acetate	Anerobic incubation of aloesin with bacterial mixture [93]	No reported biological activity

Table 10. Cont.

No.	Compound	Source	Biological Activity
101	2"-O-tigloylaloesin	<i>Aloe cremnophila</i> leaves exudate [97]	No reported biological activity
102	8-C- β -D-glucopyranosyl-7- hydroxy-5-methylchromone-2- carboxylic acid	Herbal tea "muti" [98]	No reported biological activity
103	8-[C-β-D-[2-O-(E)- cinnamoyl]glucopyranosyl]-2- [(R)-2-hydroxypropyl]-7- methoxy-5-methylchromone	Aloe vera [76] Aloe barbadensis leaves [99]	Topical anti-inflammatory activity at 200 μg/ear [99]
104	Aloeresin D	Aloe vera [76]	No reported biological activity
105	Rabaichromone	Aloe vera [76]	No reported biological activity
106	Allo-aloeresin D	Aloe vera [76]	No reported biological activity
107	Aloeresin K	Aloe vera [76] Aloe barbadensis leaf skin [100]	No reported biological activity
108	Aloeresin J	Aloe vera [76] Aloe barbadensis leaf skin [100]	No reported biological activity
109	Aloeresin E	Aloe vera leaves [76,82]	Inhibition of tyrosinase enzyme (40% and 80% at 50 and 100 ppm, respectively) [82]
110	Isoaloeresin D	Aloe vera leaves [76,82]	Inhibition of tyrosinase enzyme (20% and 40% at 50 and 100 ppm, respectively) [82] Antiviral activity against Pepper mild mottle virus; PMMoV (37.5 \pm 6.5% at 1.5 mg/mL) [81]
111	2'-O-[p-methoxy-(E)-cinnamoyl]- (S)-aloesinol	Aloe nobilis leaves [12]	BACE1 inhibitory activity (34.1%) at 100 μM [80]
112	Iso-rabaichromone	Aloe vera [76,82]	No reported biological activity
113	8-C-glucosyl-(2'-O-cinnamoyl)-7- O-methylaloediol B	Aloe vera leaves [76]	No reported biological activity
114	Aloeresin A	Aloe vera [76]	Antioxidant activity [101] α -glucosidase inhibitory activities, with IC ₅₀ values of 11.94 and 2.16 mM against rat intestinal sucrase and maltase [79]
115	7-O-methyl-aloeresin A	Aloe vera [76]	Tyrosinase inhibitory activity with an IC_{50} value of 9.8 μ M [81]
116	6'-O-coumaroyl-aloesin	Aloe vera [76]	Anti-lipid peroxidation activity with an IC_{50} value of 476.4 \pm 0.9 μM [75]
117	7-Methoxy-6'-O-coumaroyl- aloesin	Aloe vera [76]	Weak anticancer activity against breast cancer cell line, MDA-MB-231 (induce 30% decline in cell survival at 25 μ M) [102]
118	2'-Feruloylaloesin	Aloe nobilis leaves [80]	Inhibition activity against β -secretase (36.4% at 100 μ M [80] Inhibition effect against mushroom tyrosinase (27 \pm 0.57%) at 0.4 μ M [103]
119	2'-Feruloyl-7-O-methylaloesin	Aloe nobilis leaves [80]	Inhibition activity against BACE1 (β -secretase) (48.7%) at 100 μ M [80]


Table 10. Cont.

No.	Compound	Source	Biological Activity
120	9-Dihydroxyl-2'-O-(Z)- cinnamoyl-7-methoxy-aloesin	Aloe vera [76]	Inhibition of tyrosinase enzyme ($9.5 \pm 9.0\%$) at 100 μ M Antiviral against Pepper mild mottle virus; PMMoV ($31.5 \pm 4.2\%$ inhibition at 1.5 mg/mL) [81]
121	4'-O-β-D-glucosyl-isoaloeresin DI	Aloe vera [76]	No reported biological activity
122	4'-O-β-D-glucosyl-isoaloeresin DII	Aloe vera [76]	No reported biological activity


Table 10. Cont.

4.3. Phenyl and Isoprenyl Chromone Glycosides

This category is characterized by a hydroxyl prenyl moiety at C-6 or C-8, or a hydroxyl isoprenyl moiety at C-6 only. The sugar moiety can be either situated at C-7 hydroxyl of the chromone nucleus or C-4' of the hydroxyl prenyl or C-2' of the hydroxyl isoprenyl moiety. Most of the compounds in this category were reported from the genus Cnidium, belonging to family Apiaceae. The reported biological activity associated with several compounds in this category is their significant inhibition of fat accumulation in differentiated adipocytes employing 3T3-L1 preadipocyte cells as an assay system [60]. The compounds **123–134** are shown in Figure 14. The sources and the reported biological activities (if any) are summarized in Table **1**1.

	R ₁	R ₂	R 3
123	CH ₃	Н	Glu
124	CH ₃	CH ₃	Glu
125	CH ₃	Glu	Η
126	CH ₂ OH	Н	Glu
127	CH ₂ OH	Glu	Η

5'	4' OR ₃
R ₂ 0	
L	
	ÓH Ô

	R 1	R ₂	R ₃
131	CH ₃	Η	Glu
132	CH ₂ OH	Η	Glu
133	CH ₃	Glu	Η
134	CH ₂ OH	Glu	Н

	R 1	R ₂	R 3
128	CH ₃	Η	Glu
129	CH ₂ OH	Н	Glu
130	CH ₂ OH	Glu	Η

Figure 14. Structures of compounds 123–134.

No.	Compound	Source	Biological Activity
123	Cnidimoside A	<i>Cnidium Juponicum</i> whole plant [104,105] <i>Cnidium monnieri</i> fruits [60,106]	Significant inhibition of fat accumulation at 300 μ M in differentiated adipocytes [60] Antitumor and antimetastatic actions at 0.1–100 μ M (in vitro) and 20, 50 mg/kg, twice daily (in vivo) [105]
124	Cnidimoside B	<i>Cnidium Juponicum</i> whole plant [104] <i>Cnidium monnieri</i> fruits [60]	Significant ihibition of fat accumulation at 300 μ M in differentiated adipocytes [60]
125	2-methyl-5-hydroxy-6-(2- butenyl-3-hydroxymethyl)-7-(β-D- glucopyranosyloxy)-4H- 1-benzopyran-4-one	Cnidium monnieri fruits [60] Angelica archangelica [107] Archangelica litoralis [107]	No reported biological activity
126	Hydroxycnidimoside A	<i>Cnidium monnieri</i> fruits [60,106]	Significant inhibition of fat accumulation _ at 300 μM in differentiated
127	Monnieriside B	<i>Cnidium monnieri</i> fruits [60,106]	adipocytes [60]
128	Monnieriside C		No reported biological activity
129	Monnieriside D	Cnidium monnieri fruits [60]	
130	Monnieriside E	-	
131	7,8-Secoeranthin- β -D-glucopyranoside (8-{(2 <i>E</i>)-4-[β -D-glucopyranosyl)oxy]-3- methylbut-2-enyl}-5,7- dihydroxy-2-methyl-4H-L-benzopyran- 4-one)	<i>Eranthis hyemalis</i> tubers [108]	No reported biological activity
132	2-C-Hydroxy-7,8-seroeranthipn- β -D- glucopyranoside (8-{(2 <i>E</i>)-4-[β -D-glucopyranosyl)oxy]-3- methylbut-2-enyl}-5,7- dihydroxy-2-(hydroxymethyl)-4H-1- benzopyran-4-on2)		
133	7-[(β-D-glucopyranosyl)oxy]-5-hydroxy- 8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2- methyl-4H-1-benzopyran-4-one	<i>Eranthis cilicica</i> tubers [109]	
134	7-[(β-D-glucopyranosyl)oxy]-5-hydroxy- 2-hydroxymethyl-8- [(2 <i>E</i>)-4-hydroxy-3-methylbut-2-enyl]-4H- 1-benzopyran-4-one		No reported biological activity

Table 11. Prenyl and isoprenyl chromone glycosides with their sources and biological activities.

4.4. Phenyl Ethyl Chromone Glycosides

Reviewing the literature, we encountered five phenyl ethyl chromone glycosides. The phenyl ethyl moiety is usually located at C-2 of the chromone nucleus. The sugar moiety is attached to C-7 of the chromone skeleton in compounds **135–137**, while in compound **138**, the sugar is attached to C-8. In compound **139**, the sugar is not attached directly to the basic chromone skeleton. Compounds **135–139** are shown in Figure **15**. Their sources are summarized in Table **12**. There are no reported biological activities of these compounds.

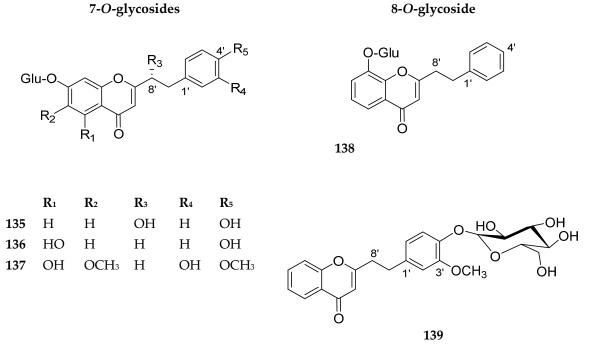
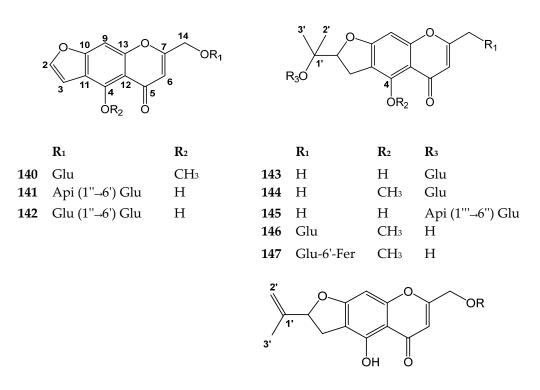


Figure 15. Structures of compounds 135–139.


No.	Compound	Source
135	Ononin glucoside	Ononis vaginalis whole plant [110]
136	7-Glucosyloxy-5-hydroxy-2-[2-(4- hydroxyphenyl)ethyl]chromone	Cucumis melo seeds [111]
137	Aquilarinoside C (6,4'-dimethoxy-3'-hydroxy-2- (2-phenylethyl)chromone 7-Ο-β-D-glucopyranoside)	Aquilaria sinensis stems [112]
138	2-(2-phenylethyl) chromone-8- O - β -D-glucopyranoside	Imperata cylindrical rhizomes [113]
139	2-[2-(4-glucosyloxy-3-methoxyphenyl)ethyl]chromone	Aquilaria sinensis resinous heartwood [114]

4.5. Chromone Glycosides with Additional Heterocyclic Moieties

This category of chromone glycosides is further classified based on the additional heterocyclic moiety into furano-chromone glycosides, pyrano-chromone glycosides, oxepinochromone glycosides and pyrido-chromone glycosides.

4.5.1. Furano-Chromone Glycosides

This subclass of compounds is characterized by presence of an additional furan, or a tetrahydrofuran ring fused with the benzo-δ-pyrone. Khellol glucoside (**140**), isolated from *Ammi visnaga*, is one of the important members in this subclass. It possess potent coronary vasodilator and bronchodilator activities [115]. It was reported to have a significant hypocholesterolemic effect. It lowered low-density lipoprotein cholesterol (LDL-C) by 73%, high-density lipoprotein cholesterol (HDL-C) by 23%, and total-C by 44%, after a single oral dose of 20 mg/kg per day after two weeks [116]. Compounds **140–148** are shown in Figure 16. The sources and the reported biological activities (if any) are summarized in Table 13.

R 148 Glu

Figure 16. Structures of compounds 140–148.

Table 13. Furano-chromone glycosides with	their sources and biological activities.

No.	Compound	Source	Biological Activity
140	Khellol glucoside (Khellinin; Khelloside)	<i>Ammi visnaga</i> fruits [117] <i>Eranthhis hyernalis</i> tubers [108]	Potent coronary vasodilator and bronchodilator [115] Hypocholesterolemic effect at 20 mg/kg per day [116]
141	Norkhelloside	<i>Cimicifuga heracleifolia</i> rhizomes [118]	No reported biological activity
142	7-[(O - β -D-glucopyranosyl-($1 \rightarrow 6$)- β -D-glucopyranosyl)oxy]methyl- 4-hydroxy-5 H -furo[3,2- g][1]benzopyran-5-one	Eranthis cilicica tubers [109]	No reported biological activity
143	4'-O-β-D- glucopyranosylvisamminol (Monnieriside G)	<i>Cnidium monnieri</i> fruits [60] <i>Saposhnikovia divaricata</i> roots [119]	Antitumor activity against SK-OV-3 with an IC $_{50}$ value of 93.91 μM [120]
144	4'-O-β-D-glucopyranosyl-5-O- methylvisamminol	Ledebouriella seseloides roots and rhizomes [121] Saposhnikovia divaricata roots [119,122] Diplolophium buchananii aerial parts [123] Sphallerocarpus gracilis roots [124]	Analgesic, antipyretic, anti-inflammatory, and anti-platelet aggregation activities [125,126] Antitumor activity with against H-460 cell line with an IC ₅₀ value of 86.91 μ M [120]
145	(2'5)-4'-O-β-D-apiofuranosyl- (1 \rightarrow 6)-β-D- glucopyranosylvisamminol	Saposhnikovia divaricata roots [119]	Antitumor activities against PC-3 and SK-OV-3 cell lines with IC_{50} values of 48.5, 81.91 μ M, respectively [120]

No.	Compound	Source	Biological Activity
146	prim-O-glucosylcimifugin	Ammi visnaga fruits [127]Angelica genuflexa roots [128]Eranthis hyernalis tubers [108]Angelica japonica roots [129]Cimicifuga foetida rhizomes [130]Diplolophium buchananii aerialparts [123]Saposhnikovia divaricata roots [131]	Analgesic, antipyretic, anti-inflammatory, anti-platelet aggregation and antitumor activities [125,126,131]
147	Cimifugin-4′-O-[6″-feruloyl]-β-⊡- glucopyranoside	<i>Cimicifuga foetida</i> rhizomes [132]	No reported biological activity
148	Monnieriside F	Cnidium monnieri fruits [60]	No reported biological activity

Table 13. Cont.

4.5.2. Pyrano-Chromone Glycosides

This subclass of compounds is characterized by the presence of an additional pyran ring fused with the benzo- δ -pyrone. Only three compounds were reported from nature until now. Of them, 3'-O-glucopyranosylhamaudol (*Sec-O*-glucopyranosylhamaudol) (**149**) and (3'S)-3'-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosylhamaudol (**150**), isolated from the *Saposhnikovia divaricata*, showed weak anti-cancer activity. Both compounds were screened against three cancer cell lines, namely human prostatic cancer cell (PC-3), human ovarian carcinoma cell (SK-OV-3), and human lung cancer cell (H460) using the conventional MTT assay. Compound **149** showed a weak activity against H460, with an IC₅₀ value of 94.25 ± 1.45 µM while compound **150**, showed an activity against SK-OV-3 with an IC₅₀ value of 86.21 ± 1.03 µM [119]. Compounds **149–151** are shown in Figure 17. The sources and the reported biological activities (if any) are summarized in Table 14.

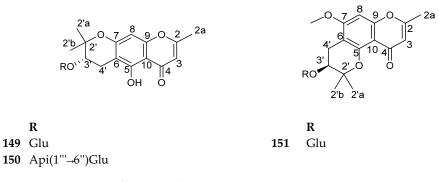


Figure 17. Structures of compounds 149–151.

Table 14. Pyrano-chromone glycosides with their sources and biological activities.

No.	Compound	Source	Biological Activity
149	3'-O-glucopyranosylhamaudol (<i>Sec-O-</i> glucopyranosylhamaudol)	Angelica genuflexa roots [128] Angelica japonica roots [129] Glehnia littoralis roots [133] Peucedanum japonicum roots [134] Saposhnikovia divaricata roots [119,122]	Antitumor activity against H-460 cell line with an IC_{50} value of 94.25 \pm 1.45 μM [119]
150	(3'S)-3'-O- β -D-apiofuranosyl- (1 \rightarrow 6)- β -D-glucopyranosylhamaudol	Saposhnikovia divaricata roots [119]	Antitumor activity against SK-OV-3 with an IC_{50} value of 86.21 \pm 1.03 μM [119]
151	(2'S)-2'-hydroxy-7- <i>O-</i> methylallopeucenin 2'- <i>O-β</i> -D-glucopyranoside	<i>Diplolophium buchananii</i> aerial parts [123]	No reported biological activity

4.5.3. Oxepino-Chromone Glycosides

This subclass of compounds is characterized by the presence of an additional oxepin fused with the benzo- δ -pyrone. Only four compounds were reported from nature until now, and all of them were reported from *Eranthis* species. The compounds **152–155** are shown in Figure 18. The sources are summarized in Table 15. There are no reported biological activities for these compounds.

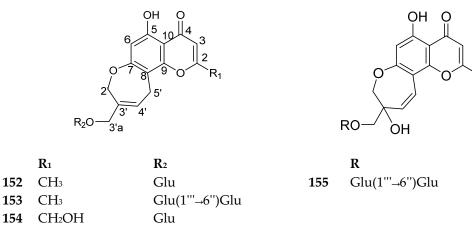
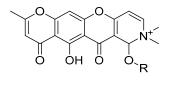



Figure 18. Structures of compounds 152–155.

No.	Compound	Source
152	Eranthin β -D-glucopyranoside	Eranthis hyemalis tubers [108]
153	Eranthin β -D-gentiobioside	<i>Eranthis cilicica</i> tubers [109] <i>Eranthis hyemalis</i> tubers [108]
154	2-C-Hydroxyeranthin β -D-glucopyranoside	Eranthis hyemalis tubers [108]
155	9-[(O - β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl)oxy]methyl- 8,11-dihydro-5,9-dihydroxy-2-methyl-4 H pyrano[2,3- g][1]benzoxepin-4-one	Eranthis cilicica tubers [109]

4.5.4. Pyrido-Chromone Glycosides

This subclass includes only the chromone alkaloidal glycoside; Schumanniofoside. This compound was found to reduce the lethal effect of black cobra (*Naja melanoleuca*) venom in mice [135]. The authors proved that this effect is greatest when the venom is mixed and incubated with the extract or schumanniofoside. They concluded that the mode of action is by oxidative inactivation of the venom. *Schumanniophyton magnificum* is used extensively in African ethno-medicine for the treatment of various diseases and, most commonly, the treatment of snake bites [135]. Its structure is shown in Figure 19. Its source and biological activity are summarized in Table 16.

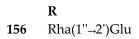


Figure 19. Structure of compound 156.

No.	Compound	Source	Biological Activity
156	Schumanniofoside	Schumanniophyton magnificum stem bark [135]	Anti-snake venom activity at 0.01–0.16 g/kg [135]

Table 16. Pyrido-chromone glycosides with its source and biological activity.

4.6. Hybrids of Chromones with Other Classes of Secondary Metabolites

This is an interesting category, as the chromone skeleton is conjugated to another high molecular weight compound, as shown in the following subclasses.

4.6.1. Hybrids of Furano-Chromones with Cycloartane Triterpenes

This subclass of compounds is a hybrid of cycloartane triterpene and chromone. The reported compounds were isolated from the rhizomes of *Cimicifuga foetida*. The compounds **157–165** are shown in Figure 20. The sources and the reported biological activities (if any) are summarized in Table 17.

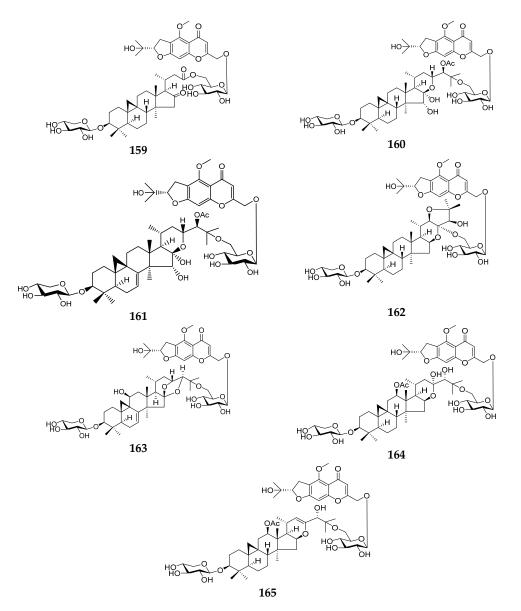


Figure 20. Structures of compounds 157–165.

No.	Compound	Source	Biological Activity
157	Cimitriteromone A	<i>Cimicifuga foetida</i> rhizomes [130]	No reported biological activity
158	Cimitriteromone B	<i>Cimicifuga foetida</i> rhizomes [130]	Anti-proliferative activity with an IC_{50} value of 15.73 \pm 0.59 μM [130]
159	Cimitriteromone C	<i>Cimicifuga foetida</i> rhizomes [130]	No reported biological activity
160	Cimitriteromone D	<i>Cimicifuga foetida</i> rhizomes [130]	Anti-proliferative activity with an IC_{50} value of 24.21 \pm 0.61 μM [130]
161	Cimitriteromone E	<i>Cimicifuga foetida</i> rhizomes [130]	No reported biological activity
162	Cimitriteromone F	<i>Cimicifuga foetida</i> rhizomes [130]	No reported biological activity
163	Cimitriteromone G	<i>Cimicifuga foetida</i> rhizomes [130]	No reported biological activity
164	Cimitriteromone H	<i>Cimicifuga foetida</i> rhizomes [136]	No reported biological activity
165	Cimitriteromone I	<i>Cimicifuga foetida</i> rhizomes [136]	Anti-proliferative activity with an IC_{50} value of 27.14 \pm 1.38 μM [136]

Table 17. Hybrids of furanochromones with cycloartane triterpenes with their sources and biological activities.

4.6.2. Hybrids of Chromones with Secoiridoids

There are only two compounds (Figure 21) belonging to this class, sessilifoside (**166**) and 7^{*''*}-*O*- β -D-glucopyranosylsessilifoside (**167**). Both compounds were isolated from the roots of *Neonauclea sessilifolia* roots [41]. The authors did not report biological activities for these compounds.

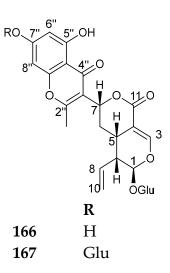


Figure 21. Structures of compounds 166–167.

4.6.3. Chromone Alkaloids Aminoglycosides

This category includes compounds **168–192**. Compounds **168–180** were reported from a strain of Streptomyces, isolated from a soil sample. These compounds showed antimicrobial activity against Gram-positive bacteria, as well as a potent antitumor activity. Conversely, compounds **181–183** were isolated from *Saccharothrix* species, while compounds **184–192** were reported from *Actinomycete* and exhibited antitumor and antimicrobial activities [137]. Compounds **168–192** are shown in Figures 22 and 23. The sources and the reported biological activities (if any) are summarized in Table **18**.

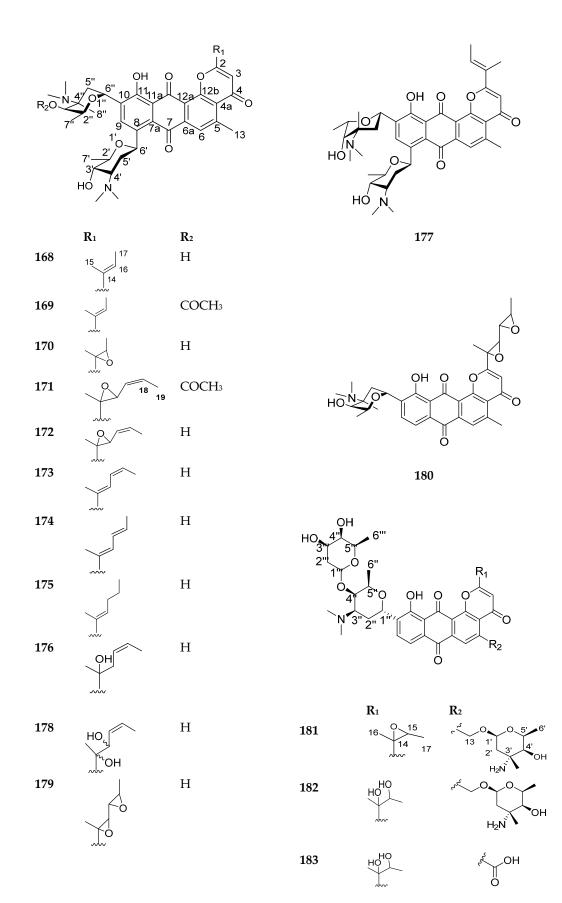


Figure 22. Structures of compounds 168–183.

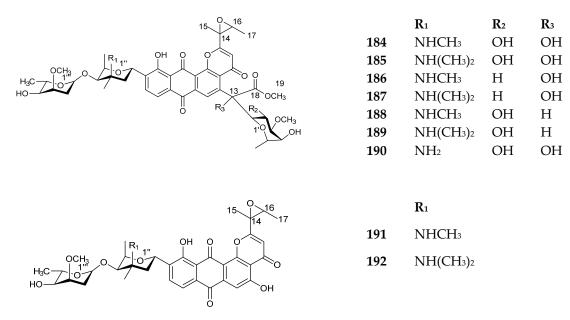


Figure 23. Structures of compounds 184–192.

Table 18.	Chromone	alkaloids	aminog	lycosides	with their	sources	and biol	ogical	activities.

No.	Compound	Source	Biological Activity		
168	Kidamycin (rubiflavin B)	Streptomyces phaeoverticillatus var. takatsukiensis [138]	Antibiotic with MIC (minimum inhibitory concentration) ranges from 0.19–1.56 μg/mL and potent antitumor activity [138]		
169	Neopluramycin	Streptomyces pluricolorescens [139,140]	Antibiotics and potent antitumor activity [140]		
170	14, 16-Epoxykidamycin	Streptomyces pluricolorescens [141]	Antibiotic against Gram-positive bacteria with MIC ranges from 0.5 to $10 \ \mu g/mL$ and antitumon activity [141]		
171	Pluramycin A	Streptomyces pluricolorescens [139,140]	Antibiotic and antitumor activity [140]		
172	Rubiflavin A	_			
173	Rubiflavin C-1	-			
174	Rubiflavin C-2	_			
175	Rubiflavin D	Streptomyces species [142]	Antibiotic and antitumor activity [142]		
176	Rubiflavin E	_			
177	Rubiflavin F (isokidamycin)				
178	PD 121,222	Streptomyces species [143]	Antibiotic and potent antitumor activity [143]		
179	Hedamycin	Streptomyces griseoruber [144,145]	Antibiotic and potent antitumor activity agains HeLa cells [144]		
180	Ankinomycin (dean- golosaminylhedamycin)	Streptomyces species [146]	Antibiotic against Gram-positive bacteria with MICs ranges from 0.39–1.56 μg/mL and potent antitumor activity [146]		
181	Pluraflavin A				
182	Pluraflavin B	Saccharothrix species [147]	Antibiotic and potent antitumor activity [147]		
183	Pluraflavin E	-			

No.	Compound	Source	Biological Activity			
184	Altromycin A					
185	Altromycin B					
186	Altromycin C	— Actinomycete, AB 1246E-26 [148,149]				
187	Altromycin D					
188	Altromycin E		Antibiotic against Gram-positive bacteria an potent antitumor activity [137]			
189	Altromycin F					
190	Altromycin G	Actinomycete, AB 1246E-26 [137]				
191	Altromycin H					
192	Altromycin I					

Table 18. Cont.

5. Spectroscopic Features

5.1. UV Features

Most of the published work on chromones show several strong bands in the range of 200–320 nm [150,151]. In contrast to chromone, the pyrone ring of 4-chromanone contains no double bond. The ultraviolet absorption spectra of chromones and chromanones are summarized in Table 19 [150].

Table 19. UV Band maxima of chromones an	l chromanone in 3-methylpentane at 25 °C.
--	---

	Chromones	Chromanones
Band system	λ_{max}	λ_{max}
A	360, 352, 345, 337, 324	363, 347
В	301, 290, 283	322(sh), 312 252, 246
С	225, 246, 239, 227, 223, 216, 202	219(sh), 213

The UV spectrum of chromones in alcohol shows two strong bands at λ_{max} 245 and 299 nm [152–154]. Some data reported three bands at λ_{max} 245, 303 and 297 nm [150]. 2-methyl-5,7-dihydroxy chromone shows bands at λ_{max} 250, 255, 295 and 325 nm, meanwhile 2-methyl-5-hydroxy-7-O-glycosyl chromone shows bands at λ_{max} 248, 255 and 290 nm [154]. The presence of an electron attracting group at C-2 resulted in a bathochromic shift in all bands [151]. The information gained from applying spectral shift reagents with flavonoids can be also applied to chromones. In the case of AlCl₃, a bathochromic shift of 20–70 nm, which is non-reversible with acids, indicates a free hydroxyl group at position 5. Meanwhile, a bathochromic shift with NaOAc can be diagnostic for the presence of a free 7-hydroxyl group [154,155].

5.2. IR Features

Carbonyl region: The IR carbonyl stretching frequency for a chromone is observed at 1640~1660 cm⁻¹, which is slightly higher than that of δ -pyrone (1650 cm⁻¹) but is much lower than that of coumarins (1720–1740 cm⁻¹) [25,153]. Despite that the OH group attached to C-5 of the chromone nucleus chelates strongly with the CO group, this intramolecular H-bonding has only a slight bathochromic effect on the CO stretching frequency [156]. All 5-hydroxychromones possess three significant maxima in the 1580–1700 cm⁻¹ region. The two higher frequencies are intense at 1660 and 1630 cm⁻¹, with a constant wavenumber separation of 34 (\pm 5) cm⁻¹ in both carbon tetrachloride and chloroform.

Hydroxyl region: The IR hydroxyl stretching vibration for a chromone was observed at 2500–3650 cm⁻¹. A strong chelation in 5-hydroxychromones does not produce a considerable bathochromic shifts in both the OH and CO stretching bands [156].

Chelated 5-hydroxychromones produce no absorption maxima in the 3300–3600 cm⁻¹ region, but a weak absorption envelope extends from 2400 to 3300 cm⁻¹. The entire envelope is associated with various stretching modes of the chelated 5-OH group [156]. For 7-hydroxychromones, a steric buttressing effect is observed when the 7-OH group is flanked by a bulky substituent in the ortho-position (6 or 8). The free OH band appears as a doublet centered at 3615 cm⁻¹, the separation of the components being ~26 cm⁻¹. When a prenyl moiety is located in the ortho-position to the 7-OH group, an intramolecular OH interaction occurs, resulting in two OH stretching frequencies. When a 7-OH group is flanked by an OMe group, intense intramolecularly bonded OH stretching frequencies are found at ~3513 and 3517 cm⁻¹, respectively [156]. The 2-hydroxymethyl group exhibits a free stretching frequency at \approx 3615 cm⁻¹. At concentrations higher than 0.15 M, a broad-bonded OH frequency at 3400 cm⁻¹ occurs due to intermolecular H-bonding, and it consequently disappears on dilution [156].

5.3. ¹H-NMR Features

In the following text, we try to give insight about the most characteristic ¹H-NMR features of the benzo- δ -pyrone skeleton (Figure 24) and its glycosides. The δ -pyrone ring has two olefinic protons assigned as H-2 and H-3. In 2, 3 unsubstituted chromones, for example compound **12**, the ¹H-NMR spectrum shows two ortho-coupled doublets (J = 6.0 Hz), located downfield at $\delta_{\rm H}$ 8.19 (H-2) and upfield at $\delta_{\rm H}$ 6.26 (H-3) [25]. For 2-alkyl and 2-*O*-glycosyl chromones (compounds **21** and **1**, respectively), they are characterized by an upfield singlet proton (H-3) at $\delta_{\rm H}$ 6.11 and 5.98, respectively [7,40]. Meanwhile, 3-alkyl and 3-*O*-glycosyl chromones (compounds **39** and **2**, respectively) are characterized by a downfield singlet proton (H-2) at $\delta_{\rm H}$ 7.93 and 8.07, respectively [10,50].

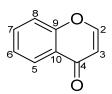


Figure 24. Basic skeleton of Chromone.

Chromanone glycosides or 2,3-dihydrochromone glycosides are characterized by an oxygenated proton (H-2) at $\delta_{\rm H}$ 4.12 and 5.44 as in compounds **62** [63] and **60** [50], respectively. The splitting pattern of H-2 can be either d, dd or ddd, depending on the number of neighboring protons. A small coupling constant between H-2 and H-3 (*J*= 2.8 Hz) can determine that they are located in the equatorial–equatorial position [50]. Further information on the detailed configuration can be clarified from observing NOESY correlations. Unsubstituted chromanones at C-3, as in **62**, show two geminal protons at $\delta_{\rm H}$ 2.50 and 2.70. Their splitting pattern shows geminal (J_{3a-3b} = 16.2 Hz) and vicinal (J_{ax-eq} = 2.7 Hz or J_{ax-ax} = 12.6 Hz) couplings [63]. In 3-alkyl substituted chromanones, as in **60** and **61**, H-3 is also detected at $\delta_{\rm H}$ 2.79 [50].

Naturally occurring chromones often bear a hydroxyl or methoxy group at C-5 and/or C-7 and a methyl group at C-2 and/or C-5 [153]. The C-5 methyl is usually observed in 6-C and 8-C glycosides. In aprotic solvents such as DMSO-d₆, the chelated 5-OH is detected as a singlet at δ_H 12.57; meanwhile, the 7-OH is detected at δ_H 10.00, as in compound **56** [31]. The C-2 methyl in Schumaniofioside A 7 can be detected at δ_H 2.33 (3H, s) [17]. Meanwhile, those located at C-5, can be detected more downfield at δ_H 2.64 (3H, s) as in **79** [78].

For the phenyl part of the benzo- δ -pyrone skeleton, the protons show chemical shift and coupling constant values similar to those observed for protons in substituted benzenes.

Sugar moiety: Xylosyl, arabinosyl and glucosyl chromones show an anomeric proton signal at $\delta_{\rm H} \sim 4.73$ (d, J = 7-7.6 Hz) [10–12]. The former moieties can be differentiated by the number of the oxygenated protons at the $\delta_{\rm H}$ 3-5 region, in addition to the difference in ¹³C-NMR values. Rhamnosyl chromones show a distinct signal at $\delta_{\rm H} \sim 1.25$ (3H, d,

J = 6.0 Hz) corresponding to CH₃-6' of α -L-rhamnose [8]. The most abundant chromone of C-glycosides is the 8-C-glycoside form, followed by 6-C-glycosides. However, we encountered a unique 3-C-glycoside named macrolobin 64 [65]. The anomeric proton in macrolobin is detected at $\delta_{\rm H}$ 5.32 (d, J = 1.5 Hz), the small coupling constant being indicative of the α -anomer [65]. Biflorin 66 and isobiflorin 80, as representative for 6-C and 8-C-glycosides, respectively, show the anomeric proton signal at $\delta_{\rm H}$ 4.55 (d, J = 9.8 Hz), and 4.63 (d, J = 9.8 Hz), respectively [69]. The former coupling constant value is higher than that observed in case of O-glycosides (J = 7–7.6 Hz) [11,12]. In 5-O, 7-O, 6-C, furano-, pyrano-, oxepino-chromone glycosides, the sugar moiety can be further substituted with another sugar, as in 8–9, 25–32, 78–79, 141–142, 150 and 153, respectively. In 6-C, 8-C and, to a lesser extent, 7-O-glycosides, the sugar moiety can be mono- or disubstituted with a phenolic acid moiety, commonly at C-2' or C-6' or C-2' and C-3'. The most commonly occurring phenolic moiety is gallic acid, but other phenyl propanoids such as cinnamoyl, coumaroyl, feruloyl and coniferoyl moieties also exist. The galloyl moiety is characterized by a singlet aromatic signal integrated for two protons at $\delta_{\rm H}$ 6.75 [27]. The cinnamoyl moiety is confirmed by two trans-coupled olefinic protons at δ_H 7.43 (d, J = 15.8 Hz) and 6.25 (d, J = 15.8 Hz), in addition to the aromatic signals of the benzene ring [30]. The presence of coumaroyl substitution is characterized by AA' BB' system for two pairs of ortho-coupled aromatic protons at δ_H 7.31 (2H, d, J = 8.6 Hz) and δ_H 6.74 (2H, d, J = 8.6 Hz), a trans-olefinic proton signals at δ_H 7.35 (1H, d, J = 16.1 Hz) and δ_H 6.03 (1H, d, J = 15.9 Hz) [29].

Prenyl and Isoprenyl chromone glycosides: In the case of 7-*O*-glycoside **127**, hydroxyl prenyl moiety can be easily characterized by the allylic methylene protons at $\delta_{\rm H}$ 3.53 (2H, m, H-1'), an olefinic proton at $\delta_{\rm H}$ 5.39 (t, J = 6.4, H-2'), oxygenated methylene protons $\delta_{\rm H}$ 4.20 and 4.46 (1H each, d, J = 12.0 Hz, H-4'), and an olefinic methyl at $\delta_{\rm H}$ 1.75 (3H, d, J = 1.2, H-5") [60]. Its isomeric 4'-*O*-glycoside **126** showed similar signals; however, the hydroxyl methylene protons (H-4') were slightly downfield at $\delta_{\rm H}$ 4.34 and 4.65 due to *O*-glycosidation [106]. Meanwhile, the hydroxyl isoprenyl group in the 7-*O*-glycoside **130** is characterized by the methylene protons at $\delta_{\rm H}$ 2.96 (2H, m, H-1'), an oxygenated methine proton at $\delta_{\rm H}$ 4.35 (H-2', m), exomethylene protons at $\delta_{\rm H}$ 4.74 and 4.91 (H-4') and an olefinic methyl at $\delta_{\rm H}$ 1.87 (3H, s, H-5'). Its isomeric 2'-*O*-glycoside **129** showed similar signals, but the oxygenated methine proton (H-2') is shifted downfield at $\delta_{\rm H}$ 4.74 due to *O*-glycosidation [60].

Phenyl ethyl chromone glycosides: The presence of the phenyl ethyl moiety in compound **136** can be detected by the methylene proton signals at $\delta_{\rm H}$ 2.75 (2H each, dd, *J* = 14.8, 6.4 Hz, H-7') and 3.19 (2H each, *J* = 14.8, 3.1 Hz, H-8'), in addition to the aromatic protons of the phenyl ring. The 8'-hydroxy phenyl ethyl moiety in **135** shows an oxygenated proton signal $\delta_{\rm H}$ 5.85 (dd, *J* = 3.5, 5.9 Hz, H-8') [110].

5.4. ¹³C-NMR Features

For better understanding of the differences in chemical shifts related to the substituents on the chromone moiety, we preferred to add the ¹³C-NMR data in Tables 20–40. For the numbering of the skeleton, the following figure (Figure 25) gives few examples for the numbering system of the skeleton with multiple substituents. Briefly, the basic chromone nucleus was assigned numbers 1–10. In the case of a substitution at C-2, numbers 11, 12 ... etc. were given to the substituents, followed by substitution at C-3 and so on. Sugar moiety, and substituents attached to it, were assigned numbers 1', 2', ... and then 1'', 2'', ... etc. For better understanding, the following figure shows representative examples for the numbering system. Some complicated structures have their own numbering system, shown on them within the review.

С	1	2	3	4	5	7	11	13	14
2	161.2	147.4	147.7	147.8	147.4	167.2	167.8	158.6	159.5
3	93.1	141.2	141.0	138.1	141.5	111.7	109.1	112.0	112.8
4	166.6	178.4	178.5	177.0	178.4	180.3	183.2	183.6	184.4
5	137.1	163.4	163.3	161.5	163.4	160.2	93.9	163.4	163.9
6	132.0	100.1	100.2	98.8	100.2	104.6	162.0	101.3	101.9
7	127.8	166.4	166.3	164.3	166.5	164.7	110.2	164.9	165.2
8	114.9	95.0	95.0	93.8	95.0	99.1	159.6	96.2	96.9
9	154.3	159.3	159.3	157.2	159.4	161.1	156.6	159.5	160.2
10	114.5	106.2	106.2	104.8	106.1	109.2	106.1	108.4	109.3
11	23.2	-	-	-	-	19.9	20.3	-	-
12	-	-	-	-	-	-	8.2	-	-
1′	100.1	104.6	104.4	100.6	104.2	105.0	101.7	101.6	102.1
2′	73.2	74.6	72.0	69.9	74.8	74.6	75.1	74.7	75.1
3'	77.5	77.1	73.6	70.2	77.4	77.3	78.4	77.9	77.8
4'	69.6	70.8	69.2	71.5	71.3	71.3	80.5	71.2	73.9
5'	76.7	67.1	67.1	69.7	78.5	78.7	78.1	78.4	77.5
6′	60.7	-	-	17.7	62.6	62.5	60.9	62.4	171.5
OCH ₃	-	-	-	-	-	-	-	-	53.8
Solvent	DMSO-d ₆	CD ₃ OD	CD ₃ OD	DMSO-d ₆	CD ₃ OD	CD ₃ OD	C ₅ D ₅ N	CD ₃ OD	CD ₃ OD
References	[7]	[10]	[12]	[9]	[11]	[17]	[1]	[27]	[28]

Table 20. The ¹³C-NMR spectral data of compounds **1–14** except those which have no reported ¹³C-NMR data.

Table 21. The ¹³C-NMR spectral data of compounds 15–23 except which has no reported ¹³C-NMR data.

С	15	16	17	18	20	21	22	23
2	158.1	158.4	158.5	168.9	161.6	174.3	175.5	174.6
3	110.8	111.9	112.0	108.8	108.8	107.8	106.2	106.6
4	181.8	183.6	183.6	182.5	182.5	184.3	183.3	183.1
5	161.3	163.1	163.2	161.2	157.9	163.0	162.2	162.7
6	99.8	101.2	101.2	99.8	100.3	101.0	100.6	100.7
7	162.9	164.6	164.8	163.1	168.9	164.8	164.2	164.2
8	94.6	96.2	96.2	94.9	95.0	95.9	95.3	95.3
9	157.7	159.4	159.4	157.9	163.4	159.5	158.4	158.4
10	106.8	108.5	108.5	105.5	105.5	107.0	106.5	107.4

С	15	16	17	18	20	21	22	23
11	-	-	-	20.5	20.5	28.3	33.3	40.4
12	-	-	-	-	-	11.2	19.9	27.6
13	-	-	-	-	-	-	19.9	17.7
14	-	-	-	-	-	-	-	11.7
1′	99.7	101.5	101.5	100.6	99.9	101.6	101.7	101.7
2′	73.1	74.7	74.7	73.3	73.5	74.7	74.8	74.8
3'	76.2	77.9	77.9	76.6	77.6	77.8	78.5	78.5
4'	69.7	71.9	72.0	69.6	70.7	71.2	71.2	71.1
5'	74.1	75.8	76.0	66.2	76.8	78.4	79.3	79.2
6′	63.4	64.2	64.7	-	61.1	62.4	62.4	62.3
1″	119.5	127.4	127.3	-	-	-	-	-
2''	108.8	133.7	131.2	-	-	-	-	-
3″	145.6	115.8	117.0	-	-	-	-	-
4″	138.6	160.0	161.4	-	-	-	-	-
5″	145.6	115.8	117.0	-	-	-	-	-
6″	108.8	133.7	131.2	-	-	-	-	-
7''	165.9	145.1	146.9	-	-	-	-	-
8″	-	116.0	115.1	-	-	-	-	-
9″	-	168.1	168.9	-	-	-	-	-
Solvent	DMSO-d ₆	CD ₃ OD	CD ₃ OD	DMSO- d_6	DMSO-d ₆	CD ₃ OD	C_5D_5N	C_5D_5N
References	[29]	[30]	[30]	[31]	[157]	[40]	[41]	[41]

Table 21. Cont.

Table 22. The ¹³C-NMR spectral data of compounds **24–32** except which has no reported ¹³C-NMR data.

С	24	25	26	28	29	30	31	32
2	168.7	157.3	167.9	168.2	168.9	169.2	168.9	168.5
3	108.7	108.3	108.8	108.8	108.8	109.3	108.8	108.4
4	182.4	181.9	182.7	182.8	182.5	184.2	182.5	182.1
5	161.5	161.1	162.4	162.4	161.7	163.1	161.7	161.3
6	99.9 *	108.7	100.6	100.7	100.2	100.8	100.0	99.6
7	162.9	162.6	163.9	163.9	161.9	163.4	161.9	161.6
8	94.9	108.2	95.3	95.1	95.2	95.7	95.1	94.7
9	157.7	168.2	158.3	158.3	157.9	159.5	157.9	157.5

					•			
С	24	25	26	28	29	30	31	32
10	105.5	105.0	106.3	106.3	105.7	106.8	105.6	105.2
11	20.3	19.9	19.9	20.1	20.5	20.4	20.5	20.1
1′	99.8 *	99.3	101.9	102.0	98.8	99.6	98.5	98.1
2′	73.3	77.0	74.6	74.6	81.2	71.0	69.8	69.5
3'	76.5	75.8	78.5	78.5	70.4	82.5	82.1	70.3
4′	70.2	68.9	71.5	71.6	70.9	72.4	70.7	81.4
5′	74.1	76.0	77.4	77.5	69.4	70.9	68.7	68.5
6′	63.7	60.5	69.0	68.0	18.3	18.1	18.0	17.9
1″	-	108.7	111.2	102.7	105.0	105.9	104.8	104.4
2″	-	76.7	77.9	72.0	74.5	75.4	74.1	74.5
3″	-	79.2	80.3	72.8	77.2	77.8	76.8	77.1
4″	-	73.9	75.1	74.1	70.0	71.1	70.6	70.1
5″	-	64.1	65.8	69.8	76.7	77.7	74.8	76.7
6″	-	-	-	18.6	61.5	62.2	64.1	61.2
CH ₃ CO	20.9, 170.5	-	-	-	-	-	21.1, 170.6	-
Solvent	DMSO-d ₆	CDCl ₃ , DMSO-d ₆	C ₅ D ₅ N	C ₅ D ₅ N	DMSO-d ₆	DMSO-d ₆	DMSO-d ₆	DMSO-d ₆
References	[33]	[16]	[44]	[46]	[31]	[22]	[31]	[47]

Table 22. Cont.

* Data interchangeable.

 Table 23. The ¹³C-NMR spectral data of compounds 33–41.

С	33	34	35	36	37	38	39	40	41
2	168.3	168.2	168.3	168.3	157.8	154.8	154.7	168.6	168.4
3	108.2	108.7	108.3	108.2	110.6	120.3	125.8	108.7	108.4
4	181.4	182.7	181.9	181.9	181.5	183.8	183.5	182.5	182.3
5	161.1	162.3	161.1	161.2	157.7	163.0	163.1	158.4	185.1
6	99.5	100.6	99.8	99.5	108.9	100.9	100.8	109.1	108.5
7	161.4	163.7	162.6	162.6	160.9	164.6	164.6	161.1	155.56
8	94.5	94.6	94.3	94.5	93.3	95.8	95.8	93.3	97.7 *
9	157.3	158.3	157.4	157.4	155.4	159.4	159.5	155.9	160.3
10	105.0	106.3	105.1	105.1	106.0	107.4	107.6	105.1	105.0
11	19.9	19.9	19.8	19.8	7.4	10.2	19.3	20.5	19.9
12	-	-	-	-	-	-	13.4	7.9	6.9

С			Table 25. Cont.												
_	33	34	35	36	37	38	39	40	41						
1′	98.0	101.6	99.5	98.1	100.1	101.6	101.6	100.2	93.1 *						
2'	69.5	74.4	72.9	73.0	73.1	74.7	74.7	73.8	77.3						
3'	69.8	78.1	76.1	76.2	76.4	77.8	77.8	76.5	74.5						
4'	80.9	71.3	69.9	69.9	69.6	71.2	71.2	79.4	69.7						
5'	68.4	75.8	73.9	73.9	77.1	78.4	78.4	76.1	73.3						
6'	17.9	64.5	63.4	63.4	60.6	62.4	62.4	60.7	60.5						
1″	102.3	121.0	128.5	127.9	-	-	-	-	-						
2''	81.4	110.4	114.8	114.9	-	-	-	-	-						
3''	76.6	147.4	146.9	148.9	-	-	-	-	-						
4''	69.8	140.8	147.7	149.3	-	-	-	-	-						
5''	77.6	147.4	120.7	122.5	-	-	-	-	-						
6''	61.0	110.4	115.9	115.8	-	-	-	-	-						
7''	-	167.1	144.6	144.7	-	-	-	-	-						
8″	-	-	115.7	115.8	-	-	-	-	-						
9″	-	-	166.1	166.2	-	-	-	-	-						
1‴	103.5	-	99.5	99.5	-	-	-	-	-						
2′′′	71.2	-	70.3	71.2	-	-	-	-	-						
3‴	71.7	-	71.0	71.6	-	-	-	-	-						
4‴	66.4	-	67.1	67.1	-	-	-	-	-						
5‴	64.2	-	75.0	74.8	-	-	-	-	-						
6′′′	-	-	61.0	61.0	-	-	-	-	-						
OCH ₃	-	-	-	55.8	-	-	-	60.1	_						
CH ₃ CO	-	-	-	-	-	-	-	-	20.7, 169.6						
Solvent 1	DMSO-d ₆	C_5D_5N	DMSO- d_6	DMSO- d_6	DMSO-d ₆	CD ₃ OD	CD ₃ OD	DMSO-d ₆	DMSO- d_6						
References	[47]	[48]	[33]	[33]	[49]	[50]	[50]	[23]	[51]						

Table 23. Cont.

* Data interchangeable.

С	43	45	46	47	48	49	50	52
2	168.7	168.4	168.4	169.5	170.0	160.0	164.9	164.9
3	108.4	108.0	108.0	108.4	109.1	112.5	101.9	118.6
4	182.9	182.7	182.7	182.4	185.0	185.0	178.8	177.6
5	159.5	152.6	155.9	152.5	157.8	158.8	141.8	137.9
6	98.3	109.7	114.3	135.2	116.3	117.3	116.6	110.5
7	160.9	158.5	158.8	157.8	160.2	161.2	160.4	159.8
8	104.6	114.3	109.8	94.7	111.6	112.9	111.5	99.6
9	155.0	155.9	152.6	155.6	154.6	155.5	159.3	158.5
10	105.2	106.5	106.5	106.2	108.2	110.6	117.1	115.7
11	20.5	20.0	20.1	20.2	20.5	10.3	22.8	19.4
12	8.1	8.8	9.0	-	8.9	10.5	19.9	48.7
13	-	8.9	9.1	-	9.5	-	-	205.3
14	-	-	-	-	-	-	-	52.0
15	-	-	-	-	-	-	-	62.7
16	-	-	-	-	-	-	-	23.6
1′	100.3	104.3	104.4	100.8	105.7	106.5	100.3	102.1
2′	73.9	76.0	74.1	74.1	75.3	76.5	77.6	73.0
3'	76.5	73.9	76.3	78.0	75.6	78.5	73.6	76.3
4'	79.4	70.0	69.9	69.9	71.7	72.5	70.1	69.4
5′	76.1	73.4	77.0	77.0	77.7	76.4	76.9	77.0
6′	60.7	63.0	61.0	61.2	64.3	65.3	61.0	60.5
1″	-	-	-	-	-	173.1	-	-
2″	-	-	-	-	-	47.3	-	-
3''	-	-	-	-	-	71.4	-	-
4″	-	-	-	-	-	46.9	-	-
5‴	-	-	-	-	-	176.6	-	-
6''	-	-	-	-	-	28.4	-	-
OCH ₃	60.1	-	-	56.7	-	-	-	-
CH ₃ CO	-	20.4, 170.1	-	-	20.4, 172.5	-	-	-
Solvent	DMSO- d_6	DMSO- d_6	*	DMSO- d_6	*	CD ₃ OD	CDCl ₃	DMSO- d_6
References	[23]	[51]	[24]	[36]	[24]	[52]	[53]	[57]

Table 24. The ¹³C-NMR spectral data of compounds **43–52** except those which have no reported ¹³C-NMR data.

* The authors did not report the NMR solvent.

С	53	54	55	56	57	60	61	62	64
2	161.0	166.3	169.9	166.6	166.5	105.9	104.7	83.5	148.0
3	117.2	110.7	109.3	107.6	106.9	46.2	52.9	42.2	140.5
4	178.1	177.4	184.0	182.2	182.5	199.2	198.9	193.7	178.9
5	141.3	117.8	96.0	162.0	162.0	165.3	165.2	161.5	163.6
6	113.0	125.0	162.9	99.5	98.8	97.5	97.5	100.0	100.2
7	159.9	119.2	101.0	165.1	164.8	168.4	168.4	166.6	166.2
8	99.7	147.4	164.7	94.5	93.6	97.0	97.0	99.1	95.3
9	158.8	147.3	159.3	158.1	158.2	160.4	160.2	166.2	159.3
10	116.1	125.4	119.0	104.3	104.2	102.0	102.4	106.7	106.6
11	47.3	20.1	20.3	66.1	66.0	13.8	23.7	33.2	-
12	202.5	-	-	-	-	-	11.8	18.2 *	-
13	29.8	-	-	-	-	-	-	-	-
14	22.3	-	-	-	-	-	-	-	-
1′	101.3	102.4	101.6	102.8	102.7	104.1	104.1	104.0	102.1
2′	73.1	74.8	74.7	73.9	73.6	75.0	75.0	74.6	72.0
3'	76.3	78.6	78.3	76.4	76.6	77.9	77.9	77.4	74.0
4′	69.5	71.2	71.4	67.7	70.1	71.0	71.0	71.2	71.5
5′	77.0	79.2	77.8	63.6	76.8	78.0	78.0	78.5	72.4
6′	60.9	62.4	62.4	-	61.3	62.5	62.5	62.5	62.5
Solvent	DMSO-d ₆	C ₅ D ₅ N	CD ₃ OD	DMSO- d_6	CD ₃ OD				
References	[57]	[58]	[59]	[31]	[60]	[54]	[50]	[63]	[65]

Table 25. The ¹³C-NMR spectral data of compounds **53–64** except those which have no reported ¹³C-NMR data.

* Data interchangeable.

 Table 26. The ¹³C-NMR spectral data of compounds 66–72.

С	66	67	68	69	70	71	72
2	167.3	174.7	168.3	168.4	167.8	169.4	174.4
3	107.8	105.1	108.6	108.8	107.0	109.2	105.3
4	181.8	182.2	181.8	181.8	182.0	184.3	182.2
5	160.6	160.6	160.6	160.6	160.4	162.3	160.4
6	108.7	108.7	108.6	108.8	108.1	108.9	107.0
7	163.2	163.3	163.1	163.1	162.4	165.0	163.4
8	93.3	93.4	93.3	93.3	93.9	95.2	93.7
9	156.6	156.7	156.6	156.6	157.0	159.4	156.9
10	103.0	103.3	103.2	103.2	102.9	105.1	103.1

С	66	67	68	69	70	71	72
11	19.8	32.3	43.1	66.2	20.0	20.4	32.4
12	-	19.8	64.1	46.0	-	-	19.8
13	-	19.8	23.3	63.8	-	-	19.8
14	-	-	-	43.8	-	-	-
15	-	-	-	23.5	-	-	-
1′	73.0	73.0	72.9	72.9	70.8	75.6	70.7
2'	70.1	70.2	70.0	70.0	72.0	72.6	72.0
3'	78.9	78.9	78.8	78.8	76.7	80.1	76.6
4'	70.6	70.6	70.5	70.5	70.8	71.9	70.7
5′	81.4	81.6	81.4	81.4	82.0	80.2	81.8
6'	61.4	61.5	61.4	61.4	61.6	65.2	61.5
1″	-	-	-	-	119.9	121.6	119.9
2′′	-	-	-	-	108.9	110.4	108.7
3″	-	-	-	-	145.4	146.6	145.4
4″	-	-	-	-	138.2	140.0	138.1
5″	-	-	-	-	145.4	146.6	145.4
6″	-	-	-	-	108.9	110.4	108.9
7''	-	-	-	-	164.8	168.6	164.7
Solvent	DMSO-d ₆	DMSO-d ₆	DMSO-d ₆	DMSO-d ₆	DMSO- d_6	CD ₃ OD	DMSO- d_6
References	[69]	[69]	[72]	[72]	[71]	[73]	[69]

Table 26. Cont.

 Table 27. The ¹³C-NMR spectral data of compounds 73–79 except those which have no reported ¹³C-NMR data.

С	73	74	75	76	79
2	167.7	174.9	162.3	163.1	160.6
3	106.3	105.3	113.2	111.0	112.4
4	182.0	182.2	181.9	181.8	178.5
5	161.1	160.9	143.1	146.1	*
6	108.1	106.4	127.0	128.3	126.5
7	163.1	163.2	160.1	161.1	160.8
8	93.4	93.4	119.4	121.1	100.6
9	157.1	157.0	161.3	157.9	159.0
10	103.0	103.1	115.8	114.3	114.6
11	19.9	32.4	48.7	48.5	47.8

С	73	74	75	76	79
12	-	19.78	204.4	204.6	202.4
13	-	19.75	29.8	30.7	29.8
14	-	-	23.3	23.3	22.5
CH ₃ O	-	-	-	55.8	-
1′	70.7	70.7	75.5	75.6	71.4
2′	69.7	69.7	71.9	72.3	81.7
3'	77.6	77.6	80.0	79.9	78.2
4'	68.7	68.7	72.9	72.1	70.1
5′	81.8	81.7	79.8	78.5	81.1
6'	61.2	61.2	65.2	65.4	60.9
1″	119.7	119.7	133.6	128.3	105.1
2''	108.9	108.9	131.2	131.0	74.3
3″	145.5	145.4	116.8	115.3	76.1
4″	138.5	138.4	161.3	160.4	69.3
5″	145.5	145.4	116.8	115.3	76.1
6″	108.9	108.9	131.2	131.0	60.3
7''	165.3	165.4	146.2	146.2	-
8''	-	-	114.9	116.0	-
9″	-	-	169.2	169.1	-
1′′′	119.1	119.0	-	-	-
2′′′	108.7	108.7	-	-	-
3′′′	145.3	145.3	-	-	_
4‴	138.4	138.3	-	-	_
5′′′	145.3	145.3	-	-	-
6′′′	108.7	108.7	-	-	-
7'''	164.6	164.4	-	-	-
Solvent	DMSO- d_6	DMSO- d_6	CD ₃ OD	CD ₃ OD	DMSO- d_6
References	[71]	[71]	[74]	[74]	[78]

Table 27. Cont.

* The authors missed assigning this position.

			1able 20. 11		(spectrul du	ta or compo	unus 00 09.			
С	80	81	82	83	84	85	86	87	88	89
2	167.0	169.3	174.4	173.0	168.2	167.6	167.2	174.8	167.7	174.5
3	107.4	108.7	105.0	106.2	108.3	107.8	107.5	105.4	108.0	105.6
4	181.9	184.3	182.2	181.9	181.9	182.2	181.9	182.4	182.2	182.4
5	160.4	149.4	160.4	160.4	160.3	160.8	160.5	160.7	161.0	161.0
6	98.4	94.5	98.5	98.7	98.3	97.6	98.3	97.8	98.0	97.9
7	162.5	162.8	162.8	164.2	162.7	162.2	162.6	162.3	162.4	162.6
8	104.3	105.2	104.1	104.7	108.4	103.9	104.0	102.8	103.9	102.1
9	156.1	164.6	156.5	156.6	158.9	157.1	156.3	157.2	157.1	157.2
10	103.5	106.3	102.0	103.3	103.8	102.8	103.5	104.0	102.0	104.0
11	19.6	20.3	32.7	39.1	42.1	11.0	19.7	33.1	20.1	33.1
12	-	-	20.0	27.0	66.5	-	-	19.8	-	20.3
13	-	-	19.5	11.4	45.8	-	-	20.3	-	20.1
14	-	-	-	17.4	64.1	-	-	-	-	-
15	-	-	-	-	23.6	-	-	-	-	-
1′	73.1	74.9	73.1	73.3	73.2	70.6	73.3	70.7	70.7	70.8
2′	71.0	72.8	71.2	71.2	70.3	72.5	70.0	72.5	70.1	70.2
3'	78.5	80.0	78.5	78.7	78.6	76.1	78.1	76.0	77.0	77.0
4'	70.3	71.7	70.8	70.9	71.0	70.8	70.7	71.2	68.5	68.9
5'	81.1	82.4	81.5	81.5	81.4	81.7	78.3	82.0	81.5	81.9
6′	61.3	62.9	61.8	61.7	61.5	61.5	63.8	61.8	61.0	61.3
1″	-	-	-	-	-	119.7	119.4	119.6	119.6	119.6
2″, 6″	-	-	-	-	-	108.8	108.5	108.7	108.9	108.9
3", 5"	-	-	-	-	-	145.5	145.5	145.4	145.6	145.5
4″	-	-	-	-	-	138.8	138.3	138.3	138.7	138.7
7″	-	-	-	-	-	165.0	165.8	165.0	165.5	165.4
1‴	-	-	-	-	-	-	-	-	118.7	118.7
2′′′, 6′′′	-	-	-	-	-	-	-	-	108.7	108.7
3′′′, 5′′′	-	-	-	-	-	-	-	-	145.5	145.4
4‴	-	-	-	-	-	-	-	-	138.5	138.6
7'''	-	-	-	-	-	-	-	-	164.8	164.8
OCH ₃	-	56.8	-	-	-	-	-	-	-	-
Solvent	DMSO-d ₆	CD ₃ OD	DMSO-d ₆	DMSO- d_6	DMSO-d ₆	DMSO-d ₆	DMSO-d ₆	DMSO-d ₆	DMSO- d_6	DMSO-d ₆
References	[86]	[87]	[158]	[158]	[72]	[71]	[91]	[69]	[71]	[71]

 Table 28. The ¹³C-NMR spectral data of compounds 80–89.

С	91	93	94	95	96	97	98	99	100
2	162.7	164.9	167.1	167.0	169.2	160.2	160.2	160.8	159.6
3	109.8	111.2	112.2	111.9	110.8	112.6	112.4	113.0	113.7
4	182.7	178.7	182.3	181.9	182.4	178.3	178.5	178.9	179.1
5	144.0	141.0	143.1	143.7	144.1	139.5	140.1	141.3	144.1
6	112.8	111.5	112.2	112.6	113.1	116.9	116.3	111.9	118.5
7	162.5	160.0	162.3	162.1	162.7	160.2	159.5	160.3	159.0
8	113.3	112.8	116.1	113.1	113.7	107.1	110.0	113.1	106.2
9	158.8	157.2	160.0	158.9	159.1	155.9	157.8	157.3	159.6
10	117.4	115.9	118.5	117.0	117.6	114.3	114.7	115.9	113.9
11	124.7	43.2	44.3	44.2	76.2	47.2	47.7	47.8	48.2
12	139.0	63.8	66.7	66.3	69.5	202.5	202.4	202.5	200.7
13	18.4	23.8	23.6	23.6	19.7	22.2	22.6	30.0	30.2
14	23.6	22.8	23.3	23.6	23.7	29.9	29.9	23.0	23.1
15	56.9	56.4	-	56.7	56.9	-	-	56.6	-
1′	75.1	73.0	76.0	74.6	74.9	80.2	73.5	72.9	68.1
2′	72.4	70.9	73.2	72.7	72.9	77.5	71.0	71.1	73.7
3'	80.3	78.8	80.1	80.0	80.3	74.8	78.7	79.1	73.7
4′	72.3	70.8	71.8	71.9	72.2	80.5	70.4	70.7	70.2
5′	82.9	81.8	82.7	82.4	82.6	68.3	81.5	81.8	76.6
6′	63.0	61.7	62.8	63.0	63.3	63.8	61.4	61.8	61.6
2′-OCOCH ₃	-	-	-	-	-	-	-	-	168.6, 20.7
3'-OCOCH ₃	-	-	-	-	-	-	-	-	169.4, 20.7
4'-OCOCH ₃	-	-	-	-	-	-	-	-	170.3 <i>,</i> 20.7
6'-OCOCH ₃	-	-	-	-	-	-	-	-	170.6, 20.7
Solvent	CD ₃ OD	DMSO-d ₆	CD ₃ OD	CD ₃ OD	CD ₃ OD	DMSO- d ₆	DMSO- d ₆	CD ₃ OD	CDCl ₃
References	[80]	[159]	[160]	[82]	[160]	[94]	[94]	[96]	[93]

Table 29. The ¹³C-NMR spectral data of compounds 91–100 except which has no reported ¹³C-NMR data.

С	103	104	106	107	108	109	110
2	165.0	165.0	167.4	167.2	167.4	167.1	167.2
3	111.3	111.3	112.5	112.6	112.6	111.9	111.9
4	178.6	178.8	182.3	182.2	182.2	181.9	182.0
5	141.7	141.8	144.6	144.8	144.6	144.3	144.3
6	111.0	111.3	112.7	112.6	112.5	112.3	112.4
7	159.5	159.8	162.1	162.0	162.0	161.6	161.6
8	110.6	110.7	111.8	111.4	111.8	111.6	111.3
9	157.4	157.5	159.8	159.6	159.6	159.3	159.1
10	115.8	115.8	117.2	117.2	117.2	116.9	116.9
11	43.1	43.3	44.6	44.9	44.6	44.5	44.3
12	64.4	63.9	65.9	66.3	66.0	66.6	66.5
13	23.3	23.7	23.6	23.7	23.6	23.5	23.6
14	22.8	22.9	23.7	23.7	23.6	23.5	23.3
15	56.5	56.5	57.0	57.1	57.0	56.9	57.0
1′	70.6	70.6	72.8	72.8	72.8	71.9	71.8
2′	72.6	72.3	73.4	73.7	73.9	74.0	73.7
3'	75.7	75.9	77.7	77.7	77.9	77.6	77.4
4'	70.4	70.9	72.4	72.4	72.3	72.4	72.4
5'	81.8	82.0	83.0	80.1	82.9	82.7	82.4
6′	61.5	61.6	63.1	64.4	63.1	62.9	62.7
1″	133.9	125.0	127.0	127.0	128.2	135.3	126.7
2″	128.9	130.3	133.2	131.1	130.9	128.9	130.9
3″	128.2	115.8	115.7	116.9	115.4	129.7	116.6
4″	130.4	159.6	160.0	161.3	163.2	131.3	160.7
5″	128.2	115.8	115.7	116.9	115.4	129.7	116.6
6″	128.9	130.3	133.2	131.1	130.9	128.9	130.9
7″	144.1	144.4	145.0	146.6	146.1	146.1	146.4
8″	117.8	114.0	115.7	114.6	115.6	118.1	114.2
9″	165.0	165.4	167.6	168.0	167.8	167.2	167.8
OCH ₃	-	-	-	-	55.9	-	-
COCH ₃	-	-	-	173.0, 20.9	-	-	-
Solvent	DMSO-d ₆	DMSO-d ₆	CD ₃ OD				
References	[99]	[159]	[80]	[100]	[100]	[82]	[82]

Table 30. The ¹³C-NMR spectral data of compounds 103–110 except which has no reported ¹³C-NMR data.

С	111	112	113	114	115	116	117	119	120	121	122
2	167.2	167.6	169.7	160.3	163.0	160.1	163.1	160.6	164.0	167.6	166.8
3	112.1	112.2	110.5	1125	113.8	112.5	111.0	112.5	112.4	112.2	112.2
4	182.2	182.3	182.4	178.6	182.1	178.4	181.8	178.6	182.0	182.3	182.3
5	143.5	144.6	144.8	141.0	144.7	140.4	146.1	141.8	144.9	144.6	144.8
6	116.3	112.6	112.7	115.8	112.2	115.7	128.3	111.5	113.1	112.6	112.7
7	161.3	162.0	162.1	159.1	162.1	159.4	161.1	159.7	162.3	161.0	162.2
8	110.0	111.9	111.8	110.2	112.0	110.7	121.1	110.8	111.6	111.9	111.9
9	160.4	159.6	159.4	158.3	159.6	157.9	157.9	157.4	159.5	159.6	159.6
10	117.0	117.3	117.5	114.8	117.1	114.8	114.3	115.6	117.6	117.2	117.3
11	44.3	44.6	75.7	48.1	49.1	47.8	48.5	47.9	98.6	44.6	44.6
12	66.7	66.8	69.2	202.4	204.7	202.3	204.6	202.1	203.7	66.8	66.8
13	23.5	23.6	19.7	30.4	29.9	29.6	30.7	29.6	23.7	23.7	24.0
14	23.5	23.6	23.7	22.7	23.7	22.6	23.3	22.7	25.0	23.6	23.5
15	-	57.1	57.1	-	57.1	-	55.8	55.5	57.2	57.1	57.1
1′	73.0	72.1	72.8	70.2	72.1	73.3	75.6	70.4	72.6	72.6	72.6
2'	74.0	74.0	74.1	72.3	73.9	70.8	72.3	72.2	74.3	74.1	73.6
3'	77.9	77.9	77.8	76.0	77.9	78.5	79.9	75.8	78.0	77.8	77.6
4'	72.1	72.7	72.3	70.2	72.6	70.4	72.1	70.6	71.9	78.3	78.1
5'	82.8	82.9	83.0	81.8	82.8	78.4	78.5	81.9	83.3	82.9	82.9
6′	63.1	63.1	63.1	61.8	63.3	64.8	65.4	61.5	63.5	63.0	63.0
1‴	128.3	127.5	135.7	125 I	127.0	125.0	128.3	125.5	135.7	129.8	129.7
2''	131.0	115.1	129.2	1301	130.8	130.3	131.0	111.1	129.3	130.8	132.6
3''	116.7	149.9	130.1	115.8	116.7	115.7	115.3	147.9	130.1	118.0	116.7
4''	161.2	146.6	131.6	159.6	161.3	159.7	160.4	149.2	131.6	163.8	159.7
5''	116.7	116.6	130.1	115.8	116.7	115.7	115.3	115.5	130.1	-	-
6''	131.0	123.0	129.2	1301	130.8	130.3	131.0	122.9	129.3	-	-
7''	146.2	147.1	146.4	144.4	145.3	144.9	146.2	144.6	146.3	146.0	144.7
8''	115.8	114.5	118.4	114.1	115.1	114.0	116.0	114.2	118.5	116.5	117.6
9′′	168.0	168.2	167.4	165.4	168.1	166.7	169.1	165.4	167.4	167.8	167.7
OCH ₃	56.1	-	-	-	-	-	-	56.3	-	-	-
1‴	-	-	-	-	-	-	-	-	-	101.9	101.7
2′′′	_	_	_	_	-	_	_	_	_	74.8	74.9
3′′′	_	_	_	_	_	_	_	_	_	72.1	72.6

Table 31. The ¹³C-NMR spectral data of compounds 111–122 except which has no reported ¹³C-NMR data.

С	111	112	113	114	115	116	117	119	120	121	122
4‴	-	-	-	-	-	-	-	-	-	71.3	71.2
5‴	-	-	-	-	-	-	-	-	-	78.0	77.9
6′′′	-	-	-	-	-	-	-	-	-	62.5	62.4
Solvent	CD ₃ OD	CD ₃ OD	CD ₃ OD	DMSO- d ₆	DMSO- d ₆	DMSO- d ₆	CD ₃ OD	DMSO- d ₆	CD ₃ OD	CD ₃ OD	CD ₃ OD
Referenc	es [80]	[82]	[160]	[161]	[162]	[163]	[74]	[164]	[81]	[160]	[160]

Table 31. Cont.

Table 32. The ¹³C-NMR spectral data of compounds **123–129** except which has no reported ¹³C-NMR data.

2167.7168.3171.3170.7167.7169.93108.0108.5105.6105.5108.3108.44182.2182.4184.3183.0182.7182.45158.8157.8160.2158.1159.5159.66110.4111.1112.5112.8107.4105.27162.3163.1163.8161.0162.9163.3893.290.594.493.092.892.99156.1156.6157.8156.1156.7156.410103.3104.4106.8105.6103.4103.8
4 182.2 182.4 184.3 183.0 182.7 182.4 5 158.8 157.8 160.2 158.1 159.5 159.6 6 110.4 111.1 112.5 112.8 107.4 105.2 7 162.3 163.1 163.8 161.0 162.9 163.3 8 93.2 90.5 94.4 93.0 92.8 92.9 9 156.1 156.6 157.8 156.1 156.7 156.4
5 158.8 157.8 160.2 158.1 159.5 159.6 6 110.4 111.1 112.5 112.8 107.4 105.2 7 162.3 163.1 163.8 161.0 162.9 163.3 8 93.2 90.5 94.4 93.0 92.8 92.9 9 156.1 156.6 157.8 156.1 156.7 156.4
6 110.4 111.1 112.5 112.8 107.4 105.2 7 162.3 163.1 163.8 161.0 162.9 163.3 8 93.2 90.5 94.4 93.0 92.8 92.9 9 156.1 156.6 157.8 156.1 156.7 156.4
7 162.3 163.1 163.8 161.0 162.9 163.3 8 93.2 90.5 94.4 93.0 92.8 92.9 9 156.1 156.6 157.8 156.1 156.7 156.4
8 93.2 90.5 94.4 93.0 92.8 92.9 9 156.1 156.6 157.8 156.1 156.7 156.4
9 156.1 156.6 157.8 156.1 156.7 156.4
10 103.3 104.4 106.8 105.6 103.4 103.8
11 19.9 19.9 61.6 60.0 18.8 60.0
OCH ₃ - 56.5
1' 20.5 20.5 22.1 20.5 26.4 26.4
2' 126.9 126.4 128.7 124.6 79.9 79.8
3' 131.8 132.3 132.9 134.1 143.7 143.7
4' 66.1 66.1 68.4 61.0 114.2 114.2
5' 21.2 21.3 21.9 20.0 15.2 15.2
1 " 101.5 101.6 102.7 100.1 99.4 99.4
2'' 73.6 73.6 75.3 73.2 73.6 73.6
3 ^{''} 76.9 77.0 78.3 76.7 76.3 76.3
4 ^{''} 70.2 70.2 71.8 67.7 70.2 70.2
5 ^{''} 77.0 77.0 77.9 77.0 76.7 76.7
6 ^{''} 61.1 61.1 62.9 60.1 61.2 61.2
Solvent DMSO- <i>d</i> ₆ DMSO- <i>d</i> ₆ CD ₃ OD CD ₃ OD CD ₃ OD CD ₃ OD CD ₃ O
References [104] [104] [106] [60] [60] [60]

			1able 55. 11		spectraruate	i or compot	1105 150-155	•		
С	130	131	132	133	134	135	136	137	138	139
2	170.7	167.6	170.7	168.3	171.4	168.9	165.0	171.0	171.5	171.8
3	105.5	107.4	104.9	108.1	105.5	113.9	*	110.4	110.7	110.7
4	183.0	181.8	181.9	182.5	182.5	176.6	*	179.3	180.4	180.6
5	158.8	158.8	158.9	159.5	159.5	132.6	*	106.6	119.2	126.2
6	111.4	97.6	97.8	98.3	98.4	111.4	99.3	150.7	126.2	126.6
7	162.1	159.9	160.1	160.6	160.8	158.2	162.9	153.1	122.1	135.6
8	93.3	107.5	107.4	108.1	108.2	103.6	94.8	106.9	147.8	119.3
9	156.3	153.8	153.5	154.4	154.1	163.4	*	149.8	149.0	158.0
10	105.7	104.3	104.8	105.0	105.4	112.7	*	116.2	125.0	124.3
11	60.0	19.5	59.3	20.2	59.5	127.9	121.6	102.2	141.4	136.2
1′	28.2	20.3	20.3	21.0	20.9	131.9	128.5	74.3	129.5	114.0
2′	74.6	120.5	120.4	121.1	121.0	115.7	115.7	78.1	129.6	150.7
3'	147.9	134.9	134.9	135.6	135.7	157.1	161.5	71.5	127.4	146.4
4′	109.5	65.9	65.8	66.5	66.5	115.7	115.7	78.0	129.6	118.1
5'	16.6	13.1	13.1	13.8	13.7	131.9	128.5	62.8	129.5	122.0
6′	-	-	-	-	-	39.3	39.1	-	33.8	33.6
7′	-	-	-	-	-	86.3	37.5	-	37.0	37.1
8′	-	-	-	-	-	127.9	121.6	102.2	141.4	136.2
1″	101.2	100.1	100.1	100.7	100.7	101.8	100.3	131.5	103.0	102.9
2″	73.6	72.9	72.9	73.5	73.5	74.6	*	133.0	75.0	74.9
3″	76.5	76.7	76.7	76.7	76.7	78.4	*	116.3	78.2	77.8
4″	69.8	69.2	69.2	69.8	69.8	71.2	*	164.1	71.3	71.3
5″	77.1	76.1	76.1	77.3	77.3	78.2	*	116.3	78.2	78.1
6″	61.1	60.2	60.2	60.8	60.8	62.5	*	120.9	62.5	62.4
7″	-	-	-	-	-	-	-	33.9	-	-
8″	-	-	-	-	-	-	-	37.1	-	-
OCH₃	-	-	-	-	-	-	-	6-OCH ₃ 56.3 4″-OCH ₃ 55.1	-	56.6
Solvent	CD ₃ OD	DMSO-d ₆	DMSO-d ₆	DMSO-d ₆	DMSO- d_6	CD ₃ OD	DMSO-d ₆	DMSO- d_6	CD ₃ OD	CD ₃ OD
References	[60]	[108]	[108]	[109]	[109]	[110]	[111]	[112]	[113]	[114]

 Table 33. The ¹³C-NMR spectral data of compounds 130–139.

* The authors missed assigning these positions.

 Table 34. The ¹³C-NMR spectral data of compounds 140–148.

C	140	141	142	143	144	145	146	147	148
2	147.2	146.9	147.3	89.9	89.0	92.9	92.1	92.3	88.2
3	106.1	105.0	104.9	24.3	28.3	28.1	27.9	28.0	30.1
4	153.7	160.5	159.2	165.5	164.5	160.3	165.3	156.3	158.5
5	177.2	185.9	184.7	176.9	176.4	184.7	176.6	176.6	182.9
6	109.7	107.8	107.2	111.9	109.8	109.5	110.9	111.4	107.2
7	163.7	169.0	168.7	163.3	164.0	169.7	162.7	162.6	166.7
9	95.8	92.0	92.0	94.8	95.2	90.4	94.0	94.2	88.8
10	157.8	156.1	154.5	159.9	160.1	168.3	159.7	165.4	166.6
11	117.0	114.3	113.4	118.7	117.2	111.3	118.1	118.5	108.7
12	152.8	106.9	106.3	112.3	111.4	106.6	112.5	112.8	102.9
13	155.6	155.7	155.2	156.4	157.7	157.9	156.1	159.9	158.6
14	65.7	67.8	66.3	21.4	20.7	20.8	66.4	66.8	66.1
4-OCH ₃	61.9	-	-	-	*	-	60.8	61.0	-
1′	103.0	104.4	104.4	77.3	74.3	79.7	70.8	70.8	143.7
2′	74.0	75.0	74.2	23.4	24.1	24.3	26.0	26.2	115.5
3′	77.2	77.9	77.6	22.3	23.5	23.0	25.6	25.8	15.7
4′	70.6	71.6	70.9	_	-	-	-	-	-
5′	77.1	78.0	76.7	-	-	-	-	-	-
6′	61.7	68.7	69.5	-	-	-	-	-	-
1″	-	111.1	103.3	98.9	100.1	99.5	104.0	104.4	102.8
2''	-	77.2	74.4	75.1	74.6	75.6	74.8	75.0	73.7
3''	-	80.6	77.4	78.8	78.6	78.5	78.4	78.3	76.7
4''	-	74.9	70.9	71.3	71.4	72.0	71.4	71.3	70.3
5''	_	65.5	77.7	77.1	78.2	76.8	78.1	75.7	76.9
6''	_	_	61.9	62.4	63.1	68.5	62.6	64.5	61.4
1′′′		_	_	_	_	111.2	_	126.5	_
2′′′	_	_	_	_	_	78.6	_	111.4	-
3'''	_	_	-	_	_	81.0	_	149.0	_
4‴	_	-	-	_	-	75.6	-	151.2	-
5'''	_	_	_	_	_	66.2	_	116.8	_
6'''		-	-		-	-	-	123.9	-
7'''		-	-		-	-		145.9	-
8'''								145.9	-
9 ^{///}		-	-	-	-	-	-		
-	-	-	-	-	-	-	-	167.8	-
3 ^{'''} -OCH ₃	-	-	-	-	-	-	-	55.9	-
Solvent	$\begin{array}{c} \text{DMSO-}d_{6,} \\ \text{C}_6\text{D}_6 \end{array}$	CD ₃ OD	DMSO- d_6	CDCl ₃ , CD ₃ OD	CDCl ₃ , CD ₃ OD	CD ₃ OD	C_5D_5N	C_5D_5N	CD ₃ OD
References	[117]	[118]	[109]	[122]	[122]	[119]	[121]	[132]	[60]

* The authors missed assigning this position.

 Table 35.
 The ¹³C-NMR spectral data of compounds 149–155.

С	149	150	151	152	153	154	155
2	167.4	169.5	162.7	167.6	167.6	170.9	168.7
3	108.7	108.0	111.1	107.5	107.4	105.6	108.6
4	182.7	184.2	175.3	181.9	181.8	182.5	182.6
5	160.0	160.9	160.7 *	158.6	158.5	159.2	160.3
6	104.1	105.0	104.9	103.1	103.1	103.8	102.5
7	159.6	160.4	152.7 *	163.5	163.3	164.1	164.3
8	94.9	95.8	91.1	109.8	109.9	110.5	105.8
9	156.3	157.7	157.8	152.9	152.7	153.1	155.0
10	104.4	105.0	107.7	105.5	105.4	106.5	106.1
2′	78.4	79.3	76.6	69.6	69.6	70.2	74.2
3'	74.3	75.0	72.4	135.2	135.0	135.8	73.5
4'	22.3	22.7	22.4	124.7	124.7	125.2	132.7
5′	-	-	-	20.6	20.3	20.9	117.3
1″	102.4	102.0	100.4	101.2	100.9	101.9	103.9
2″	74.9	74.9	**	72.8	72.6	73.3	73.7
3″	78.4	78.1	76.9	76.8	76.1	76.8	76.5
4″	71.8	71.9	70.2	70.1	69.4	70.1	70.9
5″	78.4	75.0	76.9	76.6	75.2	76.6	76.0
6″	63.0	68.8	61.3	60.6	67.7	61.6	68.5
1‴	-	111.0	-	-	102.7	-	103.4
2′′′	-	77.9	-	-	72.8	-	73.7
3′′′	-	80.5	-	-	76.1	-	76.9
4‴	-	75.0	-	-	69.4	-	70.0
5′′′	-	65.7	-	-	75.9	-	77.0
6′′′	-	-	-	-	60.4	-	61.1
2a	20.1	20.4	19.0	19.4	19.2	59.7	20.1
2′a	22.3	22.4	21.2	-	-	-	-
2′b	25.7	26.1	25.2	-	-	-	-
3'a	-	-	-	69.6	69.6	70.2	73.0
7-OCH ₃	-	-	56.0	-	-	-	-
Solvent	CDCl ₃	CD ₃ OD	DMSO-d ₆				
References	[121]	[119]	[123]	[108]	[108]	[108]	[109]

* Interchangeable data. ** The authors missed the assignment of this position.

С	157	158	159	160	161	162	163	164	165
Chromone moiety									
2′	92.4	92.2	92.2	92.2	92.2	92.2	92.2	92.2	92.2
3'	27.9	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8
4'	156.3	156.2	156.2	156.2	156.2	156.2	156.2	156.2	156.1
5'	176.2	176.2	176.2	176.2	176.2	176.2	176.3	176.3	176.3
6′	111.5	110.9	111.1	110.9	110.9	110.8	111.1	111.2	111.1
7'	162.1	162.5	162.4	162.4	162.7	162.5	162.6	162.6	162.5
9′	94.1	94.0	94.0	94.0	94.1	94.0	94.0	94.1	94.0
10′	165.4	165.2	165.2	165.2	165.2	165.2	165.2	165.2	165.2
11′	118.5	118.4	118.4	118.4	118.4	118.4	118.4	118.4	118.4
12′	112.9	112.8	112.8	112.5	112.8	112.8	112.8	112.8	112.7
13′	159.9	159.8	159.8	159.7	159.8	159.7	159.8	159.9	159.8
14′	66.3	66.3	66.5	66.2	66.4	66.2	66.5	66.3	66.5
4-OCH ₃	60.9	60.9	60.9	60.8	60.9	60.9	60.9	60.9	60.8
1″	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.7	70.6
2′′	26.0	26.1	26.1	26.1	26.1	26.1	26.1	26.2	26.1
3′′	25.6	25.7	25.7	25.6	25.7	25.7	25.6	25.6	25.7
Glu-1	101.7	104.1	104.2	104.1	104.1	104.0	104.2	103.9	104.3
Glu-2	74.5	74.9	74.8	74.8	74.9	74.9	74.9	74.8	74.9
Glu-3	79.1	78.3	78.1	78.4	78.4	78.4	78.4	78.2	78.1
Glu-4	69.3	71.2	71.4	71.4	71.5	71.3	71.5	72.0	71.9
Glu-5	78.4	76.9	75.4	77.1	77.1	76.7	77.0	76.8	76.7
Glu-6	62.4	63.5	64.2	62.7	62.7	62.8	62.6	62.9	62.7
Triterpene moiety									
1	31.8	31.9	31.9	32.3	30.3	32.0	27.4	31.9	31.9
2	29.8	29.8	30.0	30.0	29.5	30.0	29.8	29.6	29.8
3	87.8	88.0	88.3	88.4	88.1	88.3	88.3	88.0	88.0
4	41.1	40.3	41.2	41.2	41.2	41.2	40.7	41.1	41.1
5	47.1	47.0	47.4	47.4	42.6	47.4	43.8	47.0	46.9
6	20.5	20.4	20.8	20.9	21.7	20.8	22.0	20.4	20.3
7	25.6	25.8	25.9	26.4	113.2	26.3	114.0	25.8	25.7

Table 36. The ¹³C-NMR spectral data of compounds 157–165.

				Table 3	6. Cont.				
С	157	158	159	160	161	162	163	164	165
8	46.0	45.9	47.1	49.0	149.1	47.3	148.6	45.8	46.4
9	19.8	19.9	19.2	19.9	21.1	19.5	27.6	20.0	20.5
10	26.5	26.6	26.6	26.5	28.2	26.4	29.1	26.6	27.0
11	36.7	36.6	26.3	26.4	25.4	26.1	63.2	36.7	36.4
12	77.2	76.8	31.4	34.0	33.9	33.3	48.3	77.2	76.9
13	48.8	48.7	42.2	41.8	41.2	46.6	45.4	48.7	48.8
14	47.2	47.4	45.2	46.5	49.8	45.1	48.1	47.8	47.8
15	43.4	43.4	50.8	82.5	80.4	42.8	45.2	43.8	45.6
16	70.7	72.8	218.6	103.0	103.3	72.5	114.5	71.1	74.6
17	55.7	55.6	60.4	60.5	60.3	51.4	61.0	56.8	52.4
18	13.5	13.5	18.8	20.3	22.5	20.5	20.7	13.5	12.9
19	29.9	30.7	30.0	30.7	28.2	30.1	18.7	29.8	30.0
20	26.9	25.4	29.1	27.6	27.5	34.2	23.7	26.0	24.6
21	21.1	20.8	19.9	21.4	21.6	17.3	19.6	21.1	25.7
22	41.5	38.6	40.3	33.6	33.6	86.2	37.8	41.9	106.0
23	104.2	102.9	173.4	74.2	74.4	109.6	71.7	101.9	152.9
24	83.1	212.4	-	80.5	80.4	77.3	88.5	77.7	75.9
25	79.1	35.0	-	76.4	76.5	83.5	76.4	81.3	78.2
26	19.4	19.2	-	21.6	21.6	27.3	23.2	23.7	22.3
27	29.8	19.7	-	24.1	24.1	24.5	20.2	24.9	23.1
28	19.4	19.4	19.6	11.8	18.2	19.4	27.4	19.5	20.7
29	25.6	25.6	25.6	25.5	25.6	25.6	25.8	25.6	25.6
30	15.2	15.2	15.2	15.5	14.2	15.3	14.5	15.2	15.2
Xyl-1	107.4	107.5	107.5	107.4	107.4	107.4	107.4	107.5	107.5
Xyl-2	75.5	75.5	75.5	75.5	75.5	75.5	75.5	75.5	75.5
Xyl-3	78.5	78.6	78.5	78.5	78.5	78.5	78.5	78.5	78.5
Xyl-4	71.1	71.0	71.1	71.1	71.2	71.1	71.1	71.2	71.1
Xyl-5	67.0	67.0	67.1	67.0	67.0	67.0	67.0	67.0	67.0
COCH ₃	170.4 21.5	170.4 21.5	-	171.0 21.1	171.0 21.1	-	-	170.5 21.6	170.6 21.1
Solvent	C_5D_5N	C_5D_5N	C_5D_5N	C_5D_5N	C_5D_5N	C_5D_5N	C_5D_5N	C_5D_5N	C_5D_5N
References	[130]	[130]	[130]	[130]	[130]	[130]	[130]	[136]	[136]

С	166	167
1	98.1	98.1
3	154.5	154.5
4	105.6	105.6
5	28.7	28.6
6	30.0	29.9
7	75.1	75.0
8	133.3	133.3
9	43.9	43.8
10	121.1	121.1
11	168.6	168.5 ^a
1′	99.8	99.7
2'	74.8	74.7 ^b
3'	77.9	77.8 ^c
4'	71.6	71.2 ^d
5′	78.5	78.4 ^e
6′	62.7	62.4 ^f
2''	167.5	168.1 ^a
3″	118.2	118.6
4''	181.6	181.8
5″	163.5	163.1
6″	100.2	101.1
7''	166.2	164.9
8''	94.7	95.7
9''	159.2	158.7
10″	104.9	106.6
-CH ₃	18.9	19.0
1‴	-	101.6
2′′′	-	74.8 ^b
3‴	-	77.9 ^c
4‴	-	71.6 ^d
5‴	-	78.5 ^e
6'''		62.7 ^f
NMR	CD ₃ OD	CD ₃ OD
References	[43]	[43]

 Table 37. The ¹³C-NMR spectral data of compounds 166 and 167.

С	168	169	170	171	172	178	179	180
2	163.7	159.3	168.0	159.6	167.5	170.2	166.3	166.3
3	108.7	108.8	109.7	109.9	110.0	110.8	110.0	110.0
4	179.2	179.5	178.9	178.8	179.0	179.0	178.7	178.8
4a	125.8	126.2	125.9 *	126.4	125.9 *	125.8 *	125.8 *	126.5
5	149.6	149.6	149.9	150.0	149.8	150.1	149.7	149.9
6	125.4	125.4	125.8	125.9	125.9 *	125.8 *	125.9	126.0
6a	137.0	137.2	137.0	137.0	137.4	137.2	137.3	136.3
7	183.0	183.3	183.2	183.5	183.3	183.1	183.1	181.5
7a	125.8	127.3	126.3 *	126.5	126.4 *	126.1 *	126.2 *	130.7
8	140.0	140.6	139.7	140.0	140.1	139.9	140.2	119.3
9	133.0	132.6	132.9	132.2	133.1	133.3	133.1	133.2
10	138.4	138.5	137.8	137.0	138.5	138.6	138.6	140.7
11	159.7	163.9	159.7	167.6	159.9	159.9	159.8	159.5
11a	116.0	115.8	116.1	116.0	116.2	116.0	116.1	116.1
12	188.1	188.0	187.9	187.7	188.1	188.3	188.0	187.7
12a	118.9	118.9	119.1	119.1	119.2	118.9	119.2	119.8
12b	155.7	155.8	156.0	156.0	156.2	155.8	156.1	156.2
13	24.0	24.1	24.3	24.2	24.1	24.2	24.1	24.1
14	127.2	125.9	57.6	60.3	59.1	75.6	57.7	57.7
15	12.1	15.0	13.8	14.9	14.5	23.5	14.5	14.4
16	134.2	134.2	62.0	61.7	61.6	71.7 *	63.9	63.9
17	14.9	12.1	14.1	123.3	123.3	127.4	55.4	55.4
18	-	-	-	134.1	134.0	130.2	51.8	51.8
19	-	-	-	14.4	13.8	13.5	17.2	17.2
2′	77.3	77.7	77.2	77.6	77.3	77.2	77.3	67.9
3'	71.9	71.8	71.3	70.6	71.9	71.7 *	71.9	71.0
4'	67.4	67.5	67.8	68.1	67.4	67.3 *	67.4	57.7
5'	28.3	41.0	28.8	38.8	28.4	28.4	28.3	35.0
6'	75.2	75.4	74.8	74.0	75.2	75.0	75.2	68.2
7'	18.9	18.9	18.8	18.5	18.9	18.9	18.9	17.5
8'								13.2

Table 38. The ¹³C-NMR spectral data of compounds **168–180** except those which have no reported ¹³C-NMR data.

С	168	169	170	171	172	178	179	180
4'-N(CH ₃) ₂	40.4	40.5	40.3	40.4	40.4	40.3	40.4	37.1
2″	67.2	69.8	67.5	69.8	67.2	67.4 *	67.3	-
3″	70.8	76.4	70.3	74.5	70.9	70.7	70.9	-
4″	57.4	57.6	57.6	59.1	57.3	57.9	57.3	-
5″	33.6	28.6	33.3	30.4	33.6	33.3	33.7	-
6″	69.5	64.9	69.4	65.7	69.7	69.6	69.6	-
7''	17.6	15.0	17.4	15.1	17.7	17.6	17.6	-
8″	12.3	13.7	13.1	13.9	12.3	12.6	12.3	-
3″-COCH ₃	-	170.6 21.3	-	171.0 21.5	-	-	-	-
4"-N(CH ₃) ₂	36.8	39.3	36.9	38.8	36.8	36.8	36.8	-
Solvent	CDCl ₃							
References	[165]	[140]	[141]	[140]	[142]	[143]	[165]	[146]

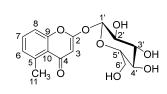
Table 38. Cont.

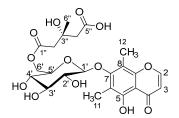
* Interchangeable values.

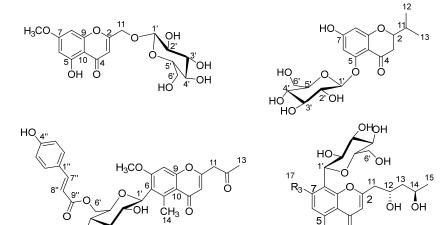
 Table 39. The ¹³C-NMR spectral data of compounds 181–183.

С	181	182	183
2	168.4	176.4	176.5
3	112.0	111.1	111.3
4	180.3	181.3	178.4
4a	126.1	126.0	124.7
5	150.4	150.4	149.6
6	121.3	121.0	121.2
6a	138.3	138.1	139.0
7	182.7	182.7	182.4
7a	133.2	133.2	133.2
8	120.1	120.0	119.8
9	135.4	135.5	135.6
10	137.4	137.4	137.0
11	161.1	161.0	161.3
11a	118.1	118.0	118.0

Table 39. Cont.					
C	181	182	183		
12	189.1	189.2	189.2		
12a	122.0	121.9	121.6		
12b	157.7	157.4	156.9		
13	70.8	70.8	175.3		
14	61.2	77.7	77.7		
15	63.7	72.6	72.6		
16	20.2	23.9	23.9		
17	13.7	17.0	17.1		
1′	98.9	98.9	-		
2'	37.2	37.2 37.2			
3'	58.3	-			
4′	71.2	71.1	-		
5′	70.4	70.4	-		
6′	17.2	17.2	-		
7'	24.6	24.5	-		
1″	70.2	70.1	70.3		
2″	28.0	27.7	27.4		
3″	65.2	65.1	64.9		
4″	75.1	75.0	75.2		
5″	72.6	72.6	72.3		
6″	18.1	18.2	18.3		
3"-N(CH ₃) ₂	43.2	43.3	42.5		
	41.7	41.4	42.5		
1‴	101.4	101.4 101.4			
2′′′	33.4	33.4 33.4			
3′′′	66.6	66.6	66.6		
4′′′	72.0 72.0		72.0		
5‴	69.5 69.5		69.5		
6′′′	17.5	17.5	17.5		
Solvent	CD ₃ OD	CD ₃ OD	CD ₃ OD		
References	[147]	[147]	[147]		


Table 39. Cont.


С	184	185	186	187	188	189	190	191	192
2	167.5	167.4	167.0	167.0	165.7	165.7	167.5	169.3	169.3
3	111.1	110.9	110.9	110.8	111.3	111.3	111.1	109.1	109.1
4	180.2	180.0	179.4	179.4	178.5	178.6	180.2	182.4	182.5
4a	126.6	126.4	126.5	126.4	126.3	126.3	126.6	113.3	113.3
5	149.2	149.1	149.4	149.2	148.2	148.2	149.3	166.7	166.7
6	122.5	122.4	122.9	122.8	124.1	124.0	122.5	110.7	110.7
6a	137.2	137.1	137.0	136.9	136.9	136.9	137.2	139.8	139.9
7	181.2	181.0	181.2	181.2	181.5	181.4	181.2	180.8	180.8
7a	130.3	130.2	130.4	130.3	130.5	130.5	130.5	130.6	130.4
8	119.8	119.7	119.7	119.7	119.5	119.5	119.8	119.4	119.5
9	133.6	133.7	133.4	133.6	133.3	133.5	133.7	132.4	132.8
10	141.3	141.1	141.0	140.9	141.0	140.9	140.7	140.2	140.9
11	159.1	159.2	159.3	158.9	159.3	159.3	159.4	159.1	159.1
11a	115.8	115.6	115.9	115.7	115.9	115.9	115.9	115.6	115.4
12	186.9	186.9	187.1	186.9	187.5	187.4	186.9	186.2	186.3
12a	121.8	121.6	121.6	121.6	120.8	120.8	121.8	112.3	112.4
12b	156.8	156.7	156.6	156.5	156.1	156.1	156.8	156.6	156.6
13	80.9	80.0	79.0	78.9	48.3	48.2	80.9	-	-
14	59.8	59.7	59.8	59.7	59.8	59.7	59.8	60.0	60.0
15	19.7	19.6	19.8	19.7	20.0	19.9	19.6	19.6	19.7
16	62.7	62.5	62.5	62.5	62.5	62.5	62.7	62.7	62.7
17	13.4	13.3	13.4	13.3	13.5	13.4	13.3	13.2	13.2
18	170.5	170.4	170.9	170.9	170.4	170.4	170.5	_	_
19	52.6	52.5	52.4	52.3	52.3	52.3	52.6	_	_
2′	73.8	73.8	74.9	74.9	74.3	74.2	73.8	-	-
3'	68.9	68.9	68.5	68.2	68.8	68.8	69.0	-	-
4′	80.2	80.1	74.8	74.9	81.5	81.4	80.2	-	-
5′	67.9	67.9	26.1	26.0	68.0	67.9	68.0	-	-
6′	73.7	73.6	70.3	70.2	73.9	74.0	73.7	-	-
7'	14.1	14.0	14.7	14.7	14.7	14.6	14.0	-	-
4'-OCH ₃	57.9	57.8	55.6	55.5	57.1	57.1	58.0	-	-
2''	70.3	70.7	70.2	70.8	70.3	70.8	70.0	70.0	70.7
3″	77.7	82.6	77.8	82.7	77.8	82.8	76.0	77.3	82.8
4″	54.9	58.1	55.1	58.1	54.9	58.1	51.7	56.1	58.1


 Table 40. The ¹³C-NMR spectral data of compounds 184–192.

С	184	185	186	187	188	189	190	191	192
5″	40.3	44.7	40.4	44.7	40.4	44.8	44.9	38.5	44.8
6″	62.1	62.2	62.3	62.2	62.2	62.3	62.3	63.6	62.3
7″	14.7	13.5	14.8	13.5	14.7	13.6	14.1	15.4	13.6
8″	24.1	14.0	23.8	13.9	24.2	14.1	32.6	22.6	14.0
4″- N(CH ₃) _n	27.9	40.3	27.8	40.3	28.1	40.4	-	27.2	40.3
1‴	93.4	94.4	93.7	94.5	93.4	94.5	93.3	94.5	94.5
2′′′	30.8	31.1	30.9	31.1	30.9	31.1	30.8	31.1	31.1
3′′′	74.8	74.9	74.8	74.9	74.9	75.0	74.8	75.0	75.0
4‴	72.1	72.1	72.1	72.0	72.2	72.2	72.2	71.5	72.2
5′′′	65.4	65.0	65.7	65.0	65.4	65.1	65.4	66.6	65.0
6′′′	17.7	17.6	17.7	17.6	17.8	17.7	17.8	17.5	17.7
3///-OCH3	55.9	56.1	56.1	56.1	55.9	56.2	56.0	56.4	56.1
Solvent	CDCl ₃								
References	[149]	[149]	[149]	[149]	[137]	[137]	[137]	[137]	[137]

Table 40. Cont.

Figure 25. Representative guide figure for numbering of chromone glycosides attached to different substituents.

ČH₃ Ö 16

6. Conclusions

ΗΟΉΟ

Chromone glycosides are one of the most important classes of secondary metabolites. In this review, we summarized 192 naturally occurring chromone glycosides with their sources, reported activities, and spectroscopic features. Basically, they were categorized into several classes: chromone-*O*-glycosides including compounds **1–59**, among them, four chromanone glycosides (**60–63**), chromone-*C*-glycosides including compounds **64–122**, prenyl and isoprenyl chromone glycosides including compounds **123–134**, phenyl ethyl chromone glycosides including compounds **140–148**, pyrano-chromone glycosides including compounds **149–151**, oxepino-chromone glycosides including compounds **152–155**, Pyrido-chromone glycoside including compounds **157–165**, glycoside derivatives of chromones with cycloartane triterpenes including compounds **166** and **167**, and chromone alkaloids aminoglycosides including compounds **168–192**. Diverse bioactivities were discovered for most of the reported chromone glycosides. Several chromone glycosides show potent biological activities as anti-viral, acetylcholinesterase inhibition, anti-tumor, anti-inflammatory, etc. This review directs the attention for further deep investigation of chromone glycosides for drug discovery.

Author Contributions: Y.A.: conceptualization, data collection, writing, reviewing. M.E., A.O. and M.S.: data collection, writing, reviewing. K.S.: supervision, reviewing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

All	Allose
Api	Apiose
Ara	Arabinose
Caf	Caffeic acid
Cin	Cinnamic acid
Cou	Coumaric acid
Fer	Ferulic acid
Gall	Gallic acid
Glu	Glucose
Rha	Rhamnose
Xyl	Xylose

References

- Herath, H.M.T.B.; Jacob, M.; Wilson, A.D.; Abbas, H.K.; Nanayakkara, N.P.D. New secondary metabolites from bioactive extracts of the fungus *Armillaria tabescens*. *Nat. Prod. Res.* 2013, 27, 1562–1568. [CrossRef] [PubMed]
- Choi, S.; Park, Y.-I.; Lee, S.-K.; Kim, J.-E.; Chung, M.-H. Aloesin inhibits hyperpigmentation induced by UV radiation. *Clin. Exp.* Dermatol. 2002, 27, 513–515. [CrossRef] [PubMed]
- Machado, N.F.L.; Marques, M.P.M. Bioactive Chromone Derivatives-Structural Diversity. *Curr. Bioact. Compd.* 2010, 6, 76–89. [CrossRef]
- 4. Daniel, M. Medicinal Plants: Chemistry and Properties; Science Publishers: Hauppauge, NY, USA, 2006; ISBN 1578083958.
- Mander, L.; Liu, H.-W. Comprehensive Natural Products II: Chemistry and Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, ISBN 0080453821.
- 6. Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach; John Wiley & Sons: Hoboken, NJ, USA, 2002; ISBN 0471496413.
- 7. Daily, A.; Seligmann, O.; Nonnenmacher, G.; Fessler, B.; Wong, S.; Wagner, H. New chromone, coumarin, and coumestan derivatives from *Mutisia acuminata* var. *hirsuta*. *Planta Med*. **1988**, *54*, 50–52. [CrossRef]
- 8. Tschesche, R.; Delhvi, S.; Sepulveda, S.; Breitmaier, E. Eucryphin, a new chromone rhamnoside from the bark of *Eucryphia cordifolia*. *Phytochemistry* **1979**, *18*, 867–869. [CrossRef]
- 9. Li, Z.; Li, D.; Owen, N.L.; Len, Z.; Cao, Z.; Yi, Y. Structure determination of a new chromone glycoside by 2D INADEQUATE NMR and molecular modeling. *Magn. Reson. Chem.* **1996**, *34*, 512–517. [CrossRef]

- 10. Feng, Z.; Wang, Y.; Zhang, P. Chemical constituents of Rhododendron ovatum Planch. Yaoxue Xuebao 2005, 40, 150–152.
- 11. Kuo, L.-M.Y.; Zhang, L.-J.; Huang, H.-T.; Lin, Z.-H.; Liaw, C.-C.; Cheng, H.-L.; Lee, K.-H.; Morris-Natschke, S.L.; Kuo, Y.-H.; Ho, H.-O. Antioxidant Lignans and Chromone Glycosides from *Eurya japonica*. J. Nat. Prod. **2013**, *76*, 580–587.
- 12. Chen, G.; Jin, H.Z.; Li, X.F.; Zhang, Q.; Shen, Y.H.; Yan, S.K.; Zhang, W.D. A new chromone glycoside from *Rhododendron* spinuliferum. Arch. Pharm. Res. 2008, 31, 970–972. [CrossRef]
- 13. Han, L.K.; Ninomiya, H.; Taniguchi, M.; Baba, K.; Kimura, Y.; Okuda, H. Norepinephrine-augmenting lipolytic effectors from *Astilbe thunbergii* rhizomes. *J. Nat. Prod.* **1998**, *61*, 1006–1011. [CrossRef]
- 14. Sumiyoshi, M.; Kimura, Y. Enhancing effects of a chromone glycoside, eucryphin, isolated from Astilbe rhizomes on burn wound repair and its mechanism. *Phytomedicine* **2010**, *17*, 820–829. [CrossRef]
- 15. Liao, Y.Y. A new chromone glycoside from leaves of Salix matsudana. Chinese Tradit. Herb. Drugs 2014, 24, 2887–2889.
- Tane, P.; Ayafor, J.F.; Sondengam, B.L.; Connolly, J.D. Chromone glycosides from *Schumanniophyton magnificum*. *Phytochemistry* 1990, 29, 1004–1007. [CrossRef]
- 17. Kumar, V.; Gupta, M.; Gandhi, S.G.; Bharate, S.S.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Anti-inflammatory chromone alkaloids and glycoside from *Dysoxylum binectariferum*. *Tetrahedron Lett.* **2017**, *58*, 3974–3978. [CrossRef]
- Al-Taweel, A.; Alqasoumi, S.; Alam, P.; Abdel-Kader, M. Densitometric-high-performance thin-layer chromatographic estimation of diosmin, hesperidin, and ascorbic acid in pharmaceutical formulations. *J. Planar Chromatogr. Mod. TLC* 2013, 26, 336–342. [CrossRef]
- 19. Fawzy, G.A.; Al-Taweel, A.M.; Perveen, S.; Khan, S.I.; Al-Omary, F.A. Bioactivity and chemical characterization of *Acalypha fruticosa* Forssk. growing in Saudi Arabia. *Saudi Pharm. J.* **2017**, *25*, 104–109. [CrossRef]
- Sueyoshi, E.; Yu, Q.; Matsunami, K.; Otsuka, H. Staphylosides A and B: Two new chromone diglucosides from leaves of *Staphylea* bumalda DC. *Heterocycles* 2008, 76, 845–849.
- 21. Elgorashi, E.E.; Coombes, P.H.; Mulholland, D.A.; Van Staden, J. Isoeugenitol, a cyclooxygenase-1 inhibitor from *Gethyllis ciliaris*. *South African J. Bot.* **2007**, *73*, 156–158. [CrossRef]
- 22. Han, L.; Zheng, F.; Zhang, Y.; Liu, E.; Li, W.; Xia, M.; Wang, T.; Gao, X. Triglyceride accumulation inhibitory effects of new chromone glycosides from *Drynaria fortunei*. *Nat. Prod. Res.* **2015**, *29*, 1703–1710. [CrossRef]
- Isaka, M.; Haritakun, R.; Supothina, S.; Choowong, W.; Mongkolsamrit, S. N-Hydroxypyridone alkaloids, chromone derivatives, and tetrahydroxanthones from the scale-insect pathogenic fungus *Orbiocrella* sp. BCC 33248. *Tetrahedron* 2014, 70, 9198–9203. [CrossRef]
- 24. Ma, L.; Ma, S.; Wei, F.; Lin, R.; But, P.P.; Lee, S.H.; Lee, S.F. Uncinoside A and B, two new antiviral chromone glycosides from *Selaginella uncinata. Chem. Pharm. Bull. (Tokyo)* 2003, *51*, 1264–1267. [CrossRef]
- Arakawa, Y.; Chiji, H.; Izawa, M. Structural elucidation of two new chromones isolated from glasswort (*Salicornia europaea* L.). *Agric. Biol. Chem.* 1983, 47, 2029–2033.
- 26. Chen, X.-Q.; Zan, K.; Liu, H.; Yang, J.; Lai, M.-X.; Wang, Q. Triterpenes and flavonoids from *llex hainanensis* Merr. (Aquifoliaceae). *Biochem. Syst. Ecol.* 2009, *37*, 678–682. [CrossRef]
- 27. Simon, A.; Chulia, A.J.; Kaouadji, M.; Delage, C. Quercetin 3-[triacetylarabinosyl(1→6)galactoside] and chromones from *Calluna* vulgaris. *Phytochemistry* **1994**, *36*, 1043–1045. [CrossRef]
- 28. Cui, C.B.; Tezuka, Y.; Kikuchi, T.; Nakano, H.; Tamaoki, T.; Park, J.H. Constituents of a fern, *Davallia mariessi* Moore. IV. Isolation and structures of a novel norcarotane sesquiterpene glycoside, a chromone glucuronide, and two epicatechin glycosides. *Chem. Pharm. Bull.* (*Tokyo*) **1992**, *40*, 2035–2040. [CrossRef]
- 29. Li, X.; Yu, M.; Meng, D.; Li, Z.; Zhang, L. A new chromone glycoside from *Polygonum capitatum*. *Fitoterapia* **2007**, *78*, 506–509. [CrossRef]
- 30. Murata, T.; Selenge, E.; Suganuma, K.; Asai, Y.; Batkhuu, J.; Yoshizaki, F. Chromone acyl glucosides and an ayanin glucoside from *Dasiphora parvifolia*. *Phytochem. Lett.* **2013**, *6*, 552–555. [CrossRef]
- Yu, J.; Song, X.; Wang, D.; Wang, X.; Wang, X. Five new chromone glycosides from *Scindapsus officinalis* (Roxb.) Schott. *Fitoterapia* 2017, 122, 101–106. [CrossRef]
- 32. Cisowski, W. 2-Methyl-5,7-dihydroxychromone glucoside from Ammi visnaga Lamarck. Pol. J. Chem. 1986, 60, 837–840.
- 33. Wang, Y.-B.; Huang, R.; Zhang, H.-B.; Li, L. Chromone glycosides from *Knoxia corymbosa*. J. Asian Nat. Prod. Res. 2006, 8, 663–670. [CrossRef]
- 34. Ghosal, S.; Kumar, Y.; Singh, S.; Ahad, K. Biflorin, a chromone-C-glucoside from *Pancratium biflorum*. *Phytochemistry* **1983**, 22, 2591–2593. [CrossRef]
- 35. Ghosal, S.; Singh, S.; Bhagat, M.P.; Kumar, Y. Three chromones from bulbs of *Pancratium biflorum*. *Phytochemistry* **1980**, *21*, 2943–2946. [CrossRef]
- Ibrahim, S.; Mohamed, G.; Shaala, L.; Youssef, D. Non-alkaloidal compounds from the bulbs of the Egyptian plant *Pancratium* maritimum. Z. Naturforsch. C. 2014, 69, 92–98. [CrossRef] [PubMed]
- Kozowska, V.; Zheleva, A.; Pangarova, T. 7-(β-D-Glucopyranosyloxy)-5-hydroxy-2-methyl chromone from *Peucedanum austriacum*. In *Proceedings of the International Conference of Chemistry and Biotechnology of Biologically Active Natural Products, Budapest, Hungary,* 15–19 August 1983; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1981; Volume 3, pp. 114–116.
- 38. Gujral, V.K.; Gupta, S.R.; Verma, K.S. A new chromone glucoside from *Tecomella undulata*. *Phytochemistry* **1979**, *18*, 181–182. [CrossRef]

- 39. Brown, R.T.; Blackstock, W.P.; Chapple, C.L. Isolation of 5,7-dihydroxy-2-methylchromone and its 7-O-glycosides from *Adina rubescens*. *J. Chem. Soc. Perkin Trans.* **1975**, 1776–1778. [CrossRef]
- 40. Peng, B.; Bai, R.-F.; Li, P.; Han, X.-Y.; Wang, H.; Zhu, C.-C.; Zeng, Z.-P.; Chai, X.-Y. Two new glycosides from *Dryopteris fragrans* with anti-inflammatory activities. *J. Asian Nat. Prod. Res.* **2016**, *18*, 59–64. [CrossRef]
- Chen, X.-Q.; Li, Y.; Cheng, X.; Wang, K.; He, J.; Pan, Z.-H.; Li, M.-M.; Peng, L.-Y.; Xu, G.; Zhao, Q.-S. Polycyclic Polyprenylated Acylphloroglucinols and Chromone O-Glucosides from *Hypericum henryi* subsp. uraloides. *Chem. Biodivers.* 2010, 7, 196–204. [CrossRef]
- 42. An, R.B.; Jeong, G.S.; Beom, J.-S.; Sohn, D.H.; Kim, Y.C. Chromone glycosides and hepatoprotective constituents of *Hypericum* erectum. Arch. Pharm. Res. 2009, 32, 1393–1397. [CrossRef]
- 43. Itoh, A.; Tanahashi, T.; Nagakura, N.; Nishi, T. Two chromone-secoiridoid glycosides and three indole alkaloid glycosides from *Neonauclea sessilifolia*. *Phytochemistry* **2003**, *62*, 359–369. [CrossRef]
- 44. Abe, F.; Yamauchi, T. Megastigmanes and flavonoids from the leaves of *Scorodocarpus borneensis*. *Phytochemistry* **1993**, *33*, 1499–1501. [CrossRef]
- 45. Gujral, V.K.; Gupta, S.R.; Verma, K.S. Structure of undulatoside-B, a new chromone glycoside from *Tecomella undulata*. *Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem.* **1979**, 17B, 40–41.
- 46. Yoshimitsu, H.; Nishida, M.; Hashimoto, F.; Tanaka, M.; Sakata, Y.; Okawa, M.; Nohara, T. Chromone and flavonol glycosides from *Delphinium hybridum* cv. "Belladonna Casablanca". *J. Nat. Med.* **2007**, *61*, 334–338. [CrossRef]
- 47. Shang, Z.-P.; Meng, J.-J.; Zhao, Q.-C.; Su, M.-Z.; Luo, Z.; Yang, L.; Tan, J.-J. Two new chromone glycosides from *Drynaria fortunei*. *Fitoterapia* **2013**, *84*, 130–134. [CrossRef]
- 48. Tanaka, N.; Jia, Y.; Niwa, K.; Imabayashi, K.; Tatano, Y.; Yagi, H.; Kashiwada, Y. Phloroglucinol derivatives and a chromone glucoside from the leaves of *Myrtus communis*. *Tetrahedron* **2018**, *74*, 117–123. [CrossRef]
- 49. Yi, J.; Zhang, G.; Li, B. Studies on the chemical constituents of *Pseudotsuga sinensis*. Yao Xue Xue Bao 2002, 37, 352–354.
- Tanaka, N.; Kashiwada, Y.; Nakano, T.; Shibata, H.; Higuchi, T.; Sekiya, M.; Ikeshiro, Y.; Takaishi, Y. Chromone and chromanone glucosides from *Hypericum sikokumontanum* and their anti-Helicobacter pylori activities. *Phytochemistry* 2009, 70, 141–146. [CrossRef]
- 51. Huneck, S.; Jakupovic, J.; Follmann, G. The final structures of the lichen chromones galapagin, lobodirin, mollin, and roccellin. *Zeitschrift Naturforsch. B* 1992, 47, 449–451. [CrossRef]
- 52. Li, X.; Niu, L.-T.; Meng, W.-T.; Zhu, L.-J.; Zhang, X.; Yao, X.-S. Matteuinterins A-C, three new glycosides from the rhizomes of *Matteuccia intermedia*. J. Asian Nat. Prod. Res. 2020, 22, 225–232. [CrossRef]
- 53. Hu, L.; Chen, N.-N.; Hu, Q.; Yang, C.; Yang, Q.-S.; Wang, F.-F. An Unusual Piceatannol Dimer from *Rheum austral* D. Don with Antioxidant Activity. *Molecules* 2014, 19, 11453–11464. [CrossRef]
- 54. Zhao, H.; Wang, Z.; Cheng, J.; Li, R.; Wang, Z. New chromone glucoside from roots of rumex gmelini. *Tianran Chanwu Yanjiu Yu Kaifa* 2009, 21, 189–191.
- 55. Singh, J. Photochemical investigations on *Cassia multijuga* leaves. Isolation and characterization of new chromone glycosides. *Pol. J. Chem.* **1981**, *55*, 1181–1183.
- 56. Singh, J. Two chromone glycosides from *Cassia multijuga*. *Phytochemistry* **1982**, *21*, 1177–1179. [CrossRef]
- 57. Kashiwada, Y.; Nonaka, G.I.; Nishioka, I. Chromone glucosides from rhubarb. Phytochemistry 1990, 29, 1007–1009. [CrossRef]
- 58. Mou, L.-Y.; Wei, M.; Wu, H.-Y.; Hu, L.-J.; Li, J.-L.; Li, G.-P. O-beta-D-Glucopyranosyl-2-methylchromone, a new chromone glycoside from the Tibetan medicine plant of *Swertia punicea* Hemsl. *Nat. Prod. Res.* **2020**, 1–9. [CrossRef]
- 59. Ahmad, V.; Ullah, F.; Hussain, J.; Farooq, U.; Zubair, M.; Khan, M.; Choudhary, M. Tyrosinase inhibitors from Rhododendron collettianum and their structure-activity relationship (SAR) studies. *Chem. Pharm. Bull. (Tokyo)* **2004**, *52*, 1458–1461. [CrossRef]
- 60. Kim, S.B.; Ahn, J.H.; Han, S.B.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Anti-adipogenic chromone glycosides from *Cnidium monnieri* fruits in 3T3-L1 cells. *Bioorganic Med. Chem. Lett.* **2012**, 22, 6267–6271. [CrossRef]
- 61. Liang, H.; Zhao, Y.Y.; Zhang, R.Y. A new chromone glycoside from Bupleurum chinense. Chinese Chem. Lett. 1998, 9, 69–70.
- 62. Lu, T.S.; Yi, Y.H.; Mao, S.L.; Zhou, D.Z.; Xu, Q.Z.; Tang, H.F.; Zhang, S.Y. A new chromone glycoside from *Cassia siamea* Lam. *Chinese Chem. Lett.* **2001**, *12*, 703–704.
- 63. Tanaka, Y.; Honma, D.; Tamura, M.; Yanagida, A.; Zhao, P.; Shoji, T.; Tagashira, M.; Shibusawa, Y.; Kanda, T. New chromanone and acylphloroglucinol glycosides from the bracts of hops. *Phytochem. Lett.* **2012**, *5*, 514–518. [CrossRef]
- 64. Barash, I.; Karr, A.L., Jr.; Strobel, G.A. Isolation and characterization of stemphylin, a chromone glucoside from *Stemphylium botrysum*. *Plant Physiol.* **1975**, *55*, 646–651. [CrossRef]
- Do Nascimento, B.O.; da Silva Neto, O.C.; Teodoro, M.T.F.; de Oliveira Silva, E.; Guedes, M.L.S.; David, J.M. Macrolobin: A new unusual C-glycoside chromone from *Macrolobium latifolium* and its anticholinesterase and antimicrobial activities. *Phytochem. Lett.* 2020, *39*, 124–127. [CrossRef]
- 66. Iswaldi, I.; Arráez-Román, D.; Rodríguez-Medina, I.; Beltrán-Debón, R.; Joven, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Identification of phenolic compounds in aqueous and ethanolic rooibos extracts (*Aspalathus linearis*) by HPLC-ESI-MS (TOF/IT). *Anal. Bioanal. Chem.* 2011, 400, 3643–3654. [CrossRef] [PubMed]
- Lee, H.-H.; Shin, J.-S.; Lee, W.-S.; Ryu, B.; Sik Jang, D.; Lee, K.-T. Biflorin, Isolated from the Flower Buds of *Syzygium aromaticum* L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock. *J. Nat. Product.* 2016, *79*, 711–720. [CrossRef] [PubMed]

- 68. Ryu, B.; Woo, J.-H.; Kim, H.M.; Choi, J.-H.; Jang, D.S. A new acetophenone glycoside from the flower buds of *Syzygium aromaticum* (cloves). *Fitoterapia* **2016**, 115, 46–51. [CrossRef] [PubMed]
- 69. Satake, T.; Kamiya, K.; Saiki, Y.; Hama, T.; Fujimoto, Y.; Endang, H.; Umar, M. Chromone C-glycosides from *Baeckea frutescens*. *Phytochemistry* **1998**, *50*, 303–306. [CrossRef]
- 70. Kamiya, K.; Satake, T. Chemical constituents of *Baeckea frutescens* leaves inhibit copper-induced low-density lipoprotein oxidation. *Fitoterapia* **2010**, *81*, 185–189. [CrossRef]
- 71. Ito, H.; Kasajima, N.; Tokuda, H.; Nishino, H.; Yoshida, T. Dimeric Flavonol Glycoside and Galloylated C-Glucosylchromones from *Kunzea ambigua*. J. Nat. Prod. 2004, 67, 411–415. [CrossRef]
- 72. Wang, S.; Feng, K.; Han, L.; Fang, X.; Zhang, Y.; Yu, H.; Pang, X. Glycosidic compounds from *Cassia obtusifolia* seeds and their inhibitory effects on OATs, OCTs and OATPs. *Phytochem. Lett.* **2019**, *32*, 105–109. [CrossRef]
- 73. Han, A.-R.; Paik, Y.-S. Antioxidant and prolyl endopeptidase inhibitory capacities of chromone C-glucosides from the clove buds (*Syzygium aromaticum*). J. Appl. Biol. Chem. **2012**, 55, 195–198. [CrossRef]
- 74. Rehman, N.U.; Hussain, H.; Khiat, M.; Al-Riyami, S.A.; Csuk, R.; Khan, H.Y.; Abbas, G.; Al-Thani, G.S.; Green, I.R.; Al-Harrasi, A. ChemInform Abstract: Aloeverasides A and B: Two Bioactive C-Glucosyl Chromones from Aloe vera Resin. *Helv. Chim.* 2016, 47. [CrossRef]
- 75. Rehman, N.U.; Al-Riyami, S.A.; Hussain, H.; Ali, A.; Khan, A.L.; Al-Harrasi, A. Secondary metabolites from the resins of *Aloe vera* and Commiphora mukul mitigate lipid peroxidation. *Acta Pharm.* **2019**, *69*, 433–441. [CrossRef]
- 76. Kahramanoglu, I.; Chen, C.; Chen, J.; Wan, C. Chemical constituents, antimicrobial activity, and food preservative characteristics of *Aloe vera* gel. *Agronomy* **2019**, *9*, 831. [CrossRef]
- 77. Singh, M.; Singh, J. Chemical examination of the seeds of *Cassia spectabilis*. *Zeitschrift Naturforsch. B* **1984**, 39B, 1425–1426. [CrossRef]
- 78. Agrawal, A.; Singh, J. Glycosides of two xanthones and a chromone from roots of *Chrozophora prostrata*. *Phytochemistry* **1988**, 27, 3692–3694. [CrossRef]
- Jong-Anurakkun, N.; Bhandari, M.R.; Hong, G.; Kawabata, J. α-Glucosidase inhibitor from Chinese aloes. *Fitoterapia* 2008, 79, 456–457. [CrossRef]
- 80. Lv, L.; Yang, Q.-Y.; Zhao, Y.; Yao, C.-S.; Sun, Y.; Yang, E.-J.; Song, K.-S.; Mook-Jung, I.; Fang, W.-S. BACE1 (beta-secretase) inhibitory chromone glycosides from *Aloe vera* and *Aloe nobilis. Planta Med.* **2008**, *74*, 540–545. [CrossRef]
- 81. Kim, J.H.; Yoon, J.Y.; Yang, S.Y.; Choi, S.K.; Kwon, S.J.; Cho, I.S.; Jeong, M.H.; Ho Kim, Y.; Choi, G.S. Tyrosinase inhibitory components from *Aloe vera* and their antiviral activity. *J. Enzyme Inhib. Med. Chem.* **2017**, *32*, 78–83. [CrossRef]
- 82. Okamura, N.; Hine, N.; Harada, S.; Fujioka, T.; Mihashi, K.; Yagi, A. Three chromone components from *Aloe vera* leaves. *Phytochemistry* **1996**, 43, 495–498. [CrossRef]
- 83. Wen, J.; Shi, H.-M.; Tu, P.-F. Chemical constituents of Abrus mollis Hance. Biochem. Syst. Ecol. 2006, 34, 177–179. [CrossRef]
- 84. Goodger, J.Q.D.; Seneratne, S.L.; Nicolle, D.; Woodrow, I.E. Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents. *PLoS ONE* **2016**, *11*, e0155568. [CrossRef]
- 85. Al-Sayed, E.; Hamid, H.A.; Abu El Einin, H.M. Molluscicidal and antischistosomal activities of methanol extracts and isolated compounds from *Eucalyptus globulus* and *Melaleuca styphelioides*. *Pharmaceut*. *Biol*. **2014**, *52*, 698–705. [CrossRef] [PubMed]
- 86. Zhang, Y.; Chen, Y. Isobiflorin, a chromone C-glucoside from cloves (*Eugenia caryophyllata*). *Phytochemistry* **1997**, *45*, 401–403. [CrossRef]
- 87. Gao, H.Y.; Wang, H.Y.; Li, G.Y.; Du, X.W.; Zhang, X.T.; Han, Y.; Huang, J.; Li, X.X.; Wang, J.H. Constituents from Zhuyeqing Liquor and their inhibitory effects on nitric oxide production. *Phytochem. Lett.* **2014**, *7*, 150–155. [CrossRef]
- 88. Gao, W.-N.; Luo, J.-G.; Kong, L.-Y. Quality evaluation of *Hypericum japonicum* by using high-performance liquid chromatography coupled with photodiode array detector and electrospray ionization tandem mass spectrometry. *Biomed. Chromatogr.* 2009, 23, 1022–1030. [CrossRef]
- 89. Luo, G.; Zhou, M.; Ye, Q.; Mi, J.; Fang, D.; Zhang, G.; Luo, Y. Phenolic derivatives from *Hypericum japonicum*. *Nat. Prod. Commun.* **2015**, *10*, 1934578X1501001224. [CrossRef]
- Santos, S.A.O.; Villaverde, J.J.; Freire, C.S.R.; Domingues, R.M.M.; Neto, C.P.; Silvestre, A.J.D. Phenolic composition and antioxidant activity of *Eucalyptus grandis*, *E. urograndis* (*E. grandis* × *E. urophylla*) and *E. maidenii* bark extracts. *Ind. Crops Prod.* 2012, 39, 120–127. [CrossRef]
- 91. Tanaka, T.; Orii, Y.; Nonaka, G.; Nishioka, I. Tannins and related compounds. CXXIII. Chromone, acetophenone and phenylpropanoid glycosides and their galloyl and/or hexahydroxydiphenoyl esters from the leaves of *Syzygium aromaticum* Merr. et Perry. *Chem. Pharm. Bull.* (*Tokyo*) **1993**, *41*, 1232–1237. [CrossRef]
- 92. Yuan, A.; Kang, S.; Qin, L.; Ruan, B.; Fan, Y. Chemical constituents of the leaves of Chinese aloe (*Aloe vera* var. *chinensis*). *Zhongcaoyao* **1994**, *25*, 339–341.
- Che, Q.-M.; Akao, T.; Hattori, M.; Kobashi, K.; Namba, T. Metabolism of aloesin and related cmpounds by human intestinal bacteria: A bacterial cleavage of the C-glucosyl bond and the subsequent reduction of the acetonyl side chain. *Chem. Pharm. Bull.* 1990, *39*, 704–708. [CrossRef]
- Park, M.K.; Park, J.H.; Shin, Y.G.; Kim, W.Y.; Lee, J.H.; Kim, K.H. Neoaloesin A: A new C-glucofuranosyl chromosome from *Aloe barbadensis*. *Planta Med.* 1996, 62, 363–365. [CrossRef]

- 95. Lucini, L.; Pellizzoni, M.; Pellegrino, R.; Molinari, G.P.; Colla, G. Phytochemical constituents and in vitro radical scavenging activity of different Aloe species. *Food Chem.* **2015**, *170*, 501–507. [CrossRef]
- Bisrat, D.; Dagne, E.; Van Wyk, B.-E.; Viljoen, A. Chromones and anthrones from *Aloe marlothii* and *Aloe rupestris*. *Phytochemistry* 2000, 55, 949–952. [CrossRef]
- 97. Conner, J.M.; Gray, A.I.; Reynolds, T.; Waterman, P.G. Anthrone and chromone components of *Aloe cremnophila* and *A. jacksonii* leaf exudates. *Phytochemistry* **1990**, *29*, 941–944. [CrossRef]
- Wang, W.; Cuyckens, F.; Van den Heuvel, H.; Apers, S.; Pieters, L.; Steenkamp, V.; Stewart, M.J.; Luyckx, V.A.; Claeys, M. Structural characterization of chromone C-glucosides in a toxic herbal remedy. *Rapid Commun. Mass Spectrom.* 2003, 17, 49–55. [CrossRef]
- Hutter, J.A.; Salman, M.; Stavinoha, W.B.; Satsangi, N.; Williams, R.F.; Streeper, R.T.; Weintraub, S.T. Antiinflammatory C-Glucosyl Chromone from *Aloe barbadensis*. J. Nat. Prod. 1996, 59, 541–543. [CrossRef]
- 100. Zhong, J.S.; Huang, Y.Y.; Zhang, T.H.; Liu, Y.P.; Ding, W.J.; Wu, X.F.; Xie, Z.Y.; Luo, H.B.; Wan, J.Z. Natural phosphodiesterase-4 inhibitors from the leaf skin of *Aloe barbadensis* Miller. *Fitoterapia* **2015**, *100*, 68–74. [CrossRef]
- Lee, S.; Do, S.G.; Kim, S.Y.; Kim, J.; Jin, Y.; Lee, C.H. Mass spectrometry-based metabolite profiling and antioxidant activity of *Aloe vera (Aloe barbadensis* Miller) in different growth stages. *J. Agric. Food Chem.* 2012, 60, 11222–11228. [CrossRef]
- 102. Rehman, N.U.; Hussain, H.; Khiat, M.; Khan, H.Y.; Abbas, G.; Green, I.R.; Al-Harrasi, A. Bioactive chemical constituents from the resin of *Aloe vera*. *Zeitschrift für Naturforsch. B* 2017, 72, 955–958. [CrossRef]
- 103. Yagi, A.; Kanbara, T.; Morinobut, N. Inhibition of Mushroom-Tyrosinase by Aloe Extract. Planta Med. 1987, 53, 515–517. [CrossRef]
- 104. Baba, K.; Kawanishi, H.; Taniguchi, M.; Kozawa, M. Chromone glucosides from *Cnidium japonicum*. *Phytochemistry* **1993**, *35*, 221–225. [CrossRef]
- 105. Kimura, Y.; Sumiyoshi, M.; Taniguchi, M.; Baba, K. Antitumor actions of a chromone glucoside cnidimoside A isolated from *Cnidium japonicum. J. Nat. Med.* **2008**, *62*, 308–313. [CrossRef] [PubMed]
- 106. Zhao, J.; Zhou, M.; Liu, Y.; Zhang, G.; Luo, Y. Chromones and coumarins from the dried fructus of *Cnidium monnieri*. *Fitoterapia* 2011, 82, 767–771. [CrossRef] [PubMed]
- Cisowski, W.; Grimshaw, J. Glucoside of chromone from *Angelica archangelica* L. and *Archangelica litoralis* Fries. herbs. *Pol. J. Chem.* 1988, 62, 135–141.
- 108. Kopp, B.; Kubelka, E.; Reich, C.; Robien, W.; Kubelka, W. 4H-Chromenone Glycosides from *Eranthhis hyernalis* (L.) SALISBU. *Helv. Chim. Acta* 1991, 74, 611–616. [CrossRef]
- 109. Kuroda, M.; Uchida, S.; Watanabe, K.; Mimaki, Y. Chromones from the tubers of *Eranthis cilicica* and their antioxidant activity. *Phytochemistry* **2009**, *70*, 288–293. [CrossRef]
- 110. Bernhardt, M.; Shaker, K.H.; Elgamal, M.H.A.; Seifert, K. The New Bishomoflavone Ononin and Its Glucoside from Ononis vaginalis. *Zeitschrift für Naturforsch. C* 2000, 55, 516–519. [CrossRef]
- 111. Ibrahim, S.R.M. New 2-(2-Phenylethyl)chromone Derivatives from the Seeds of *Cucumis melo* L var. reticulatus. *Nat. Prod. Commun.* **2010**, *5*, 403–406. [CrossRef]
- 112. Quan, L.; Zhang, J.; Wu, Y. One Novel 2-(2-Phenylethyl)Chromone Glycoside from *Aquilaria sinensis*. *Chem. Nat. Compd.* **2017**, *53*, 635–637. [CrossRef]
- 113. Liu, X.; Zhang, B.; Yang, L.; Yu, G.; Wang, Z. Two new chromones and a new flavone glycoside from *Imperata cylindrical*. *Zhongguo Tianran Yaowu* **2013**, *11*, 77–80. [CrossRef]
- 114. Shao, H.; Mei, W.-L.; Kong, F.-D.; Dong, W.-H.; Li, W.; Zhu, G.-P.; Dai, H.-F. A new 2-(2-phenylethyl)chromone glycoside in Chinese agarwood "Qi-Nan" from *Aquilaria sinensis*. J. Asian Nat. Prod. Res. 2017, 19, 42–46. [CrossRef]
- Zaher, A.; Boufellous, M.; Ouhssine, M.; Bourkhiss, B. Phytochemical Screening Of An Umbelliferae: *Ammi visnaga* L. (Lam.) In The Region Of Sidi Slimane- North-West Of Morocco. J. Mater. Environ. Sci. 2019, 10, 995–1002.
- Stevens, T.J.; Jones, B.W.; Vidmar, T.J.; Moran, J.J.; Manni, D.S.; Day, C.E. Hypocholesterolemic effect of khellin and khelloside in female cynomolgus monkeys. *Arzneimittelforschung* 1985, 35, 1257–1260.
- 117. Günaydin, K.; Beyazit, N. The chemical investigations on the ripe fruits of *Ammi visnaga* (Lam.) Lamarck growing in Turkey. *Nat. Prod. Res.* **2004**, *18*, 169–175. [CrossRef]
- 118. Liu, Y.R.; Wu, Z.J.; Li, C.T.; Xi, F.M.; Sun, L.N.; Chen, W.S. Heracleifolinosides A-F, new triterpene glycosides from *cimicifuga heracleifolia*, and their inhibitory activities against hypoxia and reoxygenation. *Planta Med.* **2013**, *79*, 301–307. [CrossRef]
- 119. Ma, S.Y.; Shi, L.G.; Gu, Z.B.; Wu, Y.L.; Wei, L.B.; Wei, Q.Q.; Gao, X.L.; Liao, N. Two New Chromone Glycosides from the Roots of *Saposhnikovia divaricata*. *Chem. Biodivers*. **2018**, *15*, 2–7. [CrossRef]
- 120. Jiang, Y.; Guo, F.; Chen, L.; Xu, L.; Zhang, W.; Liu, B. The antitumor activity of naturally occurring chromones: A review. *Fitoterapia* **2019**, *135*, 114–129.
- 121. Sasaki, H.; Taguchi, H.; Endo, T.; Yosioka, I. The constituents of *Ledebouriella seseloides* Wolff. I. Structures of three new chromones. *Chem. Pharm. Bull.* **1982**, *3*, 3555–3562. [CrossRef]
- 122. Urbagarova, B.M.; Shults, E.E.; Taraskin, V.V.; Radnaeva, L.D.; Petrova, T.N.; Rybalova, T.V.; Frolova, T.S.; Pokrovskii, A.G.; Ganbaatar, J. Chromones and coumarins from *Saposhnikovia divaricata* (Turcz.) Schischk. Growing in Buryatia and Mongolia and their cytotoxicity. *J. Ethnopharmacol.* **2020**, *261*, 112517. [CrossRef]
- 123. Lemmich, J. Monoterpene, chromone and coumarin glucosides of *Diplolophium buchananii*. *Phytochemistry* **1995**, *38*, 427–432. [CrossRef]

- 124. Shao, Z.; Zhang, Y.; Jiang, K.; CHEN, J.; Zuo, B. Chemical constituents from the roots of *Sphallerocarpus gracilis*. *Nat. Prod. Res. Dev.* **2003**, *15*, 196–198.
- 125. Yan, Z.; Yang, X.; Wu, J.; Su, H.; Chen, C.; Chen, Y. Qualitative and quantitative analysis of chemical constituents in traditional Chinese medicinal formula Tong-Xie-Yao-Fang by high-performance liquid chromatography/diode array detection/electrospray ionization tandem mass spectrometry. *Anal. Chim. Acta* **2011**, *691*, 110–118. [CrossRef]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A. Health benefits of chromones: Common ingredients of our daily diet. *Phytochem. Rev.* 2020, 19, 761–785. [CrossRef]
- 127. Khalil, N.; Bishr, M.; Desouky, S.; Salama, O. *Ammi visnaga* L., a potential medicinal plant: A review. *Molecules* 2020, 25, 301. [CrossRef]
- 128. An, R.-B.; Park, B.-Y.; Kim, J.-H.; Kwon, O.-K.; Lee, J.-K.; Min, B.-S.; Ahn, K.-S.; Oh, S.-R.; Lee, H.-K. Coumarins and chromones from *Angelica genuflexa*. *Nat. Prod. Sci.* **2005**, *11*, 79–84.
- 129. Baba, K.; Hata, K.; Kimura, Y.; Matsuyama, Y.; Kozawa, M. Chemical studies of *Angelica japonica* A. Gray. I. On the constituents of the ethyl acetate extract of the root. *Chem. Pharm. Bull. (Tokyo)* **1981**, *29*, 2565–2570. [CrossRef]
- 130. Shi, Q.-Q.; Lu, J.; Peng, X.-R.; Li, D.-S.; Zhou, L.; Qiu, M.-H. Cimitriteromone A–G, Macromolecular Triterpenoid–Chromone Hybrids from the Rhizomes of *Cimicifuga foetida*. J. Org. Chem. 2018, 83, 10359–10369. [CrossRef]
- Sun, J.; Su, X.; Zhang, Z.; Hu, D.; Hou, G.; Zhao, F.; Sun, J.; Cong, W.; Wang, C.; Li, H. Separation of three chromones from *Saposhnikovia divaricata* using macroporous resins followed by preparative high-performance liquid chromatography. *J. Sep. Sci.* 2021, 44, 3287–3294. [CrossRef]
- 132. Lu, L.; Chen, J.C.; Li, Y.; Qing, C.; Wang, Y.Y.; Nian, Y.; Qiu, M.H. Studies on the constituents of *Cimicifuga foetida* collected in guizhou province and their cytotoxic activities. *Chem. Pharm. Bull.* **2012**, *60*, 571–577. [CrossRef]
- 133. Wang, H.; Xu, Y.; Yuan, Z. Isolation and identification of chemical constituents of roots of *Glehnia littoralis*. *J. Shenyang Pharm. Univ.* **2011**, *28*, 530–534.
- 134. Zheng, M.; Jin, W.; Son, K.-H.; Chang, H.-W.; Kim, H.-P.; Bae, K.-H.; Kang, S.-S. The constituents isolated from *Peucedanum japonicum* Thunb. and their cyclooxygenase (COX) inhibitory activity. *Korean J. Med. Crop Sci.* 2005, 13, 75–79.
- 135. Akunyili, D.N.; Akubue, P.I. Schumanniofoside, the antisnake venom principle from the stem bark of *Schumanniophyton magnificum* Harms. J. Ethnopharmacol. **1986**, *18*, 167–172. [CrossRef]
- 136. Shi, Q.-Q.; Gao, Y.; Lu, J.; Zhou, L.; Qiu, M.-H. Two new triterpenoid-chromone hybrids from the rhizomes of *Actaea cimicifuga* L.(syn. *Cimicifuga foetida* L.) and their cytotoxic activities. *Nat. Prod. Res.* **2020**, 1–7. [CrossRef] [PubMed]
- 137. Brill, G.M.; Jackson, M.; Whittern, D.N.; Buko, A.M.; Hill, P.; Chen, R.H.; Mcalpine, J.B. Altromycins E, F, G, H and I; additional novel components of the altromycin complex. *J. Antibiot. (Tokyo)* **1994**, 47, 1160–1164. [CrossRef] [PubMed]
- Kanda, N. A New Antitumor Antibiotic, Kidamycin. I Isolation, Purification and Properties of Kidamycin. J. Antibiot. (Tokyo) 1971, 24, 599–606. [CrossRef]
- 139. Kondo, S.; Wakashiro, T.; Hamada, M.; Maeda, K.; Takeuchi, T.; Umezawa, H. Isolation and characterization of a new antibiotic, neopluramycin. *J. Antibiot. (Tokyo)* **1970**, *23*, 354–359. [CrossRef]
- 140. Kondo, S.; Miyamoto, M.; Naganawa, H.; Takeuchi, T.; Umezawa, H. Structures of pluramycin A and neopluramycin. *J. Antibiot.* (*Tokyo*) **1977**, *30*, 1143–1145. [CrossRef]
- Byrne, K.M.; Gonda, S.K.; Hilton, B.D. Largomycin FII chromophore component 4, a new pluramycin antibiotic. J. Antibiot. (Tokyo) 1985, 38, 1040–1049. [CrossRef]
- 142. Nadig, H.; Sèquin, U. Isolation and Structure Elucidation of Some Components of the Antitumor Antibiotic Mixture 'Rubiflavin'. *Helv. Chim. Acta* **1987**, *70*, 1217–1228. [CrossRef]
- 143. Nadig, H.; Séquin, U.; Bunge, R.H.; Hurley, T.R.; Murphey, D.B.; French, J.C. Isolation and structure of a new antibiotic related to rubiflavin A. *Helv. Chim. Acta* 1985, *68*, 953–957. [CrossRef]
- 144. Schmitz, H.; Crook, K.E., Jr.; Bush, J.A. Hedamycin, a new antitumor antibiotic. I. Production, isolation, and characterization. *Antimicrob. Agents Chemother.* **1966**, *6*, 606–612.
- 145. Séquin, U.; Bedford, C.T.; Chung, S.K.; Scott, A.I. The structure of the antibiotic hedamycin. I. Chemical, physical and spectral properties. *Helv. Chim. Acta* 1977, *60*, 896–906. [CrossRef]
- 146. Sato, Y.; Watabe, H.-O.; Nakazawa, T.; Shomura, T.; Yamamoto, H.; Sezaki, M.; Kondo, S. Ankinomycin, a potent antitumor antibiotic. *J. Antibiot. (Tokyo)* **1989**, *42*, 149–152. [CrossRef]
- 147. Vertesy, L.; Barbone, F.P.; Cashmen, E.; Decker, H.; Ehrlich, K.; Jordan, B.; Knauf, M.; Schummer, D.; Segeth, M.P.; Wink, J. Pluraflavins, potent antitumor antibiotics from *Saccharothrix* sp. DSM 12931. *J. Antibiot. (Tokyo)* **2001**, *54*, 718–729. [CrossRef]
- 148. Jackson, M.; Karwowski, J.P.; Theriault, R.J.; Hardy, D.J.; Swanson, S.J.; Barlow, G.J.; Tillis, P.M.; McAlpine, J.B. Altromycins, novel pluramycin-like antibiotics I. Taxonomy of the producing organism, fermentation and antibacterial activity. *J. Antibiot. (Tokyo)* 1990, 43, 223–228. [CrossRef]
- Brill, G.M.; Mcalpine, J.B.; Whittern, D.N.; Buko, A.M. Altromycins, novel pluramycin-like antibiotics II. Isolation and elucidation of structure. J. Antibiot. (Tokyo) 1990, 43, 229–237. [CrossRef]
- 150. Gallivan, J.B. Spectroscopic studies on some chromones. Can. J. Chem. 1970, 48, 3928–3936. [CrossRef]
- 151. Griffiths, P.J.F.; Ellis, G.P. Benzopyrones—VI: The ultraviolet absorption spectra of chromone and 2-substituted chromones. *Spectrochim. Acta Part A Mol. Spectrosc.* **1972**, *28*, 707–713. [CrossRef]
- 152. Staunton, J. In Comprehensive Organic Chemistry; Barton, D., Ollis, W.D., Eds.; Pegamon Press: Oxford, UK,, 1979.

- 153. Nchinda, A. Chemical Studies of Selected Chromone Derivatives; Rhodes University: Makhanda, South Africa, 2001.
- 154. Dey, P.M. Methods in Plant Biochemistry; Academic Press: Cambridge, MA, USA, 2012; ISBN 9780080984186.
- 155. Markham, K.R.; Mabry, T.J. Ultraviolet-Visible and Proton Magnetic Resonance Spectroscopy of Flavonoids. In *The Flavonoids*; Springer: Boston, MA, USA, 1975; pp. 45–77.
- 156. Murray, R.D.H.; McCabe, P.H. Infrared studies of chromones—I: Carbonyl and hydroxyl regions. *Tetrahedron* **1969**, *25*, 5819–5837. [CrossRef]
- 157. Liu, S.; Zhu, T.; Qiu, Y.; Qi, W.; Wu, H.; Cai, B.; Lin, J. Chromones and tannins from the fruit of *Euscaphis japonica* var. *wupingensis*. *BioResources* **2019**, *14*, 5355–5364. [CrossRef]
- 158. Wu, Q.-L.; Wang, S.-P.; Du, L.-J.; Zhang, S.-M.; Yang, J.-S.; Xiao, P.-G. Chromone glycosides and flavonoids from Hypericum japonicum. *Phytochemistry* **1998**, *49*, 1417–1420. [CrossRef]
- 159. Speranza, G.; Dadà, G.; Lunazzi, L.; Phytochemistry, P.G. A C-glucosylated 5-methylchromone from *Kenya aloe. Phytochemistry* **1986**, *25*, 2219–2222. [CrossRef]
- Okamura, N.; Hine, N.; Tateyama, Y.; Nakazawa, M.; Fujioka, T.; Mihashi, K. Five chromones from *Aloe vera* leaves. *Phytochemistry* 1998, 49, 219–223. [CrossRef]
- 161. Speranza, G.; Gramatica, P.; Dadá, G.; Manitto, P. Aloeresin C, a bitter C, O-diglucoside from Cape Aloe. *Phytochemistry* **1985**, 24, 1571–1573. [CrossRef]
- 162. Rauwald, H.W.; Maucher, R.; Dannhardt, G.; Kuchta, K. Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency. *Molecules* 2021, 26, 4223. [CrossRef] [PubMed]
- 163. Van Heerden, F.R.; Viljoen, A.M.; Van Wyk, B.E. 6'-O-Coumaroylaloesin from Aloe castanea—A taxonomic marker for Aloe section Anguialoe. *Phytochemistry* 2000, 55, 117–120. [CrossRef]
- 164. Holzapfel, C.W.; Wessels, P.L.; Van Wyk, B.E.; Marais, W.; Portwig, M. Chromone and aloin derivatives from *Aloe broomii*, *A. Africana* and A. speciosa. *Phytochemistry* **1997**, 45, 97–102. [CrossRef]
- 165. Séquin, U.; Furukawa, M. The structure of the antibiotic hedamycin—III: 13C NMR spectra of hedamycin and kidamycin. *Tetrahedron* **1978**, *34*, 3623–3629. [CrossRef]