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The connections between pattern recognition receptors (PRRs) and pathogen-

associated molecular patterns (PAMPs) constitutes the crucial signaling

pathways in the innate immune system. Cytoplasmic nucleic acid sensor

melanoma differentiation-associated gene 5 (MDA5) serves as an important

pattern recognition receptor in the innate immune system by recognizing viral

RNA. MDA5 also plays a role in identifying the cytoplasmic RNA from damaged,

dead cancer cells or autoimmune diseases. MDA5’s recognition of RNA triggers

innate immune responses, induces interferon (IFN) response and a series of

subsequent signaling pathways to produce immunomodulatory factors and

inflammatory cytokines. Here we review the latest progress of MDA5 functions

in triggering anti-tumor immunity by sensing cytoplasmic dsRNA, and

recognizing SARS-CoV-2 virus infection for antiviral response, in which the

virus utilizes multiple ways to evade the host defense mechanism.

KEYWORDS
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Introduction

The innate immune system provides the first-line defense against pathogen infection.

Among them, PRRs can detect PAMPs and damage associated molecular patterns

(DAMPs). In mammals, a series of nucleic acid sensors (NSs) can be used as PRRs to

recognize the nucleic acid fragments released when the virus attacks the human body,

transduce signals to induce host defense response. The innate immune system includes

several important NSs, including cyclic guanosine-monophosphate adenosine-

monophosphate synthase (cGAS), absent in melanoma 2 (AIM2) and Toll-like

receptor 9 (TLR9) that sense DNA fragments, and RIG-I like receptors (RLRs),

nucleotide-binding oligomerization domains (NODs), Toll-like receptor 3 and 7

(TLR3 and TLR7) that sense RNA fragments (1, 2). In the process of RNA-dependent

RNA replication and synthesis, the RNA viruses will produce double-stranded RNA
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(dsRNA). Some DNA viruses also produce dsRNA in their

lifetime (3). In earlier years, studies have found a cytosolic

sensor, dsRNA-dependent protein kinase (PKR), can bind

dsRNA in its N-terminal regulatory region to block dsRNA

formation, preventing the synthesis of viral proteins (4).

Similarly, viral dsRNA can also activate 2’-5’-oligoadenylate

Synthetase (OAS) directly, which activates the anti-viral

endonuclease RNase L, thus preventing RNA virus replication

(5, 6). Therefore, dsRNA can function as PAMP in the process of

virus infection.

There are two classical ways to recognize viral dsRNA in the

innate immune system. TLR3 mainly senses the dsRNA locates

in the endosome, including dsRNA produced by lysis or necrosis

from the virus infects cells, and dsRNA internalized by receptor-

mediated endocytosis (7–10). TLR3 signaling activates IRF3/

IRF7, which mediates IFN-a/b and a series of IFN-induced

genes (11–13). RLRs bind specifically to RNA fragments

produced by pathogenic microorganisms or self-produced

RNA fragments in cytoplasm, and initiate immediate immune

effects (7). RLRs mainly include retinoic acid-induced genes

(RIG-1, also known as DDX58), MDA5 (also known as IFIH1)

and laboratory of genetics and physiology 2 (LGP2). These

proteins are usually expressed at a low level. RIG-I and MDA5

interact with interferon-beta promoter stimulator 1 (IPS-1, also

known as MAVS, VISA, Cardif) in the outer membrane of

mitochondria, which transmits signals to IFN-b and

downstream interferon-stimulated genes (ISGs) through

transcription factor interferon regulatory factor 3 (IRF3) and

IRF7 and nuclear factor (NF)-kB (14–17). Currently, the

mechanism of innate immune response induced by RIG-1 has

been thoroughly studied, but the mechanisms of MDA5 in

cancer and virus infection are to be understood.

Latest data show that in COVID-19, SARS-CoV-2 replicates

in lung epithelial cells and induces delayed interferon (IFN)

response, in which MDA5 acts as the main sensor to recognize

SARS-CoV-2 infection and trigger antiviral response (18).

Unfortunately, viruses can either disturb key regulatory

structures, or interfere with interferon (IFN) system in

multiple ways, so as to escape the body’s defense mechanism.

This review briefly summarizes the intersection role of MDA5 in

antitumor immune response and SARS-CoV-2 innate immune

signaling pathway, hoping to provide a deeper understanding of

the molecular basis of these diseases.
Nucleic acid sensing pathway

RIG-I-like receptors family triggers
interferon-related signal response

RLRs consists of three members: RIG-I, MDA5 and LGP2

(19). All members of the family have a core tandem DExD/H-

box helicase domain and a C-terminal domain (CTD), which
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jointly trigger and integrate RNA signaling pathways (1). In

addition, RIG-I and MDA5 also have two N-terminal caspase

activation and recruitment domains (CARD), which mediate

downstream signal transduction. After binding to RNA, RIG-I

and MDA5 promote the transcription of IFN and other antiviral

or immunomodulatory genes (20). On this basis, type I IFN can

further induce RIG-I and MDA5 at the transcriptional level

through a positive feedback loop, and amplify the interferon

response (21). Additionally, several negative regulatory factors

are involved to prevent interferon self-enhancement, including

2’-phosphodiesterase which degrades 2-5A, IFN-b-induced
inhibitor LGP2 and ubiquitin ligase RNF125 (22, 23). LGP2,

the third member of the RLR family, mainly plays roles in

regulating RIG-I and MDA5. Though LGP2 does not function

through MAVS, the interaction between MDA5 and LGP2

enhances the perception of some RNA viruses, especially by

limiting RIG-I signals to enhance MDA5 signals (24).

Structurally, LGP2 promotes the rapid formation of short

microfilaments of MDA5-dsRNA, which eventually leads to

the enhancement of downstream signals and the increase of

type I IFN responses (25). IFN shows antiviral activities at

multiple levels, mainly including viral entry, viral polymerase

function, host cell translation, RNA stability, particle budding,

apoptosis, and generally enhanced innate and adaptive immune

responses (26).

Furthermore, RLRs not only induce IFN responses, but also

trigger apoptosis, pyroptosis and necroptosis (27–29). These

pathways can clear damaged cells in autoimmune diseases and

attacked by cytotoxic signals, further contributing to the release

of cytokines and inflammatory mediators.
Melanoma differentiation-associated
gene 5

MDA5 gene was first reported to be induced by

differentiation, cancer reversal and apoptosis in 2002 (30).

MDA5 protein is located in the cytoplasm, induced and

regulated by IFN-b. It has been proved to be the double-

stranded RNA-dependent ATPase. Later, it was proposed for

the first time that MDA5 harbors a CARD domain and an RNA

helicase motif (30, 31). Follow-up studies demonstrate that

MDA5 can bind to viral dsRNA as well as its synthetic

analogue Poly (I:C), and then mediate type I interferon

response. The overexpression of MDA5 could enhance the

type I interferon response stimulated by transfection of Poly

(I:C) (32). The above findings demonstrate that MDA5 is an

RNA sensor that can induce type I interferon.

Though MDA5 and RIG-I share similar domains and signal

pathways, MDA5 has selective specificity in recognizing dsRNA.

It has been reported that MDA5 mainly recognizes the double-

stranded structure within dsRNA by using different orientations

of CTD structure. MDA5 distributes along dsRNA by direct
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protein-protein contact, and the tandem CARD structure

decorated outside the MDA5 core filaments must be

oligomerized to activate the slender structure of the adapter

protein MAVS, which is found to be particularly stable on long

dsRNAmolecules. Some researchers have also found that MDA5

requires an “RNA network”, not a simple long-stranded dsRNA

molecule, but a high-order RNA structure containing single-

stranded RNA and long-stranded dsRNA (33). Therefore, it is

also important to determine the specific RNA fragment structure

MDA5 chooses to play an accurate role (34). Previous study

showed that RIG-I responds to viral RNA containing

triphosphate, which connects the 5 ‘end to the base pairing

region of the blunt-end (35). Later it was found that RIG-I

mediates an antiviral response to RNA containing 5-

diphosphate (36). Either in vitro transcribed RNA or

chemically synthesized, 5-diphosphate RNA can act as an

RIG-I agonist, which is an important means of recognition in

the innate immune system. But this recognition mode usually

exists in some viral RNA (36). At present, the specific RNA that

can bind to MDA5 is not clear. It is necessary to find out the

characteristics of MDA5 stimulating RNAs, thereby explaining

why MDA5 function is different among antiviral immunity,

autoimmunity, autoinflammatory disease and anti-tumor

immune process.

MDA5 not only functions as nucleic acid sensor of

exogenous dsRNA, but also plays an important role in

detecting abnormal dsRNA fragments from endogenous

sources. In recent years, cancer therapy targeting epigenetic

suppressors has become a hot spot, which activates reverse

transcription factors in the human genome (37). At the same

time, the use of viral mimicry in cancer therapy can cause cancer

cells to lose their adaptability and stimulate innate and adaptive

immune responses. When endogenous immunogenic reverse

transcriptional elements such as Alu elements are activated and

mitochondrial enzymes SUV3 and PNPase involved in

mitochondrial RNA degradation are depleted or mutated,

mitochondrial dsRNA escapes to the cytoplasm, triggering

MDA5-dependent anti-abnormal nucleic acid signaling

pathways (38). These processes prove that endogenous dsRNA

fragments can also trigger MDA5 and mediate cytokine- IFN

immune pathway.

In addition to its antiviral protective effects, MDA5 is

associated with autoimmune diseases such as type 1 diabetes

(T1D) or systemic lupus erythematosus (SLE), which may be

associated with chronic induction of type I interferon, leading to

initiation or enhancement of autoinflammation and

autoimmune condition (39). Mutation of IFIH1 gene encoding

MDA5 can lead to a rare neurological disorder Aicardi–

Goutières syndrome (AGS), which is characterized by

abnormal production of type I IFN. The mutation of MDA5

gene can lead to the substitution of single amino acids in the

helicase domain of MDA5 (40, 41). MDA5-mediated auto-
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inflammatory diseases may indicate the importance of MDA5

in perceiving the specific RNA elements.
Anti-tumor strategies based on
MDA5 immune pathway

Tumor cells share common key characteristics, such as

oxidative stress, genomic instability and mutation, and

changes in metabolic rate, which can lead to nuclear or

mitochondrial DNA damage, thus releasing damaged nucleic

acid fragments into the cytoplasm (42). In mammalian cells, two

typical cytoplasmic nucleic acid sensing pathways are cGAS-

stimulator of interferon genes (STING) and RLRs-MAVS

pathways, which are responsible for the recognition of

cytoplasmic DNA and RNA, respectively (43, 44). MDA5 as

cytoplasmic dsRNA sensor recognizes long-chain high-order

dsRNA structures (45). The MDA5 signaling pathway mainly

interacts with the adapter MAVS and recruits TBK1. The

phosphorylation cascade allows signal transduction to lead to

the production of IRF3 and IRF7, which usually leads to the

production of IFNs, which subsequently induces the activation

of ISGs and NF-kB target genes (Figure 1) (20).

The most widely used tumor treatment strategy is the use of

ant i - tumor DNA demethy la t ing agents and DNA

methyltransferase inhibitors (DNMTis) (46, 47). Demethylation

in the normal suppressed region of the genome can lead to

endogenous retrovirus transcription, triggering cytoplasmic

dsRNA sensing in cancer cells to activate MDA5 and MAVS,

resulting in reduced cell growth and self-renewal, thus mimicking

viral infection (Figure 1) (48, 49). In addition, DNMTis treatment

enhanced anti-CTLA-4 immune checkpoint therapy in preclinical

melanoma models. Similarly, telomerase reverse transcriptase

(TERT) can activate endogenous retroviruses (ERV)

independent of its telomerase activity to form double-stranded

RNA, which is sensed by the MDA5-MAVS pathway and triggers

IFN signals in tumor cells (50, 51). However, ERV and IFN signal

stimulate the infiltration of suppressor T cells at the same time,

indicating that IFN signal mediated by TERT accounts for tumor

immunosuppression. Significantly, TERT is considered to be a

marker of tumor cells because of the wide area of activation

during tumorigenesis.

Surprisingly, the activation of NSs can change the tumor

microenvironment (TME) from immunosuppressive state to

pro-inflammatory state (52–54). However, some studies have

shown that PRRs and IFN signals promote tumor progression or

immune tolerance, but not pro-inflammatory effect in immune

cells (55), indicating that we need to target the PRRs of immune

cells in TME in the future to improve the efficacy. Therefore, the

CAR-T cells were engineered to produce a non-coding RNA

called ‘RN7SL1’ as a new PRR agonist (Figure 1). Normally,

RN7SL1 can be shielded from being recognized by PRR, but
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when it is not shielded, it can mimic viral RNA and activate

nucleic acid sensors MDA5 and RIG-I, thus enhancing

endogenous anti-tumor immunity (54, 56).

Since MDA5 dominates the perception of synthetic dsRNA

analogue poly (I:C) and triggers the cytoplasmic interferon

response (Figure 1). Studies on triple negative breast cancer

(TNBC) have shown that Poly I:C inhibits transforming growth

factor-b (TGF-b) signal transduction in a MDA5 or RIG-I-

dependent manner, thus promoting cancer cell death, and this

effect can be weakened by forced expression of Smad3 (57). Since

TGF- b is the characteristic of promoting the migration,

invasion, bone metastasis and survival of tumor cells in

TNBC, inhibition of TGF-b may be an effective strategy for

the treatment of metastatic cancer. Interestingly, spliceosome-

targeted therapies can also trigger an antiviral immune response
Frontiers in Immunology 04
in TNBC through dsRNA formation from mis-spliced RNA

(Figure 1) (58).

Epigenetic inhibitors for cancer therapy can activate reverse

transcription factors in the human genome, but the clinical

efficacy of epigenetic therapy is currently limited. Viral mimicry

can cause cancer cells to lose their adaptability and stimulate

innate and adaptive immune responses (59–61). In order to find

targets for synergistic action with viral mimic response, many

researchers have focused on immunogenic reverse

transcriptional elements activated by epigenetic therapy.

Intronic and intergenic SINE elements, especially inverted-

repeat Alus, are the main sources of drug-induced

immunogenic dsRNA (37). In mammals, ADAR1, an RNA

editing enzyme characterized by binding to endogenous

dsRNA and converting adenosine to inosine (A to I), targets
FIGURE 1

The central role of MDA5 in SARS-CoV-2 infection and interferon-mediated anti-tumor immunity. The left panel shows the MDA5-MAVS-NFkB/
IRF3 signaling during SARS-CoV-2 infection and how the nonstructural proteins inactivate MDA5 through deISGylation. The right panel shows
the different mechanisms resulting in endogenous dsRNA production or MDA5 activation in cancer cells which enhances the antitumor
immunity and/or cancer cell apoptosis.
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and destroys inverted-repeat Alu dsRNA, thereby preventing

MDA5 activation (Figure 1). In addition, some studies have

shown that the deletion of ADAR1 is highly sensitive to tumor

immunotherapy, overcoming the resistance of immune

checkpoint blockade (ICB), and the deletion of ADAR1 can

reduce the A to I editing of endogenous dsRNA, triggering

MDA5 and PKR interferon-dependent anti-tumor response,

subsequent tumor growth inhibition and pro-inflammation

(62). The deletion of ADAR1 overcomes the resistance to PD-

1 checkpoint blockade caused by antigen presentation

inactivation of tumor cells (62–64). Consuming ADAR1 in

cancer cells can break the negative feedback loop, inhibit

tumor growth and reduce the incidence of cancer. A study

showed that an FBXW7 inactivating mutation from a patient

with melanoma is associated with resistance to PD-1 blockade

(65). Both MDA5 and RIG-I are required for Fbxw7-dependent

regulation of Type I interferon signaling and immune

microenvironment. Therefore, combining epigenetic therapy

with anti-tumor immunity will be promising treatment option

of cancer.

In melanoma cells, RIG-I and MDA5 also initiate a p53-

independent Noxa pro-apoptotic signal pathway, which is

independent of type I IFN response (61, 66, 67). Although this

pro-apoptotic signal pathway is also active in non-malignant

cells, the sensitivity of these cells to apoptosis is much lower than

that of melanoma cells. Endogenous Bcl-xL can block RIG-I and

MDA5-mediated apoptosis in non-malignant cells. Both RIG-I

and MDA5 ligands can also reduce the lung metastasis of human

tumor in immunodeficient mice. These results confirm that

RIG-I and MDA5 ligands have therapeutic potential in solid

tumors through inducing tumor cells to apoptosis.

In general, targeting MDA5 signaling pathway has

promising advantages in cancer immunotherapy.
MDA5 in SARS-CoV-2 virus infection

SARS-CoV-2

SARS-CoV-2 (severe acute respiratory syndrome coronavirus

2) has been identified as the pathogen of the major epidemic

COVID-19 (67). SARS-CoV-2 is an enveloped, positive single-

stranded RNA b coronavirus. The diameter ranges from 80 to 160

nm. The virion contains a positive-stranded single-stranded RNA

genome of about 30kb, with a 5’-cap structure and a 3’-poly (A)

tail (68, 69). It usually consists of 15 open reading frames (ORF)

that encode 29 proteins. Its genome can be divided into two parts,

the region encoding non-structural proteins (ORF1a and

ORF1ab) and the region encoding conserved structural proteins.

The former accounts for about 2/3 of the total length of the

genome, while the latter accounts for the rest. ORF1a/ORF1ab was

translated into poly-protein 1a (pp1a) and poly-protein 1ab
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(pp1ab) respectively. pp1a is cleaved into 11 nonstructural

proteins (nsps) by papain (PLpro) and main protease

(3CLPRO), while pp1ab is cleaved into 16nsps. 3’-terminal

conserved structural protein region contains 13 ORFs and

encodes four main structural proteins, namely spike (S) protein,

envelope (E) protein, membrane (M) protein and nucleocapsid

(N) protein.

SARS-CoV-2 replicates mainly in the ciliated cells of the

nose and bronchioles and type 2 lung cells in the alveolar region,

as well as in the gastrointestinal tract. After SARS-CoV-2 binds

to the host receptor angiotensin converting enzyme-2 (ACE2) to

facilitate entry, viral RNA is translated into replication

complexes, resulting in genome replication and the production

of offspring virions (70). COVID-19’s extrapulmonary

symptoms are thought to be mediated by ACE2 receptor on

small vascular endothelium, intestinal tract, smooth muscle and

skeletal muscle (71). It has been reported that SARS-CoV-2 is

similar to other coronaviruses in that dsRNA intermediates are

produced during virus replication, and these intermediates can

be recognized by RNA PRRs- MAVS cascade, or the TLRs

family, especially TLR3 which activates the TRIF to induce

IFN-b (70).
MDA5-dependent
anti-SARS-CoV-2 response

Through the in-depth study of the response of host cells to

SARS-CoV-2 infection in primary human airway epithelial cell

line (HAE) and immortalized lung cell line, it was proved for the

first time that MDA5 is the main sensor for recognizing SARS-

CoV-2 infection in lung cells (72). In the study of lung cancer cell

line Calu-3, it was also found that human pulmonary epithelial

cells mainly mediated strong antiviral response through MDA5

sensor, which led to delayed induction of type I and III interferon

signals, and finally led to the restriction of virus replication (70).

These two types of IFN bind to their respective receptors

(IFNAR) in an autocrine or paracrine manner and trigger the

activation of the Janus kinase (JAK), which activates and

phosphorylates signal transducers and transcription factors

STAT1 and STAT2 pathway, leading to the expression of ISGs

(26, 73). These genes exert antiviral activity directly or indirectly

through different mechanisms. Although the specific molecular

mechanism of SARS-CoV-2-mediated IFN remains to be

studied, IFN signaling is important in immunopathology.

According to transcriptome analysis, the increase of cytokines

and interferon signals in the lungs of patients with COVID-19 is

usually induced by transcription factor NF-kB (74). NF-kB can be

activated downstream ofMAVS or activated by other PRRs. In the

process of recognizing SARS-CoV-2 in lung epithelial cells, the

biological functions of LGP2 and NOD1 have been proved to be

essential, but RIG-I has not been found to recognize virus and
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induce interferon response (18). One study also showed that RNA

extracted from SARS-CoV-2-infected VeroE6 cells activated

MDA5 but not RIG-I after transfection of human lung

fibroblasts (75). At the same time, it is reported that both

MDA5 and RIG-I can sense SARS-CoV-2 infection in Calu-3

cells (76). Surprisingly, in A549, HCT116 and THP1 cells, SARS-

CoV-2 virus infection and replication neither take place, nor up-

regulate the response of antiviral cytokines (77).
SARS-CoV-2 evades host
antiviral response

It is worth noting that the absence of sensors did not

significantly increase the level of viral RNA or the number of

infectious viruses released, indicating that innate immune activation

through RNA sensing did not effectively inhibit viral replication

(76). Indeed, it has been reported that SARS-CoV-2 triggers a

MDA5-dependent interferon response, but this response does not

control viral replication in primary HAE cells and pulmonary

epithelial cells (72). The follow-up study showed that type I IFN

pretreatment could effectively inhibit SARS-CoV-2 replication.

SARS-CoV-2 evades the host defense not only through

replication dynamics, but also the downstream immune factors

of IFN signaling pathways. The activation of RLRs induces the

production of IFN and then transmits antiviral signals by up-

regulating ISGs. ISG15, a ubiquitin-like protein can covalently

bind to the lysine residues of the target protein, a process known

as ISGylation or ISG modification. At the same time, the binding

of ISG15 is indispensable for the antiviral IFN response

mediated by viral RNA sensor MDA5 (75). Modification of

CARD structure of MDA5 by ISG promotes its oligomerization,

which triggers a series of innate immune activation against

SARS-CoV-2. However, direct de-ISGylation mediated by the

papain-like protease (PLpro) domain of nsp3 in SARS-CoV- 2

can antagonize ISG15-dependent MDA5 activation and has

been shown to be a key escape mechanism (Figure 1, Table 1).
Frontiers in Immunology 06
The membrane protein (M) in SARS-CoV-2 structure has

been shown to inhibit the expression of IFN-b and interferon-

stimulated genes induced by RIG-I, MDA5, IKK-ϵ and TBK1, as

well as IRF3 phosphorylation and dimerization induced by

TBK1 (Table 1) (79). M protein not only interacts with MDA5

and TBK1, but also inhibits the production of type I interferon

by ubiquitin degradation of TBK1 connected by K48, but its

potential molecular mechanism is not completely clear.

Viral RNA-dependent RNA polymerase (RdRp) nsp12 can

attenuate the activation of IFN-b promoter induced by SARS-

CoV-2 virus or Poly (I:C) in a dose-dependent manner (78). It

can also inhibit the activation of interferon promoter triggered

by overexpression of RIG-I, MDA5, MAVS and IRF3 (Table 1).

Although it does not affect the phosphorylation of IRF3, it

inhibits IRF3 nuclear translocation, which is independent of

the activity of nsp12 polymerase.

Open reading frames 9b (ORF9b) in SARS-CoV-2 structure

inhibits the production of type I and type III interferons by

targeting multiple molecules of cytosolic dsRNA antiviral

signaling pathways, including RIG-I/MDA5-MAVS, TLR3-

TRIF and cGAS-STING signaling pathways, and finally

negatively regulates antiviral immunity and promotes viral

replication (Table 1) (80).

There is data that redefined the characteristics of COVID-19

through in-depth analysis of SARS-CoV-2 transcriptional

response, and it showed that SARS-CoV-2 replication caused

low levels of type I or III IFN response and high levels of

chemokines and inflammation (81, 82). However, expression of

exogenous virus receptor ACE2 in A549 cells and CALU-3 cells

can lead to strong virus replication and obvious production of

type I or III IFN. Inflammatory mediators produced during

epithelial cell infection can stimulate primary macrophages to

enhance the production of cytokines and driver cell activation.

Therefore, for the treatment of COVID-19, it is difficult to negate

the start with inflammatory factors. It is more widely understood

that early IFN responses are protective and beneficial whereas

late IFN responses are pathological/inflammatory (82).
TABLE 1 SARS-CoV-2 proteins involved in MDA5 mediated antiviral immunity.

Protein Description Function Reference

Non-structural proteins

nsp3 de-ISGylation of MDA5 mediated by the papain-like protease (PLpro) domain (75)

nsp12 attenuates the activation of IFN-b promoter (78)

Structural proteins

M protein Interacts with MDA5 and TBK1; Induces ubiquitin degradation of TBK1 (79)

Accessory proteins

Orf9b Targeting RIG-I/MDA5-MAVS, TLR3-TRIF and cGAS-STING signaling pathways (80)
fro
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Conclusion

In summary, mammalian cytosolic nucleic acid sensing plays

a central role in inducing innate and adaptive immune responses

to tumors and viruses, and triggering the innate immune system

helps to combat the induced immunosuppressive response. This

review describes that MDA5 can recognize cytoplasmic dsRNA

for cytoplasmic immune response, and the application of MDA5

agonists may be a new strategy for cancer immunotherapy.

However, the role of MDA5-MAVS pathway in tumor

immunity is still very complex, and many questions remain

unanswered. Recently, increasing evidences have illustrated how

the innate immune pathway in the tumor microenvironment

changes tumorigenesis in different tumors, thus affecting the

subsequent design of effective immunotherapy trials (83, 84).

In addition, MDA5 is the main sensor to SARS-CoV-2

infection, but whether RIG-I and other pathogen recognition

sensors can help the host against virus and the further sensing

mechanism of SARS-CoV-2 in lung epithelial cells remains to be

studied. So far, the literature reports have shown us the

immunopathology of SARS-CoV-2 and the mechanism of

immune escape. Future efforts will focus on elucidation of the

virus invading the host and the comprehensive stimulation of

the immune system, and the formation of inflammatory

microenvironment. Understanding of both the pre-existing

inflammatory environment of the host and the extensive

impact caused by many evasive factors of the virus itself will

facilitate implementation of targeted therapies and development

of effective treatments from many aspects.
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