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Abstract: Most humans depend on sunlight exposure to satisfy their requirements for vitamin D3.
However, the destruction of the ozone layer in the past few decades has increased the risk of skin
aging and wrinkling caused by excessive exposure to ultraviolet (UV) radiation, which may also
promote the risk of skin cancer development. The promotion of public health recommendations to
avoid sunlight exposure would reduce the risk of skin cancer, but it would also enhance the risk
of vitamin D3 insufficiency/deficiency, which may cause disease development and progression.
In addition, the ongoing global COVID-19 pandemic may further reduce sunlight exposure due
to stay-at-home policies, resulting in difficulty in active and healthy aging. In this review article,
we performed a literature search in PubMed and provided an overview of basic and clinical data
regarding the impact of sunlight exposure and vitamin D3 on public health. We also discuss the
potential mechanisms and clinical value of phototherapy with a full-spectrum light (notably blue, red,
and near-infrared light) as an alternative to sunlight exposure, which may contribute to combating
COVID-19 and promoting active and healthy aging in current aged/superaged societies.
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1. Introduction: Impact of Sunlight on Active and Healthy Aging

Sunlight exposure, water, and carbon dioxide are essential for the release of oxygen
into the atmosphere and the growth of plants, trees, and their organic products by photo-
synthesis [1]. Animals can survive by breathing fresh air and eating plant/animal-based
foods. In other words, photosynthesis is essential to all life on Earth, including humans.
In addition to the role of photosynthesis in the supply of fresh air and food products,
there are many benefits of sunlight exposure in our biological activities for active and
healthy aging. The first description of the benefits of sunlight exposure was found in a
book written by Hippocrates of Kos (460–377 BCE), the father of modern medicine [2]. He
described the impact of sunlight exposure on wounds, tetanus, bone fracture, obesity, and
mood disorders [3]. In her book Notes of Nursing: What it is and What it is Not, Florence
Nightingale (1820–1910), the founder of modern nursing, also mentioned that light is one
of five essential points for the health of houses, in addition to pure air, pure water, drainage
and cleanliness [4].
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One of the potential mechanisms underlying the association between sunlight expo-
sure and public health is the biosynthesis of vitamin D3, which is known as the “sunshine
vitamin.” Most humans depend on sunlight exposure to satisfy their requirements for
vitamin D3; otherwise, it can be obtained from vitamin D-rich diets (e.g., oily fish, red
meat, liver, egg yolks, mushroom) or supplements (e.g., cod liver oil) [5]. Briefly, solar
ultraviolet B (UV-B; 280–315 nm) photons are absorbed by 7-dehydrocholesterol (7-DHC)
in the skin, leading to its transformation to previtamin D3, which is rapidly converted to
vitamin D3. Once formed, vitamin D3 is metabolized in the liver to 25-hydroxyvitamin
D3 (25(OH)D3; calcidiol) followed by conversion into its biologically active form, 1α, 25-
dihydroxyvitamin D3 (1,25(OH)2D3; calcitriol), in the kidney [6]. However, too much UV
radiation (UV-A; 315–400 nm and UV-B) has reached Earth. UV-A and UV-B contribute to
skin aging and wrinkling and promote the development of skin cancer [7], leading to the
promotion of many public health recommendations to avoid excessive sunlight exposure.
The avoidance of excessive sunlight exposure may reduce the risk of skin cancer, but
insufficient sunlight exposure can cause vitamin D3 insufficiency, which is associated with
many diseases, such as osteoporosis, rickets, psychiatric disorders, infections, allergies,
autoimmune diseases, cardiovascular diseases, metabolic syndrome and cancers [8–10]. In
addition, aging may also affect the formation of 1,25(OH)2D3 due to age-related reductions
of renal function [11]. How to solve this dilemma (benefit vs. disadvantage of sunlight
exposure) is an important issue for achieving active and healthy aging in current aged and
superaged societies [12–15]. Furthermore, the current outbreak of COVID-19 has caused
worldwide health and economic burdens. Many studies have discussed the association
between sunlight exposure and the global COVID-19 pandemic caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), and vitamin D3 has been considered
one of the contributing factors for the prevention of COVID-19 [16–19]. In addition, the
direct impact of solar UV-A/-B or artificial UV-C (100–280 nm) radiation on the inactiva-
tion of SARS-CoV-2 has been reported [20,21]. UV-C radiation may induce viral genome
damage without apparent changes in viral morphology, resulting in the inactivation of
SARS-CoV-2 [21].

In this review article, we summarize the impact of sunlight exposure and vitamin D3
on public health and identify the risk factors and potential mechanisms of COVID-19 and
severe illness. This work is based on a literature search in PubMed until 27 September
2021 using the search terms “sunlight and vitamin D and health [Filter applied: Review]
(n = 518)”, “sun exposure and public health [found by citation matching] (n = 8)”, “vitamin
D biosynthesis and aging (ageing) [Filter applied: Review] (n = 551)”, “sunlight and
COVID-19 (n = 301)”, “COVID-19 and UV and latitude (n = 6)”, “UV radiation and COVID-
19 (n = 221)”, “phototherapy and COVID-19 (n = 111)”, “founder of phototherapy and
dermatology (n = 9)”, “phototherapy and psychiatry (Filter applied: Review) (n = 162)”,
“phototherapy and sleep disorder (n = 677)”, “phototherapy and Alzheimer’s disease and
dementia (Filter applied: Review) (n = 38)”, “ COVID-19 and risk factors and obesity and
diabetes (n = 645)”, “COVID-19 and vitamin D deficiency (n = 369)”, “COVID-19 and
angiotensin and ACE2 (n = 4708)”, “COVID-19 and angiotensin and ACE2 and vitamin
D (n = 51)”, “COVID-19 and adipokines (n = 38)”, “COVID-19 and alarmins (n = 36)”,
“angiotensin and alarmins (n = 14)”, “COVID-19 and oxidative stress and antioxidants
(n = 221)”, “COVID-19 and gut dysbiosis (n = 124)”, “COVID-19 and fecal (fecal) microbiota
transplantation (n = 37)”, “sunlight and gut dysbiosis (n = 4)”, “visible light and opsins
(Filter applied: Review) (n = 556)”, “visible light and opsins and lung (n = 14)”, “visible
light and opsins and adipose tissues (n = 6)”, or “opsins and cancer (n = 176)”. We then
integrate our previous and present data and discuss the potential mechanisms and clinical
value of phototherapy with full-spectrum light (notably blue, red, and near-infrared light)
as an alternative to sunlight exposure for contributing to active and healthy aging, notably
in the era of COVID-19.
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2. Phototherapy for Active and Healthy Aging: History and Current Applications

The first published application of phototherapy was conducted by Niels Ryberg Fin-
sen (1860–1904), who developed a carbon arc lamp for the treatment of skin tuberculosis
(lupus vulgaris), and his clinical contribution in dermatology was awarded the Nobel Prize
in Physiology or Medicine in 1903 [22]. The mechanism of action of Finsen’s carbon arc
lamp for the treatment of skin tuberculosis has not been fully elucidated, but evidence
suggests the impact of violet/blue (400–470 nm) light on antimicrobial activity [23]. In
addition to the application of phototherapy in skin diseases, phototherapy has been widely
applied for many diseases, including mental disorders [24,25], sleep disorders [26,27], and
neurological disorders [28,29]. In addition, phototherapy is suitable for shift workers,
such as rotating night-shift hospital workers who have a higher risk of vitamin D3 insuffi-
ciency/deficiency [30]. Well-designed studies using phototherapy for shift workers have
been conducted at the National Aeronautics and Space Administration (NASA), and treat-
ment subjects have reported better sleep, performance, and physical and mental well-being
than control subjects due to the adjustment of circadian rhythms [31–33].

In our previous study, we demonstrated lower expression of vitamin D3 (calcidiol and
calcitriol) in nonalcoholic steatohepatitis (NASH), and phototherapy with full-spectrum
light (color temperature 5500 K, color rendition index >90 Ra, distance from animals
and light 45 cm, exposure value 600–750 l×, Chang Gung Biotechnology, Taipei, Taiwan)
12 h/day for 6 weeks could elevate vitamin D3 levels, resulting in the amelioration of NASH
progression in rats [34]. In this study, we demonstrated the altered expression of vitamin D3
and lipid transfer/metabolic proteins, such as apolipoprotein E (apoE) and adiponectin, by
phototherapy with full-spectrum light [34]. However, the intensities of UV-A (315–400 nm,
Figure 1) and UV-B (280–315 nm, [35]) are fairly low and comparable to normal light. UV-B
irradiation is indispensable for the photoconversion of 7-DHC to previtamin D3 in the
skin [36], and a long duration of light exposure (12 h/day) may trigger this reaction both in
the control and phototherapy groups. However, the serum levels of calcidiol and calcitriol
in the phototherapy group were significantly higher than those in the control group [34].
Interestingly, our preliminary study revealed elevated CYP27B1, which generates active
vitamin D3 [37] in human keratinocyte HaCaT cells pretreated with 7-DHC (25 µM) for
24 h followed by 3 h irradiation with red (660 nm) or near-infrared light (730 nm) (Figure 2).
Therefore, phototherapy with full-spectrum light may play a certain role in vitamin D3
metabolism partly through the induction of CYP27B1 for active vitamin D3 generation. In
support of our observations, a recent review article mentioned the fundamental role of
red and near-infrared light in improved health status induced by sunlight exposure [38].
The impact of visible or non-infrared light on vitamin D3 biosynthesis should be further
explored using full-spectrum light with UV cut-off filters. In addition to the clinical impact
of phototherapy in terms of the elevated vitamin D3 in NASH patients [35], we and our
collaborator have demonstrated the therapeutic potential of phototherapy in experimental
animal models of colitis [39] peritonitis [40], and food allergies [41]. Although the mode
of action of phototherapy with full-spectrum light has not been fully elucidated, it may
regulate proinflammatory cytokine signaling and oxidative stress and maintain optimal
levels of vitamin D3 and healthy microbiota composition. Interestingly, accumulating
evidence suggests the impact of microbiota on circadian rhythms and human health [42].
These evidences suggest the therapeutic potential of phototherapy with full-spectrum light
in many diseases associated with vitamin D3 insufficiency/deficiency, circadian rhythm
disruption and gut dysbiosis.
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Figure 1. Comparison of the spectrum data in (a) sunlight (in September, noon, through the window, exposure value
6500 l×), (b) normal light (blue, color rendition index 81, exposure value 780 l×) and (b) full-spectrum light (magenta, color
rendition index 94, exposure value 750 l×). Spectral irradiance of the light spectrum was measured by an illuminance
spectrophotometer (CL-500A, Konica Minolta, Inc., Tokyo, Japan).
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Figure 2. Impact of blue, red, or near-infrared (near-IR) light on the expression of CYP27B1. The
human keratinocyte cell line HaCaT was preincubated with 7-dehydrocholesterol (7-DHC, 25 µM)
for 24 h, and the cells were irradiated with blue light (470 nm, exposure value 3300 l×), red light (660
nm, exposure value 1600 l×), or near-IR light (730 nm, exposure value 74 l×) for 3 h at 37 ◦C in 5%
CO2/95% air. Twenty-four hours after irradiation, the cells were harvested, and the expression level
of CYP27B1 was evaluated by quantitative real-time PCR. Values are presented as the means ± SD
of two independent experiments. *, ** p < 0.05 and 0.01 vs. control without light irradiation (n = 4),
respectively (Student’s t-test).

3. Risk Factors and Potential Mechanisms of Severity and Mortality of COVID-19

There are many risk factors associated with the severity and mortality of COVID-19,
including aging, overweight-obesity, hypertension, diabetes, and lung, cardiovascular, and
kidney diseases [43]. In addition, many studies have observed an association between
vitamin D3 insufficiency/deficiency and COVID-19, suggesting the therapeutic potential
of vitamin D3 supplementation for the prevention and treatment of SARS-CoV-2 infec-
tion [44–48]. One of the potential mechanisms behind SARS-CoV-2 infection is the altered
expression of receptors for virus entry, such as angiotensin-converting enzyme 2 (ACE2)
and dipeptidyl peptidase 4 (DPP4, also known as CD26), in patients with the mentioned
risk factors [49–52]. Although a recent molecular docking study did not support the effec-
tive interaction between DPP4 and SARS-CoV-2 spike protein for virus entry [53], blockade
of ACE2 and DPP4 has been proposed as a preventive strategy for COVID-19 [54,55]
(Figure 3a). Another possibility is that SARS-CoV-2 infection could reduce ACE2 expres-
sion due to attachment of the SARS-CoV-2 spike protein, resulting in induction of the
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ACE/angiotensin II (Ang-II)/angiotensin type I receptor (AT1R) axis, which is associated
with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Therefore, the
development of drugs that enhance ACE2 activity may be a promising approach for the
treatment of COVID-19 and severe illness [56]. In terms of the above renin-angiotensin
system (RAS), vitamin D3 supplementation could modulate unbalanced RAS and ACE2
downregulation, resulting in induction of the ACE2/Ang-(1–7)/Mas receptor (MasR) axis
for protection against ALI/ARDS [57] (Figure 3b).
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In addition, adipose tissues are one of the largest endocrine organs and a source of
proinflammatory mediators and adipokines, which may create chronic low-grade inflam-
matory preconditioning [58,59]. Therefore, preexisting chronic inflammation and further
inflammatory responses against virus infection lead to extreme systemic inflammation
known as a cytokine storm, resulting in the increased severity and mortality of SARS-CoV-2
infection [60]. These COVID-19 patients with poor outcomes have been associated with
gut dysbiosis [61]. Interestingly, a recent study pointed to the therapeutic potential of oral
Ang-(1–7) peptide in obese mice by modulating the intestinal microbiota (reduction in
Firmicutes/Bacteroidetes ratio), suggesting the involvement of RAS in obesity, gut dysbiosis,
COVID-19, and ALI/ARDS [62].

Recent studies have pointed to the significance of early detection of danger signals
for the classification of COVID-19 patients as being at high risk of mortality. Alarmins are
possible danger signals associated with COVID-19 and comorbidities [63], and S100A8/A9,
high mobility group box 1 (HMGB1), and histones are considered potential therapeutic
targets [64–66]. The elevation of S100A8/A9 and HMGB1 by Ang-II suggests the involve-
ment of alarmins in unbalanced RAS [67,68], and the ACE2/Ang-(1–7)/MasR axis could
suppress HMGB1 signaling [69]. Although there is no application of alarmin blockade in
COVID-19 and comorbidities, previous studies have suggested the therapeutic potential
of neutralizing antibodies against S100A8/A9, HMGB1, or histones for the inhibition of
pulmonary fibrosis and sepsis-associated ALI/ARDS [70–73]. The suppression of oxidative
stress is also a potential strategy for the treatment of COVID-19, and our previous study
demonstrated the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2), a master
regulator of antioxidant responses, such as heme oxygenase-1 (HO-1), superoxide dismu-
tase 1 (SOD1) and SOD2, by phototherapy with full-spectrum light [41]. Some potential
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antioxidants, such as vitamin C, glutathione, melatonin, and α-lipoic acid, have also been
proposed for clinical applications in COVID-19 [74–77].

4. Hypothesis: Potential Impact of Phototherapy with Full-Spectrum Light on the
COVID-19 Pandemic

Based on the current understanding of risk factors, prognostic factors, and mechanisms
of action of SARS-CoV-2, one of the promising strategies for the prevention of infection
and recovery from severe illness may be the maintenance of optimal levels of vitamin D3
and the reduction in risk factors. However, a recent randomized clinical trial with a single
oral dose of vitamin D3 (200,000 IU) did not reduce the hospital length of stay in patients
with moderate to severe COVID-19 [78]. Furthermore, a Mendelian randomization study
did not reveal evidence to support an association between calcidiol levels and COVID-19
susceptibility, severity, or hospitalization [79]. On the other hand, another randomized
clinical trial with daily oral vitamin D3 (5000 IU) for two weeks reduced the time to recovery
for symptoms such as cough and gustatory sensory loss among mild to moderate COVID-
19 patients with suboptimal vitamin D3 status [80]. Another large-scale population-based
cohort study observed that patients on vitamin D3 supplementation who achieved serum
25(OH)D3 levels ≥30 ng/mL had a lower risk of SARS-CoV-2 infection, severity, and
mortality than unsupplemented controls [81]. These clinical trials suggest that vitamin
D3 supplementation may be effective for the prevention of SARS-CoV-2 infection and the
treatment of symptoms, but deciding the dose and duration of vitamin D3 supplementation
must be an important point for achieving better COVID-19 outcomes. Most importantly,
misuse of vitamin D3 supplementation may rarely cause vitamin D intoxication, leading
to hypercalcemia and serious kidney, heart, and neurological problems [82,83]. On the
other hand, there is no risk of vitamin D intoxication even through excessive exposure to
sunlight [84].

Although there is no direct evidence that phototherapy could prevent or ameliorate
SARS-CoV-2 infection or COVID-19 comorbidities, previous and present observations
have suggested the potential of phototherapy with full-spectrum light in COVID-19. Fur-
thermore, there are several advantages of phototherapy with full-spectrum light for the
prevention and treatment of COVID-19. First, phototherapy with full-spectrum light
would be a safe strategy to satisfy vitamin D3 without the risk of vitamin D intoxication
because it would be expected to generate sufficient vitamin D3 under the appropriate
exposure regimen (12 h/day for 6–9 weeks) [34,41]; i.e., a single exposure would not
produce sufficient vitamin D3, and multiple standard-dose exposures (exposure value
600–750 l×) over a period of time would be required. Second, phototherapy with full-
spectrum light would ameliorate the adipose tissue dysfunction, which causes insulin
resistance, proinflammatory cytokine release, and altered adipokine production [34]. Re-
duced expression of adiponectin is a risk factor of metabolic syndrome, and a recent
case-control study pointed to the link between obesity and COVID-19 respiratory failure
in terms of adiponectin levels [85]. Our previous study demonstrated the elevation of
adiponectin by phototherapy with full-spectrum light [34]. A recent study also pointed to
the involvement of apoE in virus (SARS-CoV-2) entry by hijacking the metabolic pathway
of apoE [86]. Third, phototherapy with full-spectrum light reduces circulating levels of
alarmins, such as histone H1 and HMGB1 (Figure 4), which reflect the severity of inflam-
matory responses [35]. A similar elevation of alarmins was confirmed in septic mice [71,72]
and in rats undergoing rejection [87,88], resulting in local and systemic inflammation.
The suppression of oxidative stress by the Nrf2-mediated antioxidant response may be a
potential mechanism of phototherapy with full-spectrum light. Fourth, phototherapy with
full-spectrum light can improve gut dysbiosis by modulating the Firmicutes/Bacteroidetes
ratio [41]. Elevation of the Firmicutes/Bacteroidetes ratio was reported in COVID-19 pa-
tients and was reduced in the recovery state [89]. In our recent study, we identified the
genus Lachnospiraceae_NK4A136_group (phylum Firmicutes) as a food allergy-associated
bacteria [41], and a recent study pointed to the existence of gut-associated bacteria, such as
the family Lachnospiraceae in the lung microbiota of patients with ARDS [90]. Interestingly,
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recent studies introduced the therapeutic potential of fecal microbiota transplantation
(FMT) for recurrent Clostridium difficile infection patients with COVID-19 [91,92]. In ad-
dition, a clinical trial (NCT04824222) to assess the impact of FMT on reducing the risk
of disease progression as a supplement to standard COVID-19 treatment is ongoing [92].
On the other hand, Parabacteroides goldsteinii (phylum Bacteroidetes) was identified as a
beneficial bacterial species enriched by phototherapy with full-spectrum light [41]. Gut
commensal Parabacteroides goldsteinii plays an important role in the anti-obesity effect of
polysaccharides isolated from Hirsutella sinensis [93], a traditional Chinese medicine known
to possess various pharmacological properties, including the attenuation of pulmonary
inflammation and fibrosis [94]. Recently, the same group demonstrated the prevention of
chronic obstructive pulmonary syndrome (COPD) by lipopolysaccharide derived from
Parabacteroides goldsteinii [95], suggesting the therapeutic potential of phototherapy with
full-spectrum light in COVID-19 in part through the induction of beneficial bacteria, such
as Parabacteroides goldsteinii. Finally, our preliminary data suggest the impact of photother-
apy with full-spectrum light on altered expression of ACE2 and DPP4 (CD26), receptors
for SARS-CoV-2 entry in inflamed colon tissues (Figure 5). Due to the large distribution
of ACE2 and DPP4 (CD26) in the human body, SARS-CoV-2 may infect other tissues
aside from the lungs [50,96], and diarrhea is a common presenting symptom in COVID-19
patients [97].

Taken together, phototherapy with full-spectrum light induces vitamin D3 biosynthe-
sis, alters adipokine production (elevated adiponectin), modulates microbiota composition
(reduction in the Firmicutes/Bacteroidetes ratio and induction of beneficial bacteria, i.e.,
Parabacteroides goldsteinii), and reduces many risk factors (e.g., alarmins, proinflammatory
cytokines, and oxidative stress markers) associated with COVID-19 and severe illness
(Figure 6).
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Figure 4. Elevation of circulating alarmins during inflammatory responses. BALB/c mice (n = 12) were sensitized with
ovalbumin (OVA)/alum followed by intragastric ingestion of OVA for the development of a mouse model of food allergy
(FA) [35]. Circulating levels of (a) histone H1 and (b) high mobility group box 1 (HMGB1) were quantified using an
enzyme-linked immunosorbent assay (ELISA) as previously described [87,88]. Values are presented as the means ± SD of
four to six individuals in each group. Phototherapy with full-spectrum light (n = 6) ameliorated FA-like allergic diarrhea in
FA mice (n = 6), with significant suppression of circulating histone H1 and HMGB1 released from damaged cells or actively
secreted from immune cells (e.g., macrophages, dendritic cells, mast cells). *, ** p < 0.05 and 0.01 vs. control (n = 4) or
phototherapy group, respectively (Student’s t-test).
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Figure 5. Elevation of (a) angiotensin-converting enzyme 2 (ACE2) and (b) dipeptidyl peptidase 4 (DPP4) in inflamed colon
tissues. Colon tissues were obtained from naïve mice (n = 4), food allergy (FA) mice (n = 4), and FA mice with phototherapy
(n = 6) [35], and colonic levels of ACE2 and DPP4 were evaluated by quantitative real-time PCR. Values are presented
as the means ± SD of four individuals in each group. Although there was a large variation in expression profiles due
to the different intensities of inflammation in each FA mouse, we confirmed the tendency to increase colonic levels of
ACE2 and DPP4, key receptors for SARS-CoV-2 entry, in FA. On the other hand, phototherapy with full-spectrum light
suppressed these expression levels, suggesting the preventive potential of phototherapy in COVID-19. * p < 0.05 vs. control
or phototherapy group (Student’s t-test).
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Figure 6. Proposed mechanisms of phototherapy with full-spectrum light for the prevention and
treatment of COVID-19. Phototherapy may induce (1) vitamin D3 biogenesis and (2) adiponectin,
which are associated with both prevention and treatment of COVID-19 in terms of the reduction in
COVID-19 risk factors (Figure 1). (3) The elevation of circulating alarmins and oxidative stress mark-
ers during inflammatory responses may be inhibited by phototherapy, partly through the induction
of Nrf2-mediated antioxidant responses. (4) Gut dysbiosis (an elevated Firmicutes/Bacteroidetes ratio)
may be modulated by phototherapy and may induce the beneficial bacteria Parabacteroides goldsteinii.
(5) Phototherapy may reduce ACE2 expression, resulting in a reduced risk of virus (SARS-CoV-2)
infection. For treatment, vitamin D3 may induce the ACE2/Ang-(1–7)/MasR axis and inhibit Ang-
II-induced alarmin elevation, oxidative stress responses, and gut dysbiosis, which are associated
with poor outcomes in COVID-19. ACE2: angiotensin-converting enzyme 2, Ang-(1–7): angiotensin
1–7, Ang-II: angiotensin II, AT1R: angiotensin type I receptor, MasR: Mas receptor, Nrf2: nuclear
factor-erythroid 2-related factor 2.
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5. Summary and Future Directions for Active and Healthy Aging

Sunlight exposure and appropriate exercise may be the best ways to maintain healthy
conditions. However, vitamin D3 biosynthesis depends on the strength of UV radiation,
its exposure time as well as skin color (the type of melanin) [98,99]. Therefore, optimal
conditions for vitamin D3 biosynthesis may be different in each individual, and seasonal
changes in sunlight exposure may also affect it. We also need to consider the adverse effects
(skin aging, wrinkling, and skin cancer development) caused by excessive UV exposure.
In addition, many people, such as night-shift workers, elderly people with difficulty
walking, and people who are hospitalized, may be limited to receiving enough benefits
from sunlight. In current aged/superaged societies and an ongoing global pandemic of
COVID-19, we need to consider ways to enhance our immunity to maintain suitable health.
Notably, the stay-at-home policy may reduce the time for outdoor activities, resulting in
vitamin D3 insufficiency/deficiency [100] and an increased incidence of bone fractures
in the elderly [101]. In addition to sunlight exposure and vitamin D3 supplementation,
phototherapy with full-spectrum light is an alternative approach to stimulate vitamin D3
biosynthesis with minimal risk of skin damage and adjust circadian rhythms, which are
quite important for biological, physiological, and immunological activities in all living
organisms. To achieve healthy aging, the age-dependent decline in vitamin D3 biosynthesis
should be actively adjusted by vitamin D3 supplementation and phototherapy with full-
spectrum light, which may reduce the risk of various diseases, such as osteoporosis,
metabolic syndromes, allergies, infectious disorders, mental/neurological disorders and
cancers (Figure 7a). In the case of vitamin D3 supplementation, we may need to carefully
evaluate the optimal dose of vitamin D3 to reduce the risk of vitamin D intoxication and
relative complications. To further explore the clinical impact of phototherapy with full-
spectrum light, we set up a phototherapy room for patients (Figure 7b). Although we have
no data to demonstrate the involvement of vitamin D3, we have confirmed some beneficial
effects of phototherapy, such as the reduction in total bilirubin in a patient with severe
jaundice after liver transplantation (data not shown). Although further small and large
cohort studies are necessary, phototherapy with full-spectrum light could be a reasonable
approach with a low potential risk of adverse events, and we highly recommend changing
the indoor light environment to full-spectrum light at homes and public spaces, such
as schools, working places, clinics, and hospitals as well as nursing homes. The cost
of full-spectrum light (roughly three times higher than normal light) may be a critical
issue, but there are many beneficial impacts of phototherapy with full-spectrum light,
including the generation of sufficient vitamin D3 and the maintenance of healthy gut
microbiota composition as well as suitable circadian rhythm. All of these are indispensable
for achieving active and healthy aging in current aged/superaged societies.
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Figure 7. Roadmap for active and healthy aging. (a) Sunlight exposure is fundamental for our health, including infants
to elderly individuals. Vitamin D3 levels decline in the aging process as well as due to insufficient sunlight exposure and
stay-at-home policies in the era of COVID-19, resulting in an increased risk of various diseases (red arrow) associated
with vitamin D3 insufficiency/deficiency, elevation of circulating alarmins, and gut dysbiosis. In addition to sunlight
exposure and vitamin D3 supplementation, phototherapy may maintain the vitamin D3 concentration required for biological,
physiological, and immunological activities, resulting in the achievement of active and healthy aging. (b) Sunlight and
phototherapy as an alternative to sunlight exposure. A ward equipped with full-spectrum light (color temperature
5500 K, color rendition index >90 Ra, Chang Gung Biotechnology, Taipei, Taiwan) was used for the clinical application of
phototherapy.

6. Conclusions

In conclusion, we propose phototherapy with full-spectrum light as one of the
potential strategies to prevent disease progression associated with vitamin D3 insuffi-
ciency/deficiency, and it may lead us to achieve active and healthy aging in the era of
COVID-19.

Recently, the impact of blue light (450, 454, and 470 nm) on SARS-CoV-2 inactivation
was reported [102]. Furthermore, a recent case report suggested the therapeutic poten-
tial of phototherapy with a red light (630 + 660 nm) for the alleviation of respiratory
symptoms, pulmonary inflammation, and hypoxia [103]. The beneficial effect of red light
(660 nm) was also confirmed in an experimental model of sepsis-associated ALI [104].
Although most peripheral tissues, except the eye and skin, are not normally reached by
light, accumulating evidence suggests the direct and indirect impacts of visible light on cell
behavior and biological activities through opsin (OPN) receptors [105]. For example, OPN3
and OPN4 are expressed in the aorta and pulmonary arteries, and blue light exposure
induces vasorelaxation [106,107]. The expression of OPN3 and OPN4 in airway smooth
muscle [108] also suggested the impact of blue light exposure on vasorelaxation for the
treatment of pulmonary disorders caused by COVID-19. On the other hand, blue light
exposure has been shown to suppress melatonin, resulting in a negative impact on sleep
quality [109]. In addition, the impact of light on adipose tissues and lipid homeostasis has
been reported. Briefly, specific wavelength, especially green light (505 nm), enhanced OPN2
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expression in mature 3T3-L1 adipocytes and decreased lipid droplets [110]. Ondrusova
K et al. demonstrated the expression of OPN3 in subcutaneous white adipose tissues,
and daily exposure of differentiated 3T3-L1 adipocytes to blue light resulted in decreased
lipid droplet size [111]. A recent study demonstrated the expression of OPN3 in brown
adipose tissues and its impact on the regulation of glucose metabolism and mitochondrial
respiration in brown adipocytes [112]. The direct exposure of brown adipose tissues to
white light (465 + 565 nm) increased thermogenic capacity in an OPN3-dependent manner,
suggesting the potential of phototherapy for obesity and obesity-associated metabolic
disorders [112]. Furthermore, the OPN1SW (opsin 1, shortwave sensitive), OPN2, OPN3,
and OPN4 genes are widely found and differentially expressed in human brain areas and
potentially regulate the circadian photoentrainment of the central biological clock [105].
The impact of OPN3 or OPN4 on tumor cell activities, such as drug sensitivity, growth,
and metastasis, has been reported in hepatocellular carcinoma, colon cancer, and lung
adenocarcinoma [113–116], and blue light (465 nm) exposure suppresses tumor growth
by inducing autophagy [114]. Taken together, these observations suggest the possible
broad impacts of phototherapy with full-spectrum light on biological, physiological, and
immunological activities in multiple organs, tissues, and cells.

Further investigations, including the screening of optimal conditions of phototherapy,
such as light strength, effective wavelength, and the duration of exposure, should be
considered in future preclinical and clinical trials.
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