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Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different
disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological
knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and
analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning
framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional
Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then
corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model
and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from
the biological network. In our experiment, we focus on the association discovery between TCM andWM.The derived associations
are quite useful for biologists to promote the development of novel drugs and TCMmodernization.The experimental results show
that the system achieves high efficiency, accuracy, scalability, and effectivity.

1. Introduction

With the explosive growth of biological data on the
web, large volume data sets are generated rapidly in the
field of biology. Up to February 2014, linked life data
(LLD), a data integration platform in the biological
domain (http://linkedlifedata.com/sources.html), contains
10,192,505,364 statements and 1,553,620,636 entitlements.
Entrez Gene has more than 100 million gene records
(http://www.ncbi.nlm.nih.gov/gene/). Bioportal contains 24,
828,631,205 annotations (http://www.bioportal.bioontolo-
gy.org). UniProt [1] knowledge base (UniProtKB/Swiss-Prot)
contains 53,249,714 sequence entries, comprising about 10
billion amino acids (ftp://ftp.uniprot.org/pub/databases/uni-
prot/relnotes.txt). Besides the obvious scalability issues,
heterogeneities from different resources are another major
challenge for big biological data integration and analysis.
Biological data covers a quite wide range, including proteins,
pathways, diseases, targets, genes, Chinese medical herbs,
symptoms, and syndromes, which usually come from

multiple isolated sources and have different formats and
taxonomies.

Based on domain knowledge from different disciplines
all regarding human biological systems, the decentralized
data repositories are implicitly connected (such as Figure 1).
Thus, without regard to the formatting issue, we can log-
ically regard the large-scale, heterogeneous, and complex-
associated biological data as a big biological knowledge
network. Biologists will benefit a lot by mining and discov-
ering the hidden association information from the network.
For example, the implicit associations between TCM and
WM can help biologists have a better understanding of the
complex biological system from the two perspectives of TCM
and modern biology. Besides, they can also greatly promote
the combination of TCM and WM, which will be useful in
explaining the science of TCM and developing novel drugs.

However, faced with such large-scale, heterogeneous, and
linked biological data, how to provide an efficient approach
to model, integrate, and analyze the big biological network
becomes a challenge. To support challenging these efforts, a

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 272915, 16 pages
http://dx.doi.org/10.1155/2014/272915

http://linkedlifedata.com/sources.html
http://www.ncbi.nlm.nih.gov/gene/
http://www.bioportal.bioontology.org
http://www.bioportal.bioontology.org
ftp://ftp.uniprot.org/pub/databases/uniprot/relnotes.txt
ftp://ftp.uniprot.org/pub/databases/uniprot/relnotes.txt
http://dx.doi.org/10.1155/2014/272915


2 BioMed Research International

GeneCards

Orphanet

Diseases

UniProtKBHGNC

TGDB

OMIM

GO

REACTOOMEEntrezGene

PathwayMaps

Millipore

KEGG

R&D systemEnsembl
MalaCards

Go id

HGNC id

Ensembl id
Disease id

Gene id

Disease name
Gene id

Name

UniProt id

UniProt id

Pathway name

UniProt id

Pathway id

Disease id

Cancer

Rare disease name

Regulation

Drug discovery
development

Entrez id

Protein id

Figure 1: An implicitly linked biological knowledge network.

computational framework should meet the following several
basic requirements:

(i) a biological conceptual network to model the con-
cepts and corresponding relationships of modern
biology and TCM;

(ii) a unified datamodel to integrate data across disparate
data sources;

(iii) a collection of efficient and scalable computational
services to analyze and discover new associations in
the integrated biological knowledge network.

Semantic web technologies [2], most especially the OWL
[3], are widely used in the life science and healthcare and
provide us with an efficient way to create a conceptual model
for the biological network by defining a specific ontology [4–
6]. An ontology represents the formal and explicit concepts
within a domain and the relationships between those con-
cepts. In OWL, resources are identified with triple pattern
⟨s, p, o⟩, representing a property p between subject s and
object o [7]. It provides a simple graph data model for
encoding networked data on the web using concepts and
semantic relations. Every concept in the biological ontology
maps a class of the biological network (e.g., a gene, herb,
protein, drug, disease, etc.).The connections (e.g., treatment,
possibleDrug, and encode) between biological classes are
expressed as certain semantic rules (relations). For example,
triple (Drug, treatment, Disease) represents a statement or
a fact that drug class can link to disease class by the rule
“treatment.”The semantic rule “treatment” from the example
can combine drug database and disease database. So semantic
web technologies are able to help us construct a conceptual
model to logistically organize and unify the versatile biologi-
cal data by defining a unified biological ontology.Then based
on the shared conceptual model, corresponding large-scale

heterogeneous biological data sources can be mapped and
merged into a big biological knowledge network.

A biological conceptual network can be divided into
multiple chains. Every chain is composed of multiple classes
of biological entities which are linked by several semantic
rules (Figure 4). Reasoners are able to derive the implicit
associations along the semantic rule chains. Thus, it becomes
quite natural to make full use of reasoning method to accom-
plish the association discovery for the biological network.
OWLreasoning technology is quite applicable to data analysis
problems especially knowledge discovery problems involving
complex semantic associations because it is able to infer
logical consequences based on a set of asserted rules or
axioms [8]. For rule-based reasoners, the OWL ontology
definitions are first compiled into a set of rules. This rule set
is then applied on the presented data set to generate the new
inferred triples.

However, existing reasoners on single machine including
Pellet [9], Fact++ [10], and Racer [11] work only on small or
simple knowledge network because the reasoning algorithms
are not scalable and usually are main memory oriented. As
for the large biological data analysis, we have to devise an
efficient and scalable reasoning algorithm. MapReduce is a
simple and effective parallel programming model for big
data processing on commodity computer cluster [12]. Users
can implement a distributed program by simply specifying
a map function that processes a key/value pair to generate
a set of intermediate key/value pairs and a reduce function
that merges all intermediate values associated with the same
intermediate key. The computing framework is designed
for batch-oriented work load, so it is quite effective in
processing data/text intensive tasks. It is capable of processing
the massive input data that is much larger than the total
memories of these physical computing nodes. Developers
also can add or delete computing nodes flexibly based on their
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needs. These characteristics of MapReduce make it an ideal
choice for big biological network reasoning. Figure 2 shows
the basic workflow of MapReduce.

In this paper, we present a general OWL reasoning
framework for modeling, integration, and analysis of the big
biological network. Specifically speaking, our works are as
follows.

(i) We design a unified biological ontology to model
the complex biological conceptual network including
TCM and WM. It provides an explicit specification
of the conceptualization of the abstract view of the
integrated biological network.

(ii) Based on the biological ontology, correspondingmas-
sive biological instance entities are integrated into a
big linked biological knowledge network, which acts
as the data model of the reasoning framework.

(iii) Wepropose severalMapReduce-based property chain
reasoning algorithms to discover the implicit asso-
ciations between entities from the big biological
knowledge network.

(iv) We present an implementation based on our proto-
type system and real biological data sets. The results
show that the system achieves high efficiency, accu-
racy, scalability, and effectivity.

The remaining of this paper is organized as follows. In
Section 2, we give the overall OWL reasoning framework
over big biological network and related modules. Section 3
presents the detailed implementation of the distributed rea-
soning system. Section 4 introduces the experiment and the
result analysis. Section 5 describes the relatedwork, including
OWL reasoning over biological data, massive biological data
integration and search platforms, and large-scale semantic
data reasoning systems. Section 6 gives conclusion.

2. OWL Reasoning Architecture and Modules

Three main modules have oriented our software develop-
ment: ontology modeling module, data integration module,
and distributed reasoning module. Ontology modeling mod-
ule is used to construct a biological ontology to model the
big biological conceptual network. Data integration module
is responsible for creating a big linked biological knowledge
network as the data model. Distributed reasoning module
aims at deriving the implicit associations between different
biological entities.

Figure 3 shows the schematic description of our OWL
reasoning architecture. The unified biological ontology pro-
vides integration principles and reasoning rules to data inte-
gration module and distributed reasoning module, respec-
tively. Data integration module outputs unified RDF triples
to form the big biological linked knowledge graph as data
model. Based on the conceptual model and data model,
the distributed reasoning module implements the reasoning
algorithm on a Hadoop cluster.

In the first subsection, we first introduce the method to
build the unified biological ontology. The second subsection

shows the process of data integration. The last part gives the
brief introduction of the distributed reasoning process. The
detailed implementation of the distributed reasoningmodule
will be presented in the next section.

2.1. Unified BioTCM Ontology. To capture and model the
complex biological network including modern biology and
TCM, we construct a standard and sharable conceptual
model by defining a unified biological ontology called unified
BioTCM ontology with the help of some TCM and WM
experts. It is an important component of the reasoning
framework, playing a fundamental role in integrating dis-
parate data sources and extracting reasoning rules, in that
(1) it is a unique ontology, which captures the fundamental
concepts, classes, and properties that help build the biological
conceptual network including modern biology and TCM; (2)
it defines the explicit semantic relations between different
biological entities, which will act as the reasoning rules for
cross-domain associated knowledge discovery.

Fundamentally, the unified BioTCM ontology provides a
common generalized terminological and assertional base for
mapping frommultiple sources to a unifiedmapping schema.
It is mainly a terminology box (TBOX) which consists of
class hierarchies and class restrictions defined with object
properties.

Figure 4 gives a brief introduction of the associated
conceptual model for TCM andWM network. In the unified
BioTCM ontology model, there are many key concepts:
disease, drug, gene, protein, syndrome, symptom, target,
TCM herb, TCM symptom, TCM syndrome, and so on.
Mainly, specific disorders of certain genes can affect the
encoding proteins, which cause diseases to appear. Proteins
also can affect the gene expression. Drugs are used to treat
diseases by interacting with the sequential proteins through
possible targets and involved pathways. A pathway can trigger
the assembly of new protein molecules. The herbs are the
constituents making up drugs. The major link between
modern biology and Chinese medicine is based on the fact
that some western diseases are similar to TCM diseases, and
it has been found that certain genes are responsible for some
TCM diseases and that certain remedies (e.g., herbs) might
cure the genetic disease by possible biological targets [13–18].

In Figure 4, the big biological conceptual network can
be divided into multiple reasoning property chains. For the
associated network of unified BioTCM ontology, we identify
several property chains. Every property chain, consisting of
several sequential semantic rules, can capture the implicit
associations between every two specific biological classes by
modeling the potential interactions of intermediate biological
entities.This association information is useful in understand-
ing themechanisms of action of biological entities as a whole,
especially those entities biological researchers are not familiar
with.

2.2. Biological Data Integration. Since we have designed a
well-defined comprehensive biological ontology, the TBOX
from the ontology tells us which data needs to be collected
and how its schemas should be. Thus, a big linked biological
knowledge graph (also called assertion component (ABOX))
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can be created based on the TBOX. Another challenge in
the integration of biological data lies in the format. Although
there are numerous bioinformatics databases available, most
of them do not share the uniform format. We utilize many
different ways to transform these data into a standard RDF
format.

For some text data, we utilize simple text mining
method to extract required instance triples. For rela-
tional data, we use RDB2RDF tools such as D2R to
implement transforming [19]. We also get some online
gene data by web service, such as the NCBI efetch ser-
vice (http://www.ncbi.nlm.nih.gov/books/NBK43082/). As a

result, a big and comprehensive linked biological knowledge
network is formed.

2.3. Distributed Reasoning. The distributed reasoning mod-
ule is the core of our reasoning framework. It is composed
of three parts: reasoning rules, reasoning objects, and dis-
tributed reasoning algorithm. Reasoning rules depict some
basic association relationships between biological classes,
which can be extracted from the unified biological ontology.
Reasoning objects represent the biological entities that we
want to discover the implicit associations between them. It
can be formed by constructing a linked knowledge network.

http://www.ncbi.nlm.nih.gov/books/NBK43082/
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Distributed reasoning algorithm is dedicated to deploying an
efficient and scalable reasoner over big biological network
based on reasoning rules. The first two parts have been
described. We will show the detailed realization of the
distributed reasoning algorithm in the next section.

3. OWL Reasoning Algorithms
Based on MapReduce

In the section, we first describe a typical biological reasoning
problem and redefine it formally. Then we present a general
reasoning algorithm framework and subsequently introduce
a näıve OWL reasoning algorithm based on MapReduce.
We call this implementation näıve because it is easy to
understand but performs poorly. Therefore, in the next part,
an improved algorithm is presented to deal with the conflict
between the parallel mechanism of MapReduce and the
sequential demands of a reasoning rule set. At last, to enhance
the parallel capability and efficiency of reasoning system, a
multichains reasoning algorithm is presented to accomplish
multiple property chains reasoning processes in an iterative
MapReduce job.

3.1. Biological Reasoning Example. Traditional Chinese
medicine, which has existed for thousands of years in China,
is yet to become an integral part of the standard healthcare
system in western countries due to a lack of scientific
evidence for its efficacy and safety [20]. Meanwhile, TCM
is also gaining increasing attention from western healthcare

practitioners because it is making favorable contributions
to the development of novel drugs that are made of natural
herbs. So it will become quite useful to reveal some implicit
relationships between TCM and WM. Problem 1 describes a
typical biological reasoning example.

Problem 1. In recent years, several herbswere found to exhibit
a variety of effects through regulating a wide range of gene
expressions or protein activities [17, 18]. To discover the
implicit mappings between Chinese herbs and genes is a
problem for biological researchers to solve for understanding
the possible therapeutic mechanisms of TCMs via gene
regulations.

We are able to get associations between herb and gene
based on the corresponding OWL transitive property chain
in the biological network (Chain 2 in Figure 4).The transitive
relationship can be derived through the shared intermediates.
In our reasoning system, relationships between two kinds of
biological entities are expressed as reasoning rules. Typically,
as is shown in Figure 4, some basic reasoning rules have
been given directly by the biological ontology, such as
“treatment” and “possibleDrug.” But there does not exist
a direct association rule between herb and gene. On this
occasion, we need to create a reasoning rule set based on
existing basic reasoning rules that can link them implicitly.

3.2. Formal Definition of Reasoning Problem. To address the
problem efficiently, we define the following concepts.
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Table 1: Variables table.

Variable symbol Definition Example
RRC Reasoning rule chain RRC0
OPC OWL property chain OPC0
PCS Property chain set PCS0
PID Property ID 1
ORN OWL reasoning network ORN0
ARS Associated result set ARS0
𝐺 Instance triple graph G0
Class𝑘 An entity belonging to certain class Herb0
Tk An instance triple T0
𝑅𝑘 A rule triple R0
𝑃𝑘 Property of the 𝑘th rule triple P0

Definition 2 (reasoning rule chain (RRC)). A reasoning rule
chain is a set of sequential basic reasoning rules. Every basic
reasoning rule is given in advance which is formalized as a
rule triple such as (Herb, treatment, Disease). The reasoning
rule chain of Problem 1 can be described as RCC0 = {(Herb,
treatment, Disease), (Disease, possibleDrug, Drug), (Drug,
hasTarget, Target), (Target, hasAccession, Protein), (Protein,
classifiedWith, EntrezID), (EntrezID, symbol, Gene)}.

Definition 3 (OWL property chain (OPC)). A OPC is made
up of one or more sequential properties from the reasoning
rule chain. Given a reasoning rule chain such as RCC0, Pk
refers to the property of the 𝑘th rule triple. Initially, OPCk
equalsPk.Therefore, we can get the following results:OPC0 =
treatment,OPC1 = possibleDrug, . . . ,OPC5 = symbol.Then
several consecutive sequential OPCs will form a new OPC
with operation ⊗ if they meet merging condition. For exam-
ple, if there exist some triples, (Herb0, treatment, Disease0),
(Disease0, possibleDrug, Drug0), . . . , (EntrezID0, symbol,
Gene0), then we can derive a new triple (Drug0, P, Gene0)
where P is expressed as (OPC0 ⊗OPC1 ⊗OPC2 . . . ⊗OPC5).
To some extent, the reasoning process can be regarded as the
iterated merging operations of OPCs.

Definition 4 (property chain set (PCS)). As the name sug-
gests, the PCS is a set of sequential OPCs in a given
triple graph. For RCC0, the initial PCS is expressed as
PCS0 = {treatment, possibleDrug, hasTarget, hasAccession,
classifiedWith, symbol}. In the process of reasoning, the PCS
will vary with OPCs.

Definition 5 (property ID (PID)). We allocate an ID called
PID to every OPC in the PCS. Initially, the PID of the first
OPC in the PCS0 is set as 0, the second is 1,. . ., and the PID of
the last OPC is 5 (the length of PCS0 is 6). Correspondingly,
every instance triple also owns a PID because its predicate
maps some OPC. For those triples whose OPCs are not
included in the PCS, the PID is assigned as −1. These triples
should be ignored in the process of reasoning.

Algorithm 1 is a specific example for these definitions
(take chain 2 in Figure 4 for example). Table 1 shows the
variable symbols and related definitions used by the paper.

Based on the above definitions, Problem 1 can be redefined
formally as Problem 6.

Problem 6. Input a quad (G, PCS0, Herb, Gene); we are
required to solve the problem: compute the triple collection
𝑆 = {(𝑂0,OPC, 𝑂5) | 𝑂0 ∈ Herb, OPC = (treatment ⊗

possibleDrug ⊗ hasTarget. . . ⊗ symbol), O5 ∈ Gene}. G is the
instance triple graph.The PCS0 is the property chain set of G.
Herb and Gene represent the two classes needed to explore
implicit mappings.

Consider the following instance triple graph: G0 =
{T0(Herb0, treatment, Disease0), T1(Disease0, possible
Drug, Drug0), T2(Drug0, hasTarget, Target0), T3(Target0,
hasAccession, Protein0), T4(Protein0, classifiedWith,
EntrezID0), T5 (EntrezID0, symbol, Gene0), T6(Herb1,
treatment, Disease0), T7(Target0, geneSequence,
Sequence0)}. According to the above three definitions,
we can calculate the PID for every instance triple. For
example, T0’s PID is 0 because its predicate “treatment” is
the first OPC in PCS0. T7’s PID is −1 because its predicate
“geneSequence” is not included in PCS0.

3.3. Framework of OWLReasoningAlgorithm. Given an input
Quad0 = (G0, PCS0, Herb, Gene), to compute solution
domain, we need to keep applying the rules to reason until
we finish deriving the desired triples (fixpoint). It will involve
multiple iterations. The number of iterations depends on the
complexity of the input and efficiency of the algorithm.

In the workflow of the algorithm as shown in
Algorithm 2, we firstly complete initialization by inputting a
quad and setting a global variable to check fixpoint condition.
Then the algorithm comes into the procedure of iterating.
In every iteration, we load the triple graph and PCS. Then
we perform a join with a MapReduce job. At last, new input
triple graph and PCS are calculated for the next iteration.

3.4. Naı̈ve OWL Reasoning Algorithm. To derive a new triple,
we need another two triples as the sources. It is quite natural
and direct to connect Herb with Drug through intermediate
Disease based on the rule chain in Figure 4. That is to say,
we firstly process the instance triples whose PID is 0 or 1 in
every iteration. Based on the idea, we can specify the join
condition: the objects of triples whose PID equals 0 must
match the subjects of other triples whose PID is 1. For the
sake of description, we define the concept of Join Candidate
Set.

Definition 7 (Join Candidate Set). Join Candidate Set is a
binary set of the instance triples that meet join condition.
Once there exist two instance triples satisfied with the
above join condition, such as T0 (Herb0, P0, Disease0), T1
(Disease0, P1,Drug0), we should add the element (T0, T1) to
the Join Candidate Set. In every iteration, we firstly compute
the Join Candidate Set, and then we can perform joins to
derive some new triples over elements in the Join Candidate
Set.
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Reasoning Rule Chain: {(herb, treatment, Disease), (Disease, possibleDrug, Drug), (Drug, hasTarget, Target),
(Target, hasAccession, Protein), (Protein, classifiedWith, EntrezID), (EntrezID, symbol, Gene)}

OWL Property Chain: OPC0=treatment, OPC1=possibleDrug, OPC2=hasTarget, OPC3=hasAccession,
OPC4=classifiedWith, OPC5=symbol

Property Chain Set: {OPC0, OPC1, OPC2, OPC3, OPC4, OPC5}

Property ID: {OPC0=0, OPC1=1, OPC2=2, OPC3=3, OPC4=4, OPC5=5}

Algorithm 1: Formalized definitions for a specific reasoning example.

Initialization: instance triple graph, 𝐺0; Property Chain
Set, PCS0; two classes required to explore implicit
semantic associations, Herb and Gene; number that has
been iterated, 𝐼 = 0; number needed to be iterated,𝑀;

Iteration:
while 𝐼 < 𝑀 do

Step 1. Load triple graph and PCS on the current
iteration, 𝐺𝐼, PCS𝐼;

Step 2. Group instance triples based on join key;
Step 3. Derive new instance triples;
Step 4. Update input instance triple graph, 𝐺𝐼+1;
Step 5. Update PCS, PCS𝐼+1;
Step 6. 𝐼 ← 𝐼 + 1;

end while

Algorithm 2: Framework of OWL reasoning algorithm.

After an iteration, the first two OPCs (P0 and P1) in the
PCS will merge to a new OPC (P0⊗P1) whose PID is set to 0.
Meanwhile, the PIDof all otherOPCs reduces by 1.Obviously,
the length of the PCSwill also reduce by 1.When length of the
PCS becomes 1, the algorithm ends. So for a PCSwhose initial
length is 𝑛, we need 𝑛 − 1 iterations to finish reasoning.

Let us consider the same input Quad0 as above. In
the first iteration, we derive two triples by computing the
Join Candidate Set {(T0,T1), (T6,T1)}: T8(Herb0, P0 ⊗P1,
Drug0), and T9(Herb1, P0 ⊗P1, Drug0). Then {T0,T1,T6}
will be deleted from the input data. T7 is also removed
because its OPC (GeneSequence) is not included in the
PCS0. So the new input quad becomes QUAD1 (G1,
PCS1, Herb, Gene). Consider G1 = {T8(Herb0, P0 ⊗P1,
Drug0), T9(Herb1, P0 ⊗P1, Drug0), T2(Drug0, hasTarget,
Target0), T3(Target0, hasAccession, Protein0), T4(Protein0,
classifiedWith, EntrezID0), T5(EntrezID0, symbol,Gene0)}.
PCS1 = {P0 ⊗P1,P2,P3,P4}. Then we continue to apply
the same method to perform joins until we get the final
results: (Herb0, P0 ⊗P1 ⊗P2 ⊗P3 ⊗P4, Gene0) and (Herb1,
P0 ⊗P1 ⊗P2 ⊗P3 ⊗P4,Gene0). As the length ofPCS0 is 5, the
total number of iterations is 4. The first iteration process is
shown in Figure 5.

When deployed in MapReduce, every MapReduce job
corresponds to an iteration procedure which performs a join.
Mapper is used to separate all input triples into three groups
based on PID: triples needed to be joined immediately, triples
needed to be processed later, and irrelevant triples. Reducer is
responsible for implementing joins to recalculate new input
triple graph for the next iteration. At last, PCS is updated.

Another similar MapReduce job continues to be executed
until the length of PCS becomes 1.

3.5. Efficient OWL Reasoning Algorithm. The previously pre-
sented implementation is straightforward but is inefficient
because it involves too many iterations and wastes lots of
valuable computing resources in an iteration. Algorithm 2
only implements joins on these instance triples whose PID
is 0 or 1 in one iteration, while other instance triples are not
processed concurrently. As a result, it needs (𝑛 − 1) iterations
to complete reasoning where 𝑛 represents the length of the
initial PCS. So we introduce a more efficient algorithm to
greatly decrease the number of jobs and time required for
reasoning computation.

In fact, we can perform more joins in an iteration if we
set out a more flexible join requirement. Specifically, the join
requirements contain two conditions.

(1) The PIDs of two triples’ OPCs are adjacent strictly.
(2) The object of triple owning a smaller PIDmatches the

other triple’s subject.
For example, there are three instance triples as follows:

T0(Herb0, treatment,Disease0), T1(Disease0, possibleDrug,
Drug0), and T2(Drug0, hasTarget, Target0). As T1 meets
join conditions both with T0 and T2, the Join Candidate Set
should be {(T0,T1), (T1,T2)}. So we derive two triples T3
(Herb0, P0 ⊗P1,Drug0) and T4(Disease0, P1 ⊗P2, Target0).
It is obvious that T3 and T4 do not meet join conditions in
next iteration. Therefore, we cannot derive the right result
(Herb0, P0 ⊗P1 ⊗P2, Target0).
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Figure 5: The workflow of naı̈ve reasoning algorithm in the first iteration.

We are able to solve the problem if we add another
restricted condition called Parity Judgment Rule to join
requirement. Firstly, let us give the definition of Parity
Judgment Rule.

Rule 1 (Parity Judgment Rule). We regard the Parity Judg-
ment Rule as the third join condition. It is based on this
principle that a triple (assuming k represents its PID and is
an odd number) only performs joins with triples whose PID
is (k − 1). In particular, for an instance triple Tk(Xk, OPC,
Yk), if PID of the OPC is an odd number k, the join key is
represented as (k−1) Xk. Otherwise, the join key is k Yk. As
for the above three triples, the join condition guarantees that
T1 only connects with T0 in the first iteration. Then we can
derive the right result in the second iteration.

As is shown in Figure 6, based on the above three
join conditions, we can divide all biological entities except
irrelevant contents (Sequence) into 3 (⌈N/2⌉) groups where
𝑁 represents the length of PCS0. Then we perform joins
between the triples from the same group in an iteration. As
a result, the derived triples will be the new input graph for
the next iteration. Meanwhile, we halve the PCS by merging
the two adjacent OPCs to one newOPCwith the operation ⊗.
Subsequently, we continue to apply similar method to reason
until the length of PCS becomes 1. Obviously, this algorithm
makes full use of the computing capacity of cluster nodes to

limit the number of total iterations to 3 (log𝑁), which will
greatly improve the efficiency of reasoning, compared to 5
(𝑁 − 1) iterations in the previous naı̈ve algorithm.

Consider the same input quad Quad0. In the first
iteration, the Join Candidate Set is calculated as {(T0,T1),
(T1,T6), (T2,T3), (T4,T5)} based on join conditions. Then
new triples are derived as follows: {T8(Herb0, P0 ⊗P1,
Drug0), T9(Herb1, P0⊗P1, Drug0), T10(Drug0, P2 ⊗P3,
Protein0), T11(Protein0, P4 ⊗P5, Gene0)}. Then we get
a new graph G1 = {T8, T9, T10, T11}. The PCS is also
updated as PCS1 = {P0 ⊗P1, P2 ⊗P3, P4 ⊗P5}. So the
first iteration ends up with a new smaller input quad
Quad1 =(G1, PCS1, Herb, Gene). Similarly, in the second
iteration, we work out the new Join Candidate Set which is
expressed as {(T8,T10), (T9,T10)} and another new graph
is recalculated as G2 = {T11(Protein0, P4 ⊗P5, Gene0),
T12 (Herb0, P0 ⊗P1 ⊗P2 ⊗P3 ⊗P4,Protein0), T13(Herb1,
P0 ⊗P1 ⊗P2 ⊗P3 ⊗P4, Protein0)}. The new PCS is also
updated as {P0 ⊗P1 ⊗P2 ⊗P3,P4 ⊗P5}. Then we implement
the last iteration. The Join Candidate Set is (T12,T11),
(T13,T11). The desired triples are derived as follows: {T14
(Herb0, P0 ⊗P1 ⊗P2 ⊗ P3 ⊗P4 ⊗P5, Gene0), T15(Herb1,
P0 ⊗P1⊗P2 ⊗P3 ⊗P4 ⊗P5,Gene0)}. The length of PCS0 is
5. So the algorithm ends after 3 iterations. The first iteration
scenario is shown in Figure 7.

When implemented in MapReduce, Mapper is used to
group all triples that meet join conditions into a Reducer.
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Figure 7: The workflow of parallel property chain reasoning algorithm in the first iteration.

Reducer is responsible for computing the Join Candidate Set
and deriving new input triples for the next iteration. The
algorithm is demonstrated in Algorithm 3.

In map function, we compute join key for every triple
based on Parity Judgement Rule. The join key is used as
intermediate key. Intermediate value is the triple itself. Each
map process outputs several pairs of intermediate results
⟨𝑖𝑘, 𝑖V⟩.

In reduce function, we firstly divide input triples into two
classes based on the parity of triple’s PID. If PID is odd, we
extract triple’s object to a set called ObjectList. Otherwise,
we add triple’s subject to the set called SubjectList. We are
able to get the Join Candidate Set based on ObjectList and
SubjectList. Then we compute the shared OPC for all new
derived triples. Subsequently, the output pairs ⟨𝑜𝑘, 𝑜V⟩ are
written to HDFS (Hadoop Distributed File System) where 𝑜𝑘
is null and 𝑜V is the derived triples.The triples will form a new
input triple graph for the next iteration.

At last, the PCS is updated by merging the two adjacent
OPCs to one newOPC.Then another similarMapReduce job
is launched until the length of PCS becomes 1.

3.6. Multichains Parallel Reasoning Algorithm. The previ-
ously described reasoning algorithms are intended to derive
the association information among the entities from two
specific biological classes in an iterative MapReduce job. A
significant feature of the big biological network lies in the
complex association relationships between biological data.
Every property chain only represents the implicit associations
between two specific biological classes. Meanwhile, there
exist multiple property chains in the big biological network.
If we want to get the associations between multiple pairs of
biological classes, the reasoning process has to be repeated
several times. This will result in low efficiency and waste
𝐼/𝑂, network bandwidth, and CPU resources, where large-
scale data must be reloaded and reprocessed at each iterated
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Map(key, value)
// key:linenumber(irrelevant)
// value:instance triple
PID = PCS⋅getPID(𝑡𝑟𝑖𝑝𝑙𝑒⋅predicate);
//get the PID of the triple
If PID == −1 then

return;
end if
if PID == (len − 1)&len%2 == 1 then

emit(null, triple);
return;

end if
if PID%2 == 1 then

𝑘𝑒𝑦=(PID − 1)+“ ”+𝑡𝑟𝑖𝑝𝑙𝑒⋅getSubject();
else

𝑘𝑒𝑦=PID+“ ”+𝑡𝑟𝑖𝑝𝑙𝑒⋅getObject();
end if
emit(𝑘𝑒𝑦, V𝑎𝑙𝑢𝑒);

Reduce(key, value)
// key:join key
// value:triple
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡 = empty;
𝑜𝑏𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡 = empty;
len=PCS⋅length;
for each 𝑡𝑟𝑖𝑝𝑙𝑒 ∈ V𝑎𝑙𝑢𝑒 do

PID = PCS⋅getPID(𝑡𝑟𝑖𝑝𝑙𝑒⋅predicate);
if PID%2 == 1 then

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡⋅add(𝑡𝑟𝑖𝑝𝑙𝑒⋅subject);
else

𝑜𝑏𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡⋅add(𝑡𝑟𝑖𝑝𝑙𝑒⋅object);
end if

end for
𝑛𝑒𝑤 OPC=ComputeOPC();
for each 𝑠 ∈ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡 do

for each 𝑜 ∈ 𝑜𝑏𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡 do
emit(null, triple(𝑠, 𝑛𝑒𝑤 OPC, 𝑜));

end for
end for

Algorithm 3: Efficient OWL reasoning algorithm based on
MapReduce.

job. So to enhance the efficiency and parallel capability
of the reasoning system, an improved multichains parallel
reasoning algorithm is presented below.

First, we give two related definitions.

Definition 8 (OWL reasoning network (ORN)). An OWL
reasoning network is a set of property chain sets (PCS). In
previous example, the ORN only has a PCS element (PCS0).
In this new reasoning scenario, the i in PCSij represents
the 𝑖th element in ORN, while j denotes the new PCS
after j iterations. Similarly, the i in Pij represents which
PCS the property belongs to, while j denotes its order in
corresponding PCS.

Definition 9 (associated result set (ARS)). An associated
result set is a collection of tuples like (CLASS1, CLASS2).
Every tuple represents two biological classes that we want

to discover implicit association information between them.
Every reasoning rule chain or property chain set corresponds
to an element in ARS. For example, PCS0 corresponds to the
binary set (Herb, Gene).

So the multiple chains reasoning problem is defined
formally as Problem 10.

Problem 10. Input a three tuple (G,ORN0,ARS0), whereG is
the instance triple graph, ORN0 represents a concrete OWL
reasoning network, and ARS0 denotes the associated result
set; the reasoner is required to solve the problem: find out
the solution domain 𝑆 = {(𝑂0,OPC, 𝑂𝑘) | (𝑂0, 𝑂𝑘) ∈ ARS0,
OPC denotes the OWL property chain that links 𝑂0 and O𝑘
together.}.

For every reasoning rule chain inORN0, the principle and
process of reasoning are the same as Algorithm 3. The key
task of multichains parallel reasoning is to ensure that every
reasoning job can be executed simultaneously but does not
affect the others.

Consider the input0 = (G0, ORN0, ARS0). G0 and
(ORN0) are shown in Figure 8 (step one and step two). The
ARS0 is {(herb, gene), (herb, ingredient)}. As the multiple
reasoning rule chains in the ORN0 may intersect, the cross
section (instance triples) should participate in the multiple
reasoning jobs separately. Take T0 for example; since the
PCS00 and PCS10 all contain property “treatment,” the Map-
pers should emit two key/value pairs into different Reducers
to isolate the two reasoning chains. For T3 and T6, as their
properties “hasIngredient” and “classifiedWith” only exist in
PCS00 or PCS10, Mappers only need to output a key/value
pair. At the Mapper process, we add another optimization
scheme for the triples whose PID is 𝑛 − 1 (𝑛 is the length
of corresponding PCS and 𝑛 is an odd number). Because it
is obvious that these triples do not meet join conditions, we
only need to directly output the triples to HDFS without the
processing of Reducer. Compared to Algorithm 3, Mappers
only need to add a label reasoning chain identification to the
intermediate key and Reducers remain almost unchanged.
The number of iterations depends on the length of the longest
PCS element in the ORN0. The first iteration process of the
multichains parallel reasoning is shown in Figure 8.

4. Experiment Evolution

Our experiment aims at discovering the implicit associations
between TCM and WM. In particular, it focuses on deriving
the association information between Chinese herbs and
western medical genes, drug ingredients. This information
hidden in the big biological network is of quite value in
promoting the development of novel drugs, TCM modern-
ization, and understanding the complex biological system
in whole. The distributed reasoner uses multichains parallel
reasoning algorithm with two reasoning rule chains shown
in Figure 4 (Chain 1 and Chain 2).

4.1. Data Preparation and Experimental Environment.
As the data model, a big linked biological knowledge
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Figure 8: The workflow of multichains parallel reasoning algorithm in the first iteration.

network is constructed in Figure 9 (available at http://
www.biotcm.org/mappingsearch/index.html; please click
the buttons “List” and “Graph” to see the descriptions of all
the ontology bases and overall knowledge graph, resp.). The
linked biological knowledge network acts as the background
database of the BioTCM (http://www.biotcm.org/), which
is an integrated association discovery platform of modern
biomedicine and Chinese medicine developed by us. It
includes most of the typical biological ontologies across
WM and TCM including Gene ontology [21], Disease
ontology [22], Diseasome ontology [23], DrugBank [24],
TCMGeneDit [25], TCMLS [26], UniProt [1], and NCBI
Gene [27]. Every oval in the linked knowledge graph is
marked up by a number which represents the triple number
of the data set. The dashed ovals in Figure 9 indicate the
experimental input data sets. The total triple number of the
experimental input is more than 81 million triples, occupying
15 gigabytes. This is a so massive knowledge graph that all
popular reasoners cannot process efficiently. At the same
time, existing distributed reasoners such as WebPIE are also
not able to fulfil the reasoning task over the big biological
network, because they only can calculate the closure of
large-scale triples based on fixed RDFS (resource description
framework schema) or OWL rules [28].

We implemented the reasoning prototype system based
on the Hadoop framework, which is an open-source Java

implementation of MapReduce [29]. The experiment was
conducted in a single node and several Hadoop clusters with
the scale of 1 node (pseudodistributed model), 2 nodes, 3
nodes, 4 nodes, 5 nodes, and 6 nodes. One node in cluster
acts as master (controlling node) and the left ones act as
slaves (real computing nodes). The Hadoop version is 1.1.3.
Each node has the same configuration, including Linux OS,
8G RAM, 500G disk capacity, and 8-core Intel(R) Xeon(R)
CPU E5620 with 2.4GHz. The nodes are connected by the
network with the bandwidth of 1000M/s. In experiment, as
Reducer is responsible for the major computation, Reducer
is dynamically set by the length of PCS in a MapReduce job.
Each test is executed 5 times and the average computing time
is recorded.

4.2. Evaluation Parameters. Because our ultimate goal is
to develop an efficient reasoner to systemically explore the
implicit relationships among biological entities from the
big biological network for further analysis, the accuracy
(high precision), efficiency (less processing time), scalability
(larger input data), and effectivity (high practicality) will be
critical. So we evaluate our reasoning system from the above
several aspects. Accuracy evaluation is based on random
sampling inspection. We selected a number of herb-gene
pairs and herb-ingredient pairs from the results. Then three
annotators with graduate degrees in biomedical and TCM

http://www.biotcm.org/mappingsearch/index.html
http://www.biotcm.org/mappingsearch/index.html
http://www.biotcm.org/
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Table 2: Accuracy evaluation for selected genes.

Gene symbol Sample size TP Precision Total mappings
TNF 30 28 93.3% 34
PEP4 30 22 73.3% 101
HK1 30 24 80% 100
IL6 30 26 86.7% 178
NQO1 30 26 86.7% 77
Sum up 150 126 84% 490

domains independently examined whether each pair was
correctly extracted by our system. Only the pairs agreed upon
by all three curators were counted as true positives (TP).
Precision is defined according to formula (1), where TP and
FP are the numbers of true positives and false positives,
respectively. Efficiency evaluation is conducted by comparing
the running time of single node and the distributed reasoning
system. According to formulas (2) and (3), Speedup and
Sizeup are calculated for scalability evaluation. Effectivity
evaluation is constructed by analysing the potential value of
this association information. Consider

Precision =
TP

TP + FP
(1)

Speedup =
computing time on 1 computer

computing time on cluster (2)

Sizeup =
computing time for processing 𝑚 × data
computing time for processing data

.

(3)

4.3. Evaluation and Discussion

4.3.1. Accuracy. Our reasoning system derives 40,178 herb-
gene pairs and 5,183 herb-ingredient pairs. As many map-
pings between herbs and western medical entities are still
unproven by professional biochemistry experiments, there is
no gold standard for determining the correct mapping space
between herbs and western medical entities. If we choose
those less studied genes, herbs, and ingredients, the calculated
precision is underestimated significantly because we may
mistake many TP for FP in the manual evaluation. For this
reason, with the advice of related experts, we focused on some
major reported genes, ingredients, and herbs in recent years.
Then we randomly selected 30 pairs of associations (samples)
for every selected entity from the reasoning results and
used precision measurement to evaluate the performances.
The accuracy evaluations of the association information
are shown in Tables 2, 3, and 4. The results show that
our system achieves high accuracy. The high accuracy pro-
vides strong evidence to support further results analysis for
researchers. All the results, reasoners, and the unified ontolo-
gies are available online (https://github.com/hualichenxi/bio-
logical-knowledge-reasoner).

4.3.2. Efficiency. Table 5 shows that reasoning on a single
node (not pseudodistributedmodel) leads to out-of-memory

Table 3: Accuracy evaluation for selected ingredients.

WM ingredient Sample size TP Precision Total mappings
Dasatinib 30 23 76.7% 57
Fluoxymesterone 30 26 86.7% 47
Paclitaxel 30 22 73.3% 114
Pindolol 30 24 80% 51
Trastuzumab 30 25 83.3% 78
Sum up 150 120 80% 347

Table 4: Accuracy evaluation for selected herbs.

Herb Sample size TP Precision Total mappings
Ganoderma lucidum 30 24 80% 310
Hypericum 30 23 76.7% 542
Salvia miltiorrhiza 30 26 86.7% 523
Artemisinin 30 23 76.7% 575
Ginkgo biloba 30 25 83.3% 788
Sum up 150 121 80.7% 2688

Table 5: Scalability over number of nodes.

Number of nodes Time (minutes) Speedup
1 node Out of memory
2 nodes 8.45 1
3 nodes 4.96 1.7
4 nodes 3.07 2.76
5 nodes 2.48 3.41
6 nodes 2.16 3.91

Table 6: Scalability over input data.

Input data (size) Time (minutes) Sizeup
1 time (15G) 3.07 1
2 times (30G) 5.75 1.87
3 times (45G) 8.03 2.62
4 times (60G) 11.26 3.67
6 times (90G) 18.04 5.88
8 times (120G) 24.09 7.85

problem. When implemented in the distributed reasoning
system, we are able to complete reasoning for 15G data within
several minutes. Especially when the scale of Hadoop cluster
becomes bigger, the performance is improved significantly.
Meanwhile, the multichains reasoning algorithm guarantees
that reasoner can perform multiple reasoning tasks defined
by users themselves in a MapReduce job. The high efficiency
and flexibility make our reasoning system become an excel-
lent reasoner for large-scale biological data.

4.3.3. Scalability. Table 5 shows howour approach scales with
an increasing number of computing nodes, using the data
from Figure 9 as a fixed input. We use the running time on
the 2-node configuration as baseline because a single node
cannot process all the data due to being out of memory.
Table 6 shows how our approach scales with increasing

https://github.com/hualichenxi/biological-knowledge-reasoner
https://github.com/hualichenxi/biological-knowledge-reasoner
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input size by doubling the original data (reasoning rules not
changed), using a fixed configuration of 4 nodes. Speedup and
Sizeup are shown in Figures 10 and 11, respectively.

From Figure 10 we can see that the Speedup increases
strongly with increasing computing nodes, which means
processing time is significantly reduced by adding more
computing nodes. In theory, the processing time is supposed
to grow linearly as the input data increases. That is to say, the
processing time will increase m times when the input data
increasesm times. Figure 11 shows that the red line denoting
the Sizeup on Hadoop is below the blue line representing the
theoretical Sizeup, which shows that Sizeup ofm times input
is less than or equal to m. This means that execution time
increases more slowly than input data size and our system
works better in processing larger input set.

To sum up, considering the effects of the platform
overhead, we conclude that the results show good scalability
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Figure 11: Sizeup on Hadoop cluster.

regarding the size of the input and number of nodes. Our rea-
soning system achieves excellent scalability. This advantage
ensures that the reasoning system can be easily applied to the
analysis of larger scale biological knowledge network.

4.3.4. Effectivity. The extracted association information con-
sists of two parts: herb-gene pairs and herb-ingredient pairs.
These associations are of great value to TCM and WM
biologists in TCM modernization, new drug development,
and so on.

Analysis for Herb-Gene Pairs. The derived herb-gene pairs
could be used to provide some scientific evidences for TCM
modernization from the perspective of modern biology by
explaining the potential therapeutic mechanisms of herbs via
gene regulations. Take gene tumour necrosis factor (TNF) for
example. TNF as an important proinflammatory cytokine
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plays a role in the regulation of cell differentiation, prolifera-
tion, and death which is closely correlated with tumour dis-
ease (http://www.ncbi.nlm.nih.gov/pubmed/21790707). Our
experimental results reveal that TNF gene is associated
with 34 herbs including Ganoderma lucidum, Salvia mil-
tiorrhiza, and Hypericum perforatum. On the other hand,
just as predicated by the results, according to chemical
component analysis, most of these herbs (94%) contain
anticancer compounds. The compounds can cause cancer
cells to round up and die, inhibit tumor-induced blood
supply development, and prevent tumor growth [30–32].
These derived associations suggest the possible therapeutic
mechanisms involved by herbs, genes, and herb components.
Besides, these herbs containing the anticancer components
can inspire researchers into the development of new cancer
drugs. The associations can also help biologists have a more
comprehensive understanding of the functional mechanisms
of the complex biological system as a whole from the two
perspectives of TCM and modern biology.

Analysis for Herb-Ingredient Pairs. An increasing number of
researchers are focusing their attention on developing drugs
from traditional Chinese medicinal herbs and identifying the
active ingredients of these herbs and their pharmacological
mechanism of actions [33, 34]. The most successful herb
example for TCM is the antimalarial drug artemisinin. Other
famous TCM herbs (e.g., Ginkgo biloba, Salvia miltiorrhiza,
Hypericum perforatum, and so on) are also widely used in
WM for treating some complex diseases such as Alzheimer
andAsthma. However, the active ingredients ofmany existing
herbs have still remained unknown or uncertain for biolo-
gists. So besides regular chemical experiments, the extracted
herb-ingredient pairs can also assist researchers to discover
more information about some certain herb for revealing the
mystery of herbs. Moreover, this TCM-inspired ingredient
information can be further used to develop novel drugs.
Take artemisinin for example; if biologists want to develop
novel drugs for malaria, they can get some inspirations from
these ingredients related to herb artemisinin. Our reasoning
results show that the herb artemisinin is associated with 33
ingredients including adalimumab, docetaxel, and adenosine.
Many of the ingredients have been proved to be effective for
treating malaria [35–37]. So the mechanisms of action and
chemical components of these ingredients can facilitate the
development of new drug for malaria.

5. Related Work

5.1. Reasoning over Biological Data. Based on biological
formal ontologies, we are able to make use of reasoning
method from description logic to implementmany biological
applications, such as the discovery of new relationships,
consistency checking, classification, and practical querying.
Here are some examples which use OWL reasoning over
biological data.

Holford et al. [38] used semantic web rules to reason
with an ontology of pseudogenes to discover information
about human pseudogene evolution. Volker et al. made use
of existing reasoners Racer [11] to support reasoning with

the foundational model of anatomy in OWL DL (description
logic) [39]. Blondé et al. [40] applied relational closure rules
to reason with bioontologies to enable practical querying.

So far, however, most of these applications only apply to
relatively small data.When it comes to the data analysis of big
integrated biological knowledge network, OWL reasoning
faces the problems of low efficiency and out of memory [41].

5.2. Massive Biological Data Integration and Search Platforms.
In recent years, several data integration and search platforms
for the biological domain were presented, such as linked life
data (LLD) (http://linkedlifedata.com), Bioportal [42], NCBI
(http://www.ncbi.nlm.nih.gov/), and Bio2RDF [43]. LLDwas
a semantic data integration framework that enables access to
multiple public biological databases. BioPortal was an open
repository of biological ontologies that provided access via
web services and web browsers to ontologies developed in
OWL, RDF, OBO format, and Protege tool. The NCBI was
a system of interlinked biological databases created by the
US National Library of Medicine, which provided a series of
search services for biological data. Bio2RDF was a mashup
system to help the process of bioinformatics knowledge
integration. But these systems lack a comprehensive ontology
to model the entire biological network, including TCM and
WM, making it hard to discover more implicit knowledge
behind the big and complex biological network.

5.3. Large-Scale Semantic Data Reasoning Systems. Presently,
some work of applying cloud computing to semantic data
reasoning had been done to solve the problem of scalability.
Urbani et al. [44] developed the MapReduce algorithms for
materializing RDFS inference results. Liu et al. [45] extended
the method to handle fuzzy pD reasoning. Oren et al. [46]
presented a parallel and distributed platform for processing
large amounts of RDF data on a network of loosely coupled
peers. Heino and Pan [47] implemented RDFS reasoning on
massively parallel hardware. The above systems mainly focus
on computing closure for every domain based on RDFS or
OWL rules by different cloud computing methods. None of
them is dedicated to derive some implicit associations across
multiple domains. However, in the data analysis of large-
scale biological knowledge network, there aremany problems
across multiple biological domains. At this time, digging out
meaningful knowledge from the big biological data network
cannot be easily achieved using the above methods.

6. Conclusion

Confronted with the massive, disparate, and interlinked bio-
logical network, this paper presents a general biological data
reasoning framework tomodel, integrate, and analyze the big
biological network. We firstly summarize the basic require-
ments for a feasible framework.Thenwe give the overallOWL
reasoning framework over big biological network and related
modules. We construct a unified biological ontology to
capture and model the complex biological network including
modern biology and TCM. Based on the conceptual model,

http://www.ncbi.nlm.nih.gov/pubmed/21790707
http://linkedlifedata.com
http://www.ncbi.nlm.nih.gov/
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a big biological linked knowledge network is formed to inte-
grate and unify the heterogeneous data sources. Then for the
data analysis of the big biological linked knowledge network,
we propose three different kinds of reasoning algorithms
and implement corresponding reasoning prototype systems
which make full use of the advantages of MapReduce parallel
programming model and OWL property chain reasoning
method. Finally, we evaluate the reasoning prototype system
on the big biological linked knowledge network, with its
focus on discovering the implicit associations between TCM
and WM.The results demonstrate that our prototype system
achieves high efficiency, accuracy, scalability, and effectivity.
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