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Abstract

Friend Leukemia Virus Induced erythroleukemia-1 (Fli-1), an ETS transcription factor, was 

isolated a quarter century ago through a retrovirus mutagenesis screen. Fli-1 has since been 

recognized to play critical roles in normal development and homeostasis. For example, it 

transcriptionally regulates genes that drive normal hematopoiesis and vasculogenesis. Indeed, Fli-1 

is one of 10 key regulators of hematopoietic stem/progenitor cell maintenance and differentiation. 

Aberrant expression of Fli-1 also underlies a number of virally induced leukemias, including 

Friend virus-induced erythroleukemia and various types of human cancers, and it is the target of 

chromosomal translocations in childhood Ewing’s sarcoma. Abnormal expression of Fli-1 is 

important in the aetiology of auto-immune diseases such as Systemic Lupus Erythematosus (SLE) 

and Systemic Sclerosis (SSc). These studies establish Fli-1 as a strong candidate for drug 

development. Despite difficulties in targeting transcription factors, recent studies identified small 

molecule inhibitors for Fli-1. Here we review past and ongoing research on Fli-1 with emphasis on 

its mechanistic function in autoimmune disease and malignant transformation. The significance of 

identifying Fli-1 inhibitors and their clinical applications for treatment of disease and cancer with 

deregulated Fli-1 expression are discussed.
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Introduction

Fli-1 was first identified in 1990 by Ben-David Y. et al., as a common site for proviral 

integration in Friend Murine Leukemia Virus (F-MuLV)-Induced erythroleukemia.1 

Induction of Fli-1 expression as a result of proviral integration in the vicinity of this gene 

was shown to be responsible for the development of erythroleukemia.2 This locus was also 

identified as a preferred proviral integration site in Cas-Br-E-induced leukemias.3 A year 

after its discovery, Fli-1 was found to be a target of translocation in a majority (85%) of 

Ewing Sarcoma, a paediatric cancer of bones. The EWS-Fli-1 translocation (t[11;22]) 

generates a fusion protein, EWS-Fli-1, with strong transforming activity.4 The chromosomal 

translocation creates a fusion of the 5′ trans-activation domain of EWS with the 3′ Ets 

domain of Fli-1. The role of ESW-Fli-1 in Ewing’s sarcoma has been extensively evaluated.
5–8 In addition, Fli-1 overexpression was detected in various types of cancer and disease. 

Here we review the effect of Fli-1 on hematopoiesis, vasculogenesis and cancer as well as 

certain diseases associated with abnormal expression of this transcription factors (TF).

Fli-1 is a member of the ETS gene family of TFs.9 This gene family shares a DNA binding 

domain, the ETS domain, responsible for sequence-specific DNA recognition on target 

promoters. In vertebrates, there are 29 different ETS genes expressed in distinct tissues. 

Based on sequence homology of the ETS domain, this gene family is divided into 13 groups: 

ETS, ER71, GABP, PEA3, ERG, ERF, ELK, DETS4, ELF, ESE, TEL, YAN and SPI.9 The 

ERG group comprises Fli-1 and 3 other genes ERG, ERV and ETV.9

I. Fli-1 in hematopoietic Stem/progenitor maintenance and proliferation

Recent studies have identified TF networks that control hematopoietic stem cell self-renewal 

and differentiation into various mature blood lineages.10 A genome-wide computational 

analysis of complex binding patterns identified 10 TFs: SCL/TAL1, LYL1, LMO2, GATA2, 

RUNX1, MEIS1, PU.1, ERG, FLI-1 and GFI1B, which are important for hematopoietic 

stem/progenitor cells maintenance and differentiation.11 Three of these genes (PU.1, ERG 

and FLI-1) are ETS members. Among these, ERG is most closely related to FLI-1. While 

this study identified protein-protein interactions among SCL, LYL1, LMO2, GATA2, 

RUNX1, ERG and FLI-1, direct interaction leading to stable DNA binding was only 

observed between four (GATA2, RUNX1, SCL and ERG). Despite these results, Fli-1 and 

ERG, which recognize a similar DNA binding motif,12,13 were shown to be required for 

hematopoietic stem cell development and megakaryocytic lineage commitment.14–16 Indeed, 

using single and double knock-out mice for Fli-1 and Erg, this study demonstrated that 

disruption of both ETS genes in the hematopoietic linage significantly reduces the number 

of HSC/progenitors and mature megakaryocytes.16 As fli-1 and erg were derived through 

gene duplication of an ancestral gene,2 overlapping functions of these genes may reflect the 

enormous demand in a living organism to maintain HSC and produce distinct mature blood 

cells.
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II. Role of Fli-1 in hematopoiesis and development of various blood cell 

lineages

a. Erythroid development

Fli-1 is expressed at high levels in various hematopoietic progenitors/mature cells and 

endothelial cells, and at lower levels in lung, heart and ovaries.2,17–19 In erythroblasts, Fli-1 

expression is downregulated during (Epo)-induced differentiation of erythroblasts to mature 

erythroid cells.20 Downregulation of Fli-1 triggers erythroid progenitors to undergo 

differentiation and generate erythroid cells. Indeed, exogenous Fli-1 expression in erythroid 

progenitors (through transfection or viral infection) blocks differentiation and promotes 

uncontrolled cell proliferation.21 Deregulated/overexpressed Fli-1 in erythroid progenitors 

alters a cascade of events that switches Epo-induced differentiation to Epo-induced 

proliferation by activating Ras signaling.21 Importance of Fli-1 in erythroid differentiation 

was further established in vivo using chimeric and knock-out mice models of Fli-1 as 

described below.14,22,23

b. T-cell development

Expression of Fli-1 and several other ETS members is elevated in various stages of T-cell 

development.24 In T-cells, the fli-1 promoter is tightly regulated by several members of the 

ETS gene family. Its expression is upregulated by Ets1, Ets2, Fli-1 and Elf1 alone or in 

combination with GATA factors, but inhibited by Tel.25 The role of Fli-1 in T-cell 

development was demonstrated in Fli-1 knock-out mice, in which an N-terminal region was 

deleted by gene targeting (designated Fli-1ΔNT). These mutant mice are viable but exhibit 

thymic hypo-cellularity. This defect was not associated with a specific subpopulation of 

thymocytes or apoptosis, implicating Fli-1 in prethymic T-cell progenitors.19 This initial 

Fli-1 mutant mouse strain expressed a truncated Fli-1 protein owing to an internal 

translation-initiation site and alternative splicing around the neo cassette used for gene 

targeting. Two subsequent Fli-1 null mice succumbed to embryonic lethality at day 11.5–

12.5, precluding analysis of T cell development.23,26 Interestingly, transgenic mice 

overexpressing Fli-1 in hematopoietic progenitors exhibit delayed double-negative (DN) to 

double-positive (DP) transition in vitro, and inhibition of CD4 differentiation and enhanced 

CD8 development both in vitro and in vivo.27 This eventually leads to a pre-T cell 

lymphoblastic leukaemia/lymphoma. Increased NOTCH1 expression was detected in these 

Fli-1 transgenic T cells and, accordingly, activating Notch1 mutations were later identified in 

all tumors.27

c. B-cell development

Fli-1 Transgenic overexpression of Fli-1 in various mouse tissues, with highest levels in 

thymus and spleen, induces high incidence of a progressive immunological renal disease and 

ultimately renal failure. The presence of hypergammaglobulinemia, splenomegaly, B-cell 

hyperplasia, accumulation of abnormal CD3+/B220+-T lymphoid cells and CD5+/B220+-B 

cells in peripheral lymphoid tissues as well as detection of various auto-antibodies in sera of 

these transgenic mice, implicate Fli-1 in B-cell proliferation and survival.28 A role of Fli-1 

in B-cells was also observed in a recently generated Fli-1 knock-out mice engineered to lack 
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the CTA domain (Fli-1ΔCTA), resulting in expression of mutant mRNA and protein.29,30 

Fli-1ΔCTA homozygous mice are viable but exhibit partial perinatal lethality with reduced 

platelet numbers. These mutant mice have significantly fewer splenic follicular B cells and 

more transitional and marginal zone B cells relative to wild-type mice.30 Expression of 

genes implicated in B cell development including Igα, Pax-5, E2A and Egr-1 is reduced, 

while Id1 and Id2 expression increases.30 In addition, naive B-cells from Fli-1ΔCTA mice 

show reduced responsiveness to mitogens.31

d. Megakaryocyte development

Fli-1 is expressed at high levels in megakaryocytic progenitors and further induced during 

differentiation.32 A dominant phenotype of Fli-1ΔCTA mice is a significant reduction in the 

number of mature megakaryocytes and thrombocytopenia.29 As noted, a complete knock-out 

of Fli-1 results in embryonic lethality. This is associated with loss of vascular integrity 

leading to bleeding within the vascular plexus of the cerebral meninges and specific 

downregulation of Tek/Tie-2, the receptor for angiopoietin-1.26 These mice also exhibit a 

defect in megakaryopoiesis, a phenotype similar to Jacobsen or Paris-Trousseau syndrome, a 

relatively rare congenital disorder in which fli-1 is commonly deleted. Clinical abnormalities 

of this disease include growth and mental retardation, cardiac defects, dysmorphogenesis of 

the digits and face, pancytopenia and thrombocytopenia.33–35 Fli-1 in collaboration with 

GATA-1 was shown to regulate expression of several megakaryocytic specific genes 

including c-mpl, gpIIb, gpIV, gpIX, PF4, NF-E2, MafG, HOxa10 and Rab27B, further 

highlighting the importance of Fli-1 in megakaryopoiesis.29,36 Further evidence for a role of 

Fli-1 in megakaryopoiesis has recently been demonstrated using conditional knockout mice.
14

A clinical relevance of Fli-1 in megakaryopoiesis was uncovered by Stockley et al., who 

detected mutations in Fli-1 and Runx1 in 6 families with excessive bleeding and defects in 

platelet development. The discovery of inactivating mutation in these TFs affecting 

megakaryocytopoeisis suggests a common genetic aetiology for defective platelet dense 

granule secretion and mild thrombocytopenia.37

e. Development of other blood cells

In addition to megakaryocytes, Fli-1 is involved in development of other myeloid derived 

cells. Fli-1ΔCTA mice exhibit significant reduction in the number of mature monocytes, 

marcrophages and dendritic cells.38 In addition, analysis of Fli-1−/−:+/+ chimeric mice, 

generated through morula-stage aggregation, revealed reduced neutrophillic granulocytes 

and monocytes as well as increased number of natural killer (NK) cells.22

III. The role of Fli-1 in vasculogenesis and angiogenesis

1. Vasculogenesis

Vascular endothelial cells (EC) form the luminal layer of blood vessels. A role of ETS genes 

in vasculogenesis and angiogenesis was initially suggested from studies in Xenopus laevis. 

Transgenic overexpression of Xenopous Fli-1 (Xi-fli-1) during early embryogenesis led to 

anomalies in head and heart development and delayed erythroid differentiation.39,40 
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Analysis of fli-1 mutant Zebrafish also revealed defects in the circulating system, indicating 

early evolutionary role for this TF in development of blood and vascular systems.41 Based 

on these observations, Lawson et al., generated transgenic zebrafish in which enhanced 

green florescence protein (eGFP) is placed under control of the fli-1 promoter. The fli-1/egfp 
transgenic zebrafish expressed eGFP in all blood vessels throughout embryogenesis, 

providing a unique model system to continuously monitor Fli-1 expression during vertebrate 

embryonic vasculature development in vivo.42

In a related study, Pham et al., discovered high expression of fli-1 and three other ets genes, 

erg, ets1 and etsrp, in the zebrafish vascular system.43 To uncover their roles in 

vasculogenesis, these genes were knocked out individually or in combination. Individual 

fli-1, erg, ets or etsrp knock-out mice showed partial inhibition of endothelial differentiation, 

whereas loss of all 4 genes blocked endothelial differentiation43, hence revealing extensive 

redundancy among these ets genes in endothelial cells. In another direction, genome-wide 

analysis of ETS genes in zebrafish revealed that erg, fli-1 and etsrp act cooperatively and are 

required for angiogenesis, possibly through direct regulation of the endothelial cell junction 

protein VE-cadherin.44 Xenopus and zebrafish embryos lacking fli-1 exhibit a blockade in 

hemangioblast development. In addition, Fli-1 induces expression of key hemangioblast 

genes including Scl/Tal1, Lmo2, Gata2, Etsrp and Flk1.45 These intriguing findings establish 

Fli-1 at the apex of a transcriptional network that regulates blood and endothelial 

development.

In a recent and related study, Li et al., demonstrated that Angiogenic factor with G patch and 

FHA domains 1 (Aggf1) acts upstream of Fli-1 in zebrafish. Knockdown of Aggf1 in 

Zebrafish resulted in a dramatic reduction in expression of the hemangioblast markers Fli-1, 

Etsrp, lmo2 and Scl, This result indicates that aggf1 is involved in differentiation of both 

hematopoietic and endothelial lineages, and that aggf1 acts upstream of fli-1 to specify 

hemangioblasts.46 Overall, these results corroborate previous observations on the presence 

of DNA-binding recognition sites for Fli-1 and other ETS factors on promoters of master 

developmental regulators of blood and endothelial cells.41,43,47–50

In mouse and human, ECs express high levels of Fli-1 and several other ETS genes 

including ERG, ETS1 and ELF-1.51 In human umbilical vein endothelial cells (HUVEC), 

expression of these ets genes is significantly induced after stimulation with Vascular 

Endothelial Growth Factor (VEGF).51 While Fli-1 overexpression in xenopus showed an 

endothelial-specific phenotype, such effect was not observed in Fli-1 transgenic mice. These 

mice however developed a B-cell phenotype associated with severe renal and auto-immune 

disease.28 The absence of a xenopus-like EC effect in these mice may be due to promoter 

selective activity, resulting in insufficient expression of Fli-1. As noted, Fli-1 null mice die at 

gestation day 11.5–12.5 due to massive cerebral hemorrhage and loss of vessel integrity.23,26 

Whether this cerebral hemorrhage is the result of EC dysfunction remains to be determined.

The ETS genes ETV2, FLI-1 and ERG1 specify the differentiation of pluripotent stem cells 

into induced vascular endothelial cells (iVECs).44,52,53 EC specification by these ETS 

proteins requires cooperation with other TFs including SCL/TAL1, GATA2 and LMO2.52 

These iVECs are unstable and drift toward nonvascular cell fate. In a recent study, human 
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midgestation c-Kit(−) lineage-committed amniotic cells (ACs) were successfully 

reprogrammed into vascular endothelial cells (rAC-VECs) without transitioning through a 

pluripotent state. Transient ETV2 expression in ACs generated immature rAC-VECs, 

whereas co-expression with FLI-1/ERG1 endowed rAC-VECs with a vascular repertoire and 

morphology that matched mature ECs. Brief inhibition by transforming growth factorβ 
(TGFβ) functionalized VEGFR2 signaling, and increased specification of ACs into rAC-

VECs.54 These results demonstrate that short-term ETV2 expression and TGFβ inhibition 

with constitutive ERG1/FLI-1 co-expression reprogram mature ACs into durable rAC-VECs 

that may be used to treat diverse vascular diseases.

2. Angiogenesis

During angiogenesis, new blood vessels arise from existing ones by budding out of 

endothelial cell capillaries. Fli-1 regulates this process by controlling expression of key 

angiogenic genes. For example, expression of Fli-1 as well as ERG and ELF-1 in ECs 

activates Endoglin during angiogenesis.47 Endoglin is upregulated in ECs to control cellular 

response to TGFβ. Fli-1/ERG in cooperation with GATA2 also regulates VE-Statin/egf17,55 

which is expressed in embryonic and adult ECs and controls the recruitment and 

proliferation of smooth muscle cells and pericytes, two key events in the stabilization of 

newly formed capillaries during angiogenesis.56 In ECs, Fli-1 is directly regulated by ETS-1 

implicating both ETS genes in endothelial cell fate.57

IV. Role of Fli-1 in immunity and auto-immune diseases

A. Systemic Lupus Erythematosus (SLE)

As mentioned above, high levels of Fli-1 expression is detected in B-cells, pre- and resting 

T-cells as well as in several other types of immune cells.24,27,30,58,59 Initial observations 

implicating Fli-1 in immunity and immune disorders came from analysis of transgenic mice 

overexpressing Fli-1. Transgenic expression of Fli-1 via the h2k promoter induced B-cell 

proliferation and auto-immunity with similar clinical symptoms observed in patients with 

SLE.28 This SLE-like phenotype was associated with an increased antibody production, 

proteinuria, renal pathology and mortality. In accordance, breeding of heterozygous mice 

carrying a Fli-1 null mutation into lupus MRL/lpr mice led to significantly reduced 

autoimmune disease.60 Likewise, breeding Fli-1+/− heterozygous mice with NZM2410 mice, 

another lupus murine model, also significantly increased survival, which was associated with 

reduced levels of auto-antibodies including anti-dsDNA and anti-glomerular basement 

antigen.61 The Fli-1+/−:NZM2410 mice also exhibited a reduced development of kidney 

disease (glomerulonephritis) associated with decreased monocyte chemo-attractant protein-1 

(MCP-1) expression in endothelial cells in the kidney.62 In a related study, transplantation of 

bone marrow (BM) cells from Fli-1+/−:MRL/lpr mice into MRL/lpr recipients reduced the 

symptoms of autoimmunity such as auto-antibodies, proteinuria and renal disease and 

prolonged survival compared to control mice.63 These results demonstrate that Fli-1 over-

expression in hematopoietic cells underlies autoimmunity in lupus.

Consistent with these mouse studies, Fli-1 is expressed in peripheral blood mononucleated 

cells (PBMCs) and its over-expression correlates with severity of disease in Lupus patients.
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58 Interestingly, a polymorphic microsatellite consisting of GA repeats is shorter in MRL/lpr 

B and NZM2410 mice than in parental mice. Promoter analysis revealed that activity of the 

mouse fli-1 promoter inversely correlates with length of the GA repeats (Figure 2A).64 In 

addition, clinical data and genomic DNA analysis of SLE patients revealed that the human 

microsatellite exhibits a similar inverse correlation between GA repeats and promoter 

activity. The specific polymorphic microsatellite in the human fli-1 promoter was 

significantly more prevalent in SLE patients without nephritis and tended to be more 

prevalent in SLE patients with serenities.65 Together, these data suggest that a shorter 

microsatellite repeat in the fli-1 promoter may increase gene expression and contribute to the 

pathogenesis of lupus and other disease. Interestingly, Fli-1 has also been identified as the 

leishmania major susceptibility locus lmr2.66 In contrast to lupus with a longer GAn repeat 

deletion, a shorter GAn repeat in the fli-1 promoter was found in the resistant strain 

(C57Bl/6) versus susceptible strain (BALB/c) (Figure 2B). This one GA repeat deletion 

results in a lower Fli-1 expression and may be a major contributor to cutaneous 

leishmaniasis.

b. Systemic Sclerosis or Scleroderma (SSc)

SSc is a complex autoimmune connective tissue disease characterized by vasculopathy, 

activation of the immune system and wide-spread organ fibrosis.67 Although the onset of 

fibrosis in SSc typically correlates with production of auto-antibodies, whether the latter 

contributes to disease pathogenesis or simply serves as a marker of disease remains 

controversial. Moreover, the mechanism for auto-antibodies induction is largely unknown. A 

recent study suggests that epigenetic downregulation of Fli-1 in fibroblasts of SSC patients 

plays a pivotal role in the pathogenesis of disease.68 In accordance, targeted disruption of 

Fli-1 in fibroblasts or endothelial cells reproduced the histopathologic features of fibrosis 

and vasculopathy seen in SSc, respectively.69,70 Since Fli-1 regulates genes involved in 

vessel maturation and stabilization, reduced levels of Fli-1 in SSc vasculature could trigger 

unstable development of vessels that are prone to regression, as observed in the human 

disease.

Interestingly, Fli-1 is phosphorylated on threonine 312 at high levels in SSc fibroblasts, and 

this correlates with induction of PKCδ nuclear localization by TGF-β and its downstream 

effector c-Abl, suggesting that a c-Abl/PKCδ/phospho-Fli-1 pathway is constitutively 

activated in these cells.71 Phosphorylation of Fli-1 facilitates its binding to the p300/CREB-

binding protein-associated factor (PCAF), resulting in acetylation of lysine 312 (Fig. 3).
71–73 Fli-1 acetylation in human fibroblasts decreases its stability and DNA binding, leading 

to de-repression of the alpha2(I) collagen (COL1A2) promoter and higher collagen 

production. Thus, as proposed by the authors, blocking the TGFβ/c-Abl/PKCδ/phospho-

Fli-1 pathway may be an attractive approach for SSc therapy.71,74

The cardiotonic steroid hormone marinobufagenin (MBG), a digitalis-like substance in mam 

mals, is implicated in pathogenesis of experimental uremic cardiomyopathy, characterized 

by progressive cardiac fibrosis. A negative correlation between Fli-1 level and MBG has 

been observed in various cell lines and knock-out models of Fli-1.75–77 Moreover, a causal 

relationship between MBG-induced PKCδ modification results in phosphorylation and 
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decreased nuclear Fli-1 levels, and increased collagen production.75 Interestingly, in contrast 

to TGF-β-mediated Fli-1 modification in SSc (Figure 3), MBG mediated PKCδ 
phosphorylation resulted in downregulation of Fli-1 in fibroblasts. Since MBG 

phosphorylates PKCδ through a signal cascade involving PLC,75 it is possible that this 

glycoside initiates Fli-1 modification in a different amino acid position. Future studies may 

determine the position of the MBG-mediated Fli-1 phosphoryation that induces its 

degradation. Overall, these findings point to the PKCδ/phospho-Fli-1 pathway as a potential 

therapeutic target for uremic cardiomyopathy and other conditions associated with excessive 

fibrosis.

V. Role of Fli-1 in malignant transformation

As noted, Fli-1 was first identified as a proto-oncogene activated by proviral integration in 

F-MuLV-induced erythroleukemias and later in Cas-Br-E-induced Non-T/B-cell and 10A1 

stem cell like-induced leukemias.1–3,78 The human homologue of Fli-1 was also identified 

during this period.4,79,80 Its oncogenic role was functionally demonstrated in studies in 

which over-expression of Fli-1 in erythroblasts resulted in inhibition of differentiation.
20,21,81–83 Overexpression of Fli-1 in erythroblasts also resulted in continuous activation of 

the Epo-Epo-R signal transduction pathway and uncontrolled proliferation.20,21,84 However, 

transgenic mice over-expressing Fli-1 under control of the h2k promoter developed B-cell 

proliferation and lupus-like symptom, not erythroleukemia.28 Lack of leukemia in these 

mice may be due to incorrect cell-of-origin of Fli-1 activation via the h2k promoter, to 

insufficient expression of the transgene or to genetic background/modifiers that suppress 

tumorigenesis. Notably, cre-mediated inducible expression of EWS-Fli-1 fusion protein 

under control of the ubiquitous promoter rosa26 led to erythroid/myeloid leukemia in mice.
85

An important insight into the mechanism by which Fli-1 affects erythroid transformation 

was gained through identification of its target genes. Fli-1 acts in different contexts as a 

transcriptional activator or suppressor to regulate genes involved in cell proliferation, 

survival or differentiation (Figure 1).86–92 Thus, transcriptional downregulation of gata-1 
and Retinoblastoma (rb) inhibits erythroid differentiation,20,86 and up-regulation of bcl-2 
and mdm2 blocks apoptosis.20,87,88 Direct upregulation of MDM2 by Fli-1 destabilizes the 

anti-apoptotic protein p53, which plays a critical role in the initial transformation of 

erythroblasts by Friend virus.89 Downregulation of p53 by transcriptional upregulation of 

MDM2 through Fli-1 in erythroblasts also accelerates tumor progression by inducing 

genomic instability.89 Similarly, inhibition of p53 by the EWS-Fli-1 fusion protein through 

direct protein-protein interaction and/or activation of NOTCH signaling accelerates sarcoma 

progression despite retention of the p53 gene.90,91 Fli-1 overexpression in erythroblasts also 

increases tyrosine phosphorylation of the p85 subunit of PI3-Kinase and phosphorylation of 

Shc/Ras pathway, two critical regulators of cell survival and proliferation.21 At lower Fli-1 

expression, Epo-EpoR activation in erythroid cells results in differentiation. This observation 

suggests that high and low levels of Fli-1 expression may induce a different phosphorylation 

of Epo-EPOR, leading to either erythroid differentiation or proliferation, respectively.21 

Moreover, Fli-1 negatively regulates phosphatidyl-inositol polyphosphate 5-phosphatase 

(ship1) gene expression, leading to a higher phosphorylation of AKT/PKB by PI3K and 
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erythroid proliferation.92 While the mechanism responsible for RAS activation has not been 

established, this is likely mediated by the Epo-Epo-R signal transduction pathway, which is 

constitutively activated during F-MuLV-induced erythroleukemia transformation.21 In 

addition to the above downstream effectors of EPO-EPOR signaling pathway, Fli-1 also 

positively regulates ribosomal gene expression and ribosome biogenesis, which may play 

roles in erythroleukemogenesis.93

Importantly, high Fli-1 expression is observed in a subset of human erythroleukemia, mostly 

in the absence of genomic amplification.94 In addition, shRNA-mediated knock-down of 

Fli-1 in murine and human erythroleukemic cells suppresses cell proliferation, induces 

differentiation and accelerates apoptosis associated with decreased expression of its target 

genes including gata-1 and Bcl-2.95 A summary of target genes regulated by Fli-1 is shown 

in Table I.

In addition to erythroleukemia, deregulated Fli-1 can induce other hematological 

malignancies. For examples, retroviral transduction of Fli-1 into murine T-cell progenitors 

disrupts normal development and induces pre-T-cell lymphoblastic lymphoma.27 Transgenic 

expression of Fli-1 results in a lupus like disease associated with a significant increase in B-

cell proliferation and autoimmunity.28 Abnormal Fli-1 expression is also associated with 

progression of acute myeloid leukemia (AML).96 In this study, both high and low expression 

of Fli-1 was associated with AML progression. In support of these observations, a recent 

study identified fli-1 gene amplification within a 11q23–25 amplicon in several cases of 

AML and diffuse large B-cell lymphomas.97 In leukemia, the ETS protein Tel, but not the 

translocated protein Tel-AML, binds and inhibits Fli-1 transcriptional activity.98,99 It appears 

that Tel-translocation contributes to the de-repression of Fli-1 activity by abrogating the 

normally inhibiting function of the untranslocated Tel allele. Since Tel translocation occurs 

widely in myeloid/lymphoid tumors, Fli-1 could act as a major driver of various 

hematological tumors. Moreover, Fli-1 and its closely related ERG protein facilitate binding 

of the fusion protein AML1-ETO to its cognate DNA, thus highlighting the dual importance 

of these ETS proteins in leukemias harboring t(8;21) translocation.100

In addition to hematological malignancies, high Fli-1 expression promotes the development 

of divergent types of solid tumors. The best example is the above mentioned EWS-FLI-1 

translocation (t[11;22]) in Ewing sarcoma and certain neuroectodermal neoplasms.4,101 

Furthermore, while Fli-1 expression is normally limited to very few lineages including 

hematopoietic, vascularogenesis and nervous system,24,27,30,47,48,55–59,69–74 its expression is 

readily detected by immunostaining in various benign and malignant tumors. Analysis of 

4323 tumours revealed that FLI-1 is expressed at high percentage in 46/62 Ewing’s sarcoma/

primitive neuroectodermal tumors (EWS/PNETs), 2/3 olfactory neuroblastomas, 7/102 small 

cell carcinomas of the lung, 10/34 Merkel cell carcinomas (MCCs), 19/132 non-Hodgkin’s 

lymphomas, 9/29 medullar carcinomas of the breast, 2/3 desmoplastic small round cell 

tumors (DSRCTs), and 53/74 benign and malignant vascular tumours.102

FLI-1 is highly expressed in several triple-negative breast cancer cell lines (MDA-MB231, 

MDA-MB436, BT-549 and HCC1395). Moreover, over-expression of FLI-1 in the luminal 

breast cancer cell line, MCF7, which expresses a negligible level of this TF, suppressed 
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apoptosis upon serum depletion. Inhibition of apoptosis was associated with upregulation of 

Bcl-2, a direct target of Fli-1.103 Similar to breast cancer, FLI-1 expression is also detected 

in several melanoma cell lines and in formalin-fixed/paraffin-embedded tissue sections from 

97 melanomas including 69 cases of primary and 28 metastatic melanomas by 

immunohistochemistry. Higher FLI-1 expression was detected in metastatic than in primary 

melanoma tumors, and this was positively correlated with high Ki67 index and ulceration of 

the primary tumor.104 Fli-1 has been found fused to the solute carrier family 45 member 3 

(SLC45A3) gene in a small subset of prostate cancer.105 Together, these studies demonstrate 

high expression as well as translocations involving Fli-1 in a wide range of hematopoietic 

and solid tumors. Additional analysis is needed to determine whether these malignancies are 

driven by FLI-1 and whether tumors are addicted to continuous expression of this ETS 

factor.

VI. Role of Fli-1 in tumor angiogenesis

Angiogenesis is required for proliferating tumor cells to receive nutrients and metabolites. 

Tumor cells regulate angiogenesis through secretion of factors that stimulate neo-

vascularisation. As described above, endothelial cells express high levels of Fli-1.51 This has 

prompted the use Fli-1 as a marker for tumor angiogenesis. High Fli-1 expression is also 

detected in the majority of benign and malignant vascular tumours.106–108 The EWS-Fli-1 

fusion protein directly activates vascular endothelial growth factor-A (VEGF-A), leading to 

increased angiogenesis and malignant progression.109 High levels of VEGF were also 

detected in the tumor microenvironment of Fli-1 overexpressing erythroleukemias and 

shown to play a critical role in tumor initiation.110

VII. Therapeutic aspects of Fli-1

As described above, Fli-1 regulates genes and pathways associated with hallmarks of cancer 

initiation and progression including sustained proliferation, angiogenesis, genomic 

instability, inhibition of apoptosis and differentiation; its abnormal expression or 

translocation induces diverse tumor types (Figure 4). In addition, FLI-1 controls the fate of 

hematopoietic stem cells and progenitors and is directly involved in several auto-immune 

diseases. Some immune cells with over-expressed Fli-1 (unpublished results) have been 

found to act as microenvironmental niche to support expansion of leukemic cells in vivo and 

in vitro.110 Therefore, Fli-1 represents an attractive therapeutic target. Toward this end, 

several inhibitors of DNA- or RNA-binding activity of the EWS-Fli-1 fusion protein were 

developed.111–114 The effectiveness of these compounds for the treatment of Ewing’s 

sarcoma and other malignancies with a EWS-Fli-1 translocation is yet to be determined in 

randomized clinical trials. In a recent study, additional inhibitors of EWS-Fli-1 have been 

identified from libraries of small molecules/compounds with known biological activities. In 

addition to anti-EWS-Fli-1 activity, these drugs possessed strong anti-Fli-1 activity, resulting 

in suppression of proliferation of human and murine erythroleukemia cell lines at low drug 

concentrations (nM - low μM range). Some of these Fli-1 inhibitors could suppress 

progression of F-MuLV-induced erythroleukemias in vivo, in which leukemic cells acquire 

activated Fli-1 through retroviral insertional mutagenesis.115 Many of these Fli-1 inhibitors 

have known biological activities and are presently used to treat of cancers. Two of these 
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drugs, etoposide and dactinomycin, are topoisomerase inhibitors used to treat diverged 

cancer types including Ewing’s sarcoma.116–118 These chemotherapeutic agents likely kill 

tumor cells both by inducing DNA damage and by suppressing Fli-1 expression. About 30% 

of anti-Fli-1 compounds were from cardiac glycoside family of drugs (similar to MBG, see 

section II.b), which downregulates Fli-1 expression.115 Interestingly, one of the compounds 

(Calcimycin), a calcium ionophore, inhibits Fli-1 DNA-binding by inducing a Fli-1 

modification that is associated with downregulation of PKCδ, an interesting observation that 

warrants further investigation.

A recent study has identified microRNA-145 as a potent inhibitor of both Fli-1 and EWS-

Fli-1 protein expression.119,120 Development of a delivery system to introduce mir-145 into 

cancer cells over-expressing this TF may therefore be therapeutic. As described above, Fli-1 

plays a critical role in survival and proliferation of angiogenic cells. Thus, Fli-1 inhibitors 

may not only inhibit proliferation of Fli-1 over-expressing tumors, but also cut off their 

blood supply. Table II lists anti-Fli-1 compounds/molecules identified to date with their 

respected mechanism.

We expect that useful Fli-1 inhibitors (or agonists) to be effective only if they specifically 

target this TF but not other related ETS members. Thus, the challenge in identifying Fli-1 

modulators is compounded by the general difficulty of identifying antagonists for a 

transcription factor and the need for specificity. For example, inhibitors that interfere with 

Fli-1 binding to DNA elements on promoters may simultaneously inhibit other family 

members and therefore may have inadvertent adverse effects. Thus, putative inhibitors 

should be analyzed side-by-side with specific shRNA/RNAi for Fli-1 to determine if they 

phenocopy the effect of knocking down this TF.

In addition to cancer, Fli-1 inhibitors may also be beneficial in the treatment of autoimmune 

diseases such as SLE, which express high levels of FLI-1. Fli-1 also plays a critical role in 

maintenance of hematopoietic stem/progenitors and their differentiation to various mature 

blood cells. Indeed, a recent study has demonstrated that conditional Fli-1 loss in several 

myeloid lineages affects commitment decisions leading to a drastic decrease in mature 

megakaryocytes, proliferation arrest and inhibition of terminal erythrocytic differentiation.14 

It is therefore possible that syndromes such as red cell anemia and thrombocytopenia can 

also be treated with Fli-1 inhibiting compounds. Overall, generation of potent anti-Fli-1 

inhibitors with good pharmacokinetic properties may revolutionize treatment of multiple 

diseases and cancers overexpressing Fli-1.

While these diseases may benefit from Fli-1 inhibitors, others such as SSc, which are 

characterized by low Fli-1 expression, may be ameliorated by treatment with small 

molecules capable of increasing/activating endogenous Fli-1. Indeed, a recent study has 

identified the fluoroquinolone antibiotic ciproflovacin as an antifibrotic compound in SSc. 

Ciproflovacin was shown to affect SSc through downregulation of Dnmt1 and upregulation 

of Fli-1.121 Thus, both agonists and antagonists of Fli-1 may provide therapeutic benefits for 

the treatment of immune-diseases and cancers, respectively.
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Summary

In the past two and half decades, data from over 1000 publications establish Fli-1 as a key 

regulator of normal development and malignant transformation. These studies reveal an 

essential role of Fli-1 in stem cell maintenance and differentiation, hematopoiesis, 

vasculogenesis and angiogenesis. Abnormal expression of Fli-1 was shown to drive various 

diseases, hematological malignancies and solid tumors. Thus, Fli-1 is emerging as a new and 

exciting therapeutic target. The development of small molecules targeting different aspects 

of Fli-1 expression or activity could potentially impact treatment of auto-immune diseases 

and cancers driven by abnormal expression of this ETS factor.
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Figure 1. 
(A) Fli-1 overexpression in erythroblasts induces erythroleukemias by inhibiting 

differentiation. (B) Fli-1 over-expression in erythroblasts results in a switch from Epo-

induced differentiation to proliferation. Fli-1 regulates this process through its target genes, 

which affect apoptosis, differentiation and proliferation. HSC: Hematopoietic Stem Cells; 

BFU-E: Burst Forming Units-Erythroid; RBC: Red Blood Cells.
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Figure 2. 
(A) The fli-1 promoter contains a GAn microsatellite that is polymorphic in lupus prone 

mice. Shown is a sequence comparison of fli-1 promoter regions containing the GAn 

microsatellite from three mouse strains. The GAn microsatellite sequence, located in the 5′ 
end of exon 1 and begins at bp -321, is marked. Transcription of the Fli-1 gene negatively 

correlates with size of the GAn repeats (adopted from Ref. 64). (B) Effect of the GAn 

microsatellite repeats in the fli-1 promoter on susceptibility to Leishmenia. The location of 

GA polymorphism between C57BL/6 and BALB/c are marked (Adopted from Ref 66).
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Figure 3. 
A model for SSc induction by Fli-1. In fibroblasts, the phosphorylation of C-Abl by TGF-β 
induces nuclear translocation of PKCδ. In the nucleus, PKCδ phosphorylates Fli-1 at 

threonine 312, which initiates acetylation of Fli-1 by PCAF/P300/CBP, resulting in 

dissociation of Fli-1 from the Col1A2 promoter and transcriptional de-repression. Induction 

of collagen expression through Fli-1 phosphorylation/acetylation is proposed as a 

mechanism for SSC.
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Figure 4. 
Aberrant Fli-1 expression enhances hallmarks of malignant transformation and immune 

response.
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