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Abstract: A tiller number is the key determinant of rice plant architecture and panicle number and
consequently controls grain yield. Thus, it is necessary to optimize the tiller number to achieve
the maximum yield in rice. However, comprehensive analyses of the genetic basis of the tiller
number, considering the development stage, tiller type, and related traits, are lacking. In this study,
we sequence 219 Korean rice accessions and construct a high-quality single nucleotide polymorphism
(SNP) dataset. We also evaluate the tiller number at different development stages and heading
traits involved in phase transitions. By genome-wide association studies (GWASs), we detected
20 significant association signals for all traits. Five signals were detected in genomic regions near
known candidate genes. Most of the candidate genes were involved in the phase transition from
vegetative to reproductive growth. In particular, HD1 was simultaneously associated with the
productive tiller ratio and heading date, indicating that the photoperiodic heading gene directly
controls the productive tiller ratio. Multiple linear regression models of lead SNPs showed coefficients
of determination (R2) of 0.49, 0.22, and 0.41 for the tiller number at the maximum tillering stage,
productive tiller number, and productive tiller ratio, respectively. Furthermore, the model was
validated using independent japonica rice collections, implying that the lead SNPs included in the
linear regression model were generally applicable to the tiller number prediction. We revealed the
genetic basis of the tiller number in rice plants during growth, By GWASs, and formulated a prediction
model by linear regression. Our results improve our understanding of tillering in rice plants and
provide a basis for breeding high-yield rice varieties with the optimum the tiller number.

Keywords: rice tillering; tiller number; productive tiller number; heading date; phase transition;
genome-wide association study

1. Introduction

Tiller number in rice is the major trait determining plant architecture. An excessive tiller number
causes too many unproductive tillers, a reduced leaf area, and a reduction in photosynthetic efficiency
by mutual shading. By contrast, too few tillers lead to low biomass production and a deficiency in the
grain filling capacity and carbohydrate production [1]. It is important to minimize unproductive tillers
and increase the sink size to improve the harvest index in rice, as in the case of China’s super hybrid
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rice and the IRRI new plant type rice [2]. Tillers are formed from axillary buds, which are derived from
the axillary meristems generated on the culm in the leaf axil [3]. Several genes directly regulate axillary
meristem initiation, consequently affecting branching in rice. LAX PANICLE1 (LAX1), which encodes a
basic helix-loop-helix (bHLH) transcription factor, is the main regulator of axillary meristem formation
in rice [4]. lax1 mutant plants show reduced branching in both vegetative and reproductive growth,
with suppressed tillering and panicle branches. MONOCULM1 (MOC1) encodes a transcription factor
in the GRAS family and is also involved in axillary bud regulation and rice tillering. moc1 mutants
show completely defective tillering, producing only one main culm [5].

Rice tillering is also influenced by genes involved in phytohormone signaling, such as auxins,
cytokinins, strigolactone, and brassinosteroids. The auxin efflux carrier gene OsPIN1 is involved in
polar auxin transport. Transgenic plants with low OsPIN1 expression show a reduced number of
adventitious roots and a significantly increased number of tillers [6]. Cytokinin oxidase/dehydrogenase
2 (OsCKX2) encodes a cytokinin oxidase in rice. The suppression of OsCKX2 expression by RNAi
enhances growth and productivity by increasing the tiller number and grain weight [7]. DWARF 53 (D53)
is a substrate of the SCFD3 ubiquitination complex and acts as a repressor of strigolactone signaling [8].
In d53 mutants, strigolactone signaling is blocked, leading to the dwarf and high-tillering phenotype.
Receptor-like cytoplasmic kinases 57 (OsRLCK57) is involved in the modulation of brassinosteroid signaling.
The transgenic lines silenced for OsRLCK57 expression by RNA interference results in significant
reductions in tillers and panicle secondary branching [9].

In addition, growth phase transitions are a major determinant of rice tillering patterns. Axillary
buds produce tillers during the vegetative stage. After the phase transition to the reproductive stage,
the shoot apical meristem becomes an inflorescence meristem, and tiller development is delimited [10].
Late heading results in a long duration of vegetative growth, high biomass production, extended
tillering, and a low harvest index [11,12]. A short vegetative growth phase (i.e., early heading) results
in insufficient biomass production [13]. Rice is a photoperiod-sensitive species with a short-day
requirement for heading [14]. Previous studies have revealed several photoperiod-responsive genes.
Heading date 1 (HD1), an ortholog of Arabidopsis CONSTANS (CO), is a photoperiod-responsive
flowering gene [15,16]. HD1 acts as an activator of HEADING DATE 3a (HD3a) under short-day
conditions, resulting in heading [17]. TIMING OF CAB EXPRESSION 1 (OsTOC1), an ortholog of TOC1
in Arabidopsis, is an important circadian clock component and photoperiodic heading regulator [18].
Hairy meristem 1 and Hairy meristem 2 (OsHAM1 and OsHAM2) regulate the vegetative to reproductive
phase change [19]. OsHAM1 and OsHAM2 are regulated by osa-miR171. The down-regulation of these
genes delays heading, thus increasing tiller numbers.

Genome-wide association studies (GWASs), using high-quality single nucleotide polymorphisms
(SNPs), can be used to dissect the genetic basis of complex agronomic traits [20]. Loci associated with
natural variation in the tiller number have been identified by GWASs using several panels. Huang et al.
conducted a GWAS using 671,355 SNPs and 373 accessions classified as the indica landrace, and detected
eight association signals for tiller numbers at the full-ripe stage [21]. Another GWAS successfully
identified 13 loci associated with the tiller number at the booting stage using 4136 SNPs detected in
469 indica accessions [22]. More recently, a GWAS using 700,000 SNPs revealed 23 loci associated with
the tiller number at the later tillering stage of 350 RDP-2 accessions [23]. However, these previous
GWASs have focused on tiller numbers at a single stage, without considering alterations during
different stages. To comprehensively understand the genetic basis of tiller numbers, it is necessary to
consider developmental stages, tiller types, such as productive or unproductive tillers, and relationships
between tiller numbers and other traits.

In this study, we sequenced 219 Korean rice accessions and constructed a high-quality SNP dataset.
Then, we investigated natural variation in the tiller number at different developmental stages and
heading traits. By a GWAS, we identified the complex genetic regulation of tillering and interactions
between tiller numbers and phase transitions in rice plants. We also revealed the contribution of each
trait-associated loci to the maximum tiller number, productive tiller number, and ratio by a linear
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regression analysis. Lastly, using independent japonica accessions, we verified the applicability of the
detected loci to molecular breeding aimed at optimizing tiller numbers.

2. Materials and Methods

2.1. Plant Materials and Phenotype Analysis

A total of 266 rice accessions, including 219 Korean rice accessions for GWAS and 47 japonica
accessions for the verification of linear regression models, were used. Korean rice accessions included
78 landraces, 130 modern cultivars, and 11 Tongil-type cultivars (Table S1). Modern cultivars and
Tongil-type cultivars, derived from a cross between temperate japonica and indica, were considered as
separate groups. Forty-seven japonica accessions to verify linear regression models were from four
origins: Japan, China, Taiwan, and the USA (Table S2). A total of 32 accessions were provided by the
National Agrobiodiversity Center (NAC), Rural Development Administration (RDA), South Korea.
The other 234 accessions were conserved at the Agricultural Genetic Resource Center, Seoul National
University (SNU), Suwon, South Korea. All plant materials were cultivated in an experimental field at
SNU, Suwon, South Korea (natural long-day conditions, latitude = 37◦ N). Thirty-day-old seedlings
were transplanted into a paddy field under the following conditions: One plant per hill, 25 plants per row,
15 cm between plants in a row, 30 cm between rows, and three rows per accession. All phenotypes were
measured in mid-row plants, excluding plants near other accessions and border plants. Tiller number
traits, including tiller numbers at the early tillering stage (TNE), maximum tillering stage 1 (TNM1),
maximum tillering stage 2 (TNM2), and productive tiller number (PTN), were measured at 18,
35, 42, and 110 days after transplanting (DAT), respectively (Figure 1c). The productive tiller ratio (PTR)
indicated the capacity for developing panicle-emerged tillers from whole tillers. PTR was calculated by
the ratio of panicle-emerged tillers (productive tillers) to the maximum potential tillers (PTN/TNM2).
The heading date (HD) was defined as the time from the date of sowing to the date at which the first
panicle emerged in the plant. Panicle emergence was recoded when a tip of the panicle was visible from
the flag leaf sheath. The heading interval (HDI) was defined as the time from the date of emergence of
the first panicle to the last panicle in a plant.

Figure 1. Population structure and phenotypic variation in Korean rice accessions. (a,b) An multi-
dimensional scaling (MDS) plot (a) and neighbor-joining (NJ) tree (b) were constructed using 37,009 linkage
disequilibrium (LD)-pruned single nucleotide polymorphisms (SNPs). Red, modern cultivars; green,
landrace; blue, Tongil-type cultivars. (c) Tiller number at different developmental stages. Tiller numbers
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were assessed at 18, 35, 42, and 110 days after transplanting (DAT). (d–j) Histogram showing
distributions of early tillering stage (TNE) (d), maximum tillering stage 1 (TNM1) (e), maximum
tillering stage 2 (TNM2) (f), productive tiller number (PTN) (g), productive tiller ratio (PTR) (h),
heading interval (HDI) (i), and heading date (HD) (j) across accessions. Horizontal and vertical lines
below the histogram represent the range and average value, respectively. M, L, and T indicate modern
cultivars, landrace, and Tongil-type cultivars, respectively. (k) Correlation network for tiller number
traits and heading traits. A correlation network was built based on Pearson’s correlation coefficients ®

between traits. Each path indicates a correlation between the two traits. The width and transparency of
the line denote the strength of the correlation. Weak correlations with R between −0.3 and 0.3 are not
shown. Green and red represent positive and negative correlations, respectively.

2.2. NGS Analysis and Genotyping

Total DNA was extracted from 90-day-old leaves of each accession by the CTAB method [24].
DNA was sheared into fragments of 450–500 bp and used for DNA library construction using TruSeq
Nano DNA Library Prep kits (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol.
The library size distribution was checked using the Agilent Technologies 2100 Bioanalyzer and a DNA
1000 chip (Santa Clara, CA, USA). Prepared libraries were quantified by qPCR according to the Illumina
qPCR quantification protocol. Whole genome sequencing data were generated on the Illumina HiSeq X
system to generate 2× 150 bp paired-end reads with a sequencing depth of >10× per sample. Raw reads
were processed to remove adaptors and low-quality bases using Trimmomatic v0.38 [25] with the
parameters ILLUMINACLIP:2:30:10 SLIDINGWINDOW:4:15 MINLEN:50. Reads were aligned to the
rice reference genome (Nipponbare, IRGSP v1.0) [26] using the BWA v0.7.17 MEM algorithm with
default parameters [27]. Aligned reads were sorted using samtools v1.9 [28], and duplicates were
removed using Picard v2.20.2 [29]. Nucleotide variants were called by the HaplotypeCaller function of
GATK v4.1.2 [30] with the parameters—max-missing 0.95—minQ 30—minDP 5. In addition, nucleotide
variants with proportions of heterozygous genotypes of >0.05 were filtered using the vc.getHetcount
command in GATK v4.12.

2.3. Population Structure and Genetic Relationships

Linkage disequilibrium (LD)-based SNP pruning was performed using PLINK v1.9 [31] with
the command—indep-pairwise 50 5 0.2. In total, 37,009 LD-pruned SNPs (minor allele frequency
[MAF] > 0.05) were obtained for analyses of population structure and genetic relationships. Population
structure was revealed by multi-dimensional scaling (MDS) analysis conducted using the MDS function
of PLINK v1.9. Neighbor-joining (NJ) trees were constructed to infer genetic relationships using
MEGA v7 [32].

2.4. Genome-Wide Association Mapping

Only 1,509,362 SNPs with MAF > 0.05 and bi-allelic genotypes were included in the GWASs.
All GWASs were performed using linear mixed-models (LMM) implemented in FaST-LMM v2.07 [33].
The genetic similarities were used to estimate random effects. The p-value thresholds for genome-wide
significance were calculated by dividing the significance level 0.05 by the effective number of
independent SNPs (p-value of 1.35 × 10−6) [34]. LD patterns between lead SNPs and the other
SNPs were evaluated using PLINK v1.9 [31] with the -r2 command to calculate pairwise genotype
correlations (r2). Lead SNPs were defined as the SNPs with the lowest p-value in loci, including
significant SNPs. Haplotypes were constructed using all variants, including SNPs and InDels, without
consideration of MAF. Individuals containing at least one missing or/and heterozygous genotype were
excluded from the haplotype analysis.
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2.5. Statistical Analysis

All statistical analyses were performed using R studio v1.2.5033 [35]. Pearson’s correlation
coefficients among all phenotypes were calculated without missing observations using the stats
package [36]. A correlation network was constructed with R > |0.3| using the corrr package [37].

Multiple linear regression models for TNM2, PTN, and PTR were estimated using phenotypes as
dependent variables and lead SNPs in the GWAS as independent variables. Independent variables
consisted of lead SNPs not only for TNM2, PTN, and PTR, but also for earlier traits with correlations.
Since these three terminal traits are affected by traits at the previous growth stage, the directions of
relationships between traits were determined based on the sequence of growth stages (Figure 1k).
Variables for the best linear equation were selected based on Akaike information criterion (AIC) in a
stepwise algorithm implemented in the stats package [36]. The relative importance of independent
variables in the linear regression equation was estimated using the lmg method of the relaimpo
package [38]. Observed values and predicted values were compared using the predict function of the
stats package [36].

2.6. Estimation of Heritability

GCTA v1.93 [39] was used to estimate the SNP-based heritability of traits as proportion of
phenotypic variance of traits explained by the SNP subset [40]. The genetic relationship matrix
to estimate genetic relatedness between individuals was calculated using filtered 1,509,362 SNPs.
Variance in phenotypes was calculated by the restricted maximum likelihood method with the genetic
relatedness and eigenvectors from a principal component analysis.

3. Results

3.1. Population Structure of Korean Rice Accessions

An SNP subset obtained by LD-based pruning was used for analyses. An MDS analysis showed
that population genetic structures of Korean rice accessions could be classified into two major groups,
japonica and Tongil-type accessions, developed from inter-subspecific crosses between indica and
temperate japonica (Figure 1a). Japonica accessions were divided into two sub-groups, modern cultivars,
and landrace accessions. An NJ tree revealed a similar pattern to that obtained by MDS plot (Figure 1b).

3.2. Variation and Changes in the Tiller Number among Growth Stages

The modern japonica cultivar group showed lower TNE and TNM1 than those of japonica
landraces and Tongil-type rice (Figure 1d,e). TNM2 was higher in the Tongil-type cultivar group
than in the other groups (Figure 1f). PTN and PTR in all Korean rice accessions were mainly in the
ranges of 10–11 and 0.65–0.7, respectively. The highest average PTN and PTR values were found in the
landrace group (Figure 1g,h). Tongil-type cultivars revealed the lowest phenotypic variation for all
traits, but showed the highest average values and variation in HDI (Figure 1i). The average HD was
lower in the landrace group than in the other groups (Figure 1j).

Phenotypic relationships among all traits were investigated by correlation analysis (Figure 1k).
Three tiller number traits at the vegetative stage (TNE, TNM1, and TNM2) were positively correlated.
A positive correlation was found between HD and TNM2. HD was negatively correlated with HDI
and PTR. PTR was negatively correlated with TNM2, while the PTN was positively correlated with
TNM2 and HDI.

3.3. Genome-Wide Association Studies with Factored Spectrally Transformed Linear Mixed
Models (FaST-LMM)

We detected 20 association signals (p ≤ 1.35 × 10−6) for all traits (Figure 2; Table 1). Two significant
associations were detected for each of TNE, TNM1, and TNM2 (Figure 2a–c). For PTN and PTR,
only one and two association signals were detected, respectively (Figure 2d,e). The most significant
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association (chr01:8365187; p = 3.52 × 10−16) was detected for HD (Figure 2f). The largest number of
loci (i.e., six) were associated with HDI (Figure 2g; Table 1). We found a notable locus at 31.0–31.3 Mb
on chromosome 4 where two lead SNPs, chr04:31093494 and chr04:31232808, were associated with
TNM2 and PTN and with TNM1 and TNM2 (Figure 3a–c). Although the two lead SNPs were separated
by only 150 kb, the LD parameter r2 was <0.4. Thus, each lead SNP was considered as independent
association signals with the traits. Chr04:31093494 and chr04:31232808 were both associated with
TNM2 (p = 5.82 × 10−10 and p = 2.88 × 10−11, respectively) (Figure 3b). However, only chr04:31232808
was significantly associated with TNM1 (p = 1.36 × 10−7; Figure 3a), and chr04:31093494 was associated
with PTN (p = 1.18 × 10−7; Figure 3c). The chr04:31232808 A allele was a positive (trait-enhancing)
allele, causing higher TNM1 and TNM2 values, and was primarily detected in landrace accessions
(Figure 3e,g). Accessions with the chr04:31093494 A allele, mainly landrace accessions, showed higher
TNM1 and TNM2 values than those of accessions with the T allele (Figure 3d,h). Four haplotypes
were constructed from two alleles for each lead SNP (Figure 3i). Haplotype 1 (H1), consisting of two
positive alleles of each lead SNP, showed the highest average TNM1, TNM2, and PTN. Most modern
cultivars (96.7%) with H4 showed low TNM1, TNM2, and PTN values.

Figure 2. Genome-wide association scan using linear mixed models (LMM). (a–g) Manhattan plots of
genome-wide association studies (GWASs) for TNE (a), TNM1 (b), TNM2 (c), PTN (d), PTR (e), HD (f),
and HDI (g). Negative log10-transformed p-values from GWASs using LMM are plotted at positions on
each of 12 chromosomes. Red dots indicate significant SNPs (p < 1.35 × 10−6). Known candidate genes
are marked above lead SNPs.
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Figure 3. Strong association signal on chromosome 4 for TNM1, TNM2, and PTN. (a–c) Loci on
chromosome 4 near the lead SNP (i.e., the SNP with the highest significance) for TNM1 (a), TNM2 (b),
and PTN (c). The color of each SNP indicates the r2 value for the correlative with the lead SNP. Red and
green color intensities indicate stronger and weaker LD (0 to 1). (d–f) Dot plots for differences in
phenotypes by alleles of chr04:31093494 (d) and chr04:31232808 (e), and the haplotype constructed from
two lead SNPs (e). (g,h) Allele frequencies for (g) chr04:31093494, (h) chr04:31232808, and (i) haplotypes
constructed from the two lead SNPs.

Table 1. SNPs associated with the tiller number and heading traits.

Trait Chr Lead SNP p-Value Candidate
Gene Gene ID a Description Reference

TNE 1 chr01:42957568 6.11 × 10−7 OsRLCK57 Os01g0973500 Receptor-like
cytoplasmic kinase [10]

TNE 3 chr03:9436356 1.47 × 10−7

TNM1 2 chr02:26906676 9.65 × 10−7 OsHAM1;
OsHAM2

Os02g0662700;
Os02g0663100

Maintenance of
shoot apical

meristem
indeterminacy;
Regulation of
vegetative to
reproductive
phase change

[20]

TNM1 4 chr04:31232808 1.36 × 10−7

TNM2 2 chr02:24685790 7.67 × 10−8 OsTOC1/
OsPRR1 Os02g0618200

Circadian-associated
rice pseudo

response regulator;
Control of

flowering time

[19]

TNM2 4 chr04:31093494 5.82 × 10−10

TNM2 4 chr04:31232808 2.88 × 10−11

PTN 4 chr04:31093494 1.18 × 10−7

PTR 6 chr06:8339606 3.52 × 10−16 HD1 Os06g0275000

Zinc finger protein;
Control of

photoperiodic
flowering time

[16,17]
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Table 1. Cont.

Trait Chr Lead SNP p-Value Candidate
Gene Gene ID a Description Reference

PTR 11 chr11:17720543 9.10 × 10−7

HD 1 chr01:25634456 1.92 × 10−8

HD 1 chr01:34991240 3.30 × 10−7

HD 6 chr06:8365187 1.23 × 10−20 HD1 Os06g0275000

Zinc finger protein;
Control of

photoperiodic
flowering time

[16,17]

HD 6 chr06:21572894 2.37 × 10−7

HDI 1 chr01:29428424 4.54 × 10−7

HDI 2 chr02:22024430 6.07 × 10−7

HDI 2 chr02:33872721 7.49 × 10−7

HDI 6 chr06:29529906 2.72 × 10−7

HDI 9 chr09:18859830 7.24 × 10−7

HDI 10 chr10:18000023 5.13 × 10−7

a Gene ID for the Rice Annotation Project Database (RAP-DB).

Association signals near 8.3 Mb on chromosome 6 exhibited pleiotropic associations with PTR
and HD, led by chr06:8339606 (p = 3.52 × 10−16) and chr06:8365187 (p = 1.23 × 10−20), respectively
(Figure 4a,b). The two lead SNPs were in high LD (r2 > 0.94) and were separated by about 25 kb.
Thus, these lead SNPs were considered the same association signal. HD1 was located within a region
in moderate LD (r2 > 0.6) with lead SNPs approximately 1 Mb from association signals (Figure 4a,b).
HD1 controls photoperiodic heading [15,16]. Several studies have shown that HD1 function is affected
by whether the HD1 haplotype includes functional or nonfunctional allele [41,42]. Six HD1 haplotypes
were classified into functional (i.e., H1, H3, H5, and H6) and nonfunctional haplotypes (i.e., H2 and H4)
(Figure 4c). In Korean rice accessions, nonfunctional HD1 was caused by two frame-shifting InDels,
chr06:9338004, and chr06:9338220. Functional HD1 showed a later HD and higher PTR than those for
nonfunctional HD1 (Figure 4d,e).

Figure 4. The Loci showing strong association signals for HD and PTR. (a,b) Genomic regions were
showing strong association signals for HD (a) and PTR (b). The color of each SNP indicates r2 for the
correlation with the lead SNP. Red and green color intensities indicate stronger and weaker LD (0 to 1).
(c) HD1 haplotypes. Sequence variants in green are frame-shifting InDels, causing a premature stop
codon. Haplotypes in green include nonfunctional alleles led by a premature stop codon. Haplotypes
in red denote include functional alleles. (d,e) Dot plots for differences in HD (d) and PTR (e) between
functional and nonfunctional HD1. F, functional alleles; N, Nonfunctional alleles.
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Chr02:26906676, a lead SNP near 26.9 Mb, was significantly associated with TNM1 (p = 9.65 × 10−7).
We detected two candidate genes, OsHAM1 and OsHAM2, approximately 62 and 52 kb from
chr02:26906676 with r2 > 0.8 (Figure 5a). These genes maintain shoot apical meristem indeterminacy and
regulate the vegetative to reproductive phase change [19]. Five and four haplotypes were constructed
for OsHAM1 and OsHAM2, respectively, using variants in genic regions and the ~1.5 kb promoter
region from the 5′ UTR. In Korean accessions, H4 of OsHAM1 was dominantly detected, accounting for
95% of accessions (Figure 5b). When comparing average TNM1 values among haplotypes, detected in
more than two accessions, H2 showed a higher TNM1 than that of H4 (Figure 5c). In OsHAM2, H4 was
dominantly detected in Korean accessions, accounting for 93% of accessions. H1, only found in eight
accessions, conferred the highest average TNM1 (Figure 5d).

Figure 5. Loci showing strong association signals near candidate genes. Candidate genes located near
the lead SNPs (a) chr02:26906676, (f) chr01:42957568, and (i) chr02:24685790. Haplotypes of candidate
genes and differences in phenotype among haplotypes. (b,c) OsHAM1. (d,e) OsHAM2. (g,h) OsRLCK57.
(j,k) OsTOC1. The color of each SNP indicates the r2 value for the correlation with the lead SNP.
Red and green color intensities indicate stronger and weaker LD (0 to 1). The phenotypic differences
were compared for haplotypes detected in more than three accessions.

We detected association signals for TNE, represented by the lead SNP chr01:42957568 (p = 6.11 × 10−7),
at 42.9 Mb on chromosome 1. A candidate gene, OsRLCK57, in strong LD (r2 > 0.97) was located about
23 kb from chr01:42957568 (Figure 5f). OsRLCK57 is involved in the modulation of BR signaling and is
required to develop tillers and panicle secondary branching [9]. Three OsRLCK57 haplotypes were
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constructed by three variants (Figure 5g). H1, found in only four accessions, showed higher TNE
values than those of other haplotypes (Figure 5h).

Another locus at 24.5–24.8 Mb on chromosome 2, led by chr02:24685790 (p = 7.67 × 10−8),
was significantly associated with TNM2. OsTOC1 was located about 113 kb from the lead SNP and was
in LD with r2 > 0.65 (Figure 5i). OsTOC1 is an important circadian clock component and photoperiodic
heading regulator [18]. Ten haplotypes were detected based on variants in the genic region of OsTOC1.
H1 containing chr02:24572219, an InDel located at the junction between the coding region and 3′UTR,
was only detected in landrace accessions, showing the highest TNM2 (Figure 5j,k). H9 and H10 with
the chr02:24571309 T allele showed relatively lower TNM2 values than those of the other haplotypes
(Figure 5j,k).

3.4. Linear Regression Model for Three Tiller-Related Traits

The lead SNPs for TNE, TNM1, TNM2, and HD were included in a linear regression analysis of
TNM2 (Figure 6a). A linear regression model consisting of seven independent variables effectively
explained variation in TNM2 (R2 = 0.49) (Table 2). As determined by estimates of relative importance
(i.e., the contribution of an individual variable to R2), chr04:31232808 (23.6%) showed the largest
contribution to the linear regression model for TNM2 (Figure 6b). In a linear regression analysis of
PTN, six lead SNPs were selected as independent variables, explaining 22.3% of the variance in PTN
(Table 2). Chr02:22024430 showed the highest relative importance of 38.1% (Figure 6c). chr04:31232808
showed high relative importance for PTN in addition to TNM2, accounting for 21.5% of R2 (Figure 6c).
The linear regression model for PTR, consisting of six independent variables, exhibited an R2 of 0.41
(Table 2). Chr06:21572894 and HD1 showed relatively large contributions to the model, with relative
importance values of 36.9% and 16.9% (Figure 6d). Furthermore, an independent test population
consisting of 47 japonica accessions collected from several countries was employed to verify the
accuracy of the linear regression model (Table S2). TNM2, PTN, and PTR were measured in the test
population (Figure 6e–g). Predicted values for TNM2, PTN, and PTR were calculated by applying
the regression equations to genotype data for the test population, and were compared with observed
values. The correlation coefficients I between predicted and observed values of TNM2, PTN, and PTR
were 0.73, 0.49, and 0.6, respectively (Figure 6h–j). Linear regression models for TNM2, PTN, and PTR
explained 52.7%, 23.8%, and 36.5% of phenotypic variation, respectively, indicating that the models
consisting of lead SNPs consistently explained the three traits with similar accuracy in independent
temperate japonica accessions (Figure 6h–j).

Figure 6. Multiple linear regression models for TNM2, PTN, and PTR. (a) Relationships among traits and
variants as independent variables for linear regression models. The paths marked by red, green, and blue
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squares indicate the traits and trait-associated variants involved in TNM2, PTN, and PTR as terminal
traits, respectively. (b–d) Percent of variation explained by independent variables in linear regression
models for TNM2 (b), PTN (c), and PTR (d). (e,f) Phenotypic variance in 47 independent japonica
accessions. (e) TNM2. (f) PTN. (g) PTR. (h–j) Verification of linear regression models using 47 independent
japonica accessions. (h) TNM2. (i) PTN. (j) PTR.

Table 2. Summary of linear regression equations for TNM2, PTN, and PTR using lead SNPs.

SNP Coefficient SD t a Allele b

0 1

TNM2
chr03:9436356 4.51 1.49 3.034 ** A C

chr01:42957568 1.04 0.48 2.167 * A G
chr02:26906676 4.21 1.02 4.122 *** A C
chr04:31232808 4.59 1.03 4.467 *** T A
chr02:24685790 2.80 1.17 2.389 * G A

HD1 −2.37 0.67 −3.521 *** F N
chr06:21572894 −1.73 0.55 −3.132 ** T C

Intercept 16.53 0.34 47.949 ***
p 2.20 × 10−16

R2 0.49

PTN
chr03:9436356 1.83 1.02 1.798 A C

chr01:42957568 0.64 0.30 2.131 * A G
chr04:31232808 2.40 0.67 3.581 *** T A
chr01:34991240 1.05 0.52 2.026 * C A
chr02:22024430 4.13 1.00 4.149 *** C T
chr10:18000023 −1.36 0.64 −2.129 * C T

Intercept 10.93 0.21 51.902 ***
p 8.68 × 10−6

R2 0.22

PTR
chr03:9436356 −0.09437 0.05 −1.975 A C

chr02:26906676 −0.0896 0.03 −2.768 ** A C
HD1 0.078779 0.02 3.446 *** F N

chr01:25634456 0.053531 0.02 2.883 ** C T
chr01:34991240 0.053239 0.03 1.872 C A
chr06:21572894 0.087943 0.02 4.902 *** T C

Intercept 0.649476 0.01 66.599 ***
p 7.68 × 10−15

R2 0.41
a Values of p < 0.05, 0.01, and 0.001 are denoted by *, **, and ***, respectively. b Two different alleles were designated
1 and 0. R2, Coefficient of determination; TNM2, Tiller number at maximum tillering stage 2; PTN, Productive tiller
number; PTR, Productive tiller ratio; F, Functional allele; N, Nonfunctional allele.

4. Discussion

To identify the genetic mechanisms underlying tiller number, comprehensive investigations
involving consecutive observations and accounting for relationships with other traits affecting tillering
are necessary. We investigated relationships between tiller numbers and the heading traits, and performed
a GWAS to dissect the genetic basis for tiller numbers.

4.1. Phenotypic Relationships

We detected a positive correlation between TNM2 and PTN, indicating that TNM2 could directly
affect the potential to produce a panicle. TNM2 was also positively correlated with HD, which reflects
the transition to reproductive development. A later HD is related to a longer duration of vegetative
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growth and the continued development of vegetative organs, causing an increase in TNM2. We detected
positive correlations between TNM2 and HD, as well as between TNM2 and PTN, but not between
HD and PTN. These results suggest that HD is not a direct determinant of PTN and might have an
indirect effect via TNM2.

PTN is an important trait affecting grain yield as it directly determines the panicle number per
plant. PTN showed a significant positive correlation with HDI (Figure 1k). A longer HDI represents a
longer duration of reproductive growth and panicle development. These results suggest that panicle
number, derived from PTN, could be increased by nonsynchronous flowering caused by a longer HDI.

Unproductive tillers are involved in discontinuing nutrient and carbohydrate translocation to
the tillers from the mother stems; furthermore, they compete with reproductive tillers for nutrients in
addition to light [43,44]. Therefore, a high ratio of productive to unproductive tillers (PTR) is considered
a desirable trait for high-yielding varieties [2]. We observed a strong negative correlation between
HD and PTR (Figure 1k). As mentioned above, HD was positively correlated with TNM2, but was
not significantly correlated with PTN. Additionally, PTN was not correlated with PTR. These results
indicate that a higher PTR corresponding with an earlier HD could mainly be explained by reducing
TNM2, rather than an increase in PTN.

4.2. Association Signals for Tillering and Heading

The tiller number at each growth stage is affected by the tillering capacity at earlier stages [45].
Tillering is controlled by the temporal expression of related genes at various development stages.
However, some genetic factors are consistently associated with tillering at several stages [46].
In this study, two lead SNPs, chr01:42957568, and chr03:9436356, were associated with TNE
(Figure 2a). chr02:26906676 and chr02:24685790 were associated with TNM1 and TNM2, respectively,
exhibiting stage specific-associations (Figure 2b,c). Two lead SNPs, chr04:31093494 and chr04:31232808,
were simultaneously associated with TNM2 and PTN and with TNM1 and TNM2, respectively.
These results indicate that TNE was controlled by stage-specific QTLs detected only at certain stages.
However, tiller numbers after the early stage, TNM1, TNM2, and PTN were affected by combinations
of stage-specific and -nonspecific QTLs.

HD1, known to control photoperiodic heading, was a candidate gene for PTR and HD based
on strong association signals within 8.33–8.37 Mb on chromosome 6, although HD1 was located
approximately 1 Mb away from this region (Figure 2e,f). In the present study, nonfunctional HD1
resulted from two frame-shifting InDels, chr06:9338004, and chr06:9338220 (Figure 4c). However,
only the SNP subset excluding InDels was used for the GWAS, and this association may, therefore,
have been missed. Thus, we also performed an additional GWAS for HD and PTR using all variants,
including InDels. However, the most significant association was still not detected in the HD1 region.
Instead, chr06:8329287 was the lead SNP (p = 2.14 × 10−15; Figure S1). A similar pattern of association
signals for HD have been reported in a previous GWAS using Japanese rice varieties [47] and a diverse
collection [48]. The discrepancy between the strongest peak and HD1 could be explained by the
presence of several linked genes that contribute to heading across the region and/or allelic heterogeneity.
Since a GWAS is based on independent comparisons of phenotypic variation for each polymorphic
site, statistical significance is reduced when there are several causative alleles [47]. Similar to previous
reports, we concluded that the most significant association signal was not detected in the HD1 region,
due to allelic heterogeneity. It is notable that nonfunctional HD1 leads to a higher PTR, as well as early
heading (Figure 2e,f). This result supports that earlier heading date confers a higher PTR, as mentioned
above, and suggests that PTR could be improved by the allele of HD1 related to early heading.

Previous reports have shown that variation in the tiller number is mainly explained by genes
directly regulating axillary meristem formation [4,5,49] and genes involved in phytohormone
signaling [6–9]. However, in the present study, we found three candidate genes (OsHAM1, OsHAM2,
and OsTOC1) involved in the developmental phase transition near lead SNPs associated with TNM1
and TNM2 (Table 1). In rice, heading results from a developmental switch from the vegetative to
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reproductive phase, and the repression of heading is involved in the maintenance of vegetative growth,
including tiller development. These results imply that natural variation in the tiller number in Korean
rice accessions is mainly modulated by genes involved in developmental phase transitions, rather than
by genes directly regulating tiller development.

4.3. Genetic Determinants of TNM2, PTN, and PTR

To obtain a comprehensive understanding of the genetic basis of TNM2, PTN, and PTR, multiple
linear regression models were estimated. The low R2 value for the linear regression model for PTN
(0.22) indicated that a relatively small portion of the variance in PTN could be explained by genetic
factors associated with the tiller number and heading traits (Table 2). This result suggests that other
genetic variants should be additionally considered to sufficiently explain PTN variation. Based on
the relative importance of independent variables in linear regression models, TNM2 was largely
contributed by chr04:3123280 (23.6%), the lead SNP for TNM1 and TNM2, followed by chr02:26906676
(17.9%), the lead SNP for TNM1 (Figure 6b). For PTN, chr02:22024430, the lead SNP for HDI, was the
major contributor (38.1%; Figure 6c). Chr06:21572894, HD1, and chr01:34991240, which were associated
with HD, were major contributors to PTR, accounting for 36.9%, 16.9%, and 14.6% of R2, respectively
(Figure 6d). These results indicate that genetic variants associated with earlier stage traits and
correlated traits could also influence TNM2, PTN, and PTR, together with lead SNPs for terminate
traits (TNM2, PTN, and PTR).

In a previous study of progeny populations derived from various crosses, the heritability of tiller
numbers was 37.8–97.7%, depending on the genetic background of the parents [50]. The heritability of
tiller numbers in single-segment substitution lines varied from 0% to 39.1% throughout plant growth
from 7 to 63 days after transplanting (DAT), and the highest heritability was observed at 42 DAT [51].
In the USDA minicore rice diversity panel, SNP-based heritability of tiller numbers at 60 days after
emergence was in the range from 20–25% [52]. These results indicate that the heritability of tiller
numbers varies substantially depending on the growth stage, genetic population, and estimation
method. In the present study, the heritability of tiller numbers varied from 39.2% (TNI; DAT 18) to
77% (TNM2; 42 DAT), showing substantial variation among growth stages (Figure S2). Furthermore,
the heritability of the other tiller number traits PTN and PTR was quite high (i.e., 58.1% and 70.1%,
respectively), indicating that a higher proportion of variation of tiller number traits could be explained
by genetic factors. Linear regression models estimated using significant SNPs could explain 49%,
22%, and 41% of phenotypic variation in TNM2, PTN, and PTR, respectively (Table 2). Taken together,
the small proportion of phenotypic variation explained by multiple linear regression models might be
attributable to the use of significant SNPs in the GWAS, while heritability was estimated using all SNPs.
Regardless, the multiple linear regression models and genetic variants used as independent variables
could be effective molecular tools for the prediction of TNM2, PTN, and PTR in rice breeding programs.

5. Conclusions

In this study, we dissected the basis of rice tiller numbers by analyzing relationships with
heading traits. We also revealed the genetic basis of tiller alterations at different growth stages,
using GWASs. Several candidate genes were detected in loci significantly associated with tiller number.
OsRLCK57 involved in tiller development was associated with the tiller number at the early tillering
stage. OsHAM1, OsHAM2, and OsTOC1, which were related to the developmental phase transition,
were associated with the tiller number at maximum tillering stages. HD1 controlling flowering time was
associated with the productive tiller ratio. Taken together, these results suggest that genes involved in
developmental phase transitions, along with gene modulating tiller development, could also determine
the rice tillering pattern at different growth stages. Our results provide insight into the genetic basis of
overall tillering dynamics.
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