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Abstract: Chromone glycosides comprise an important group of secondary metabolites. They are
widely distributed in plants and, to a lesser extent, in fungi and bacteria. Significant biological
activities, including antiviral, anti-inflammatory, antitumor, antimicrobial, etc., have been discovered
for chromone glycosides, suggesting their potential as drug leads. This review compiles 192 naturally
occurring chromone glycosides along with their sources, classification, biological activities, and spec-
troscopic features. Detailed biosynthetic pathways and chemotaxonomic studies are also described.
Extensive spectroscopic features for this class of compounds have been thoroughly discussed, and
detailed 13C-NMR data of compounds 1–192, have been added, except for those that have no reported
13C-NMR data.

Keywords: chromone glycosides; chemical structure; activity; benzo-γ-pyrone; 13C-NMR data

1. Introduction

Chromone glycosides are a class of secondary metabolites with various medicinal
properties. They are widely distributed in many plant genera and, to a lesser extent, in
some fungal species and other sources [1]. Several biological activities have been reported
for various chromone glycosides. For example, aloesin and its analogues, from Aloe,
are used in cosmetic preparations to treat hyperpigmentation induced by UV radiation,
owing to their role in inhibition of tyrosinase enzyme [2,3]. Additionally, 8-[C-β-D-[2-O-(E)-
cinnamoyl]glucopyranosyl]-2-[(R)-2-hydroxypropyl]-7-methoxy-5-methylchromone), iso-
lated from certain Aloe species, was reported to have potent topical anti-inflammatory
activity comparable to the effect of hydrocortisone without affecting thymus weight [3].
Macrolobin, from Macrolobium latifolium, has a remarkable acetylcholinesterase inhibitory
activity with an IC50 value of 0.8 µM. Uncinosides A and B, isolated from the Chinese
herbal medicine Selaginella uncinata, showed potent anti-RSV (respiratory syncytial virus)
activity with IC50 values of 6.9 and 1.3 µg/mL. Taking into consideration the broad bio-
logical activities of chromone glycosides, this review summarizes the naturally occurring
chromone glycosides and categorizes these compounds on their structural basis, in ad-
dition to their sources, bioactivities and spectroscopic features. Importantly, this review
will shed more light toward the NMR features of chromone glycosides to help natural
product researchers in the identification of various chemical structures. Scientific databases
as SciFinder, PubMed, and Google Scholar were used to collect the relevant literature data.
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2. Biosynthesis

Chromones are biosynthesized through the acetic acid pathway by the condensation
of five acetate molecules. These compounds, generally, have a methyl group at C-2 and
are oxygenated at C-5 and C-7 [4]. Pentaketide Chromone Synthase (PCS) is a key en-
zyme in the biosynthesis process that catalyzes the formation of a pentaketide chromone
(5,7-dihydroxy-2-methylchrome) from five-step decarboxylative condensations of malonyl-
CoA, followed by the Claisen cyclization reaction to form an aromatic ring. However, it is
unclear whether the heterocyclic ring closure of the pentaketide chromone is enzymatic or
not, because the ring closure can take place due to spontaneous Michael-like ring closure,
as in the case of flavanone formation from chalcone in vitro. PCS also accepts acetyl-CoA,
resulting from decarboxylation of malonyl-CoA, as a starter substrate, but it is a poor
substrate for PCS [5].The pentaketide chromone has been isolated from several plants and
is known to be the biosynthetic precursor of the chromone derivatives with additional
heterocyclic rings (e.g., furano-, pyrano- and oxepino-chromone glycosides). Scheme 1
([6] with modifications) shows the sequence of steps utilized in the biosynthesis of these
compounds, fully consistent with the biosynthetic rationale developed above. The key
intermediate is 5,7-dihydroxy-2-methylchromone [5,6]. For many years, the cyclization
had been postulated to involve an intermediate epoxide, such that nucleophilic attack
of the phenol onto the epoxide group might lead to formation of either five-membered
furan, six-membered pyran or the seven-membered oxepin heterocycles, as commonly
encountered in natural products [6].

Molecules 2021, 26, x FOR PEER REVIEW 2 of 58 
 

2. Biosynthesis 
Chromones are biosynthesized through the acetic acid pathway by the condensa-

tion of five acetate molecules. These compounds, generally, have a methyl group at C-2 
and are oxygenated at C-5 and C-7 [4]. Pentaketide Chromone Synthase (PCS) is a key 
enzyme in the biosynthesis process that catalyzes the formation of a pentaketide chro-
mone (5,7-dihydroxy-2-methylchrome) from five-step decarboxylative condensations of 
malonyl-CoA, followed by the Claisen cyclization reaction to form an aromatic ring. 
However, it is unclear whether the heterocyclic ring closure of the pentaketide chro-
mone is enzymatic or not, because the ring closure can take place due to spontaneous 
Michael-like ring closure, as in the case of flavanone formation from chalcone in vitro. 
PCS also accepts acetyl-CoA, resulting from decarboxylation of malonyl-CoA, as a start-
er substrate, but it is a poor substrate for PCS [5].The pentaketide chromone has been 
isolated from several plants and is known to be the biosynthetic precursor of the chro-
mone derivatives with additional heterocyclic rings (e.g., furano-, pyrano- and oxepino-
chromone glycosides). Scheme 1 ([6] with modifications) shows the sequence of steps 
utilized in the biosynthesis of these compounds, fully consistent with the biosynthetic 
rationale developed above. The key intermediate is 5,7-dihydroxy-2-methylchromone 
[5,6]. For many years, the cyclization had been postulated to involve an intermediate 
epoxide, such that nucleophilic attack of the phenol onto the epoxide group might lead 
to formation of either five-membered furan, six-membered pyran or the seven-
membered oxepin heterocycles, as commonly encountered in natural products [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Proposed mechanisms for the enzymatic formation of 5,7-dihydroxy-2-methylchromone and its derivatives. 

Aloesone Synthase (ALS) (Scheme 2, [5] with modifications) is a key enzyme in the 
biosynthesis of heptaketide chromone aloesone derivatives, such as aloesone 7-O-β-D-
glucopyranoside (53) in rhubarb and anti-inflammatory aloesone 8-C-β-D-
glucopyranoside (aloesin, 98) in Aloe (A. arborescens). ALS efficiently catalyzes the for-
mation of a heptaketide aromatic pyrone 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-
oxoethyl)-4-hydroxy-2-pyronechromone from acetyl-CoA and six molecules of malonyl-
CoA through an aldol cyclization. The unstable heptaketide pyrone (or acid form) would 
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Aloesone Synthase (ALS) (Scheme 2, [5] with modifications) is a key enzyme in the
biosynthesis of heptaketide chromone aloesone derivatives, such as aloesone 7-O-β-D-
glucopyranoside (53) in rhubarb and anti-inflammatory aloesone 8-C-β-D-glucopyranoside
(aloesin, 98) in Aloe (A. arborescens). ALS efficiently catalyzes the formation of a hep-
taketide aromatic pyrone 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-
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pyronechromone from acetyl-CoA and six molecules of malonyl-CoA through an aldol
cyclization. The unstable heptaketide pyrone (or acid form) would then undergo sub-
sequent spontaneous isomerization to the β-ketoacid chromone, which is followed by
decarboxylation to produce the heptaketide aloesone [5].
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3. Taxonomy

We have reviewed the literature concerning the occurrence of chromone glycosides,
and we have found that 192 different chromone glycosides have been isolated from different
natural sources, including angiosperms, ferns, lichens, fungi and actinobacteria (Table 1).
The occurrence of chromone glycosides is mostly confined to botanical families: Apiaceae,
Fabaceae, Myrtaceae, Asphodelaceae, Ranunculaceae, Rubiaceae, Hypericaceae, Ericaceae,
Amaryllidaceae, Polygonaceae and Araceae. However, few chromone glycosides are also
present in Asteraceae, Eucryphiaceae, Saxifragaceae, Smilacaceae, Pentaphylaceae, Sali-
caceae, Meliaceae, Euphorbiaceae, Staphyleaceae, Amaranthaceae, Aquifoliaceae, Rosaceae,
Bignoniaceae, Olacaceae, Pinaceae, Selaginellaceae, Gentianaceae, Cannabaceae, Euphor-
biaceae, Cucurbitaceae, Thymelaeaceae and Poaceae. Many of the naturally occurring
chromone-8-C-glycosides such as the well-known chromone glycoside aloesin (98) were
reported from genus Aloe. Until now, chromone glycosides with additional heterocyclic moi-
eties such as pyrano-, oxepino- and pyrido-chromone glycosides were only isolated from
Saposhnikovia divaricate, Eranthis species and Schumanniophyton magnificum, respectively.
Another interesting category comprises hybrids of furano-chromones with cycloartane
triterpenes, which were reported from Cimicifuga foetida. Actinobacteria also constitute
an important source of the chromone alkaloid aminoglycosides, which are isolated from
Streptomyces, Saccharothrix and Actinomycete species.
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Table 1. The distribution of chromone glycosides reported through this review.

Family Genus Species Compounds

Plants
(Angiosperms)

1 Ericaceae
Rhododendron

ovatum 2

spinuliferum 3

collettianum 55

Calluna vulgaris 13

2 Rubiaceae

Schumanniophyton magnificum 7, 25, 156

Knoxia corymbosa 20, 24, 35, 36

Adina rubescens 20

Neonauclea sessilifolia 26, 166

3 Amaryllidaceae
Gethyllis ciliaris 10

Pancratium
biflorum 20, 66

maritimum 20, 47

4 Polygonaceae
Polygonum capitatum 15

Rheum
austral 50

sp. 52, 53

5 Apiaceae

Ammi visnaga 20, 140, 146

Peucedanum
austriacum 20

japonicum 149

Cnidium
monnieri 57, 58, 123–130

juponicum 123, 124

Bupleurum chinense 58

Angelica
archangelica 125

genuflexa 146, 149

japonica 146, 149

Archangelica litoralis 125

Saposhnikovia divaricata 143–146, 149, 150

Ledebouriella seseloides 144

Diplolophium buchananii 144, 146, 151

Sphallerocarpus gracilis 144

Glehnia littoralis 149

6 Hypericaceae Hypericum

henryi 22, 23

erectum 22, 38

sikokumontanum 38, 39, 60, 61

japonicum 82, 83

7 Ranunculaceae

Delphinium hybridum 28

Cimicifuga heracleifolia 141

foetida 146, 147, 157–165

Eranthis
hyemalis 131, 132, 152, 153, 154

cilicica 133, 134, 153, 155
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Table 1. Cont.

Family Genus Species Compounds

Plants
(Angiosperms)

8 Myrtaceae

Myrtus communis 34

Syzygium aromaticum 66, 71, 80, 86

Baeckea frutescens 66, 67, 70, 72, 85, 87

Kunzea ambigua 67, 70, 72–74, 80, 85, 88, 89

Eucalyptus

globulus 80

maidenii 82, 83

grandis 83

urograndi 83

9 Fabaceae

Cassia

multijuga 51, 77

siamea 59

obtusifolia 68, 69

spectablis 78

obtusifolia 84

Macrolobium latifolium 64

Aspalathus linearis 65

Abrus mollis 80

Ononis vaginalis 135

10 Asphodelaceae
Aloe

vera 75, 76, 90–98, 103, 104–110,
112–117, 120–122

barbadensis 97, 98, 103, 107, 108

rupestris 99

cremnophila 101

nobilis 111, 118, 119

11 Araceae Scindapsus officinalis 18–20, 29, 31, 32, 56, 57

12 Asteraceae Mutisia acuminate 1

13 Eucryphiaceae Eucryphia cordifolia 4

14 Saxifragaceae Astilbe thunbergii 4

15 Smilacaceae Smilax glabra 4

16 Pentaphylaceae Eurya japonica 5

17 Salicaceae Salix matsudana 6

18 Meliaceae Dysoxylum binectariferum 7

19 Euphorbiaceae Acalypha fruticose 7

20 Staphyleaceae Staphylea bumalda 7

21 Amaranthaceae Salicornia europaea 12

22 Aquifoliaceae Ilex hainanensis 13

23 Rosaceae Dasiphora parvifolia 16, 17

24 Bignoniaceae Tecomella undulata 20, 27

25 Olacaceae Scorodocarpus borneensis 26

26 Pinaceae Pseudotsuga sinensis 37

27 Selaginellaceae Selaginella uncinata 46, 48

28 Gentianaceae Swertia punicea 54
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Table 1. Cont.

Family Genus Species Compounds

Plants
(Angiosperms)

29 Cannabaceae Humulus lupulus 62

30 Euphorbiaceae Chrozophora prostrata 79

31 Cucurbitaceae Cucumis melo 136

32 Thymelaeaceae Aquilaria sinensis 137, 139

33 Poaceae Imperata cylindrical 138

Ferns

1 Polypodiaceae Drynaria fortunei 7, 28, 30, 32, 33, 57

2 Dryopteridaceae Dryopteris fragrans 20, 21

3 Onocleaceae Matteuccia intermedia 49

Lichens

Roccellaria mollis 41, 42, 45

Schismatomma accedens 41, 42, 45

Roccella galapagoensis 41, 42, 45

Lobodirina cerebriformis 44

Fungi

Armillaria tabescens 11

Orbiocrella sp. 40, 43

Stemphylium botryosum 63

Actinobacteria

Streptomyces

phaeoverticillatus var.
takatsukiensis 168

pluricolorescens 169–171

sp. 172–178, 180

griseoruber 179

Saccharothrix sp. 181–183

Actinomycete 184–192

4. Chromone Glycosides

Chromone glycosides belong to a group of oxygen-containing heterocyclic compounds
with a benzo-γ-pyrone skeleton. Naturally occurring chromone glycosides can be either
O-glycosides or C-glycosides. For O-glycosides, the most frequently encountered group
is the 7-O-glycosides; however, 2-, 3-, 5-, 8-, 11- and 13-O-glycosides also exist but to a
lower extent. For an example, only one 6-O-glycoside 11 has been reported from nature,
and from fungi, not higher plants [1]. Glycosylation can also be detected at side chains for
chromones, at C-11 and C-12 as in compounds 56–59, at the hydroxyprenyl and hydroxy-
isoprenyl side chains as in 123 and 128, respectively, or at the phenyl ethyl moiety as 139.
The most abundant among chromone glycosides is the glucoside from. However, other
sugar moieties such as xylose, arabinose and rhamnose were also detected in 3-, 7- and
11-O-glycosides.

4.1. Chromone O-glycosides
4.1.1. 2-O-Glycosides

This category includes compound 1 (Figure 1), 2-hydroxy-5-methylchromone-β-D-
glucopyranoside, isolated from the aerial parts of Mutisia acuminata var. hirsuta, a member
of family Asteraceae [7]. The authors did not report biological activity for this compound.
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Figure 1. Structure of compound 1.

4.1.2. 3-O-Glycosides

This category includes compounds 2–5. They share the same aglycone nucleus but
with different sugar moieties at C-3. Eucryphin 4 was reported as a new compound in
1979 [8]; however, it was reported again in 1996 as a new compound under the name
smiglanin [9]. In addition, 3,5,7-trihydroxychromone 3-O-β-D-xylopyranoside 2 was first
reported in 2005 from Rhodadendron ovatum [10], but it was reported again as a new com-
pound in 2013 [11]. Compounds 2–5 are shown in Figure 2. The sources and the reported
biological activities are summarized in Table 2.
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Figure 2. Structures of compounds 2–5.

Table 2. 3-O-Chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

2 3,5,7-trihydroxychromone-3-O-
β-D-xylopyranoside

Rhododendron ovatum roots [10]
Eurya japonica stems [11]

Inhibitory effects on LPS
(Lipopolysaccharide)-induced NO (Nitric
Oxide) production with inhibition rate
36.24 ± 1.29% at 20 µg/mL [11]

3 3,5,7-trihydroxylchromone-3-O-
α-L-arabinopyranoside

Rhododendron spinuliferum aerial
parts [12]

Inhibition of NO production in
LPS-stimulated RAW 264.7 cells with an IC50
value more than 100 mM [12]

4

Eucryphin
(5,7-dihydroxy-3-(α-O-L-
rhamnopyranosyl)-
4H-L-benzopyran-4-one)

Eucryphia cordifolia bark [8]
Astilbe thunbergii rhizomes [13]

Norepinephrine-enhancing lipolytic effect
6.432 ± 0.014 FFA µmol/mL at 1000 µg [13]
Enhancing effect on burn wound repair at
100 mg ointment per mouse [14]

Smiglanin
(3,5,7-trihydroxychromone-3-O-
α-L-rhamnopyranoside)

Smilax glabra roots [9] No reported biological activity

5
5,7-Dihydroxy-4H-chromen-4-
one-
3-O-β-D-glucopyranoside

Eurya japonica stems [11]
Inhibitory effects on LPS-induced NO
production with inhibition rate 53.79 ± 1.78%
at 20 µg/mL [11]

4.1.3. 5-O-Glycosides

Among the naturally occurring 5-O-glycosides, Staphylosides A and B (8–9), isolated
from Staphylea bumalda, are characterized by a presence of a disaccharide moiety attached to
C-5. The disaccharide chain in 8 is β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside while
in 9, is α-D-glucopyranosyl-(1→6)-β-D-glucopyranoside. Compounds 6–10 are shown in
Figure 3. The sources and the reported biological activities (if any) are summarized in
Table 3.
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Table 3. 5-O-Chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

6
Matsudoside A
(5-β-D-glucosyloxy-7-
hydroxychromone)

Salix matsudana leaves [15] No reported biological activity

7

Schumaniofioside A
(2-methyl-5,7-
dihydroxychromone
5-O-β-D-glucopyranoside)

Schumanniophyton magnificum
root bark [16]
Dysoxylum binectariferum
fruits [17].
Acalypha fruticose aerial
parts [18,19]
Drynaria fortune rhizomes [13]

Inhibition of proinflammatory cytokines
TNF-α (39.51 ± 1.21%) and IL-6
(22.21 ± 0.58%) at 5 µM [17]
Inhibition of NF-kB transcriptional activity
and iNOS with IC50 value of
29.5 ± 6.5 µg/mL [19]

8 Staphyloside A
Staphylea bumalda leaves [20] No reported biological activity

9 Staphyloside B

10 Isoeugenitol glucoside Gethyllis ciliaris
underground parts [21] No reported biological activity

4.1.4. 6-O-Glycosides

Compound 11 (Figure 4) has a unique structure for bearing 4-O-methylglucopyranosyl
unit. Chemically, it is 6-O-(4-O-methyl-β-D-glucopyranosyl)-8-hydroxy-2,7-dimethyl-4H-
benzopyran-4-one, isolated from the rice culture of the fungus Armillaria tabescens [1].
Although such compounds are not common in higher plants, several of them have previ-
ously been isolated from fungi [1].
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4.1.5. 7-O-Glycosides

This subclass is characterized by the presence of sugar at C-7. Hyperimone A is
the same as Urachromone A (22), reported at nearly the same time from different co-
authors from the genus Hypericum. Takanechromone A (38) is the same as Hyperimone
B, isolated from the same genus by different co-authors. They were reported each time as
new compounds. We preferred to add only 13C-NMR data of one set of these compounds
(Table 23). Several biological activities have been reported to some members of this subclass.
Compounds 12–53 are shown in Figure 5. The sources and the reported biological activities
(if any) are summarized in Table 4.
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Table 4. 7-O-Chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

12 7-O-β-D-glucopyranosyl-6-
methoxychromone

Salicornia europaea leaves
and stems [25] No reported biological activity

13 5,7-dihydroxychromone
7-O-β-D-glucopyranoside

Ilex hainanensis leaves [26]
Calluna vulgaris flowers [27] No reported biological activity

14
5,7-dihydroxychromone
7-O-β-D-glucuronide
methyl ester

Davallia mariesii rhizomes [28] No reported biological activity

15
7-O-(6′-galloyl)-β-D-
glucopyranosyl-5-
hydroxychromone

Polygonum capitatum aerial
parts [29] No reported biological activity

16
5-hydroxy-7-O-(6-O-p-cis-
coumaroyl-β-D-glucopyranosyl)-
chromone

Dasiphora parvifolia aerial
parts [30] No reported biological activity

17
5-hydroxy-7-O-(6-O-p-trans-
coumaroyl-β-D-glucopyranosyl)-
chromone

Dasiphora parvifolia aerial
parts [30] No reported biological activity

18 Officinaliside A Scindapsus officinalis stems [31] No reported biological activity

19 7-O-α-L-rhamnosyl-nereugenin Scindapsus officinalis stems [31] No reported biological activity

20

Undulatoside A
(2-methyl-5,7-
dihydroxychromone
7-O-β-D-glucopyranoside)

Scindapsus officinalis stems [31]
Ammi visnaga fruits [32]
Knoxia corymbosa [33]
Pancratium biflorum roots [34]
Panacratium biflorum flowering
bulbs [35]
Pancratium maritimum L. fresh
bulbs [36]
Peucedanum austriacum [37]
Tecomella undulata bark [38]
Adina rubescens leaves [39]
Dryopteris fragrans [40]
Staphylea bumalda leaves [20]

Immunomodulatory activity inhibited the
proliferation of murine B lymphocytes
in vitro at 10−5 M [33]
Inhibition of nitric oxide
production in lipopolysaccharide induced
RAW 264.7 macrophages
with an IC50 value of 49.8 µM [40]
Weak antimigratory activity against human
metastatic prostate cancer cells (PC-3M) at
50 µM [36]

21
Frachromone C
(5-hydroxy-2-ethylchromone-7-O-
β-D-glucopyranoside)

Dryopteris fragrans whole
plant [40]

Inhibition of nitric oxide
production in lipopolysaccharide induced
RAW 264.7 macrophages
with an IC50 value of 45.8 µM [40]

22

Urachromone A
(5-hydroxy-2-
isopropylchromone-7-O-β-D-
glucopyranoside)

Hypericum henryi aerial parts [41]
Hypericum erectum [42]

No reported biological activity

Hyperimone A

23 Urachromone B Hypericum henryi aerial parts [41] No reported biological activity

24

Corymbosin K2
(7-O-β-D-6-
acetylglucopyranosyl-5-hydroxy-
2-methylchromone)

Knoxia corymbosa [33]
Immunomodulatory activity inhibited the
proliferation of murine B lymphocytes
in vitro at 10−5 M [33]

25 Schumanniofioside B Schumanniophyton magnificum root
bark [16] No reported biological activity

26
5-hydroxy-2-methylchromone-7-
O-β-D-apiofuranosyl-(1→6)-
β-D-glucopyranoside

Neonauclea sessilifolia roots [43]
Scorodocarpus borneensis
leaves [44]
Staphylea bumalda leaves [20]

No reported biological activity
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Table 4. Cont.

No. Compound Source Biological Activity

27 Undulatoside B Tecomella undulata [45] No reported biological activity

28
2-methyl-chromone-5,7-diol
7-O-α-L-rhamnopyranosyl-(1-6)-
β-D-glucopyranoside

Delphinium hybridum aerial
parts [46]
Drynaria fortunei rhizomes [22]

No reported biological activity

29

Officinaliside C
(7-O-[β-D-glucopyranosyl-(1-2)-α-
L-rhamnopyranosyl]-5-hydroxy-
2-methyl-4H-1-benzopyran-4-
one)

Scindapsus officinalis stems [31] No reported biological activity

30

Drynachromoside C
(5-hydroxy-2-methyl
chromone-7-O-β-D-
glucopyranosyl
(1-3)-α-L-rhamnopyranoside)

Drynaria fortunei rhizomes [22] Inhibitory activity on triglyceride
accumulation at 10 µM [22]

31

Officinaliside B
(7-O-[6-acetyl-β-D-
glucopyranosyl-(1-3)-α-L-
rhamnopyranosyl]-5-hydroxy-
2-methyl-4H-1-benzopyran-4-
one)

Scindapsus officinalis stems [31]
Inhibition of NO production in
LPS-stimulated RAW 264.7 cells with an IC50
value of 16.1 µM [31]

32

Drynachromoside A
(5-hydroxy-2-methyl-4H-
benzopyran-4-one-7-O-β-D-
glucopyranosyl-(1-4)-α-L-
rhamnopyranoside)

Scindapsus officinalis stems [31]
Drynaria fortunei rhizomes [47]

Proliferative activity 10.1% on MC3T3-E1
(Mouse osteoblast) cells at 25 µg/mL [47]

33

Drynachromoside D
(5-hydroxy-2-methyl
chromone-7-O-α-L-
arabinopyranosyl(1-2)-β-D-
glucopyranosyl(1-4)-α-L-
rhamnopyranoside)

Drynaria fortunei rhizomes [22]

Inhibitory activity on triglyceride
accumulation (inhibited PPARγ, C/EBPα
and aP2 expression by 50%, 43% and 37% at
10 mM) [22]

34 Undulatoside A 6′-O-gallate Myrtus communis leaves [48]

35

Corymbosin K3
(7-O-[6-O-(4-O-trans-caffeoyl-β-D-
allopyranosyl)]-β-D-
glucopyranosyl-5-hydroxy-2-
methylchromone)

Knoxia corymbosa [33]
Immunomodulatory activity inhibited the
proliferation of murine B lymphocytes
in vitro at 10−5 M [33]

36

7-O-[6-O-(4-O-trans-feruloyl-β-D-
allopyranosyl)]-
β-D-glucopyranosyl-5-hydroxy-2-
methylchromone

Knoxia corymbosa [33] No reported biological activity

37 5-hydroxy-6-methylchromone-7-
O-β-D-glucopyranoside Pseudotsuga sinensis [49] No reported biological activity

38

Takanechromone A
(5,7-dihydroxy-3-
methylchromone-
7-O-β-D-glucopyranoside)

Hypericum sikokumontanum
aerial parts [50]
Hypericum erectum [42]

No reported biological activity

Hyperimone B

39
Takanechromone B
(5,7-dihydroxy-3-ethylchromone-
7-O-β-D-glucopyranoside)

Hypericum sikokumontanum
aerial parts [50] No reported biological activity
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Table 4. Cont.

No. Compound Source Biological Activity

40 7-O-(4-O-Methyl-β-D-
glucopyranosyl)eugenitol

The scale-insect pathogenic
fungus Orbiocrella sp. [23] No reported biological activity

41 Mollin
Lichens (Roccellaria mollis,
Schismatomma accedens, Roccella
galapagoensis) [51]

No reported biological activity

42 Roccellin
Lichens (Roccellaria mollis,
Schismatomma accedens, Roccella
galapagoensis) [51]

No reported biological activity

43 7-O-(4-O-Methyl-β-D-
glucopyranosyl)isoeugenitol

The scale-insect pathogenic
fungus Orbiocrella sp. [23] No reported biological activity

44 Lobodirin Lobodirina cerebriformis lichen [51] No reported biological activity

45 Galapagin
Lichens (Roccellaria mollis,
Schismatomma accedens, Roccella
galapagoensis) [51]

No reported biological activity

46
Uncinoside A (5-hydroxy-2,6,8-
trimethylchromone
7-O-β-D-glucopyranoside)

Selaginella uncinate Herb [24]

Antiviral activity against respiratory
syncytial virus (RSV) with an IC50 value of
6.9 µg/mL, against parainfluenza type 3
virus (PIV 3) with an IC50 value of
13.8 µg/mL [24]

47 Pancrichromone Pancratium maritimum L. fresh
bulbs [36] No reported biological activity

48
Uncinoside B (5-acetyoxyl-2,6,8-
trimethylchromone 7-O-β
-D-glucopyranoside)

Selaginella uncinate herb [24]

Antiviral activity against respiratory
syncytial virus (RSV) with an IC50 value of
1.3 µg/mL, against parainfluenza type 3
virus (PIV 3) with an IC50 value of
20.8 µg/mL [24]

49 Matteuinterin B Matteuccia intermedia
rhizomes [52]

50 2,5-dimethylchromone-7-O-β-D-
glucopyranoside

Rheum austral D. Don
underground parts [53]
Rumex gmelini Turcz. roots [54]

Anti-oxidant activity (DPPH radical
scavenging capacity with an IC50 value of
66.9 ± 1.3 µM) [53]

51 5-acetonyl-7-β-D-glucopyranosyl-
2-methylchromone Cassia multijuga leaves [55,56] No reported biological activity

52

2-methyl-5-(2′-oxo-4′-
hydroxyphenyl)-7-
hydroxychromone
7-O-β-D-glucopyranoside

Chinese rhubarb (Rhei
Rhizoma) [57] No reported biological activity

53 Aloesone
7-O-β-D-glucopyranoside

Chinese rhubarb (Rhei
Rhizoma) [57] No reported biological activity

Drynachromosides C (30) and D (33) exhibited inhibitory activity on triglyceride
accumulation [22]. The effects of these compounds on mRNA expression of the three
adipogenesis-related marker genes, PPARγ, C/EBPα and Ap2, in 3T3-L1 were investigated.
The mRNA expression levels of PPARγ, C/EBPα and Ap2 were found to be dramatically
downregulated. Compounds 40 and 43, having a unique sugar unit of 4-O-methyl-β-D-
glucopyranose, were isolated from the scale-insect pathogenic fungus Orbiocrella sp. BCC
33248 [23]. Uncinosides A (46) and B (48) [24], isolated from the Chinese herbal medicine
Selaginella uncinata, showed potent anti-RSV (respiratory syncytial virus) activity with IC50
values of 6.9 and 1.3 µg/mL, respectively. Uncinoside B (48) was found to have a TI value
of 64.0, a large therapeutic index comparable to that of ribavirin with a TI value of 24.0,
which is an approved drug for the treatment of RSV infection in humans. They also showed
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moderate antiviral activities against PIV 3 (parainfluenza type 3 virus) with IC50 values of
13.8 and 20.8 µg/mL and TI values of 6.0 and 4.0, respectively.

4.1.6. 8-O-Glycosides

Only two compounds 54–55 were reported in nature. They are shown in Figure 6. The
sources and the reported biological activities (if any) are summarized in Table 5.
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Table 5. 8-O-Chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

54 8-O-β-D-Glucopyranosyl-
2-methylchromone

Swertia punicea whole
herb [58]

No reported
biological activity

55
8-O-β-D-Glucopyranosyl-
6-hydroxy-2-methyl-4H-
1-benzopyrane-4-one

Rhododendron collettianum
aerial parts [59]

Inhibitory activity against
tyrosinase enzyme with an
IC50 value of 256.97 µM [59]

4.1.7. 11- and 13-O-Glycosides

Compound 57 was reported in 2012 as Monnieriside A [60] and was then reported as
Drynachromoside B [22,31,47]. Compounds 56–59 are shown in Figure 7. The sources and
the reported biological activities (if any) are summarized in Table 6.
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Table 6. 11, 13-O-chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

56

Officinaliside D
(2-hydroxymethyl-5,7-dihydroxy-4H-
benzopyran-4-
one-1′-O-α-L-arabinopyranoside)

Scindapsus officinalis stems [31] Inhibition of NO production in LPS-stimulated
RAW 264.7 cells with an IC50 value of 19.1 µM [31]

57
Drynachromoside B Drynaria fortune rhizomes [22,47]

Scindapsus officinalis stems [31]

Mild inhibitory activity against MC3T3-E1 (mouse
osteoblast) cells at 3.125 to 100 µg/ml [47]
Triglyceride accumulation inhibitory effect at 0.1 to
10 µM [22]

Monnieriside A Cnidium monnieri fruits [60] No reported biological activity

58 Saikochromoside A Bupleurum chinense [61]
Cnidium monnieri fruits [60] No reported biological activity

59
2-Methyl-5-propyl-7,12-
dihydroxychromone-12-O-β-D-
glucopyranoside

Cassia siamea stem [62] No reported biological activity
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4.1.8. Chromanone Glycosides

Chromanone glycosides or 2,3-dihydrochromone glycosides are not abundant in
nature. Reviewing the literature, we encountered only four examples 60, 61, 62 and 63.
Their structures are shown in Figure 8. The sources and biological activities (if any) of these
compounds are summarized in Table 7.
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Table 7. Chromanone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

60 Takanechromanone A Hypericum sikokumontanum aerial
parts [50]

Anti-Helicobacter pylori at 100 µg/disc [50]
61 Takanechromanone B

62
5-β-D-glucopyranosyloxy-7-
hydroxy-2-isopropyl-
chromanone

Humulus lupulus L. bracts [63] No reported biological activity

63

Stemphylin
(3-hydroxy-2, 2-dimethyl-5-α-D-
glucopyranoside-2,
3-dihydrochromone)

The liquid culture of the fungus
Stemphylium botryosum [64] Phytotoxic activity [64]

4.2. Chromone C-Glycosides

In contrast to chromone O-glycosides, which are widely distributed and of common
occurrence, C-glycoside derivatives are rarely found out.

4.2.1. 3-C-Glycosides

This subclass includes the unusual 5,7-dihydroxychromone-3α-D-C-glucoside, named
macrolobin, isolated from the aerial parts of Macrolobium latifolium [65]. Its structure is
shown in Figure 9. Its source and biological activities are summarized in Table 8.
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Table 8. 3-C-Chromone glycoside with its source and biological activities.

No. Compound Source Biological Activity

64
Macrolobin
(5,7-dihydroxychromone-
3α-D-C-glucoside)

Macrolobium latifolium
aerial parts [65]

Inhibition of
acetylcholinesterase enzyme
with an IC50 value of 0.8 µM
Antimicrobial activity
against P. aeruginosa and
Salmonella at 0.73 and
0.44 µM, respectively [65]

4.2.2. 6-C-Glycosides

Compounds 65–79 are shown in Figure 10. The sources and the reported biological
activities (if any) are summarized in Table 9.
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Table 9. 6-C-Chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

65 5,7-dihydroxy-6-C-glucosyl-
chromone

Aspalathus linearis fermented
rooibos (red-brownish dry leaves)
[66]

No reported biological activity

66
Biflorin
(6-β-C-glucopyranosyl-5,7-
dihydroxy-2-methylchromone)

Pancratium Biflorum roots [34]
Syzygium aromaticum L. flower
buds [67,68]
Baeckea frutescens leaves [69,70]

Inhibitory activity to
phosphodiesterase and spared cyclic
nucleotides at 10−9 M [34]
Inhibition of LPS-induced production of
nitric oxide (NO) and prostaglandin E2
(PGE2) in RAW 264.7 macrophages with
IC50 values of 51.7 and 37.1 µM,
respectively [67]

67
6-β-C-glucopyranosyl-
5,7-dihydroxy-2-
isopropylchromone

Baeckea frutescens leaves [69,70]
Kunzea ambigua leaves [71]

Inhibitory activity 70.4% against EBV-EA
(Epstein–Barr virus early antigen) activation
induced by 12-O-tetradecanoylphorbol
13-acetate (TPA) at 500 mol ratio/TPA [71]

68 Obtusichromoneside C
Cassia obtusifolia seeds [72]

Weak inhibitory activity against human
organic anion/cation transporters
(OATs/OCTs) and organic anion transporting
polypeptides (OATPs) at 50 µM [72]

69 Obtusichromoneside A

70 Kunzeachromone C Kunzea ambigua leaves [71]
Baeckea frutescens leaves [70]

Inhibition of copper-induced LDL oxidation
with an IC50 value of 3.35 ± 0.36 µM [70]

71 6-C-β-D-(6′-O-
galloyl)glucosylnoreugenin

Syzygium aromaticum flower
buds [68,73]

Cytotoxicity against human ovarian cancer
cells (A2780) with an IC50 value of
66.78 ± 5.49 µM [68]
Prolyl endopeptidase inhibitory effects with
an IC50 value of 1.74 ± 0.03 µM [73]

72

6-β-C-(2′-O-
galloylglucopyranosyl)-5,7-
dihydroxy-
2-isopropylchromone

Baeckea frutescens leaves [69,70]
Kunzea ambigua leaves [71]

Inhibitory activity 68.4% against EBV-EA
activation induced by TPA at 500 mol
ratio/TPA [71]
Inhibition of copper-induced LDL oxidation
with an IC50 value of 3.90 ± 0.24 µM [70]

73 Kunzeachromone D Kunzea ambigua leaves [71] No reported biological activity
74 Kunzeachromone A

75 Aloeveraside B

Aloe vera resin [74–76]

Inhibition of urease enzyme (55% and 62%,
respectively) at 1 mg/mL concentration,
significant growth inhibition (70.5 and 76.4%)
of the breast cancer cell line MDA-MB-231 at
100 µM, and antioxidant (80% and 60%) at 1
mg/mL [74]
Anti-lipid peroxidation activity with IC50
values of 432.1 ± 0.6 and 469.5 ± 0.4 µmol/L,
respectively [75]

76 Aloeveraside A

77 Acetonyl-6-glycosyl -7-hydroxy
-2-methylchromone Cassia multijuga leaves [55,56] No reported biological activity

78

5-acetonyl-7-hydroxy-6-C-
glucopyranosyl-2-methyl
chromone
2′′-O-glucopyranoside

Cassia spectablis seeds [77] No reported biological activity

79

2-acetonyl-5-methyl-7-hydroxy-6-
C-glucopyranosyl
chromone
2′′-O-glucopyranoside

Chrozophora prostrata roots [78] No reported biological activity
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4.2.3. 8-C-Glycosides

Many of the naturally occurring chromone-8-C-glycosieds can be found in genus Aloe.
Approximately 26 chromone-8-C-glycosides were reported in the perennial plant Aloe vera,
which is a well-known pharmaceutical herb used in traditional Chinese medicine [76].
Some significant bioactive chromone-8-C-glycosides were isolated and identified in Aloe
vera, including Aloesin (98), aloeresin E (109), isoaloeresin D (110), aloeresin A (114) and
other derivatives. For instance, aloeresin A (114) exhibited a promising therapeutic activity
toward α-glucosidase enzyme [79], while the compound isobiflorin (80), isolated from the
flower buds of Syzygium aromaticum, had the capacity to inhibit LPS-induced production
of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages [67]. A
chromone-8-C-glycoside, 5,7-dihydroxy-2-isopropylchromone-8-β-D-glucoside, reported
in Hypericum japonicum, showed an activity against Epstein–Barr virus [71]. Additionally,
BACE1 (β-secretase), which is a possible potential target in the treatment of Alzheimer’s
disease, was inhibited by some compounds as aloesin (98) [80], 7-O-methyl-aloeresin A
(115) [81] and 2′-feruloyl-7-O-methylaloesin (119) [80]. Furthermore, tyrosinase, which is
the key enzyme for controlling the production of melanin, was inhibited by aloeresin E
(109) and isoaloeresin D (110) [82]. The compounds 80–122 are shown in Figures 11–13.
The sources and the reported biological activities (if any) are summarized in Table 10.
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Table 10. 8-C-Chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

80 Isobiflorin

Abrus mollis Hance. aerial
parts [83]
Syzygium aromaticum L. flower
buds [67]
Kunzea ambigua (SM.) Druce.
leaves [71]
Eucalyptus globulus leaves [84,85]
Eugenia caryophyllata flower
buds [86]

Inhibition of LPS-induced production of
nitric oxide (NO) with an IC50 > 60 µM and
prostaglandin E2 (PGE2) ) with an IC50 value
of 46.0 µM [67]

81 7-methoxy-isobiflorin
Zhuyeqing Liquor; a famous
traditional Chinese functional
health liquor [87]

No reported biological activity

82
5,7-Dihydroxy-2-
isopropylchromone-
8-β-D-glucoside

Hypericum japonicum aerial
parts [71,88,89]
Eucalyptus maidenii bark [84]

Inhibit Epstein–Barr virus early antigen
induced by 12-O-tetradecanoylphorbol
13-acetate (TPA) in Raji cells (70.4%) at
500 mol ratio/TPA [71]

83
5,7-Dihydroxy-2-(1-
methylpropyl)
chromone-8-β-D-glucoside

Hypericum japonicum aerial
parts [71,88]
Eucalyptus grandis,
Eucalyptus urograndi, and
Eucalyptus maidenii bark [90]

No reported biological activity

84 Obtusichromoneside B Cassia obtusifolia seeds [72]

Inhibitory activity against human organic
anion/cation transporters (OATs/OCTs) and
organic anion transporting polypeptides
(OATPs) at 50 µM [72]

85

Kunzeachromone E
[8-β-C-(2′-
galloylglucopyranosyl)-
5,7-dihydroxy-2-
methylchromone]

Kunzea ambigua leaves [71]
Baeckea frutescens leaves [70]

Inhibition activity toward copper-induced
LDL oxidation with IC50 value of
3.98 ± 0.24 µM [70]
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Table 10. Cont.

No. Compound Source Biological Activity

86

8-C-β-D-(6′-O-
galloyl)glucosylnoreugenin
[2-Methyl-5,7-dihydroxy-
chromone-8-β-D-(6′-O-galloyl)-
glucopyranoside]

Syzygium aromaticum L. leaves [91]
Syzygium aromaticum L. flower
buds [68,73]

Cytotoxicity against human ovarian cancer
cells (A2780) with an IC50 value of
87.50 ± 1.56 µM [68]
Significant inhibition capacity against Prolyl
Endopeptidase with IC50 value of
1.48 ± 0.02 µM [73]

87
8-β-C-(2′-galloylglucopyranosyl)-
5,7-dihydroxy-2-
isopropylchromone

Baeckea frutescens leaves [70]
Active against copper-induced LDL
oxidation with an IC50 value of
3.91 ± 0.18 µM [70]

88

Kunzeachromone F
[2-Methyl-5,7-dihydroxy-
chromone-8-β-D-(2′,3′-di-O-
galloyl)-glucopyranoside]

Kunzea ambigua leaves [71] No reported biological activity

89

Kunzeachromone B
[2-Isopropyl-5,7-dihydroxy-
chromone-8-β-D-(2′,3′-di-O-
galloyl)-glucopyranoside]

Kunzea ambigua leaves [71] No reported biological activity

90
2,5-dimethyl-8-C-β-D-
glucopyranosyl-7-hydroxy-
chromone

Aloe vera [92] No reported biological activity

91

2-(E)-propenyl-7-
methoxy-8-C-β-D-
glucopyranosyl-5-
methylchromone

Aloe vera [76,80] BACE1 (β-secretase) inhibitory activity with
an IC50 value of 20.5 µM [80]

92 8-C-β-D-glucosyl-(R)-aloesol Aloe vera [76,80] BACE1 (β-secretase) inhibitory activity
(39.2%) at 100 µM [80]

93 8-C-β-D-glucosyl-7-O-methyl-(R)-
aloesol

Aloe vera [76,80] and anerobic
incubation of aloesin with
bacterial mixture [93]

BACE1 (β-secretase) inhibitory activity
(26.8%) at 100 µM [80]

94 8-C-β-D-glucosyl-(S)-aloesol
Aloe vera [76] and anerobic
incubation of aloesin with
bacterial mixture [93]

No reported biological activity

95 8-C-β-D-glucosyl-7-O-methyl-(S)-
aloesol

Aloe vera [76] and anerobic
incubation of aloesin with
bacterial mixture [93]

No reported biological activity

96 8-C-β-D-glucosyl-7-O-
methylaloediol Aloe vera [76,80] No reported biological activity

97 Neoaloesin A Aloe vera [76]
Aloe barbadensis leaves [94] No reported biological activity

98 Aloesin Aloe vera [76,80]
Aloe barbadensis leaves [95]

Antioxidant activity (50 ± 1 µM trolox
equivalent) at 100 mg of soluble solid/L
solution [95]
BACE1 inhibitory activity (37.5%) at
100 µM [80]
Suppresses hyperpigmentation (40%) at
100 mg⁄g polyethylene glycol [2]

99 7-O-methylaloesin Aloe rupestris leaves exudate [96] No reported biological activity

100 Aloesin-2′′,3′′,4′′,6′′-tetra-O-
acetate

Anerobic incubation of aloesin
with bacterial mixture [93] No reported biological activity
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Table 10. Cont.

No. Compound Source Biological Activity

101 2′′-O-tigloylaloesin Aloe cremnophila leaves
exudate [97] No reported biological activity

102

8-C-β-D-glucopyranosyl-7-
hydroxy-5-methylchromone-2-
carboxylic
acid

Herbal tea “muti” [98] No reported biological activity

103

8-[C-β-D-[2-O-(E)-
cinnamoyl]glucopyranosyl]-2-
[(R)-2-hydroxypropyl]-7-
methoxy-5-methylchromone

Aloe vera [76]
Aloe barbadensis leaves [99]

Topical anti-inflammatory activity at
200 µg/ear [99]

104 Aloeresin D Aloe vera [76] No reported biological activity

105 Rabaichromone Aloe vera [76] No reported biological activity

106 Allo-aloeresin D Aloe vera [76] No reported biological activity

107 Aloeresin K Aloe vera [76]
Aloe barbadensis leaf skin [100] No reported biological activity

108 Aloeresin J Aloe vera [76]
Aloe barbadensis leaf skin [100] No reported biological activity

109 Aloeresin E Aloe vera leaves [76,82] Inhibition of tyrosinase enzyme (40% and
80% at 50 and 100 ppm, respectively) [82]

110 Isoaloeresin D Aloe vera leaves [76,82]

Inhibition of tyrosinase enzyme (20% and
40% at 50 and 100 ppm, respectively) [82]
Antiviral activity against Pepper mild mottle
virus; PMMoV (37.5 ± 6.5% at
1.5 mg/mL) [81]

111 2′-O-[p-methoxy-(E)-cinnamoyl]-
(S)-aloesinol Aloe nobilis leaves [12] BACE1 inhibitory activity (34.1%) at

100 µM [80]

112 Iso-rabaichromone Aloe vera [76,82] No reported biological activity

113
8-C-glucosyl-(2′-O-cinnamoyl)-7-
O-methylaloediol
B

Aloe vera leaves [76] No reported biological activity

114 Aloeresin A Aloe vera [76]

Antioxidant activity [101]
α-glucosidase inhibitory activities, with IC50
values of 11.94 and 2.16 mM against rat
intestinal sucrase and maltase [79]

115 7-O-methyl-aloeresin A Aloe vera [76] Tyrosinase inhibitory activity with an IC50
value of 9.8 µM [81]

116 6′-O-coumaroyl-aloesin Aloe vera [76] Anti-lipid peroxidation activity with an IC50
value of 476.4 ± 0.9 µM [75]

117 7-Methoxy-6′-O-coumaroyl-
aloesin Aloe vera [76]

Weak anticancer activity against breast
cancer cell line, MDA-MB-231 (induce 30%
decline in cell survival at 25 µM ) [102]

118 2′-Feruloylaloesin Aloe nobilis leaves [80]

Inhibition activity against β-secretase (36.4%)
at 100 µM [80]
Inhibition effect against mushroom
tyrosinase (27 ± 0.57%) at 0.4 µM [103]

119 2′-Feruloyl-7-O-methylaloesin Aloe nobilis leaves [80] Inhibition activity against BACE1
(β-secretase) (48.7%) at 100 µM [80]
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Table 10. Cont.

No. Compound Source Biological Activity

120 9-Dihydroxyl-2′-O-(Z)-
cinnamoyl-7-methoxy-aloesin Aloe vera [76]

Inhibition of tyrosinase enzyme (9.5 ± 9.0%)
at 100 µM
Antiviral against Pepper mild mottle virus;
PMMoV (31.5 ± 4.2% inhibition at 1.5
mg/mL) [81]

121 4′-O-β-D-glucosyl-isoaloeresin DI Aloe vera [76] No reported biological activity

122 4′-O-β-D-glucosyl-isoaloeresin DII Aloe vera [76] No reported biological activity

4.3. Phenyl and Isoprenyl Chromone Glycosides

This category is characterized by a hydroxyl prenyl moiety at C-6 or C-8, or a hydroxyl
isoprenyl moiety at C-6 only. The sugar moiety can be either situated at C-7 hydroxyl of the
chromone nucleus or C-4’ of the hydroxyl prenyl or C-2’ of the hydroxyl isoprenyl moiety.
Most of the compounds in this category were reported from the genus Cnidium, belonging
to family Apiaceae. The reported biological activity associated with several compounds in
this category is their significant inhibition of fat accumulation in differentiated adipocytes
employing 3T3-L1 preadipocyte cells as an assay system [60]. The compounds 123–134
are shown in Figure 14. The sources and the reported biological activities (if any) are
summarized in Table 11.
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Table 11. Prenyl and isoprenyl chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

123 Cnidimoside A

Cnidium Juponicum whole
plant [104,105]
Cnidium monnieri fruits
[60,106]

Significant
inhibition of fat accumulation at 300 µM
in differentiated adipocytes [60]
Antitumor and antimetastatic actions at
0.1–100 µM (in vitro) and 20, 50 mg/kg,
twice daily (in vivo) [105]

124 Cnidimoside B
Cnidium Juponicum whole
plant [104]
Cnidium monnieri fruits [60]

Significant ihibition of fat accumulation
at 300 µM in differentiated
adipocytes [60]

125

2-methyl-5-hydroxy-6-(2-
butenyl-3-hydroxymethyl)-7-(β-D-
glucopyranosyloxy)-4H-
1-benzopyran-4-one

Cnidium monnieri fruits [60]
Angelica archangelica [107]
Archangelica litoralis [107]

No reported biological activity

126 Hydroxycnidimoside A Cnidium monnieri fruits
[60,106]

Significant inhibition of fat accumulation
at 300 µM in differentiated
adipocytes [60]

127 Monnieriside B Cnidium monnieri
fruits [60,106]

128 Monnieriside C

Cnidium monnieri fruits [60] No reported biological activity129 Monnieriside D

130 Monnieriside E

131

7,8-Secoeranthin-β-D-glucopyranoside
(8-{(2E)-4-[β-D-glucopyranosyl)oxy]-3-
methylbut-2-enyl}-5,7-
dihydroxy-2-methyl-4H-L-benzopyran-
4-one)

Eranthis hyemalis tubers [108] No reported biological activity

132

2-C-Hydroxy-7,8-seroeranthipn-β-D-
glucopyranoside
(8-{(2E)-4-[β-D-glucopyranosyl)oxy]-3-
methylbut-2-enyl}-5,7-
dihydroxy-2-(hydroxymethyl)-4H-1-
benzopyran-4-on2)

133
7-[(β-D-glucopyranosyl)oxy]-5-hydroxy-
8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-
methyl-4H-1-benzopyran-4-one

Eranthis cilicica tubers [109] No reported biological activity

134

7-[(β-D-glucopyranosyl)oxy]-5-hydroxy-
2-hydroxymethyl-8-
[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-
1-benzopyran-4-one

4.4. Phenyl Ethyl Chromone Glycosides

Reviewing the literature, we encountered five phenyl ethyl chromone glycosides. The
phenyl ethyl moiety is usually located at C-2 of the chromone nucleus. The sugar moiety
is attached to C-7 of the chromone skeleton in compounds 135–137, while in compound
138, the sugar is attached to C-8. In compound 139, the sugar is not attached directly to the
basic chromone skeleton. Compounds 135–139 are shown in Figure 15. Their sources are
summarized in Table 12. There are no reported biological activities of these compounds.
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Table 12. Phenyl ethyl chromone glycosides with their sources.

No. Compound Source

135 Ononin glucoside Ononis vaginalis whole plant [110]

136 7-Glucosyloxy-5-hydroxy-2-[2-(4-
hydroxyphenyl)ethyl]chromone Cucumis melo seeds [111]

137 Aquilarinoside C (6,4′-dimethoxy-3′-hydroxy-2-
(2-phenylethyl)chromone 7-O-β-D-glucopyranoside) Aquilaria sinensis stems [112]

138 2-(2-phenylethyl) chromone-8-O-β-D-glucopyranoside Imperata cylindrical rhizomes [113]

139 2-[2-(4-glucosyloxy-3-methoxyphenyl)ethyl]chromone Aquilaria sinensis resinous heartwood [114]

4.5. Chromone Glycosides with Additional Heterocyclic Moieties

This category of chromone glycosides is further classified based on the additional het-
erocyclic moiety into furano-chromone glycosides, pyrano-chromone glycosides, oxepino-
chromone glycosides and pyrido-chromone glycosides.

4.5.1. Furano-Chromone Glycosides

This subclass of compounds is characterized by presence of an additional furan, or a
tetrahydrofuran ring fused with the benzo-δ-pyrone. Khellol glucoside (140), isolated from
Ammi visnaga, is one of the important members in this subclass. It possess potent coronary
vasodilator and bronchodilator activities [115]. It was reported to have a significant
hypocholesterolemic effect. It lowered low-density lipoprotein cholesterol (LDL-C) by 73%,
high-density lipoprotein cholesterol (HDL-C) by 23%, and total-C by 44%, after a single
oral dose of 20 mg/kg per day after two weeks [116]. Compounds 140–148 are shown in
Figure 16. The sources and the reported biological activities (if any) are summarized in
Table 13.
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Table 13. Furano-chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

140 Khellol glucoside (Khellinin;
Khelloside)

Ammi visnaga fruits [117]
Eranthhis hyernalis tubers [108]

Potent coronary vasodilator and
bronchodilator [115]
Hypocholesterolemic effect at 20 mg/kg
per day [116]

141 Norkhelloside Cimicifuga heracleifolia
rhizomes [118] No reported biological activity

142

7-[(O-β-D-glucopyranosyl-(1→6)-
β-D-glucopyranosyl)oxy]methyl-
4-hydroxy-5H-furo[3,2-
g][1]benzopyran-5-one

Eranthis cilicica tubers [109] No reported biological activity

143
4′-O-β-D-
glucopyranosylvisamminol
(Monnieriside G)

Cnidium monnieri fruits [60]
Saposhnikovia divaricata roots [119]

Antitumor activity against SK-OV-3 with
an IC50 value of 93.91 µM [120]

144 4′-O-β-D-glucopyranosyl-5-O-
methylvisamminol

Ledebouriella seseloides roots and
rhizomes [121]
Saposhnikovia divaricata
roots [119,122]
Diplolophium buchananii aerial
parts [123]
Sphallerocarpus gracilis roots [124]

Analgesic, antipyretic, anti-inflammatory,
and anti-platelet aggregation activities
[125,126]
Antitumor activity with against H-460
cell line with an IC50 value of 86.91 µM
[120]

145
(2’S)-4′-O-β-D-apiofuranosyl-
(1→6)-β-D-
glucopyranosylvisamminol

Saposhnikovia divaricata roots [119]
Antitumor activities against PC-3 and
SK-OV-3 cell lines with IC50 values of
48.5, 81.91 µM, respectively [120]
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Table 13. Cont.

No. Compound Source Biological Activity

146 prim-O-glucosylcimifugin

Ammi visnaga fruits [127]
Angelica genuflexa roots [128]
Eranthis hyernalis tubers [108]
Angelica japonica roots [129]
Cimicifuga foetida rhizomes [130]
Diplolophium buchananii aerial
parts [123]
Saposhnikovia divaricata roots [131]

Analgesic, antipyretic, anti-inflammatory,
anti-platelet aggregation and antitumor
activities [125,126,131]

147 Cimifugin-4′-O-[6′′-feruloyl]-β-D-
glucopyranoside Cimicifuga foetida rhizomes [132] No reported biological activity

148 Monnieriside F Cnidium monnieri fruits [60] No reported biological activity

4.5.2. Pyrano-Chromone Glycosides

This subclass of compounds is characterized by the presence of an additional pyran
ring fused with the benzo-δ-pyrone. Only three compounds were reported from nature until
now. Of them, 3′-O-glucopyranosylhamaudol (Sec-O-glucopyranosylhamaudol) (149) and
(3’S)-3′-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranosylhamaudol (150), isolated from the
Saposhnikovia divaricata, showed weak anti-cancer activity. Both compounds were screened
against three cancer cell lines, namely human prostatic cancer cell (PC-3), human ovarian
carcinoma cell (SK-OV-3), and human lung cancer cell (H460) using the conventional
MTT assay. Compound 149 showed a weak activity against H460, with an IC50 value of
94.25 ± 1.45 µM while compound 150, showed an activity against SK-OV-3 with an IC50
value of 86.21 ± 1.03 µM [119]. Compounds 149–151 are shown in Figure 17. The sources
and the reported biological activities (if any) are summarized in Table 14.
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Table 14. Pyrano-chromone glycosides with their sources and biological activities.

No. Compound Source Biological Activity

149 3′-O-glucopyranosylhamaudol
(Sec-O-glucopyranosylhamaudol)

Angelica genuflexa roots [128]
Angelica japonica roots [129]
Glehnia littoralis roots [133]
Peucedanum japonicum roots [134]
Saposhnikovia divaricata
roots [119,122]

Antitumor activity against H-460 cell line
with an IC50 value of
94.25 ± 1.45 µM [119]

150
(3’S)-3′-O-β-D-apiofuranosyl-
(1→6)-
β-D-glucopyranosylhamaudol

Saposhnikovia divaricata roots [119] Antitumor activity against SK-OV-3 with
an IC50 value of 86.21 ± 1.03 µM [119]

151
(2’S)-2′-hydroxy-7-O-
methylallopeucenin
2′-O-β-D-glucopyranoside

Diplolophium buchananii
aerial parts [123] No reported biological activity
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4.5.3. Oxepino-Chromone Glycosides

This subclass of compounds is characterized by the presence of an additional oxepin
fused with the benzo-δ-pyrone. Only four compounds were reported from nature until now,
and all of them were reported from Eranthis species. The compounds 152–155 are shown
in Figure 18. The sources are summarized in Table 15. There are no reported biological
activities for these compounds.
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Table 15. Oxepino-chromone glycosides with their sources.

No. Compound Source

152 Eranthin β-D-glucopyranoside Eranthis hyemalis tubers [108]

153 Eranthin β-D-gentiobioside Eranthis cilicica tubers [109]
Eranthis hyemalis tubers [108]

154 2-C-Hydroxyeranthin β-D-glucopyranoside Eranthis hyemalis tubers [108]

155
9-[(O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl)oxy]methyl-
8,11-dihydro-5,9-dihydroxy-2-methyl-4Hpyrano[2,3-
g][1]benzoxepin-4-one

Eranthis cilicica tubers [109]

4.5.4. Pyrido-Chromone Glycosides

This subclass includes only the chromone alkaloidal glycoside; Schumanniofoside.
This compound was found to reduce the lethal effect of black cobra (Naja melanoleuca)
venom in mice [135]. The authors proved that this effect is greatest when the venom is
mixed and incubated with the extract or schumanniofoside. They concluded that the mode
of action is by oxidative inactivation of the venom. Schumanniophyton magnificum is used
extensively in African ethno-medicine for the treatment of various diseases and, most
commonly, the treatment of snake bites [135]. Its structure is shown in Figure 19. Its source
and biological activity are summarized in Table 16.
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Table 16. Pyrido-chromone glycosides with its source and biological activity.

No. Compound Source Biological Activity

156 Schumanniofoside Schumanniophyton
magnificum stem bark [135]

Anti-snake venom activity
at 0.01–0.16 g/kg [135]

4.6. Hybrids of Chromones with Other Classes of Secondary Metabolites

This is an interesting category, as the chromone skeleton is conjugated to another high
molecular weight compound, as shown in the following subclasses.

4.6.1. Hybrids of Furano-Chromones with Cycloartane Triterpenes

This subclass of compounds is a hybrid of cycloartane triterpene and chromone. The
reported compounds were isolated from the rhizomes of Cimicifuga foetida. The compounds
157–165 are shown in Figure 20. The sources and the reported biological activities (if any)
are summarized in Table 17.
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Table 17. Hybrids of furanochromones with cycloartane triterpenes with their sources and biological activities.

No. Compound Source Biological Activity

157 Cimitriteromone A Cimicifuga foetida rhizomes [130] No reported biological activity

158 Cimitriteromone B Cimicifuga foetida rhizomes [130] Anti-proliferative activity with an IC50 value of
15.73 ± 0.59 µM [130]

159 Cimitriteromone C Cimicifuga foetida rhizomes [130] No reported biological activity

160 Cimitriteromone D Cimicifuga foetida rhizomes [130] Anti-proliferative activity with an IC50 value of
24.21 ± 0.61 µM [130]

161 Cimitriteromone E Cimicifuga foetida rhizomes [130] No reported biological activity

162 Cimitriteromone F Cimicifuga foetida rhizomes [130] No reported biological activity

163 Cimitriteromone G Cimicifuga foetida rhizomes [130] No reported biological activity

164 Cimitriteromone H Cimicifuga foetida rhizomes [136] No reported biological activity

165 Cimitriteromone I Cimicifuga foetida rhizomes [136] Anti-proliferative activity with an IC50 value of
27.14 ± 1.38 µM [136]

4.6.2. Hybrids of Chromones with Secoiridoids

There are only two compounds (Figure 21) belonging to this class, sessilifoside (166)
and 7′′-O-β-D-glucopyranosylsessilifoside (167). Both compounds were isolated from the
roots of Neonauclea sessilifolia roots [41]. The authors did not report biological activities for
these compounds.
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4.6.3. Chromone Alkaloids Aminoglycosides

This category includes compounds 168–192. Compounds 168–180 were reported
from a strain of Streptomyces, isolated from a soil sample. These compounds showed
antimicrobial activity against Gram-positive bacteria, as well as a potent antitumor ac-
tivity. Conversely, compounds 181–183 were isolated from Saccharothrix species, while
compounds 184–192 were reported from Actinomycete and exhibited antitumor and antimi-
crobial activities [137]. Compounds 168–192 are shown in Figures 22 and 23. The sources
and the reported biological activities (if any) are summarized in Table 18.
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Table 18. Chromone alkaloids aminoglycosides with their sources and biological activities.

No. Compound Source Biological Activity

168 Kidamycin (rubiflavin B) Streptomyces phaeoverticillatus var.
takatsukiensis [138]

Antibiotic with MIC (minimum inhibitory
concentration) ranges from 0.19–1.56 µg/mL and
potent antitumor activity [138]

169 Neopluramycin Streptomyces pluricolorescens [139,140] Antibiotics and potent antitumor activity [140]

170 14, 16-Epoxykidamycin Streptomyces pluricolorescens [141]
Antibiotic against Gram-positive bacteria with
MIC ranges from 0.5 to 10 µg/mL and antitumor
activity [141]

171 Pluramycin A Streptomyces pluricolorescens [139,140] Antibiotic and antitumor activity [140]

172 Rubiflavin A

Streptomyces species [142] Antibiotic and antitumor activity [142]

173 Rubiflavin C-1

174 Rubiflavin C-2

175 Rubiflavin D

176 Rubiflavin E

177 Rubiflavin F
(isokidamycin)

178 PD 121,222 Streptomyces species [143] Antibiotic and potent antitumor activity [143]

179 Hedamycin Streptomyces griseoruber [144,145] Antibiotic and potent antitumor activity against
HeLa cells [144]

180 Ankinomycin (dean-
golosaminylhedamycin) Streptomyces species [146]

Antibiotic against Gram-positive bacteria with
MICs ranges from 0.39–1.56 µg/mL and potent
antitumor activity [146]

181 Pluraflavin A
Saccharothrix species [147] Antibiotic and potent antitumor activity [147]182 Pluraflavin B

183 Pluraflavin E
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Table 18. Cont.

No. Compound Source Biological Activity

184 Altromycin A

Actinomycete, AB 1246E-26 [148,149]

Antibiotic against Gram-positive bacteria and
potent antitumor activity [137]

185 Altromycin B

186 Altromycin C

187 Altromycin D

188 Altromycin E

Actinomycete, AB 1246E-26 [137]

189 Altromycin F

190 Altromycin G

191 Altromycin H

192 Altromycin I

5. Spectroscopic Features
5.1. UV Features

Most of the published work on chromones show several strong bands in the range of
200–320 nm [150,151]. In contrast to chromone, the pyrone ring of 4-chromanone contains
no double bond. The ultraviolet absorption spectra of chromones and chromanones are
summarized in Table 19 [150].

Table 19. UV Band maxima of chromones and chromanone in 3-methylpentane at 25 ◦C.

Chromones Chromanones

Band system λmax λmax

A 360, 352, 345, 337, 324 363, 347
322(sh), 312

252, 246
219(sh), 213

B 301, 290, 283

C 225, 246, 239, 227, 223, 216, 202

The UV spectrum of chromones in alcohol shows two strong bands at λmax 245 and
299 nm [152–154]. Some data reported three bands at λmax 245, 303 and 297 nm [150]. 2-
methyl-5,7-dihydroxy chromone shows bands at λmax 250, 255, 295 and 325 nm, meanwhile
2-methyl-5-hydroxy-7-O-glycosyl chromone shows bands at λmax 248, 255 and 290 nm [154].
The presence of an electron attracting group at C-2 resulted in a bathochromic shift in all
bands [151]. The information gained from applying spectral shift reagents with flavonoids
can be also applied to chromones. In the case of AlCl3, a bathochromic shift of 20–70 nm,
which is non-reversible with acids, indicates a free hydroxyl group at position 5. Meanwhile,
a bathochromic shift with NaOAc can be diagnostic for the presence of a free 7-hydroxyl
group [154,155].

5.2. IR Features

Carbonyl region: The IR carbonyl stretching frequency for a chromone is observed at
1640~1660 cm−1, which is slightly higher than that of δ-pyrone (1650 cm−l) but is much
lower than that of coumarins (1720–1740 cm−l) [25,153]. Despite that the OH group attached
to C-5 of the chromone nucleus chelates strongly with the CO group, this intramolecular
H-bonding has only a slight bathochromic effect on the CO stretching frequency [156]. All
5-hydroxychromones possess three significant maxima in the 1580–1700 cm−1 region. The
two higher frequencies are intense at 1660 and 1630 cm−1, with a constant wavenumber
separation of 34 ( ± 5) cm−1 in both carbon tetrachloride and chloroform.

Hydroxyl region: The IR hydroxyl stretching vibration for a chromone was ob-
served at 2500–3650 cm−1. A strong chelation in 5-hydroxychromones does not pro-
duce a considerable bathochromic shifts in both the OH and CO stretching bands [156].
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Chelated 5-hydroxychromones produce no absorption maxima in the 3300–3600 cm−1

region, but a weak absorption envelope extends from 2400 to 3300 cm−1. The entire
envelope is associated with various stretching modes of the chelated 5-OH group [156].
For 7-hydroxychromones, a steric buttressing effect is observed when the 7-OH group is
flanked by a bulky substituent in the ortho-position (6 or 8). The free OH band appears
as a doublet centered at 3615 cm−1, the separation of the components being ~26 cm−1.
When a prenyl moiety is located in the ortho-position to the 7-OH group, an intramolecular
OH interaction occurs, resulting in two OH stretching frequencies. When a 7-OH group
is flanked by an OMe group, intense intramolecularly bonded OH stretching frequencies
are found at ~3513 and 3517 cm−1, respectively [156]. The 2-hydroxymethyl group ex-
hibits a free stretching frequency at ≈3615 cm−1. At concentrations higher than 0.15 M, a
broad-bonded OH frequency at 3400 cm−1 occurs due to intermolecular H-bonding, and it
consequently disappears on dilution [156].

5.3. 1H-NMR Features

In the following text, we try to give insight about the most characteristic 1H-NMR
features of the benzo-δ-pyrone skeleton (Figure 24) and its glycosides. The δ-pyrone
ring has two olefinic protons assigned as H-2 and H-3. In 2, 3 unsubstituted chromones,
for example compound 12, the 1H-NMR spectrum shows two ortho-coupled doublets
(J = 6.0 Hz), located downfield at δH 8.19 (H-2) and upfield at δH 6.26 (H-3) [25]. For 2-alkyl
and 2-O-glycosyl chromones (compounds 21 and 1, respectively), they are characterized by
an upfield singlet proton (H-3) at δH 6.11 and 5.98, respectively [7,40]. Meanwhile, 3-alkyl
and 3-O-glycosyl chromones (compounds 39 and 2, respectively) are characterized by a
downfield singlet proton (H-2) at δH 7.93 and 8.07, respectively [10,50].
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Chromanone glycosides or 2,3-dihydrochromone glycosides are characterized by
an oxygenated proton (H-2) at δH 4.12 and 5.44 as in compounds 62 [63] and 60 [50],
respectively. The splitting pattern of H-2 can be either d, dd or ddd, depending on
the number of neighboring protons. A small coupling constant between H-2 and H-3
(J= 2.8 Hz) can determine that they are located in the equatorial–equatorial position [50].
Further information on the detailed configuration can be clarified from observing NOESY
correlations. Unsubstituted chromanones at C-3, as in 62, show two geminal protons
at δH 2.50 and 2.70. Their splitting pattern shows geminal (J3a-3b = 16.2 Hz) and vicinal
(Jax-eq = 2.7 Hz or Jax-ax = 12.6 Hz ) couplings [63]. In 3-alkyl substituted chromanones, as
in 60 and 61, H-3 is also detected at δH 2.79 [50].

Naturally occurring chromones often bear a hydroxyl or methoxy group at C-5 and/or
C-7 and a methyl group at C-2 and/or C-5 [153]. The C-5 methyl is usually observed in 6-C
and 8-C glycosides. In aprotic solvents such as DMSO-d6, the chelated 5-OH is detected as
a singlet at δH 12.57; meanwhile, the 7-OH is detected at δH 10.00, as in compound 56 [31].
The C-2 methyl in Schumaniofioside A 7 can be detected at δH 2.33 (3H, s) [17]. Meanwhile,
those located at C-5, can be detected more downfield at δH 2.64 (3H, s) as in 79 [78].

For the phenyl part of the benzo-δ-pyrone skeleton, the protons show chemical shift
and coupling constant values similar to those observed for protons in substituted benzenes.

Sugar moiety: Xylosyl, arabinosyl and glucosyl chromones show an anomeric proton
signal at δH ~4.73 (d, J = 7–7.6 Hz) [10–12]. The former moieties can be differentiated by
the number of the oxygenated protons at the δH 3-5 region, in addition to the difference
in 13C-NMR values. Rhamnosyl chromones show a distinct signal at δH ~1.25 (3H, d,
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J = 6.0 Hz) corresponding to CH3-6’ of α-L-rhamnose [8]. The most abundant chromone
of C-glycosides is the 8-C-glycoside form, followed by 6-C-glycosides. However, we
encountered a unique 3-C-glycoside named macrolobin 64 [65]. The anomeric proton
in macrolobin is detected at δH 5.32 (d, J = 1.5 Hz), the small coupling constant being
indicative of the α-anomer [65]. Biflorin 66 and isobiflorin 80, as representative for 6-C and
8-C-glycosides, respectively, show the anomeric proton signal at δH 4.55 (d, J = 9.8 Hz), and
4.63 (d, J = 9.8 Hz), respectively [69]. The former coupling constant value is higher than that
observed in case of O-glycosides (J = 7–7.6 Hz) [11,12]. In 5-O, 7-O, 6-C, furano-, pyrano-,
oxepino-chromone glycosides, the sugar moiety can be further substituted with another
sugar, as in 8–9, 25–32, 78–79, 141–142, 150 and 153, respectively. In 6-C, 8-C and, to a lesser
extent, 7-O-glycosides, the sugar moiety can be mono- or disubstituted with a phenolic acid
moiety, commonly at C-2’ or C-6’ or C-2’ and C-3’. The most commonly occurring phenolic
moiety is gallic acid, but other phenyl propanoids such as cinnamoyl, coumaroyl, feruloyl
and coniferoyl moieties also exist. The galloyl moiety is characterized by a singlet aromatic
signal integrated for two protons at δH 6.75 [27]. The cinnamoyl moiety is confirmed by
two trans-coupled olefinic protons at δH 7.43 (d, J = 15.8 Hz) and 6.25 (d, J = 15.8 Hz),
in addition to the aromatic signals of the benzene ring [30]. The presence of coumaroyl
substitution is characterized by AA’ BB’ system for two pairs of ortho-coupled aromatic
protons at δH 7.31 (2H, d, J = 8.6 Hz) and δH 6.74 (2H, d, J = 8.6 Hz), a trans-olefinic proton
signals at δH 7.35 (1H, d, J = 16.1 Hz) and δH 6.03 (1H, d, J = 15.9 Hz) [29].

Prenyl and Isoprenyl chromone glycosides: In the case of 7-O-glycoside 127, hy-
droxyl prenyl moiety can be easily characterized by the allylic methylene protons at δH
3.53 (2H, m, H-1′), an olefinic proton at δH 5.39 (t, J = 6.4, H-2′), oxygenated methylene
protons δH 4.20 and 4.46 (1H each, d, J = 12.0 Hz, H-4′), and an olefinic methyl at δH 1.75
(3H, d, J = 1.2, H-5′′) [60]. Its isomeric 4′-O-glycoside 126 showed similar signals; however,
the hydroxyl methylene protons (H-4′) were slightly downfield at δH 4.34 and 4.65 due
to O-glycosidation [106]. Meanwhile, the hydroxyl isoprenyl group in the 7-O-glycoside
130 is characterized by the methylene protons at δH 2.96 (2H, m, H-1′), an oxygenated
methine proton at δH 4.35 (H-2′, m), exomethylene protons at δH 4.74 and 4.91 (H-4′) and
an olefinic methyl at δH 1.87 (3H, s, H-5′). Its isomeric 2′-O-glycoside 129 showed similar
signals, but the oxygenated methine proton (H-2′) is shifted downfield at δH 4.74 due to
O-glycosidation [60].

Phenyl ethyl chromone glycosides: The presence of the phenyl ethyl moiety in com-
pound 136 can be detected by the methylene proton signals at δH 2.75 (2H each, dd, J = 14.8,
6.4 Hz, H-7′) and 3.19 (2H each, J = 14.8, 3.1 Hz, H-8′), in addition to the aromatic protons
of the phenyl ring. The 8′-hydroxy phenyl ethyl moiety in 135 shows an oxygenated proton
signal δH 5.85 (dd, J = 3.5, 5.9 Hz, H-8′) [110].

5.4. 13C-NMR Features

For better understanding of the differences in chemical shifts related to the substituents
on the chromone moiety, we preferred to add the 13C-NMR data in Tables 20–40. For the
numbering of the skeleton, the following figure (Figure 25) gives few examples for the
numbering system of the skeleton with multiple substituents. Briefly, the basic chromone
nucleus was assigned numbers 1–10. In the case of a substitution at C-2, numbers 11, 12
. . . etc. were given to the substituents, followed by substitution at C-3 and so on. Sugar
moiety, and substituents attached to it, were assigned numbers 1′, 2′, . . . and then 1′′, 2′′,
. . . etc. For better understanding, the following figure shows representative examples for
the numbering system. Some complicated structures have their own numbering system,
shown on them within the review.
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Table 20. The 13C-NMR spectral data of compounds 1–14 except those which have no reported 13C-NMR data.

C 1 2 3 4 5 7 11 13 14

2 161.2 147.4 147.7 147.8 147.4 167.2 167.8 158.6 159.5

3 93.1 141.2 141.0 138.1 141.5 111.7 109.1 112.0 112.8

4 166.6 178.4 178.5 177.0 178.4 180.3 183.2 183.6 184.4

5 137.1 163.4 163.3 161.5 163.4 160.2 93.9 163.4 163.9

6 132.0 100.1 100.2 98.8 100.2 104.6 162.0 101.3 101.9

7 127.8 166.4 166.3 164.3 166.5 164.7 110.2 164.9 165.2

8 114.9 95.0 95.0 93.8 95.0 99.1 159.6 96.2 96.9

9 154.3 159.3 159.3 157.2 159.4 161.1 156.6 159.5 160.2

10 114.5 106.2 106.2 104.8 106.1 109.2 106.1 108.4 109.3

11 23.2 - - - - 19.9 20.3 - -

12 - - - - - - 8.2 - -

1′ 100.1 104.6 104.4 100.6 104.2 105.0 101.7 101.6 102.1

2′ 73.2 74.6 72.0 69.9 74.8 74.6 75.1 74.7 75.1

3′ 77.5 77.1 73.6 70.2 77.4 77.3 78.4 77.9 77.8

4′ 69.6 70.8 69.2 71.5 71.3 71.3 80.5 71.2 73.9

5′ 76.7 67.1 67.1 69.7 78.5 78.7 78.1 78.4 77.5

6′ 60.7 - - 17.7 62.6 62.5 60.9 62.4 171.5

OCH3 - - - - - - - - 53.8

Solvent DMSO-d6 CD3OD CD3OD DMSO-d6 CD3OD CD3OD C5D5N CD3OD CD3OD

References [7] [10] [12] [9] [11] [17] [1] [27] [28]

Table 21. The 13C-NMR spectral data of compounds 15–23 except which has no reported 13C-NMR data.

C 15 16 17 18 20 21 22 23

2 158.1 158.4 158.5 168.9 161.6 174.3 175.5 174.6

3 110.8 111.9 112.0 108.8 108.8 107.8 106.2 106.6

4 181.8 183.6 183.6 182.5 182.5 184.3 183.3 183.1

5 161.3 163.1 163.2 161.2 157.9 163.0 162.2 162.7

6 99.8 101.2 101.2 99.8 100.3 101.0 100.6 100.7

7 162.9 164.6 164.8 163.1 168.9 164.8 164.2 164.2

8 94.6 96.2 96.2 94.9 95.0 95.9 95.3 95.3

9 157.7 159.4 159.4 157.9 163.4 159.5 158.4 158.4

10 106.8 108.5 108.5 105.5 105.5 107.0 106.5 107.4
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Table 21. Cont.

C 15 16 17 18 20 21 22 23

11 - - - 20.5 20.5 28.3 33.3 40.4

12 - - - - - 11.2 19.9 27.6

13 - - - - - - 19.9 17.7

14 - - - - - - - 11.7

1′ 99.7 101.5 101.5 100.6 99.9 101.6 101.7 101.7

2′ 73.1 74.7 74.7 73.3 73.5 74.7 74.8 74.8

3′ 76.2 77.9 77.9 76.6 77.6 77.8 78.5 78.5

4′ 69.7 71.9 72.0 69.6 70.7 71.2 71.2 71.1

5′ 74.1 75.8 76.0 66.2 76.8 78.4 79.3 79.2

6′ 63.4 64.2 64.7 - 61.1 62.4 62.4 62.3

1′′ 119.5 127.4 127.3 - - - - -

2′′ 108.8 133.7 131.2 - - - - -

3′′ 145.6 115.8 117.0 - - - - -

4′′ 138.6 160.0 161.4 - - - - -

5′′ 145.6 115.8 117.0 - - - - -

6′′ 108.8 133.7 131.2 - - - - -

7′′ 165.9 145.1 146.9 - - - - -

8′′ - 116.0 115.1 - - - - -

9′′ - 168.1 168.9 - - - - -

Solvent DMSO-d6 CD3OD CD3OD DMSO-d6 DMSO-d6 CD3OD C5D5N C5D5N

References [29] [30] [30] [31] [157] [40] [41] [41]

Table 22. The 13C-NMR spectral data of compounds 24–32 except which has no reported 13C-NMR data.

C 24 25 26 28 29 30 31 32

2 168.7 157.3 167.9 168.2 168.9 169.2 168.9 168.5

3 108.7 108.3 108.8 108.8 108.8 109.3 108.8 108.4

4 182.4 181.9 182.7 182.8 182.5 184.2 182.5 182.1

5 161.5 161.1 162.4 162.4 161.7 163.1 161.7 161.3

6 99.9 * 108.7 100.6 100.7 100.2 100.8 100.0 99.6

7 162.9 162.6 163.9 163.9 161.9 163.4 161.9 161.6

8 94.9 108.2 95.3 95.1 95.2 95.7 95.1 94.7

9 157.7 168.2 158.3 158.3 157.9 159.5 157.9 157.5
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Table 22. Cont.

C 24 25 26 28 29 30 31 32

10 105.5 105.0 106.3 106.3 105.7 106.8 105.6 105.2

11 20.3 19.9 19.9 20.1 20.5 20.4 20.5 20.1

1′ 99.8 * 99.3 101.9 102.0 98.8 99.6 98.5 98.1

2′ 73.3 77.0 74.6 74.6 81.2 71.0 69.8 69.5

3′ 76.5 75.8 78.5 78.5 70.4 82.5 82.1 70.3

4′ 70.2 68.9 71.5 71.6 70.9 72.4 70.7 81.4

5′ 74.1 76.0 77.4 77.5 69.4 70.9 68.7 68.5

6′ 63.7 60.5 69.0 68.0 18.3 18.1 18.0 17.9

1′′ - 108.7 111.2 102.7 105.0 105.9 104.8 104.4

2′′ - 76.7 77.9 72.0 74.5 75.4 74.1 74.5

3′′ - 79.2 80.3 72.8 77.2 77.8 76.8 77.1

4′′ - 73.9 75.1 74.1 70.0 71.1 70.6 70.1

5′′ - 64.1 65.8 69.8 76.7 77.7 74.8 76.7

6′′ - - - 18.6 61.5 62.2 64.1 61.2

CH3CO 20.9, 170.5 - - - - - 21.1, 170.6 -

Solvent DMSO-d6
CDCl3,

DMSO-d6
C5D5N C5D5N DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6

References [33] [16] [44] [46] [31] [22] [31] [47]

* Data interchangeable.

Table 23. The 13C-NMR spectral data of compounds 33–41.

C 33 34 35 36 37 38 39 40 41

2 168.3 168.2 168.3 168.3 157.8 154.8 154.7 168.6 168.4

3 108.2 108.7 108.3 108.2 110.6 120.3 125.8 108.7 108.4

4 181.4 182.7 181.9 181.9 181.5 183.8 183.5 182.5 182.3

5 161.1 162.3 161.1 161.2 157.7 163.0 163.1 158.4 185.1

6 99.5 100.6 99.8 99.5 108.9 100.9 100.8 109.1 108.5

7 161.4 163.7 162.6 162.6 160.9 164.6 164.6 161.1 155.56

8 94.5 94.6 94.3 94.5 93.3 95.8 95.8 93.3 97.7 *

9 157.3 158.3 157.4 157.4 155.4 159.4 159.5 155.9 160.3

10 105.0 106.3 105.1 105.1 106.0 107.4 107.6 105.1 105.0

11 19.9 19.9 19.8 19.8 7.4 10.2 19.3 20.5 19.9

12 - - - - - - 13.4 7.9 6.9
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Table 23. Cont.

C 33 34 35 36 37 38 39 40 41

1′ 98.0 101.6 99.5 98.1 100.1 101.6 101.6 100.2 93.1 *

2′ 69.5 74.4 72.9 73.0 73.1 74.7 74.7 73.8 77.3

3′ 69.8 78.1 76.1 76.2 76.4 77.8 77.8 76.5 74.5

4′ 80.9 71.3 69.9 69.9 69.6 71.2 71.2 79.4 69.7

5′ 68.4 75.8 73.9 73.9 77.1 78.4 78.4 76.1 73.3

6′ 17.9 64.5 63.4 63.4 60.6 62.4 62.4 60.7 60.5

1′′ 102.3 121.0 128.5 127.9 - - - - -

2′′ 81.4 110.4 114.8 114.9 - - - - -

3′′ 76.6 147.4 146.9 148.9 - - - - -

4′′ 69.8 140.8 147.7 149.3 - - - - -

5′′ 77.6 147.4 120.7 122.5 - - - - -

6′′ 61.0 110.4 115.9 115.8 - - - - -

7′′ - 167.1 144.6 144.7 - - - - -

8′′ - - 115.7 115.8 - - - - -

9′′ - - 166.1 166.2 - - - - -

1′′′ 103.5 - 99.5 99.5 - - - - -

2′′′ 71.2 - 70.3 71.2 - - - - -

3′′′ 71.7 - 71.0 71.6 - - - - -

4′′′ 66.4 - 67.1 67.1 - - - - -

5′′′ 64.2 - 75.0 74.8 - - - - -

6′′′ - - 61.0 61.0 - - - - -

OCH3 - - - 55.8 - - - 60.1 -

CH3CO - - - - - - - - 20.7, 169.6

Solvent DMSO-d6 C5D5N DMSO-d6 DMSO-d6 DMSO-d6 CD3OD CD3OD DMSO-d6 DMSO-d6

References [47] [48] [33] [33] [49] [50] [50] [23] [51]

* Data interchangeable.
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Table 24. The 13C-NMR spectral data of compounds 43–52 except those which have no reported 13C-NMR data.

C 43 45 46 47 48 49 50 52

2 168.7 168.4 168.4 169.5 170.0 160.0 164.9 164.9

3 108.4 108.0 108.0 108.4 109.1 112.5 101.9 118.6

4 182.9 182.7 182.7 182.4 185.0 185.0 178.8 177.6

5 159.5 152.6 155.9 152.5 157.8 158.8 141.8 137.9

6 98.3 109.7 114.3 135.2 116.3 117.3 116.6 110.5

7 160.9 158.5 158.8 157.8 160.2 161.2 160.4 159.8

8 104.6 114.3 109.8 94.7 111.6 112.9 111.5 99.6

9 155.0 155.9 152.6 155.6 154.6 155.5 159.3 158.5

10 105.2 106.5 106.5 106.2 108.2 110.6 117.1 115.7

11 20.5 20.0 20.1 20.2 20.5 10.3 22.8 19.4

12 8.1 8.8 9.0 - 8.9 10.5 19.9 48.7

13 - 8.9 9.1 - 9.5 - - 205.3

14 - - - - - - - 52.0

15 - - - - - - - 62.7

16 - - - - - - - 23.6

1′ 100.3 104.3 104.4 100.8 105.7 106.5 100.3 102.1

2′ 73.9 76.0 74.1 74.1 75.3 76.5 77.6 73.0

3′ 76.5 73.9 76.3 78.0 75.6 78.5 73.6 76.3

4′ 79.4 70.0 69.9 69.9 71.7 72.5 70.1 69.4

5′ 76.1 73.4 77.0 77.0 77.7 76.4 76.9 77.0

6′ 60.7 63.0 61.0 61.2 64.3 65.3 61.0 60.5

1′′ - - - - - 173.1 - -

2′′ - - - - - 47.3 - -

3′′ - - - - - 71.4 - -

4′′ - - - - - 46.9 - -

5′′ - - - - - 176.6 - -

6′′ - - - - - 28.4 - -

OCH3 60.1 - - 56.7 - - - -

CH3CO - 20.4, 170.1 - - 20.4, 172.5 - - -

Solvent DMSO-d6 DMSO-d6 * DMSO-d6 * CD3OD CDCl3 DMSO-d6

References [23] [51] [24] [36] [24] [52] [53] [57]

* The authors did not report the NMR solvent.
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Table 25. The 13C-NMR spectral data of compounds 53–64 except those which have no reported 13C-NMR data.

C 53 54 55 56 57 60 61 62 64

2 161.0 166.3 169.9 166.6 166.5 105.9 104.7 83.5 148.0

3 117.2 110.7 109.3 107.6 106.9 46.2 52.9 42.2 140.5

4 178.1 177.4 184.0 182.2 182.5 199.2 198.9 193.7 178.9

5 141.3 117.8 96.0 162.0 162.0 165.3 165.2 161.5 163.6

6 113.0 125.0 162.9 99.5 98.8 97.5 97.5 100.0 100.2

7 159.9 119.2 101.0 165.1 164.8 168.4 168.4 166.6 166.2

8 99.7 147.4 164.7 94.5 93.6 97.0 97.0 99.1 95.3

9 158.8 147.3 159.3 158.1 158.2 160.4 160.2 166.2 159.3

10 116.1 125.4 119.0 104.3 104.2 102.0 102.4 106.7 106.6

11 47.3 20.1 20.3 66.1 66.0 13.8 23.7 33.2 -

12 202.5 - - - - - 11.8 18.2 * -

13 29.8 - - - - - - - -

14 22.3 - - - - - - - -

1′ 101.3 102.4 101.6 102.8 102.7 104.1 104.1 104.0 102.1

2′ 73.1 74.8 74.7 73.9 73.6 75.0 75.0 74.6 72.0

3′ 76.3 78.6 78.3 76.4 76.6 77.9 77.9 77.4 74.0

4′ 69.5 71.2 71.4 67.7 70.1 71.0 71.0 71.2 71.5

5′ 77.0 79.2 77.8 63.6 76.8 78.0 78.0 78.5 72.4

6′ 60.9 62.4 62.4 - 61.3 62.5 62.5 62.5 62.5

Solvent DMSO-d6 C5D5N CD3OD DMSO-d6 CD3OD CD3OD CD3OD CD3OD CD3OD

References [57] [58] [59] [31] [60] [54] [50] [63] [65]

* Data interchangeable.

Table 26. The 13C-NMR spectral data of compounds 66–72.

C 66 67 68 69 70 71 72

2 167.3 174.7 168.3 168.4 167.8 169.4 174.4

3 107.8 105.1 108.6 108.8 107.0 109.2 105.3

4 181.8 182.2 181.8 181.8 182.0 184.3 182.2

5 160.6 160.6 160.6 160.6 160.4 162.3 160.4

6 108.7 108.7 108.6 108.8 108.1 108.9 107.0

7 163.2 163.3 163.1 163.1 162.4 165.0 163.4

8 93.3 93.4 93.3 93.3 93.9 95.2 93.7

9 156.6 156.7 156.6 156.6 157.0 159.4 156.9

10 103.0 103.3 103.2 103.2 102.9 105.1 103.1
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Table 26. Cont.

C 66 67 68 69 70 71 72

11 19.8 32.3 43.1 66.2 20.0 20.4 32.4

12 - 19.8 64.1 46.0 - - 19.8

13 - 19.8 23.3 63.8 - - 19.8

14 - - - 43.8 - - -

15 - - - 23.5 - - -

1′ 73.0 73.0 72.9 72.9 70.8 75.6 70.7

2′ 70.1 70.2 70.0 70.0 72.0 72.6 72.0

3′ 78.9 78.9 78.8 78.8 76.7 80.1 76.6

4′ 70.6 70.6 70.5 70.5 70.8 71.9 70.7

5′ 81.4 81.6 81.4 81.4 82.0 80.2 81.8

6′ 61.4 61.5 61.4 61.4 61.6 65.2 61.5

1′′ - - - - 119.9 121.6 119.9

2′′ - - - - 108.9 110.4 108.7

3′′ - - - - 145.4 146.6 145.4

4′′ - - - - 138.2 140.0 138.1

5′′ - - - - 145.4 146.6 145.4

6′′ - - - - 108.9 110.4 108.9

7′′ - - - - 164.8 168.6 164.7

Solvent DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 CD3OD DMSO-d6

References [69] [69] [72] [72] [71] [73] [69]

Table 27. The 13C-NMR spectral data of compounds 73–79 except those which have no reported 13C-NMR data.

C 73 74 75 76 79

2 167.7 174.9 162.3 163.1 160.6

3 106.3 105.3 113.2 111.0 112.4

4 182.0 182.2 181.9 181.8 178.5

5 161.1 160.9 143.1 146.1 *

6 108.1 106.4 127.0 128.3 126.5

7 163.1 163.2 160.1 161.1 160.8

8 93.4 93.4 119.4 121.1 100.6

9 157.1 157.0 161.3 157.9 159.0

10 103.0 103.1 115.8 114.3 114.6

11 19.9 32.4 48.7 48.5 47.8
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Table 27. Cont.

C 73 74 75 76 79

12 - 19.78 204.4 204.6 202.4

13 - 19.75 29.8 30.7 29.8

14 - - 23.3 23.3 22.5

CH3O - - - 55.8 -

1′ 70.7 70.7 75.5 75.6 71.4

2′ 69.7 69.7 71.9 72.3 81.7

3′ 77.6 77.6 80.0 79.9 78.2

4′ 68.7 68.7 72.9 72.1 70.1

5′ 81.8 81.7 79.8 78.5 81.1

6′ 61.2 61.2 65.2 65.4 60.9

1′′ 119.7 119.7 133.6 128.3 105.1

2′′ 108.9 108.9 131.2 131.0 74.3

3′′ 145.5 145.4 116.8 115.3 76.1

4′′ 138.5 138.4 161.3 160.4 69.3

5′′ 145.5 145.4 116.8 115.3 76.1

6′′ 108.9 108.9 131.2 131.0 60.3

7′′ 165.3 165.4 146.2 146.2 -

8′′ - - 114.9 116.0 -

9′′ - - 169.2 169.1 -

1′′′ 119.1 119.0 - - -

2′′′ 108.7 108.7 - - -

3′′′ 145.3 145.3 - - -

4′′′ 138.4 138.3 - - -

5′′′ 145.3 145.3 - - -

6′′′ 108.7 108.7 - - -

7′′′ 164.6 164.4 - - -

Solvent DMSO-d6 DMSO-d6 CD3OD CD3OD DMSO-d6

References [71] [71] [74] [74] [78]

* The authors missed assigning this position.
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Table 28. The 13C-NMR spectral data of compounds 80–89.

C 80 81 82 83 84 85 86 87 88 89

2 167.0 169.3 174.4 173.0 168.2 167.6 167.2 174.8 167.7 174.5

3 107.4 108.7 105.0 106.2 108.3 107.8 107.5 105.4 108.0 105.6

4 181.9 184.3 182.2 181.9 181.9 182.2 181.9 182.4 182.2 182.4

5 160.4 149.4 160.4 160.4 160.3 160.8 160.5 160.7 161.0 161.0

6 98.4 94.5 98.5 98.7 98.3 97.6 98.3 97.8 98.0 97.9

7 162.5 162.8 162.8 164.2 162.7 162.2 162.6 162.3 162.4 162.6

8 104.3 105.2 104.1 104.7 108.4 103.9 104.0 102.8 103.9 102.1

9 156.1 164.6 156.5 156.6 158.9 157.1 156.3 157.2 157.1 157.2

10 103.5 106.3 102.0 103.3 103.8 102.8 103.5 104.0 102.0 104.0

11 19.6 20.3 32.7 39.1 42.1 11.0 19.7 33.1 20.1 33.1

12 - - 20.0 27.0 66.5 - - 19.8 - 20.3

13 - - 19.5 11.4 45.8 - - 20.3 - 20.1

14 - - - 17.4 64.1 - - - - -

15 - - - - 23.6 - - - - -

1′ 73.1 74.9 73.1 73.3 73.2 70.6 73.3 70.7 70.7 70.8

2′ 71.0 72.8 71.2 71.2 70.3 72.5 70.0 72.5 70.1 70.2

3′ 78.5 80.0 78.5 78.7 78.6 76.1 78.1 76.0 77.0 77.0

4′ 70.3 71.7 70.8 70.9 71.0 70.8 70.7 71.2 68.5 68.9

5′ 81.1 82.4 81.5 81.5 81.4 81.7 78.3 82.0 81.5 81.9

6′ 61.3 62.9 61.8 61.7 61.5 61.5 63.8 61.8 61.0 61.3

1′′ - - - - - 119.7 119.4 119.6 119.6 119.6

2′′, 6′′ - - - - - 108.8 108.5 108.7 108.9 108.9

3′′, 5′′ - - - - - 145.5 145.5 145.4 145.6 145.5

4′′ - - - - - 138.8 138.3 138.3 138.7 138.7

7′′ - - - - - 165.0 165.8 165.0 165.5 165.4

1′′′ - - - - - - - - 118.7 118.7

2′′′, 6′′′ - - - - - - - - 108.7 108.7

3′′′, 5′′′ - - - - - - - - 145.5 145.4

4′′′ - - - - - - - - 138.5 138.6

7′′′ - - - - - - - - 164.8 164.8

OCH3 - 56.8 - - - - - - - -

Solvent DMSO-d6 CD3OD DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6

References [86] [87] [158] [158] [72] [71] [91] [69] [71] [71]
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Table 29. The 13C-NMR spectral data of compounds 91–100 except which has no reported 13C-NMR data.

C 91 93 94 95 96 97 98 99 100

2 162.7 164.9 167.1 167.0 169.2 160.2 160.2 160.8 159.6

3 109.8 111.2 112.2 111.9 110.8 112.6 112.4 113.0 113.7

4 182.7 178.7 182.3 181.9 182.4 178.3 178.5 178.9 179.1

5 144.0 141.0 143.1 143.7 144.1 139.5 140.1 141.3 144.1

6 112.8 111.5 112.2 112.6 113.1 116.9 116.3 111.9 118.5

7 162.5 160.0 162.3 162.1 162.7 160.2 159.5 160.3 159.0

8 113.3 112.8 116.1 113.1 113.7 107.1 110.0 113.1 106.2

9 158.8 157.2 160.0 158.9 159.1 155.9 157.8 157.3 159.6

10 117.4 115.9 118.5 117.0 117.6 114.3 114.7 115.9 113.9

11 124.7 43.2 44.3 44.2 76.2 47.2 47.7 47.8 48.2

12 139.0 63.8 66.7 66.3 69.5 202.5 202.4 202.5 200.7

13 18.4 23.8 23.6 23.6 19.7 22.2 22.6 30.0 30.2

14 23.6 22.8 23.3 23.6 23.7 29.9 29.9 23.0 23.1

15 56.9 56.4 - 56.7 56.9 - - 56.6 -

1′ 75.1 73.0 76.0 74.6 74.9 80.2 73.5 72.9 68.1

2′ 72.4 70.9 73.2 72.7 72.9 77.5 71.0 71.1 73.7

3′ 80.3 78.8 80.1 80.0 80.3 74.8 78.7 79.1 73.7

4′ 72.3 70.8 71.8 71.9 72.2 80.5 70.4 70.7 70.2

5′ 82.9 81.8 82.7 82.4 82.6 68.3 81.5 81.8 76.6

6′ 63.0 61.7 62.8 63.0 63.3 63.8 61.4 61.8 61.6

2′-OCOCH3 - - - - - - - - 168.6,
20.7

3′-OCOCH3 - - - - - - - - 169.4,
20.7

4′-OCOCH3 - - - - - - - - 170.3,
20.7

6′-OCOCH3 - - - - - - - - 170.6,
20.7

Solvent CD3OD DMSO-d6 CD3OD CD3OD CD3OD DMSO-
d6

DMSO-
d6

CD3OD CDCl3

References [80] [159] [160] [82] [160] [94] [94] [96] [93]
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Table 30. The 13C-NMR spectral data of compounds 103–110 except which has no reported 13C-NMR data.

C 103 104 106 107 108 109 110

2 165.0 165.0 167.4 167.2 167.4 167.1 167.2

3 111.3 111.3 112.5 112.6 112.6 111.9 111.9

4 178.6 178.8 182.3 182.2 182.2 181.9 182.0

5 141.7 141.8 144.6 144.8 144.6 144.3 144.3

6 111.0 111.3 112.7 112.6 112.5 112.3 112.4

7 159.5 159.8 162.1 162.0 162.0 161.6 161.6

8 110.6 110.7 111.8 111.4 111.8 111.6 111.3

9 157.4 157.5 159.8 159.6 159.6 159.3 159.1

10 115.8 115.8 117.2 117.2 117.2 116.9 116.9

11 43.1 43.3 44.6 44.9 44.6 44.5 44.3

12 64.4 63.9 65.9 66.3 66.0 66.6 66.5

13 23.3 23.7 23.6 23.7 23.6 23.5 23.6

14 22.8 22.9 23.7 23.7 23.6 23.5 23.3

15 56.5 56.5 57.0 57.1 57.0 56.9 57.0

1′ 70.6 70.6 72.8 72.8 72.8 71.9 71.8

2′ 72.6 72.3 73.4 73.7 73.9 74.0 73.7

3′ 75.7 75.9 77.7 77.7 77.9 77.6 77.4

4′ 70.4 70.9 72.4 72.4 72.3 72.4 72.4

5′ 81.8 82.0 83.0 80.1 82.9 82.7 82.4

6′ 61.5 61.6 63.1 64.4 63.1 62.9 62.7

1′′ 133.9 125.0 127.0 127.0 128.2 135.3 126.7

2′′ 128.9 130.3 133.2 131.1 130.9 128.9 130.9

3′′ 128.2 115.8 115.7 116.9 115.4 129.7 116.6

4′′ 130.4 159.6 160.0 161.3 163.2 131.3 160.7

5′′ 128.2 115.8 115.7 116.9 115.4 129.7 116.6

6′′ 128.9 130.3 133.2 131.1 130.9 128.9 130.9

7′′ 144.1 144.4 145.0 146.6 146.1 146.1 146.4

8′′ 117.8 114.0 115.7 114.6 115.6 118.1 114.2

9′′ 165.0 165.4 167.6 168.0 167.8 167.2 167.8

OCH3 - - - - 55.9 - -

COCH3 - - - 173.0, 20.9 - - -

Solvent DMSO-d6 DMSO-d6 CD3OD CD3OD CD3OD CD3OD CD3OD

References [99] [159] [80] [100] [100] [82] [82]
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Table 31. The 13C-NMR spectral data of compounds 111–122 except which has no reported 13C-NMR data.

C 111 112 113 114 115 116 117 119 120 121 122

2 167.2 167.6 169.7 160.3 163.0 160.1 163.1 160.6 164.0 167.6 166.8

3 112.1 112.2 110.5 1125 113.8 112.5 111.0 112.5 112.4 112.2 112.2

4 182.2 182.3 182.4 178.6 182.1 178.4 181.8 178.6 182.0 182.3 182.3

5 143.5 144.6 144.8 141.0 144.7 140.4 146.1 141.8 144.9 144.6 144.8

6 116.3 112.6 112.7 115.8 112.2 115.7 128.3 111.5 113.1 112.6 112.7

7 161.3 162.0 162.1 159.l 162.1 159.4 161.1 159.7 162.3 161.0 162.2

8 110.0 111.9 111.8 110.2 112.0 110.7 121.1 110.8 111.6 111.9 111.9

9 160.4 159.6 159.4 158.3 159.6 157.9 157.9 157.4 159.5 159.6 159.6

10 117.0 117.3 117.5 114.8 117.1 114.8 114.3 115.6 117.6 117.2 117.3

11 44.3 44.6 75.7 48.1 49.1 47.8 48.5 47.9 98.6 44.6 44.6

12 66.7 66.8 69.2 202.4 204.7 202.3 204.6 202.1 203.7 66.8 66.8

13 23.5 23.6 19.7 30.4 29.9 29.6 30.7 29.6 23.7 23.7 24.0

14 23.5 23.6 23.7 22.7 23.7 22.6 23.3 22.7 25.0 23.6 23.5

15 - 57.1 57.1 - 57.1 - 55.8 55.5 57.2 57.1 57.1

1′ 73.0 72.1 72.8 70.2 72.1 73.3 75.6 70.4 72.6 72.6 72.6

2′ 74.0 74.0 74.1 72.3 73.9 70.8 72.3 72.2 74.3 74.1 73.6

3′ 77.9 77.9 77.8 76.0 77.9 78.5 79.9 75.8 78.0 77.8 77.6

4′ 72.1 72.7 72.3 70.2 72.6 70.4 72.1 70.6 71.9 78.3 78.1

5′ 82.8 82.9 83.0 81.8 82.8 78.4 78.5 81.9 83.3 82.9 82.9

6′ 63.1 63.1 63.1 61.8 63.3 64.8 65.4 61.5 63.5 63.0 63.0

1′′ 128.3 127.5 135.7 125 I 127.0 125.0 128.3 125.5 135.7 129.8 129.7

2′′ 131.0 115.1 129.2 1301 130.8 130.3 131.0 111.1 129.3 130.8 132.6

3′′ 116.7 149.9 130.1 115.8 116.7 115.7 115.3 147.9 130.1 118.0 116.7

4′′ 161.2 146.6 131.6 159.6 161.3 159.7 160.4 149.2 131.6 163.8 159.7

5′′ 116.7 116.6 130.1 115.8 116.7 115.7 115.3 115.5 130.1 - -

6′′ 131.0 123.0 129.2 1301 130.8 130.3 131.0 122.9 129.3 - -

7′′ 146.2 147.1 146.4 144.4 145.3 144.9 146.2 144.6 146.3 146.0 144.7

8′′ 115.8 114.5 118.4 114.1 115.1 114.0 116.0 114.2 118.5 116.5 117.6

9′′ 168.0 168.2 167.4 165.4 168.1 166.7 169.1 165.4 167.4 167.8 167.7

OCH3 56.1 - - - - - - 56.3 - - -

1′′′ - - - - - - - - - 101.9 101.7

2′′′ - - - - - - - - - 74.8 74.9

3′′′ - - - - - - - - - 72.1 72.6
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Table 31. Cont.

C 111 112 113 114 115 116 117 119 120 121 122

4′′′ - - - - - - - - - 71.3 71.2

5′′′ - - - - - - - - - 78.0 77.9

6′′′ - - - - - - - - - 62.5 62.4

Solvent CD3OD CD3OD CD3OD DMSO-
d6

DMSO-
d6

DMSO-
d6

CD3OD DMSO-
d6

CD3OD CD3OD CD3OD

References [80] [82] [160] [161] [162] [163] [74] [164] [81] [160] [160]

Table 32. The 13C-NMR spectral data of compounds 123–129 except which has no reported 13C-NMR data.

C 123 124 126 127 128 129

2 167.7 168.3 171.3 170.7 167.7 169.9

3 108.0 108.5 105.6 105.5 108.3 108.4

4 182.2 182.4 184.3 183.0 182.7 182.4

5 158.8 157.8 160.2 158.1 159.5 159.6

6 110.4 111.1 112.5 112.8 107.4 105.2

7 162.3 163.1 163.8 161.0 162.9 163.1

8 93.2 90.5 94.4 93.0 92.8 92.9

9 156.1 156.6 157.8 156.1 156.7 156.4

10 103.3 104.4 106.8 105.6 103.4 103.8

11 19.9 19.9 61.6 60.0 18.8 60.0

OCH3 - 56.5 - - - -

1′ 20.5 20.5 22.1 20.5 26.4 26.4

2′ 126.9 126.4 128.7 124.6 79.9 79.8

3′ 131.8 132.3 132.9 134.1 143.7 143.7

4′ 66.1 66.1 68.4 61.0 114.2 114.2

5′ 21.2 21.3 21.9 20.0 15.2 15.2

1′′ 101.5 101.6 102.7 100.1 99.4 99.4

2′′ 73.6 73.6 75.3 73.2 73.6 73.6

3′′ 76.9 77.0 78.3 76.7 76.3 76.3

4′′ 70.2 70.2 71.8 67.7 70.2 70.2

5′′ 77.0 77.0 77.9 77.0 76.7 76.7

6′′ 61.1 61.1 62.9 60.1 61.2 61.2

Solvent DMSO-d6 DMSO-d6 CD3OD CD3OD CD3OD CD3OD

References [104] [104] [106] [60] [60] [60]
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Table 33. The 13C-NMR spectral data of compounds 130–139.

C 130 131 132 133 134 135 136 137 138 139

2 170.7 167.6 170.7 168.3 171.4 168.9 165.0 171.0 171.5 171.8

3 105.5 107.4 104.9 108.1 105.5 113.9 * 110.4 110.7 110.7

4 183.0 181.8 181.9 182.5 182.5 176.6 * 179.3 180.4 180.6

5 158.8 158.8 158.9 159.5 159.5 132.6 * 106.6 119.2 126.2

6 111.4 97.6 97.8 98.3 98.4 111.4 99.3 150.7 126.2 126.6

7 162.1 159.9 160.1 160.6 160.8 158.2 162.9 153.1 122.1 135.6

8 93.3 107.5 107.4 108.1 108.2 103.6 94.8 106.9 147.8 119.3

9 156.3 153.8 153.5 154.4 154.1 163.4 * 149.8 149.0 158.0

10 105.7 104.3 104.8 105.0 105.4 112.7 * 116.2 125.0 124.3

11 60.0 19.5 59.3 20.2 59.5 127.9 121.6 102.2 141.4 136.2

1′ 28.2 20.3 20.3 21.0 20.9 131.9 128.5 74.3 129.5 114.0

2′ 74.6 120.5 120.4 121.1 121.0 115.7 115.7 78.1 129.6 150.7

3′ 147.9 134.9 134.9 135.6 135.7 157.1 161.5 71.5 127.4 146.4

4′ 109.5 65.9 65.8 66.5 66.5 115.7 115.7 78.0 129.6 118.1

5′ 16.6 13.1 13.1 13.8 13.7 131.9 128.5 62.8 129.5 122.0

6′ - - - - - 39.3 39.1 - 33.8 33.6

7′ - - - - - 86.3 37.5 - 37.0 37.1

8′ - - - - - 127.9 121.6 102.2 141.4 136.2

1′′ 101.2 100.1 100.1 100.7 100.7 101.8 100.3 131.5 103.0 102.9

2′′ 73.6 72.9 72.9 73.5 73.5 74.6 * 133.0 75.0 74.9

3′′ 76.5 76.7 76.7 76.7 76.7 78.4 * 116.3 78.2 77.8

4′′ 69.8 69.2 69.2 69.8 69.8 71.2 * 164.1 71.3 71.3

5′′ 77.1 76.1 76.1 77.3 77.3 78.2 * 116.3 78.2 78.1

6′′ 61.1 60.2 60.2 60.8 60.8 62.5 * 120.9 62.5 62.4

7′′ - - - - - - - 33.9 - -

8′′ - - - - - - - 37.1 - -

OCH3 - - - - - - -

6-OCH3
56.3

4′′-OCH3
55.1

- 56.6

Solvent CD3OD DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 CD3OD DMSO-d6 DMSO-d6 CD3OD CD3OD

References [60] [108] [108] [109] [109] [110] [111] [112] [113] [114]

* The authors missed assigning these positions.
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Table 34. The 13C-NMR spectral data of compounds 140–148.

C 140 141 142 143 144 145 146 147 148

2 147.2 146.9 147.3 89.9 89.0 92.9 92.1 92.3 88.2

3 106.1 105.0 104.9 24.3 28.3 28.1 27.9 28.0 30.1

4 153.7 160.5 159.2 165.5 164.5 160.3 165.3 156.3 158.5

5 177.2 185.9 184.7 176.9 176.4 184.7 176.6 176.6 182.9

6 109.7 107.8 107.2 111.9 109.8 109.5 110.9 111.4 107.2

7 163.7 169.0 168.7 163.3 164.0 169.7 162.7 162.6 166.7

9 95.8 92.0 92.0 94.8 95.2 90.4 94.0 94.2 88.8

10 157.8 156.1 154.5 159.9 160.1 168.3 159.7 165.4 166.6

11 117.0 114.3 113.4 118.7 117.2 111.3 118.1 118.5 108.7

12 152.8 106.9 106.3 112.3 111.4 106.6 112.5 112.8 102.9

13 155.6 155.7 155.2 156.4 157.7 157.9 156.1 159.9 158.6

14 65.7 67.8 66.3 21.4 20.7 20.8 66.4 66.8 66.1

4-OCH3 61.9 - - - * - 60.8 61.0 -

1′ 103.0 104.4 104.4 77.3 74.3 79.7 70.8 70.8 143.7

2′ 74.0 75.0 74.2 23.4 24.1 24.3 26.0 26.2 115.5

3′ 77.2 77.9 77.6 22.3 23.5 23.0 25.6 25.8 15.7

4′ 70.6 71.6 70.9 - - - - - -

5′ 77.1 78.0 76.7 - - - - - -

6′ 61.7 68.7 69.5 - - - - - -

1′′ - 111.1 103.3 98.9 100.1 99.5 104.0 104.4 102.8

2′′ - 77.2 74.4 75.1 74.6 75.6 74.8 75.0 73.7

3′′ - 80.6 77.4 78.8 78.6 78.5 78.4 78.3 76.7

4′′ - 74.9 70.9 71.3 71.4 72.0 71.4 71.3 70.3

5′′ - 65.5 77.7 77.1 78.2 76.8 78.1 75.7 76.9

6′′ - - 61.9 62.4 63.1 68.5 62.6 64.5 61.4

1′′′ - - - - - 111.2 - 126.5 -

2′′′ - - - - - 78.6 - 111.4 -

3′′′ - - - - - 81.0 - 149.0 -

4′′′ - - - - - 75.6 - 151.2 -

5′′′ - - - - - 66.2 - 116.8 -

6′′′ - - - - - - - 123.9 -

7′′′ - - - - - - - 145.9 -

8′′′ - - - - - - - 115.1 -

9′′′ - - - - - - - 167.8 -

3′′′-OCH3 - - - - - - - 55.9 -

Solvent DMSO-d6,
C6D6

CD3OD DMSO-d6
CDCl3,
CD3OD

CDCl3,
CD3OD CD3OD C5D5N C5D5N CD3OD

References [117] [118] [109] [122] [122] [119] [121] [132] [60]

* The authors missed assigning this position.
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Table 35. The 13C-NMR spectral data of compounds 149–155.

C 149 150 151 152 153 154 155

2 167.4 169.5 162.7 167.6 167.6 170.9 168.7

3 108.7 108.0 111.1 107.5 107.4 105.6 108.6

4 182.7 184.2 175.3 181.9 181.8 182.5 182.6

5 160.0 160.9 160.7 * 158.6 158.5 159.2 160.3

6 104.1 105.0 104.9 103.1 103.1 103.8 102.5

7 159.6 160.4 152.7 * 163.5 163.3 164.1 164.3

8 94.9 95.8 91.1 109.8 109.9 110.5 105.8

9 156.3 157.7 157.8 152.9 152.7 153.1 155.0

10 104.4 105.0 107.7 105.5 105.4 106.5 106.1

2′ 78.4 79.3 76.6 69.6 69.6 70.2 74.2

3′ 74.3 75.0 72.4 135.2 135.0 135.8 73.5

4′ 22.3 22.7 22.4 124.7 124.7 125.2 132.7

5′ - - - 20.6 20.3 20.9 117.3

1′′ 102.4 102.0 100.4 101.2 100.9 101.9 103.9

2′′ 74.9 74.9 ** 72.8 72.6 73.3 73.7

3′′ 78.4 78.1 76.9 76.8 76.1 76.8 76.5

4′′ 71.8 71.9 70.2 70.1 69.4 70.1 70.9

5′′ 78.4 75.0 76.9 76.6 75.2 76.6 76.0

6′′ 63.0 68.8 61.3 60.6 67.7 61.6 68.5

1′′′ - 111.0 - - 102.7 - 103.4

2′′′ - 77.9 - - 72.8 - 73.7

3′′′ - 80.5 - - 76.1 - 76.9

4′′′ - 75.0 - - 69.4 - 70.0

5′′′ - 65.7 - - 75.9 - 77.0

6′′′ - - - - 60.4 - 61.1

2a 20.1 20.4 19.0 19.4 19.2 59.7 20.1

2’a 22.3 22.4 21.2 - - - -

2’b 25.7 26.1 25.2 - - - -

3’a - - - 69.6 69.6 70.2 73.0

7-OCH3 - - 56.0 - - - -

Solvent CDCl3 CD3OD DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6 DMSO-d6

References [121] [119] [123] [108] [108] [108] [109]

* Interchangeable data. ** The authors missed the assignment of this position.
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Table 36. The 13C-NMR spectral data of compounds 157–165.

C 157 158 159 160 161 162 163 164 165

Chromone
moiety

2′ 92.4 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2

3′ 27.9 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8

4′ 156.3 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.1

5′ 176.2 176.2 176.2 176.2 176.2 176.2 176.3 176.3 176.3

6′ 111.5 110.9 111.1 110.9 110.9 110.8 111.1 111.2 111.1

7′ 162.1 162.5 162.4 162.4 162.7 162.5 162.6 162.6 162.5

9′ 94.1 94.0 94.0 94.0 94.1 94.0 94.0 94.1 94.0

10′ 165.4 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2

11′ 118.5 118.4 118.4 118.4 118.4 118.4 118.4 118.4 118.4

12′ 112.9 112.8 112.8 112.5 112.8 112.8 112.8 112.8 112.7

13′ 159.9 159.8 159.8 159.7 159.8 159.7 159.8 159.9 159.8

14′ 66.3 66.3 66.5 66.2 66.4 66.2 66.5 66.3 66.5

4-OCH3 60.9 60.9 60.9 60.8 60.9 60.9 60.9 60.9 60.8

1′′ 70.6 70.6 70.6 70.6 70.6 70.6 70.6 70.7 70.6

2′′ 26.0 26.1 26.1 26.1 26.1 26.1 26.1 26.2 26.1

3′′ 25.6 25.7 25.7 25.6 25.7 25.7 25.6 25.6 25.7

Glu-1 101.7 104.1 104.2 104.1 104.1 104.0 104.2 103.9 104.3

Glu-2 74.5 74.9 74.8 74.8 74.9 74.9 74.9 74.8 74.9

Glu-3 79.1 78.3 78.1 78.4 78.4 78.4 78.4 78.2 78.1

Glu-4 69.3 71.2 71.4 71.4 71.5 71.3 71.5 72.0 71.9

Glu-5 78.4 76.9 75.4 77.1 77.1 76.7 77.0 76.8 76.7

Glu-6 62.4 63.5 64.2 62.7 62.7 62.8 62.6 62.9 62.7

Triterpene
moiety

1 31.8 31.9 31.9 32.3 30.3 32.0 27.4 31.9 31.9

2 29.8 29.8 30.0 30.0 29.5 30.0 29.8 29.6 29.8

3 87.8 88.0 88.3 88.4 88.1 88.3 88.3 88.0 88.0

4 41.1 40.3 41.2 41.2 41.2 41.2 40.7 41.1 41.1

5 47.1 47.0 47.4 47.4 42.6 47.4 43.8 47.0 46.9

6 20.5 20.4 20.8 20.9 21.7 20.8 22.0 20.4 20.3

7 25.6 25.8 25.9 26.4 113.2 26.3 114.0 25.8 25.7
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Table 36. Cont.

C 157 158 159 160 161 162 163 164 165

8 46.0 45.9 47.1 49.0 149.1 47.3 148.6 45.8 46.4

9 19.8 19.9 19.2 19.9 21.1 19.5 27.6 20.0 20.5

10 26.5 26.6 26.6 26.5 28.2 26.4 29.1 26.6 27.0

11 36.7 36.6 26.3 26.4 25.4 26.1 63.2 36.7 36.4

12 77.2 76.8 31.4 34.0 33.9 33.3 48.3 77.2 76.9

13 48.8 48.7 42.2 41.8 41.2 46.6 45.4 48.7 48.8

14 47.2 47.4 45.2 46.5 49.8 45.1 48.1 47.8 47.8

15 43.4 43.4 50.8 82.5 80.4 42.8 45.2 43.8 45.6

16 70.7 72.8 218.6 103.0 103.3 72.5 114.5 71.1 74.6

17 55.7 55.6 60.4 60.5 60.3 51.4 61.0 56.8 52.4

18 13.5 13.5 18.8 20.3 22.5 20.5 20.7 13.5 12.9

19 29.9 30.7 30.0 30.7 28.2 30.1 18.7 29.8 30.0

20 26.9 25.4 29.1 27.6 27.5 34.2 23.7 26.0 24.6

21 21.1 20.8 19.9 21.4 21.6 17.3 19.6 21.1 25.7

22 41.5 38.6 40.3 33.6 33.6 86.2 37.8 41.9 106.0

23 104.2 102.9 173.4 74.2 74.4 109.6 71.7 101.9 152.9

24 83.1 212.4 - 80.5 80.4 77.3 88.5 77.7 75.9

25 79.1 35.0 - 76.4 76.5 83.5 76.4 81.3 78.2

26 19.4 19.2 - 21.6 21.6 27.3 23.2 23.7 22.3

27 29.8 19.7 - 24.1 24.1 24.5 20.2 24.9 23.1

28 19.4 19.4 19.6 11.8 18.2 19.4 27.4 19.5 20.7

29 25.6 25.6 25.6 25.5 25.6 25.6 25.8 25.6 25.6

30 15.2 15.2 15.2 15.5 14.2 15.3 14.5 15.2 15.2

Xyl-1 107.4 107.5 107.5 107.4 107.4 107.4 107.4 107.5 107.5

Xyl-2 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5

Xyl-3 78.5 78.6 78.5 78.5 78.5 78.5 78.5 78.5 78.5

Xyl-4 71.1 71.0 71.1 71.1 71.2 71.1 71.1 71.2 71.1

Xyl-5 67.0 67.0 67.1 67.0 67.0 67.0 67.0 67.0 67.0

COCH3
170.4
21.5

170.4
21.5 - 171.0

21.1
171.0
21.1 - - 170.5

21.6
170.6
21.1

Solvent C5D5N C5D5N C5D5N C5D5N C5D5N C5D5N C5D5N C5D5N C5D5N

References [130] [130] [130] [130] [130] [130] [130] [136] [136]
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Table 37. The 13C-NMR spectral data of compounds 166 and 167.

C 166 167

1 98.1 98.1

3 154.5 154.5

4 105.6 105.6

5 28.7 28.6

6 30.0 29.9

7 75.1 75.0

8 133.3 133.3

9 43.9 43.8

10 121.1 121.1

11 168.6 168.5 a

1′ 99.8 99.7

2′ 74.8 74.7 b

3′ 77.9 77.8 c

4′ 71.6 71.2 d

5′ 78.5 78.4 e

6′ 62.7 62.4 f

2′′ 167.5 168.1 a

3′′ 118.2 118.6

4′′ 181.6 181.8

5′′ 163.5 163.1

6′′ 100.2 101.1

7′′ 166.2 164.9

8′′ 94.7 95.7

9′′ 159.2 158.7

10′′ 104.9 106.6

-CH3 18.9 19.0

1′′′ - 101.6

2′′′ - 74.8 b

3′′′ - 77.9 c

4′′′ - 71.6 d

5′′′ - 78.5 e

6′′′ - 62.7 f

NMR CD3OD CD3OD

References [43] [43]
a−f Values with the same superscript are interchangeable.
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Table 38. The 13C-NMR spectral data of compounds 168–180 except those which have no reported
13C-NMR data.

C 168 169 170 171 172 178 179 180

2 163.7 159.3 168.0 159.6 167.5 170.2 166.3 166.3

3 108.7 108.8 109.7 109.9 110.0 110.8 110.0 110.0

4 179.2 179.5 178.9 178.8 179.0 179.0 178.7 178.8

4a 125.8 126.2 125.9 * 126.4 125.9 * 125.8 * 125.8 * 126.5

5 149.6 149.6 149.9 150.0 149.8 150.1 149.7 149.9

6 125.4 125.4 125.8 125.9 125.9 * 125.8 * 125.9 126.0

6a 137.0 137.2 137.0 137.0 137.4 137.2 137.3 136.3

7 183.0 183.3 183.2 183.5 183.3 183.1 183.1 181.5

7a 125.8 127.3 126.3 * 126.5 126.4 * 126.1 * 126.2 * 130.7

8 140.0 140.6 139.7 140.0 140.1 139.9 140.2 119.3

9 133.0 132.6 132.9 132.2 133.1 133.3 133.1 133.2

10 138.4 138.5 137.8 137.0 138.5 138.6 138.6 140.7

11 159.7 163.9 159.7 167.6 159.9 159.9 159.8 159.5

11a 116.0 115.8 116.1 116.0 116.2 116.0 116.1 116.1

12 188.1 188.0 187.9 187.7 188.1 188.3 188.0 187.7

12a 118.9 118.9 119.1 119.1 119.2 118.9 119.2 119.8

12b 155.7 155.8 156.0 156.0 156.2 155.8 156.1 156.2

13 24.0 24.1 24.3 24.2 24.1 24.2 24.1 24.1

14 127.2 125.9 57.6 60.3 59.1 75.6 57.7 57.7

15 12.1 15.0 13.8 14.9 14.5 23.5 14.5 14.4

16 134.2 134.2 62.0 61.7 61.6 71.7 * 63.9 63.9

17 14.9 12.1 14.1 123.3 123.3 127.4 55.4 55.4

18 - - - 134.1 134.0 130.2 51.8 51.8

19 - - - 14.4 13.8 13.5 17.2 17.2

2′ 77.3 77.7 77.2 77.6 77.3 77.2 77.3 67.9

3′ 71.9 71.8 71.3 70.6 71.9 71.7 * 71.9 71.0

4′ 67.4 67.5 67.8 68.1 67.4 67.3 * 67.4 57.7

5′ 28.3 41.0 28.8 38.8 28.4 28.4 28.3 35.0

6′ 75.2 75.4 74.8 74.0 75.2 75.0 75.2 68.2

7′ 18.9 18.9 18.8 18.5 18.9 18.9 18.9 17.5

8′ - - - - - - - 13.2
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Table 38. Cont.

C 168 169 170 171 172 178 179 180

4′-N(CH3)2 40.4 40.5 40.3 40.4 40.4 40.3 40.4 37.1

2′′ 67.2 69.8 67.5 69.8 67.2 67.4 * 67.3 -

3′′ 70.8 76.4 70.3 74.5 70.9 70.7 70.9 -

4′′ 57.4 57.6 57.6 59.1 57.3 57.9 57.3 -

5′′ 33.6 28.6 33.3 30.4 33.6 33.3 33.7 -

6′′ 69.5 64.9 69.4 65.7 69.7 69.6 69.6 -

7′′ 17.6 15.0 17.4 15.1 17.7 17.6 17.6 -

8′′ 12.3 13.7 13.1 13.9 12.3 12.6 12.3 -

3′′-COCH3 - 170.6
21.3 - 171.0

21.5 - - - -

4′′-N(CH3)2 36.8 39.3 36.9 38.8 36.8 36.8 36.8 -

Solvent CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3

References [165] [140] [141] [140] [142] [143] [165] [146]

* Interchangeable values.

Table 39. The 13C-NMR spectral data of compounds 181–183.

C 181 182 183

2 168.4 176.4 176.5

3 112.0 111.1 111.3

4 180.3 181.3 178.4

4a 126.1 126.0 124.7

5 150.4 150.4 149.6

6 121.3 121.0 121.2

6a 138.3 138.1 139.0

7 182.7 182.7 182.4

7a 133.2 133.2 133.2

8 120.1 120.0 119.8

9 135.4 135.5 135.6

10 137.4 137.4 137.0

11 161.1 161.0 161.3

11a 118.1 118.0 118.0
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Table 39. Cont.

C 181 182 183

12 189.1 189.2 189.2

12a 122.0 121.9 121.6

12b 157.7 157.4 156.9

13 70.8 70.8 175.3

14 61.2 77.7 77.7

15 63.7 72.6 72.6

16 20.2 23.9 23.9

17 13.7 17.0 17.1

1′ 98.9 98.9 -

2′ 37.2 37.2 -

3′ 58.3 58.4 -

4′ 71.2 71.1 -

5′ 70.4 70.4 -

6′ 17.2 17.2 -

7′ 24.6 24.5 -

1′′ 70.2 70.1 70.3

2′′ 28.0 27.7 27.4

3′′ 65.2 65.1 64.9

4′′ 75.1 75.0 75.2

5′′ 72.6 72.6 72.3

6′′ 18.1 18.2 18.3

3′′-N(CH3)2
43.2
41.7

43.3
41.4

42.5
42.5

1′′′ 101.4 101.4 101.4

2′′′ 33.4 33.4 33.4

3′′′ 66.6 66.6 66.6

4′′′ 72.0 72.0 72.0

5′′′ 69.5 69.5 69.5

6′′′ 17.5 17.5 17.5

Solvent CD3OD CD3OD CD3OD

References [147] [147] [147]
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Table 40. The 13C-NMR spectral data of compounds 184–192.

C 184 185 186 187 188 189 190 191 192

2 167.5 167.4 167.0 167.0 165.7 165.7 167.5 169.3 169.3

3 111.1 110.9 110.9 110.8 111.3 111.3 111.1 109.1 109.1

4 180.2 180.0 179.4 179.4 178.5 178.6 180.2 182.4 182.5

4a 126.6 126.4 126.5 126.4 126.3 126.3 126.6 113.3 113.3

5 149.2 149.1 149.4 149.2 148.2 148.2 149.3 166.7 166.7

6 122.5 122.4 122.9 122.8 124.1 124.0 122.5 110.7 110.7

6a 137.2 137.1 137.0 136.9 136.9 136.9 137.2 139.8 139.9

7 181.2 181.0 181.2 181.2 181.5 181.4 181.2 180.8 180.8

7a 130.3 130.2 130.4 130.3 130.5 130.5 130.5 130.6 130.4

8 119.8 119.7 119.7 119.7 119.5 119.5 119.8 119.4 119.5

9 133.6 133.7 133.4 133.6 133.3 133.5 133.7 132.4 132.8

10 141.3 141.1 141.0 140.9 141.0 140.9 140.7 140.2 140.9

11 159.1 159.2 159.3 158.9 159.3 159.3 159.4 159.1 159.1

11a 115.8 115.6 115.9 115.7 115.9 115.9 115.9 115.6 115.4

12 186.9 186.9 187.1 186.9 187.5 187.4 186.9 186.2 186.3

12a 121.8 121.6 121.6 121.6 120.8 120.8 121.8 112.3 112.4

12b 156.8 156.7 156.6 156.5 156.1 156.1 156.8 156.6 156.6

13 80.9 80.0 79.0 78.9 48.3 48.2 80.9 - -

14 59.8 59.7 59.8 59.7 59.8 59.7 59.8 60.0 60.0

15 19.7 19.6 19.8 19.7 20.0 19.9 19.6 19.6 19.7

16 62.7 62.5 62.5 62.5 62.5 62.5 62.7 62.7 62.7

17 13.4 13.3 13.4 13.3 13.5 13.4 13.3 13.2 13.2

18 170.5 170.4 170.9 170.9 170.4 170.4 170.5 - -

19 52.6 52.5 52.4 52.3 52.3 52.3 52.6 - -

2′ 73.8 73.8 74.9 74.9 74.3 74.2 73.8 - -

3′ 68.9 68.9 68.5 68.2 68.8 68.8 69.0 - -

4′ 80.2 80.1 74.8 74.9 81.5 81.4 80.2 - -

5′ 67.9 67.9 26.1 26.0 68.0 67.9 68.0 - -

6′ 73.7 73.6 70.3 70.2 73.9 74.0 73.7 - -

7′ 14.1 14.0 14.7 14.7 14.7 14.6 14.0 - -

4′-OCH3 57.9 57.8 55.6 55.5 57.1 57.1 58.0 - -

2′′ 70.3 70.7 70.2 70.8 70.3 70.8 70.0 70.0 70.7

3′′ 77.7 82.6 77.8 82.7 77.8 82.8 76.0 77.3 82.8

4′′ 54.9 58.1 55.1 58.1 54.9 58.1 51.7 56.1 58.1
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Table 40. Cont.

C 184 185 186 187 188 189 190 191 192

5′′ 40.3 44.7 40.4 44.7 40.4 44.8 44.9 38.5 44.8

6′′ 62.1 62.2 62.3 62.2 62.2 62.3 62.3 63.6 62.3

7′′ 14.7 13.5 14.8 13.5 14.7 13.6 14.1 15.4 13.6

8′′ 24.1 14.0 23.8 13.9 24.2 14.1 32.6 22.6 14.0

4′′-
N(CH3)n

27.9 40.3 27.8 40.3 28.1 40.4 - 27.2 40.3

1′′′ 93.4 94.4 93.7 94.5 93.4 94.5 93.3 94.5 94.5

2′′′ 30.8 31.1 30.9 31.1 30.9 31.1 30.8 31.1 31.1

3′′′ 74.8 74.9 74.8 74.9 74.9 75.0 74.8 75.0 75.0

4′′′ 72.1 72.1 72.1 72.0 72.2 72.2 72.2 71.5 72.2

5′′′ 65.4 65.0 65.7 65.0 65.4 65.1 65.4 66.6 65.0

6′′′ 17.7 17.6 17.7 17.6 17.8 17.7 17.8 17.5 17.7

3′′′-OCH3 55.9 56.1 56.1 56.1 55.9 56.2 56.0 56.4 56.1

Solvent CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3

References [149] [149] [149] [149] [137] [137] [137] [137] [137]
Molecules 2021, 26, x FOR PEER REVIEW 35 of 58 
 

 
Figure 25. Representative guide figure for numbering of chromone glycosides attached to different 
substituents. 

Table 20. The 13C-NMR spectral data of compounds 1–14 except those which have no reported 13C-NMR data. 

C 1 2 3 4 5 7 11 13 14 
2 161.2 147.4 147.7 147.8 147.4 167.2 167.8 158.6 159.5 
3 93.1 141.2 141.0 138.1 141.5 111.7 109.1 112.0 112.8 
4 166.6 178.4 178.5 177.0 178.4 180.3 183.2 183.6 184.4 
5 137.1 163.4 163.3 161.5 163.4 160.2 93.9 163.4 163.9 
6 132.0 100.1 100.2 98.8 100.2 104.6 162.0 101.3 101.9 
7 127.8 166.4 166.3 164.3 166.5 164.7 110.2 164.9 165.2 
8 114.9 95.0 95.0 93.8 95.0 99.1 159.6 96.2 96.9 
9 154.3 159.3 159.3 157.2 159.4 161.1 156.6 159.5 160.2 

10 114.5 106.2 106.2 104.8 106.1 109.2 106.1 108.4 109.3 
11 23.2 ̶ ̶ ̶ ̶ 19.9 20.3 ̶ ̶ 
12 ̶ ̶ ̶ ̶ ̶ ̶ 8.2 ̶ ̶ 
1′ 100.1 104.6 104.4 100.6 104.2 105.0 101.7 101.6 102.1 
2′ 73.2 74.6 72.0 69.9 74.8 74.6 75.1 74.7 75.1 
3′ 77.5 77.1 73.6 70.2 77.4 77.3 78.4 77.9 77.8 
4′ 69.6 70.8 69.2 71.5 71.3 71.3 80.5 71.2 73.9 
5′ 76.7 67.1 67.1 69.7 78.5 78.7 78.1 78.4 77.5 
6′ 60.7 ̶ ̶ 17.7 62.6 62.5 60.9 62.4 171.5 

OCH3 ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ 53.8 
Solvent DMSO-d6  CD3OD CD3OD DMSO-d6 CD3OD CD3OD C5D5N CD3OD CD3OD 

References [7] [10] [12] [9] [11] [17] [1] [27] [28] 
 
 
 

Figure 25. Representative guide figure for numbering of chromone glycosides attached to differ-
ent substituents.

6. Conclusions

Chromone glycosides are one of the most important classes of secondary metabolites.
In this review, we summarized 192 naturally occurring chromone glycosides with their
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sources, reported activities, and spectroscopic features. Basically, they were categorized into
several classes: chromone-O-glycosides including compounds 1–59, among them, four chro-
manone glycosides (60–63), chromone-C-glycosides including compounds 64–122, prenyl
and isoprenyl chromone glycosides including compounds 123–134, phenyl ethyl chromone
glycosides including compounds 135–139, furano-chromone glycosides including com-
pounds 140–148, pyrano-chromone glycosides including compounds 149–151, oxepino-
chromone glycosides including compounds 152–155, Pyrido-chromone glycoside including
compound 156, furanochromones with cycloartane triterpenes including compounds 157–
165, glycoside derivatives of chromones with secoiridoids including compounds 166 and
167, and chromone alkaloids aminoglycosides including compounds 168–192. Diverse
bioactivities were discovered for most of the reported chromone glycosides. Several
chromone glycosides show potent biological activities as anti-viral, acetylcholinesterase
inhibition, anti-tumor, anti-inflammatory, etc. This review directs the attention for further
deep investigation of chromone glycosides for drug discovery.
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