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Summary
Cellular senescence is a state of irreversible cell cycle arrest that has important physiological
functions. However, cellular senescence is also a hallmark of ageing and has been associated with
several pathological conditions. A wide range of factors including genotoxic stress, mitogens and
inflammatory cytokines can induce senescence. Phenotypically, senescent cells are characterised by
short telomeres, an enlarged nuclear area and damaged genomic and mitochondrial DNA. Secretion
of proinflammatory proteins, also known as the senescence-associated secretory phenotype, is a
characteristic of senescent cells that is thought to be the main contributor to their disease-inducing
properties. In the past decade, the role of cellular senescence in the development of non-alcoholic
fatty liver disease (NAFLD) and its progression towards non-alcoholic steatohepatitis (NASH) has
garnered significant interest. Until recently, it was suggested that hepatocyte cellular senescence is a
mere consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver
disease. However, recent work in rodents has suggested that senescence may be a causal factor in
NAFLD development. Although causality is yet to be established in humans, current evidence sug-
gests that targeting senescent cells has therapeutic potential for NAFLD. We aim to provide insights
into the quality of the evidence supporting a causal role of cellular senescence in the development
of NAFLD in rodents and humans. We will elaborate on key cellular and molecular features of
senescence and discuss the efficacy and safety of novel senolytic drugs for the treatment or pre-
vention of NAFLD.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
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Introduction
Accompanying the obesity pandemic, the prevalence
of non-alcoholic fatty liver disease (NAFLD) is rapidly
increasing (exceeding 80% in morbidly obese in-
dividuals).1 NAFLD represents a spectrum of liver
diseases with clinical and histological abnormalities
ranging from non-alcoholic fatty liver (NAFL) in the
case of isolated steatosis to non-alcoholic steatohe-
patitis (NASH), fibrotic NASH, advanced fibrosis,
cirrhosis, and hepatocellular carcinoma (HCC).2

Accumulation of fat in hepatocytes has long been
considered a relatively benign condition3,4 However,
around 30% of individuals with NAFL progress to
well-defined NASH with clinically significant
fibrosis.5–7 Advanced forms of NAFLD often require a
liver transplantation and are a major cause of liver-
related deaths.1 The rapidly growing prevalence of
NAFLD and lack of effective treatment options to
tackle this potentially debilitating disease, will
further increase the obesity-related burden onpublic
health and economies. In order to develop appro-
priate, non-invasive diagnostic methods and treat-
ment options, it is critical to deeply investigate the
complex pathophysiology of NAFLD.
The underlying mechanisms that govern hepatic
lipid accumulation and the predisposition to
inflammation and fibrosis are complex and multi-
factorial. In the past decades, a multitude of
disease-inducing factors have been unveiled,
resulting in the multi-hit hypothesis, which in-
tegrates parallel and synergistically operating dis-
ease promoting factors.2,8 Insulin resistance,9

adipocyte dysfunction,10 genetic variants,11 bile
acid metabolism,12 the gut microbiome,13 and lip-
otoxicity14 have been extensively studied in rela-
tion to their roles in the pathogenesis of NAFLD.
These players are unified by the metabolic dysre-
gulation accompanying obesity. Metabolic dysre-
gulation refers to a complex range of metabolic
alterations often induced by insulin resistance. For
example, insulin resistance increases circulating
free fatty acid (FFA) levels by reducing insulin-
mediated suppression of lipolysis in the visceral
adipose tissue compartment.15 This increases the
hepatocellular influx of FFAs which may subse-
quently be stored as triglycerides. Increased fat
storage in the liver is strongly linked to reduced
hepatic insulin sensitivity and a consequential
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Key points

� Cellular senescence has been put forward as a contributing factor in the
development of NAFLD.

� Senescent cells exhibit the following 4 hallmarks: i) prolonged and
generally irreversible cell cycle arrest, ii) macromolecular damage, iii)
secretory features and iv) deregulated metabolism which are all pre-
sent in hepatocytes of both humans and rodents with NAFLD.

� Data from studies in rodents and humans have shown that NAFLD is
accompanied by an increase in senescent cells in the liver, and that the
number of senescent cells is associated with disease progression.

� Under normal circumstances, around 3–7% of hepatocytes are senes-
cent and this percentage can increase to 50–100% in end-stage liver
disease.

� Only a few markers reliably detect senescent cells at this moment in
time and novel, non-invasive analytical tools are needed to better
understand the role of senescent cells in NAFLD.

� Rodent studies strongly point to a causal role of cellular senescence in
the development of NAFLD.

� Despite the strong association between senescence and NAFLD, it re-
mains unclear whether hepatic senescence is a consequence, a cause or
both.

� Targeting senescence has emerged as an attractive therapeutic target
for NAFLD since senescence might be involved in the full spectrum of
the disease.

� Senolytic drugs can be administrated intermittently, thereby mini-
mising potential toxic effects and increasing adherence in individuals
who are often affected by multiple morbidities and thus treated with
multiple medications.

Review
increase in hepatic gluconeogenesis, a major contributor to the
hyperglycaemia observed in diseases associated with NAFLD.16

Moreover, de novo lipogenesis is increased due to the constant
high levels of insulin, producing even more triglycerides and
further enhancing hepatic gluconeogenesis17,18 Thus, hepatic
insulin resistance in individuals with NAFLD is considered to be
limited to the pathway involving suppression of hepatic glucose
production and not the lipogenic pathway, which is referred to
as selective insulin resistanc.19 Accumulating evidence obtained
in the past decades revealed that this pathogenic paradox plays a
pivotal role in the development of NAFLD20,21

Triglyceride accumulation is not hepatotoxic per se and could
even represent a defensive mechanism to counterbalance FFA
excess. However, high levels of FFAs, free cholesterol and other
lipid metabolites can lead to lipotoxicity.14 Lipotoxicity causes
mitochondrial dysfunction, resulting in the formation of reactive
oxygen species (ROS), endoplasmic reticulum (ER) stress,
inflammation and cell damage14,22 As a consequence of the
overload of FFAs, proinflammatory pathways are activated,
leading to hepatic inflammation and eventually fibrosis.23,24

Expansion of subcutaneous and visceral adipose tissue com-
partments in obesity leads to hypoxia-induced hypersecretion of
adipocytokines such as tumour necrosis factor (TNF)a, inter-
leukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1/
CCL2) by adipocytes.25,26 In addition, the inflammatory immune
cells that accumulate in the adipose tissue of individuals with
obesity further perpetuate the low-grade inflammatory state25,26

These proinflammatory mediators are secreted into the circula-
tion and contribute to activation of inflammatory signalling
pathways in the liver, thereby contributing to the development
and progression of NAFLD.25,26

Recently, cellular senescence has been put forward as a
contributing factor in the progression of NAFLD. Cellular senes-
cence is one of the hallmarks of aging and is defined as a stable
arrest of the cell cycle coupled to specific phenotypic changes.27

Senescent cells secrete a collection of proteins called the
senescence-associated secretory phenotype (SASP).28,29 This pro-
inflammatory secretome has been suggested to drive age-related
tissue dysfunction. Interestingly, metabolic dysregulation is
thought to favour cellular senescence in several tissues involved in
the pathogenesis of NAFLD such as the liver, pancreas and adipose
tissue, further perpetuatingmetabolic dysregulation. The number
of senescent cells is particularly increased in the adipose tissue and
liver of individuals with obesity.30–32 Hepatocytic senescence has
been shown to impair mitochondrial b-oxidation.33 Concomi-
tantly, SASPcomponents areabundantlypresent in adipose tissues
of individuals with obesity and may promote insulin resistance
and inflammation.31 Senescence has also been linked to the
hyperinsulinemic state often observed in individuals with obesity.
Senescence inpancreatic beta cells induces greater glucose uptake
and mitochondrial activity, leading to increased insulin secre-
tion.34 This observation suggests that beta cell senescence en-
hances the insulin-secreting capacity of the pancreas. This is in
contrast to the general dogma that cellular senescence leads to a
deterioration of cell and organ function.35 Indeed, animal studies
have shown that tissue function, including liver metabolism, can
be recovered by clearing senescent cells.33 Targeting senescence
might therefore be an interesting future therapeutic option to
tackle cardiometabolic diseases, including NAFLD.

In this review, we aim to provide insights into the quality of
the evidence that supports a causal role of cellular senescence in
the development of NAFLD in rodents and humans. We will
JHEP Reports 2021
elaborate on the key cellular and molecular features of senes-
cence. Finally, we will discuss the effectiveness and safety of
novel senolytic (senescence destroying) drugs to treat this
disease.

Hallmarks of cellular senescence
Cellular senescence, originally described by Hayflick and Moo-
rhea,36 is a cellular state implicated in various physiological
processes. Senescent cells exhibit the following 4 hallmarks: i)
prolonged and generally irreversible cell cycle arrest, ii) macro-
molecular damage, iii) secretory features and iv) deregulated
metabolism (Fig. 1)37,38 Senescence is driven by a variety of fac-
tors such as genotoxic stress, mitogens and inflammatory cyto-
kines. Also, metabolic factors including high glucose levels,
ceramides, fatty acids, prostanoids and ROS are capable of
inducing cellular senescence. Furthermore, signals originating
from senescent cells have been shown to be able to transfer the
senescent phenotype to neighbouring cells.39 In addition,
senescence is also linked to the age-associated loss of the
regenerative capacity in the liver after severe liver injury.40,41

Following acute liver damage, senescence occurs in hepato-
cytes as well as non-parenchymal cells in the livers of adult but
not young mice, leading to impaired regeneration. Recently,
Ritschka et al42 showed that treatment with the senolytic drug
agent ABT-737 (a BCL-2 family inhibitor) decreased markers of
senescence in hepatocytes and reduced inflammation, which
was associated with an improvement in liver function and
regeneration following partial hepatectomy in adult mice.

Cell cycle withdrawal and macromolecular damage
These senescence-inducing signals activate transcriptional cas-
cades which culminate in the activation of the cyclin-dependent
kinase inhibitors p21 or p16, resulting in irreversible cell cycle
2vol. 3 j 100301
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Fig. 1. Senescent cells in general and in NASH exhibit 4 hallmarks. 1) pro-
longed and generally irreversible cell cycle arrest, 2) macromolecular damage,
3) secretory features and 4) deregulated metabolism. NASH, non-alcoholic
steatohepatitis.
arres.43 This will eventually lead to specific phenotypic changes
such as telomere shortening, nuclear area enlargement and
genomic and mitochondrial DNA damag.44 There are 2 major
mechanisms of cellular senescence; one is replicative senescence
and the other is stress-induced premature senescenc.43,45

Replicative senescence depends on telomere shortening or
erosion, predominantly upon aging, whereas stress-induced
premature senescence is telomere-independent and refers to
intracellular or environmental stress factors leading to macro-
molecular damage (i.e. DNA damage, protein damage, lipid
damage).43,45,46 Both mechanisms induce a complex multigenic
pathway known as the DNA damage response (DDR).47 The DDR
can inhibit cell cycle progression and prevent the propagation of
corrupted genetic information to neighbouring cell.47 Some fac-
tors involved in the DDR, such as the phosphorylation of histone
H2AX (yH2AX) and its associated proteins, including MDC1,
53BP1 and the activated form of the kinase ataxia telangiectasia
mutated (ATM), accumulate at sites of DNA damage. These fac-
tors form cytologically detectable nuclear foci and mark the in-
dividual sites of DNA damage, which subsequently contribute to
checkpoint enforcement and cell cycle arrest, until damage has
been repaired. If DNA damage persists, the tumour suppressor
p53 will be phosphorylated, via activation of ATM, stimulating
the expression of p21, an essential mediator of senescence-
associated cell cycle arrest.48 After the early activation of p21,
p16 (which is also suggested to play a role in several types of
senescence) is activated. p16 inhibits cyclin-dependent kinase-4
(CDK4) and cyclin-dependent kinase-6 (CDK6), thus maintaining
the senescent phenotype.49 Activation of either p21 or p16 re-
sults in the inhibition of retinoblastoma factor (Rb) phosphory-
lation, allowing it to bind to the E2F transcription factor which
prevents cell division.50
JHEP Reports 2021
Senescence-associated secretory phenotype
Another hallmark of senescence is the SAS28,29,39 This proin-
flammatory secretome is a hallmark of senescent cells and con-
tributes to tissue dysfunction in both an autocrine and paracrine
fashio.39 Interestingly, the SASP stimulates the immune system
to clear senescent cells but can also reinforce or even maintain
the senescent cell state.51–53 Furthermore, it has been suggested
that the SASP contributes to persistent chronic inflammation,
which is often observed in cardiometabolic diseases including
NASH, and can explain some of the deleterious pro-aging effects
of senescent cells.54,55 The SASP is regulated by various mecha-
nisms. For example, remodelling of enhancer regions of genes
results in changes in the phenotype of senescent cells and in-
duces qualitative and quantitative changes in their secretome. In
addition, transcription factors such as GATA4 (an upstream
regulator of NF-kB) and mammalian target of rapamycin (mTOR)
as well as p38MAPK signalling pathways have been strongly
implicated in the regulation of the SASP.56–58 Interestingly,
GATA4 has been reported to be involved in autophagy, which is a
highly regulated cellular programme involved in recycling of
intracellular proteins and damaged/non-functional organelles.59

GATA4 is degraded by p62-mediated selective autophagy under
normal circumstances. Interestingly, during senescence, this
regulation is suppressed, which may initiate and maintain the
SASP and thereby facilitate senescence.57 Recently, GATA6 has
been implicated in the induction of senescence. When GATA6
accumulation is not decreased by autophagy, the expression of
p53 and p16 is enhanced, while knocking down GATA6 reduces
the upregulation of p53 and p16, and thereby hepatic senes-
cence.60 In vitro data showed that the SASP is produced in a p16-
independent manner as a result of DDR-dependent and inde-
pendent signalling through p38MAPK and NF-kB. Whereas the
early SASP is dominated by growth factors such as transforming
growth factor-b (TGF)b which triggers senescence in an auto-
crine fashion,56,61 a switch towards a more pro-inflammatory
SASP is established through the activation of NOTCH1, where
secreted and membrane bound IL-1a acts in an autocrine fashion
to reinforce the production of IL-6 and IL-8.62,63

Dysregulated metabolism
Accumulating evidence suggests a bidirectional link between
cellular senescence and mitochondria.64 Senescent cells are
capable of deregulating metabolism by altering mitochondrial
function, dynamics and morphology. In the early stages of
senescence, deterioration of mitochondrial oxidative phosphor-
ylation increases production of ROS.65,66 ROS can maintain and
enhance senescence through feedback loops that replenish the
DDR.67,68 Of interest, mitochondrial DNA is highly vulnerable to
ROS due to its close proximity to the generation site, while
damage to mitochondrial DNA further impairs oxidative phos-
phorylation. Several DNA repair mechanisms exist within a cell
to restore DNA integrity. While these pathways have been
extensively studied in the nucleus, current knowledge on, and
evidence for, DNA repair pathways in the mitochondria are more
limited.69 Furthermore, mitochondrial ROS accelerates telomere
shortening and triggers senescence in a paracrine fashion68,70

In vitro data have shown that senescent cells induce consider-
able metabolic changes on the cellular level, related to mito-
chondrial metabolites (i.e. decrease in NAD+/NADH ratio and
tricarboxylic acid cycle metabolites68,71). Also, changes in mito-
chondrial dynamics such as biogenesis, fusion, fission and
mitophagy have been described in senescent cells.67,72
3vol. 3 j 100301
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Interestingly, mitochondrial dysfunction was recently shown to
induce a distinct type of senescence termed MiDAS (mitochon-
drial dysfunction-associated senescence), as a result of a
decreased NAD+/NADH rati.73 The authors showed that altered
AMP/ATP and ADP/ATP ratios activate AMPK which may induce
senescence by phosphorylating p53 or stabilising p1.73

The aforementioned hallmarks of cellular senescence are
observed in hepatocytes of both humans and rodents with
NAFLD. Nevertheless, it has been suggested that hepatocytic
senescence is a mere consequence of the metabolic dysregula-
tion and inflammatory phenomena observed in fatty liver dis-
ease instead of a causal player. This chicken-egg situation can be
clarified in large, prospective studies, which will provide insight
into the timeline of disease development linked to the presence
of cellular senescence. A causal contribution (i.e., cellular
senescence as a driving factor for disease development) can only
be substantiated from results of highly targeted interventional
studies. To successfully identify, characterise and pharmacolog-
ically eliminate senescent cells, one of the major limitations of
the field needs to be overcome: robust, cell-and pathway-specific
biomarkers for cellular senescence need to be developed. Driven
by the non-specificity of many current senescence markers and
the existence of distinct senescence programmes, the scientific
community has struggled to identify universal and unequivocal
signatures that characterise the senescent stat.74
Markers and detection of cellular senescence
The development and optimisation of sensitive and specific as-
says to track senescent cells is challenging because of the com-
plex and cell-specific senescent phenotypes. Of importance,
numerous non-senescent cells, especially proinflammatory cells
such as macrophages and (pre-)cancerous cells, share features
with senescent cells and impair specificity of currently available
assays.75 Hence, only a few markers reliably detect senescent
cells at this moment in time and novel (combined) analytical
tools are urgently needed to better understand the role of se-
nescent cells in NAFLD.
Table 1. Overview of senescence markers.

Senescent cell hallmark Class Ma

Cell cycle arrest Lack of DNA synthesis Brd
Lack of proliferation Ki6
Activation of p16-pRB axis p16
Activation of p53-p21 axis p2

Structural changes Morphology, cell size Mo
Increased lysosomal compartment and activity SA
DNA damage cH
Telomere shortening Tel
SAHFs formation DA
Nuclear membrane Lam

Pro-survival Apoptosis exclusion An
SASP Chemokines IL-

TEC
Growth factors; regulators Am

ang
Insoluble factors Am

ang
Interleukins IL-
Non-protein molecules PG
Other inflammatory molecules GM
Proteases and regulators MM
Receptors; ligands ICA

SASP, senescence-associated secretory phenotype.
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The first tool to successfully identify senescent cells arose
from observations that senescent cells display b-galactosidase
enzymatic activity at pH 6, whereas more common b-galactosi-
dase isoforms show peak enzymatic activity at pH 4–4.5. This is
referred to as senescence-associated b-galactosidase (SA-b
gal).76,77 Shortly thereafter, the cyclin-dependent kinase inhibi-
tor p16, which serves as a master regulator of cell cycle arrest,
was shown to play a role in senescenc.78 In the past decade,
numerous other senescence markers such as increased cell size
and intracellular protein content, accumulation of lipofuscin,
increased expression of p21, epigenetic profiles and SASP factors
have been identified and linked to distinct senescence
pathway.39,74 An overview of currently used markers of senes-
cence is provided in Table 1.

Unfortunately, these markers have their limitations. For
example, SA-b gal activity can be high in macrophages and even
p16, which is considered to be one of the most specific senes-
cence markers, is also expressed in certain non-senescent
cells.75,79 Moreover, p16 is not expressed by all senescent cells.
To overcome these challenges, a multi-marker approach based
on immunohistochemistry and quantitative PCR (qPCR) or
transcriptomic analyses was proposed to identify senescent
cell.74 Cells would first be screened for SA-b gal or lipofuscin
staining. Initial senescence leads would then be verified by
additional markers such as p16 or p21 and further specified into
specific types of senescence by characterising SASP or DDR
(Fig. 2).74

This multi-marker approach enables the detection of senes-
cent cells in various experimental settings and tissues. Promising
results have been achieved in the first clinical trials targeting
cellular senescence in humans80,81 Therefore, it is of critical
importance to develop, implement, test, and harmonise methods
and standard operating protocols for translational early phase
trials of agents that target fundamental aging processes. New,
effective and low-cost assays are needed to detect and trace
senescence in blood, cells and biopsies of the targeted organ for
use in clinical trials. Circulating microvesicles originating from
rkers

U, EdU
7
INK4a, pRB, phospho-pRb

1, p53, phospho-p53, DEC1 (BHLHB2), PPP1A
rphology, cell size
-b-galactosidase, SA-a-Fucosidase, Lipofuscin
2AX, 53BPI, Rad17, ATR, ATM, MDC1, TIF.
omeres
PI/Hoechst 33342, HIRA, H3K9-methylation, PML bodies, HP1-gamma
in B1

nexin V, BCL-2, Cleaved PARP, Cleaved caspase 2/3/9, TUNEL staining
8; GRO-a, -b, -g; MCP-2; MCP-4; MIP-1a; MIP-3a; HCC-4; eotaxin; eotaxin-3;
K; ENA-78; I-309; I-TAC
phiregulin; epiregulin; heregulin; EGF; bFGF; HGF; KGF (FGF7); VEGF;
iogenin; SCF; SDF-1; TGFb; PIGF; NGF; IGFBP-2, -3, -4, -6, -7
phiregulin; epiregulin; heregulin; EGF; bFGF; HGF; KGF (FGF7); VEGF;
iogenin; SCF; SDF-1; TGFb; PIGF; NGF; IGFBP-2, -3, -4, -6, -7
6; IL-7; IL-1; IL-1b; IL-13; IL-15
E2; nitric oxide; ROS
-CSE; G-CSE; IFN-g; BLC; MIF
P-1, -3, -10, -12, -13, -14; TIMP-1; TIMP-2; PAI-1, -2; tPA; uPA; cathepsin B
M-1, -3; OPG; sTNFRI; sTNFRII; TRAIL-R3; Fas; uPAR; SGP130; EGF-R
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Fig. 2. The proposed multi-marker workflow approach.74 Cells would first
be screened for SA-b gal or lipofuscin staining. Initial senescence leads would
then be verified by additional markers such as p16 or p21 and further specified
into specific types of senescence by characterizing SASP or DDR. For the
detection of the senescent cells several tools can be used such as immuno-
histochemistry, qPCR or transcriptomic analyses. DDR, DNA damage response;
qPCR, quantitative PCR; SA-b gal, senescence-associated beta-galactosidase;
SASP, senescence-associated secretory phenotype.
senescent cells, senescence-specific micro-RNAs or epigenetic
profiles are currently being evaluated as novel composite assays
to detect senescence.82 Of interest, recently, Saif et al.83 were able
to non-invasively measure the accumulation of lipofuscin in the
liver using near infrared and shortwave infrared auto-
fluorescence. This technique might serve as a diagnostic medical
tool or could be used in clinical trials targeting senescence in the
liver. Several ongoing studies are aiming to discover novel
markers using “omics” techniques to quantify various macro-
molecules, even at the single cell level (to account for intra-
population variability).74

Insights obtained from studies in rodents on the role
of senescence in NAFLD
Hepatocytic senescence can induce remarkable changes in tissue
homeostasis and the hepatic microenvironment. Under normal
JHEP Reports 2021
circumstances, hepatocytes are considered to be reversed post-
mitotic cells that preserve their proliferating potential. Yet,
natural aging correlates with loss of proliferating potential, func-
tionality and thus regenerative capacity of the hepatocyte.84 Of
interest, cellular senescence is considered one of the hallmarks of
aging27 and indeed aging itself is a major risk factor for NAFLD
development and progression.43 Increased oxidative stress and
age-related mitochondrial dysfunction have been shown to
contribute to NAFLD development in old mice fed a high-fat diet
(HFD).85 Indeed when young and old mice were treated with the
sameprofibrotic regimen, oldmicedevelopedmore severefibrosis
in their liver compared to their younger counterparts.86,87 Also,
aging is associated with upregulation of CDK4 in the liver.
CDK4 phosphorylates CCAAT- enhancer-binding protein (C/EBPa)
which facilitates formation of C/EBPa-p300 complexes leading to
NAFLD in the presence of a metabolic driver (i.e. overnutrition).
Vice versa, pharmacological inhibition of CDK4 reduces
NAFLD.88,89

Age-independent hepatocytic senescence has also been
described in rodents. In 2000, Rudolph and DePinho revealed
that progressive and repetitive liver damage in mice induces
hepatocytic cellular senescence and subsequently cirrhosis.90

Other studies in rodents have shown a clear relation between
senescence, NAFLD and liver fibrosis. Obesity-prone rats fed a
HFD developed NAFLD after 13 weeks with a concomitant in-
crease in hepatic gene expression of p16 and p21 compared to
age-matched lean controls. Subsequently, the increased p16 and
p21 resulted in a significant decrease in the phosphorylation of
retinoblastoma protein (Rb), thereby inducing cell cycle arrest.91

p53-deficient mice fed a methionine- and choline-deficient diet
(a widely used diet to induce NAFLD in rodents), had slower
disease progression compared to wild-type mice.92

Although previous studies have provided insights into the
putative role of cellular senescence in the development of
NAFLD, data pointing towards causality was only recently pub-
lished by Ogrodnik et al..33 First, NAFLD was associated with
several markers of senescence in hepatocytes, such as increased
senescence-associated damage foci, as determined by the pres-
ence of yH2AX, increased senescence-associated distention of
satellites and larger nuclear areas.33 Second, hepatocytic senes-
cence was shown to impair hepatic mitochondrial b-oxidation,
thereby hindering fatty acid elimination and promoting triglyc-
eride accumulation.33 Finally, a causal link between hepatocytic
senescence and hepatic steatosis was unravelled using INK-
ATTACK mice and a senolytic drug cocktail. INK-ATTACK trans-
genic mice (INK-linked apoptosis through targeted activation of
caspase) contain an inducible suicide gene in the CDKNA2 locus,
which encodes p16, a key molecule in senescent cells.93 By using
this elegant rodent model, it is possible to selectively eliminate
p16-expressing cells in vivo following the administration of a
specific molecule that dimerises the FKBP-CASP8 fusion protein
and induces apoptosis. Following the systemic clearance of p16-
expressing cells, hepatocytic senescence decreased, which was
accompanied by the amelioration of hepatic steatosis. The
administration of the senolytic drug cocktail dasatinib and
quercetin to db/db mice reduced the number of senescent cells
and led to clearance of triglycerides from the hepatocytes.33

However, it is important to note that the authors did not ac-
count for the possible pleiotropic effects of the senolytic drug
cocktail. Moreover, to what extent these results can be translated
to the entire spectrum of NAFLD (i.e. hepatocyte ballooning,
lobular inflammation and fibrosis) remains to be investigated.
5vol. 3 j 100301
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Epigenetic modifications have been observed in senescent
cells. These modifications resemble a DNA methylation profile
similar to those observed in cancer and aging.94,95 A global loss of
DNA methylation at CpG sites is characteristic of replicative
senescence. This loss is followed by a focal increase in DNA
methylation at certain CpG islands95,96 Senescence-associated
DNA methylation patterns have been shown to alter expression
of genes typically involved in hepatic lipid metabolism in mice
fed a choline- and folate-deficient diet.97 Alterations in the
methylome profile of hepatocytes could therefore determine the
severity of NAFLD. Individual histone modifications are also
altered during senescence and NAFLD.96 Certain histone modi-
fications such as elevation of H4K20me3 and H3K9me3 are in
fact crucial for induction of proliferation arrest96,98 whereas
elevation of H3K27ac in gene enhancers promotes the SASP.74

Increased expression of p21 was associated with increased
acetylation of both histone H3 and H4, while decreased trime-
thylation of H3K27 at the p21 promotor was observe.91
Senescence beyond the hepatocyte
Importantly, senescence in the liver is not limited to hepatocytes.
For example, obesity-associated senescence has been observed in
hepatic stellate cells (HSCs).99 In healthy livers, HSCs are in a
quiescent state; they are activated following liver injury and play
an important role in liver fibrosis. Indeed, liver fibrosis is accom-
paniedby the excessivedeposition of extracellularmatrix byHSCs.
Interestingly, when HSCs become senescent, they can limit the
extent of fibrosis. Indeed, HSCs deficient in the key senescence
genes p53 or Rb continued to proliferate and contributed to
excessive extracellular matrix deposition. These findings suggest
that senescence in HSCs could be beneficial. Moreover, senescent
HSCs secrete matrix metalloproteases that digest matrix metal-
loproteins and collagens such as CollA. In contrast, Yoshimoto and
colleague99 showed in a mouse model that the gut microbial
metabolite deoxycholic acid, ametabolite that has been associated
with insulin resistance and NAFLD provokes the SASP phenotype
in HSC.12,100 This phenotype subsequently facilitates the devel-
opment of HCC via the secretion of inflammatory and tumour-
promoting factor.99 Moreover, fibroblasts and non-tumoral HSCs
demonstrated increased expression of senescence and SASP
markers in NASH-related HCC compared to HCCs of other aeti-
ology.101 However, patients with NASH-HCC were significantly
older, had a higher BMI and more metabolic diseases such as
diabetes compared to patients with other aetiologies of HCC, thus
these data should be interpretedwith caution. Therefore,more in-
depth studies are needed to understand the balance between
fibrogenic and non-fibrogenic SASP in senescent HSC.

Senescence has also been observed in cholangiocytes and
may have potential deleterious effects in biliary diseases, such as
primary biliary cholangitis and primary sclerosing chol-
angitis.102,103 In addition, cholangiocyte senescence has also been
demonstrated in other chronic parenchymal liver diseases
including NAFLD.103,104 Recently, an in vivo model was intro-
duced to study the detailed mechanism of cholangiocyte-
mediated biliary senescence in the liver.105 The activation of
senescence in cholangiocytes induced profound alterations in
the cellular and signalling microenvironment, resulting in the
deposition of collagen and TGFb production and the induction of
senescence in neighbouring cholangiocytes and hepatocyte.105

Liver sinusoid endothelial cells (LSECs) are fenestrated
endothelial cells that form the lining of the hepatic sinusoids.
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The structure and function of LSECs changes upon aging, which
in turn impacts on liver functions. Age-induced morphological
changes in LSECs have been described in rodents and humans
and are characterised by defenestration (defined by the decrease
in the number and size of fenestrae), endothelial thickening, and
basal lamina and collagen deposition in LSECs. It was recently
shown that senescence markers increase in older mice, followed
by an enhanced ability to clear macromolecular wast.106 How-
ever, this enhanced ability rapidly declines with further aging,
probably due to increased endothelial thickness and senescence-
induced silencing of scavenger receptors and endocytosis genes.
Of importance, age-dependent changes in LSECs were recently
confirmed in the livers of elderly humans, underscoring that
aging and senescence are accompanied by significant liver si-
nusoidal dysregulatio.107

Kupffer cells (KC), the resident macrophages of the liver, are
located within the lumen of the liver sinusoids. KCs are the key
detector of commensal or pathogenic microbial signals, danger
signals, and tumour cells moving through the hepatic circula-
tion; they produce soluble cell mediators such as TNFa and IL-6
as part of the innate immune response. While there have been
many studies on the effects of aging and senescence on macro-
phages, the effect on KCs has not been well characterised on a
cellular and molecular level. The effects of aging on macrophages
include reduced phagocytosis and autophagy and increased
production of cytokines such as IL-6, suggesting that KCs might
be one source of elevated IL-6 – a characteristic of old ag.107

Although the aforementioned studies imply that senescence
is variously involved in NAFLD pathogenesis and progression, it is
of interest whether data from animal studies can be translated to
humans. In the next paragraph, we will elaborate on the evi-
dence of a role of cellular senescence in NAFLD in humans.
Clinical evidence linking ageing and senescence to
NAFLD
Under normal circumstance, around 3–7% of hepatocytes are se-
nescent. This percentage can increase to 50–100% in end-stage
liver disease.108,109 As mentioned, senescence in the liver can
have protective as well as deleterious effects on liver function and
metabolism. Interestingly, hepatocytic senescence is considered
to act as a protective mechanism against the development of
HCC.110 Data obtained from studies in humans revealed that
several hallmarks of cellular senescence are present in biopsies of
individuals with NAFLD and that the number of senescent cells
increases with disease progression. Relative nuclear size of he-
patocytes in individuals with NAFLD was significantly larger than
the normal value of healthy controls, independent of telomere
length.111 Interestingly, telomere length correlated negatively
with nuclear size in both individuals with NAFLD as well as in
healthy controls, while the average nuclear size of the hepatocyte
only correlatedwith age in the healthy controls. This suggests that
nuclear enlargement proceeds independently of age in individuals
with NAFLD. Other studies also showed that average telomere
length in the livers of individuals with NAFLD is shorter than in
age-matched healthy control.111,112 Moreover, in a longitudinal
study of 6 years, it was shown that individuals who developed
NAFLDhad shorter telomeres inperipheral blood leukocytes at the
end of the follow-up period compared to the individuals who did
not develop NAFLD.113 Despite this observation, individuals who
developed NAFLD were metabolically already more challenged
compared to the individuals without NAFLD. Also, Laish et al.114
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observed shorter telomeres in peripheral lymphocytes accompa-
nied with a higher expression of telomerase reverse transcriptase
messenger RNA compared to healthy controls. To what extent the
telomere length in peripheral blood corresponds to telomere
length in liver cells remain to be investigated. Nevertheless, these
results support a role for telomeredysfunction in thedevelopment
of NAFLD.

Bearing this evidence in mind, one might ask the question:
how do telomeres signal senescence? It has been hypothesised
that a protein complex that shapes and safeguards human telo-
meres, also called the “shelterin”, destabilises with each cell di-
vision.115,116 This destabilisation results in exposure of the
telomere, which is subsequently recognised as a double-strand
DNA break. This triggers recruitment of proteins belonging to
the DDR such as ATM and H2AX and Rad17.117 As mentioned, the
DDR activates transcription factors such as p53, which is a pos-
itive regulator of p21. Both in vivo and in vitro studies have shown
that p21 plays a key role in telomere-induced senescence.46,118

Although the majority of studies provide evidence that senes-
cence is a result of telomere shortening, several other reports
now suggest that telomere dysfunction can also occur in a
length-independent manne.46,48,119,120 For example, chronic mild
inflammation is able to induce telomere gene damage in hepa-
tocytes and enterocytes of the small intestine, irrespective of
telomere length.119,120 Moreover, it has been suggested that DNA
damage is more likely to occur at long telomeres as they repre-
sent a more abundant target for lesion formation which can
explain length-independent DDR activation.48 Interestingly, the
link between telomere-induced senescence and the p16 pathway
is less clear and, compared to p21, the link between p16
expression and NAFLD in humans is not that robust.32

Several studies revealed a link between DNA damage in he-
patocytes, hepatocytic senescence and NAFLD.32,112 Aravinthan
and colleagues112 showed that DNA damage is increased in the
livers of individuals with NAFLD and increases with disease
progression (i.e. NASH and NAFLD with advanced fibrosis).
Moreover, by using paired biopsies from 35 individuals, hepa-
tocyte p21 expression was shown to increase with disease pro-
gression, whereas individuals with disease improvement
exhibited decreased expression of hepatocyte p21. Thus, hep-
atocytic senescence is a marker of disease progression. In addi-
tion, another study reported that hepatocytic senescence is
positively correlated with the progression of liver fibrosi.109

Recently, a prediction model based on epigenetic DNA
methylationwas introduced tomeasure human chronological and
biological age. Using thismodel, it is possible topredict the normal
aging rate based on methylation patterns.121–124 One of the algo-
rithms for this model is the so-called Horvath Clock, which rep-
resents an epigenetic profile comprisingmethylation levels of 353
CpG dinucleotide sites.122 Of these 353 CpG sites, 193 positively
correlatewith agewhenhypermethylatedwhereas 160negatively
correlate with age when hypomethylated. To illustrate the time
frame of the Horvath clock, the DNA methylation score of em-
bryonic stem cells is approximately zero and increases rapidly
during normal development. The validity of peripheral DNA
methylation to accurately predict chronological age of different
tissues including the liver has been confirmed in multiple
studies.122,125,126 Moreover, the intrinsic rate of the epigenetic
clock can be altered by metabolic diseases. Obesity for example is
able to alter the epigenetic clock for the liver, but not of other
tissue.126 Recently, Loomba and colleagues have shown, using the
Horvath clock, that individualswithNASHdemonstrate significant
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acceleration in their biological age.125 Enrichment analyses of the
genes associated with differentially methylated CpG islands
revealed significant enrichment of senescence pathways such as
p53 signalling, suggesting that, in linewithother reports, a specific
pattern of DNA methylation is another senescence marker asso-
ciated with NAFLD and its progression to NAS.125,127 Murphy et al.
showed that individuals with NAFLD with mild fibrosis could be
distinguished from individualswithNAFLDwith advancedfibrosis
based on different methylation patterns.128 Individuals with
advanced fibrosis had more hypomethylated genes in their liver
biopsies, resulting in overexpression of tissue repair genes,
whereas metabolism-associated genes were hypermethylated,
resulting in downregulation of these genes. Another study found
that alterations in methylation patterns in genes involved in the
cell cycle are closely related to oxidative DNA damage in the livers
of individuals with NAFLD.129 Collectively, these data indicate that
NAFLD may induce altered methylation profiles in a plethora of
cells, including even peripheral blood cells. However, from this
perspective, senescence is a consequence of the metabolic dysre-
gulation and inflammatory phenomena occurring within the liver
instead of a causal player.
Treatment options for targeting senescence
Usually, NAFLD is accompanied by other obesity-induced age-
related diseases. This inevitably leads to polypharmacy because
most treatment strategies are disease specific. Unfortunately,
polypharmacy can lead to adverse events, unpredictable drug
interactions and poor adherence.82 Bearing in mind that senes-
cent cells are present in several metabolic diseases, targeting
senescent cells has emerged as an attractive therapeutic strategy
to simultaneously treat these diseases.

Targeting senescence could be performed by inhibiting the
SASP or by selectively eliminating senescent cells using seno-
lytics. SASP inhibitors, also known as senomorphics, target sig-
nalling pathways that are involved in the regulation or
exacerbation of the SASP, such as target of rapamycin complex 1
(mTORC1), JAK1/JAK2, STAT3, and mitochondrial dysfunctio.82

Senomorphics include rapamycin, ruxolitinib, glucocorticoids
and metformin.130–132 However, most of the senomorphics do
not reduce the entire range of SASP factors and most have many
other effects beyond their senomorphic properties. Therefore,
disentangling the specific effects of SASP modulation on age-
related phenotypes is challenging. In addition, senomorphics
would need to be administrated continuously to maintain SASP
suppression, which limits their applicability.

Senolytic agents were first discovered in 2015. Although it
was known as early as 1995 that senescent cells are resistant to
apoptosis,133 the authors hypothesised that senescent cells
depend on senescence-associated antiapoptotic pathways
(SCAPs), which permit senescent cells to survive their own
SASP.134 Using a combination of bioinformatic tools and in vitro
RNA interference studies, it was verified that senescent cells rely
on SCAPs. Hence, SCAPs were identified as the Achilles heel of
senescent cells. Since this discovery, considerable progress has
been made in identifying small molecules, peptides and anti-
bodies that selectively induce apoptosis in senescent cells. The
combination of dasatinib, which is an FDA-approved tyrosine
kinase inhibitor and the antioxidant quercitin, which is a flavonol
present in many fruits and vegetables, successfully induced
apoptosis in senescent cells in vitro and in rodent model.133 Ac-
cording to in vitro data, a brief disruption of pro-survival
7vol. 3 j 100301



Review
pathways is adequate to82,135 suggest that senolytics could be
administrated intermittently, which would reduce the risks of
adverse effects compared to continuous treatment.

As mentioned, administration of dasatinib plus quercitin suc-
cessfully eliminated both adipocyte and hepatocytic senescence
and decreased lipid accumulation.33 So far, no studies in in-
dividuals with NAFLD using dasatinib plus quercitin have been
performed. However, several clinical trials addressing the efficacy
of dasatinib plus quercetin to treat metabolic diseases are
currently ongoing.136 Combining results from 2 human clinical
trials using dasatinib plus quercitin for the treatment of diabetic
chronic kidney disease and idiopathic pulmonary fibrosis – dis-
eases characterised by the accumulation of senescent cells –

revealed that eliminating senescent cells,whichwas confirmed by
analysing adipose tissue, improved clinical outcomes.137,138 These
clinical investigations haveproven that the risks of using dasatinib
plus quercitin in combination were minimal in relation to the
clinical benefits. However, several senolytic drugs, including
dasatinib, have been used for cancer treatment and often lead to
adverse effects such as nausea, vomiting, diarrhoea and skin
rashes when taken continuously. Moreover, senolytics also have
other effects. For example, the antioxidant quercetin inhibits fer-
roptosis and can decrease inflammation and lipid metabolism, all
pathways that are associated with NAFL.80,81 Although it has been
suggested that senolytics could be administrated intermittently,
thereby reducing the risks of adverse events, large clinical trials
areneeded todefine thebenefits andpotential risks of thesedrugs.
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Conclusions
Data from studies in rodents and humans have shown that
NAFLD is accompanied by an increase in senescent cells in the
liver, and that the number of senescent cells is associated with a
more advanced disease state. Despite the strong associations
between senescence and NAFLD in humans and the work derived
from in vitro studies and rodents, it remains to be determined if
hepatic senescence is a mere consequence of the metabolic
dysregulation and inflammatory phenomena in NAFLD or a
causal player in the development of this disease. Although a
causal role of cellular senescence must be further substantiated
and subsequently established in humans, this pathophysiological
process holds great potential, particularly when bearing in mind
that there is currently no effective treatment for NAFLD. Tar-
geting senescence has emerged as an attractive therapeutic
target for NAFLD since senescence might be involved in the full
spectrum of the disease (i.e. from early steatosis to cirrhosis).
Moreover, senolytic drugs can be administrated intermittently,
thereby minimising potential toxic effects and increasing
adherence in the individual often affected by multiple morbid-
ities and thus treated with multiple medications. Nevertheless,
clinical trials conducted in individuals with NAFLD using seno-
lytics have not been performed. Such trials are needed to better
define the benefits and potential risks of these drugs. To increase
efficacy and accuracy of these clinical trials, new or composite
assays are needed, and development of these assays should be a
top priority for the field.
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