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Abstract

Background: The ever-changing landscape of large-scale network environments and innovative biology
technologies require dynamic mechanisms to rapidly integrate previously unknown bioinformatics sources at
runtime. However, existing integration technologies lack sufficient flexibility to adapt to these changes, because the
techniques used for integration are static, and sensitive to new or changing bioinformatics source implementations
and evolutionary biologist requirements.

Methods: To address this challenge, in this paper we propose a new semantics-based adaptive middleware, the
Data Concierge, which is able to dynamically integrate heterogeneous biological data sources without the need for
wrappers. Along with the architecture necessary to facilitate dynamic integration, API description mechanism is
proposed to dynamically classify, recognize, locate, and invoke newly added biological data source functionalities.
Based on the unified semantic metadata, XML-based state machines are able to provide flexible configurations to
execute biologist's abstract and complex operations.

Results and discussion: Experimental results demonstrate that for obtaining dynamic features, the Data Concierge
sacrifices reasonable performance on reasoning knowledge models and dynamically doing data source API
invocations. The overall costs to integrate new biological data sources are significantly lower when using the Data
Concierge.

Conclusions: The Data Concierge facilitates the rapid integration of new biological data sources in existing
applications with no repetitive software development required, and hence, this mechanism would provide a
cost-effective solution to the labor-intensive software engineering tasks.
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Background
High throughput experimental processes in life science
have led to a large variety of biological data sources con-
tinuously emerging on the Internet [1,2]. These data
sources provide great research potential for biology
researchers to obtain data that support their new bio-
logical insights in areas such as gene prediction, proteo-
mics analysis, mutations, and drug discovery. However,
biology information is not easily and conveniently
accessible [3,4]. Even though most biological data source
suppliers provide tools to access their own data sources,

biologists have to switch to different interactive inter-
faces and manually seek and combine results from dif-
ferent resources. This manner of information collection
is consequently tedious and time consuming [5,6].
Hence a unified access mechanism to these various bio-
logical data sources has been necessitated to improve
biology research processes [7].
Many practical decisions have led to heterogeneous

implementations of the existing biological data sources.
Regardless, the resulting complexity makes the integra-
tion of biological data sources difficult. The lack of
standardization also means biological data is available in
a wide variety of formats. Various data schemas such as
flat files, structured data (e.g. database), semi-structured
data (e.g. XML [8]), and arbitrary data structures, result
in syntactical difficulties for data unification [9].
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Multifarious data access mechanisms such as web page
navigation, web services, remote database access, FTP,
Email, Wiki [10], and so on, pose technical obstacles to
unified schemes for data extraction and communication.
In addition, semantic problems arise due to no standard
terminology conventions in biological data. For instance,
integration conflicts arise when different notions use the
same terminology, or the same concept has different
representations in different sources.
Data source integration is consequently a challenging re-

search topic in biological data, and large amount of re-
search efforts have been devoted into this area [11]. Early
approaches focused on the integration of multiple bio-
logical relational databases. For instance, one popular early
integration approach used multi-database query languages
such as the Collection Programming Language (CPL) [12],
to enable biologists to specify complex queries for differ-
ent biological databases. Mediation systems, for example
Mediator-Wrapper [13], Database Federation [14], and
data warehousing [15], are another trend to provide a vir-
tual or physical view of global biological data schema. In
addition, some biological data centers such as EBI [16],
NCBI [17], and DDBJ [18], use navigation oriented meth-
ods, such as web browsers, to provide customized queries
for researchers to access linked data sources. More re-
cently, structured integration has gradually evolved to
semantics based integration [19] and Web service based
integration [20]. In these approaches, XML based Web
services use Internet standards and protocols such as
UDDI, SOAP, and WSDL, to offer interoperable and ex-
pandable integrations of biological data sources. Finally,
targeting semantic heterogeneity in biological data
sources, ontology-driven data integration [21,22] has
developed standardized biological vocabularies and nam-
ing convention [23].
Although these existing technologies can partially

solve the basic integration problems of the distribution,
heterogeneity, and autonomy of biological data sources,
they lack sufficient flexibility in adapting to the inher-
ently dynamic and evolutionary environments. New re-
search challenges emerge with the increase in scale and
diversity of new biological data sources.
First of all, with the constant advance in bioinformat-

ics techniques, for instance, microarray, new types of
biology data with heterogeneous formats are continu-
ously created and developed from different data sources.
It is challenging to integrate new data schemas of these
data types into existing integration systems at runtime.
Furthermore, along with new types of biology data, new
bioinformatics services for querying, translation, ana-
lysis, computation, and visualization, are continuously
appearing for biologists to exploit their bioinformatics
research processes. The collaboration of all these ser-
vices in a uniform and automatic manner would greatly

benefit bioinformatics research performance. However,
in conventional integration approaches, these bioinfor-
matics services are machine-manipulated but not ma-
chine-understandable. Once their invocation protocols
have been hard-coded into the integration system, they
cannot be simply modified if the logic sequence of
operations required is updated. Adding new services
or any changes of access interfaces would inevitably
increase the burden of software development and
maintenance.
Traditional integration techniques cannot solve the

above dynamic challenges, because their static coding is
sensitive to changes of biological data source functionality
and schema. An integrated system has to be kept up-to-
date by manually modifying programs when new bio-
logical data sources must be integrated or the features of
integrated biological data sources must be changed. The
required software engineering tasks are time consuming,
error prone, and expensive, and the inertia they introduce
cannot accommodate to the growth of biological data
sources on the Web [24]. Therefore, the next generation
of integration technologies for bioinformatics should have
the ability to rapidly respond to changing requirements
and dynamic environments.
To address the above issues, in this paper we demon-

strate how the Data Concierge adaptive middleware plat-
form [25,26] can be extended to integrate new biological
data sources without the need for application-level pro-
gramming. Our approach provides a comprehensive solu-
tion that can be used to dynamically connect to, access,
and manipulate multiple biological data sources from a
single client interface. The uniform access mechanism
allows biologists to easily perform advanced and efficient
research tasks in dynamic data environments.

Methods
Data concierge architecture
The Data Concierge has been proposed to address the
above mentioned challenges in the dynamic integration
of biological data sources. The architecture of the Data
Concierge is portrayed in Figure 1, which has sufficient
flexibility to provide a suitable infrastructure for dy-
namic and evolutionary bioinformatics environments. It
utilizes reflection and knowledge representation to sup-
port introspection and adaptation to the available bio-
logical data source collection.
The architecture depicts two distinct subsystems,

namely tools for classifying data source APIs, and com-
ponents for dynamic invocation of data source APIs.
The tools for classifying data source APIs are used by
software engineers to describe the necessary metadata
for bioinformatics source API. The tools are Generic
Wrappers, Data Source API Description Tool and State
Machine Generator. The components for dynamic
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invocation of data source APIs consists of DCS API Ser-
vice, Generic Adaptor Interface and Data Source Call
Constructor.

Tools for classifying data source APIs

Generic wrappers Data Concierge has the capabilities
to classify data source API into Generic API ontology
and to generate state machine models for user-level data
source operations. However, for some data sources such
as Web pages and plain text, there are no specific APIs
for Data Concierge to classify into Generic API Ontol-
ogy. Therefore, generic wrappers are provided for the
API classifications.
The Data Concierge creates generic wrappers for some

specific types of biological data sources, such as text,
XML, Web page, and database. They can ease the Data
Concierge’s manipulations on these biological data
sources, and reduce the complexities of constructing the
related state machine models. These generic wrappers in

Data Concierge include XML wrapper, text wrapper,
Web page wrapper, and relational database wrapper.
Generic XML Wrapper provides the capabilities of

parsing and exacting data from customized XML docu-
ments, as illustrated in Figure 2.

1. When a new XML document needs to be integrated
into the Data Concierge, its schema file, DTD or
XML Schema format, first is parsed and deserialized
into the corresponding internal schema model
objects.

2. Then, from the generated internal model objects,
Schema Reader component extracts all XML
elements and attributes which are described in
schema file.

3. Finally, the extracted elements and attributes are
classified into the generic API ontology. The query
entries of these elements are represented in the
format of paths from the top root node to the
corresponding described nodes.

Figure 1 The architecture of the data concierge.
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At runtime invocation, when Data Concierge accesses
to an instance of integrated types of XML documents,
Data Concierge invokes the classified API methods from
XML parser components for parsing and deserializing
XML documents into an internal XML document object.
Then it delivers the classified element or attribute paths
to XML Document API component and extracts required
data from the internal XML document instance.
Figure 3 gives one example of the integration of

GenBank XML files. As illustrated in this diagram, DTD
elements such as “genbank_db”, “Genbank_entry”, “acces-
sion”, and “origin”, are presented as tree nodes of an in-
ternal DTD model object. To locate data in internal XML
document instances, for example, reading a DNA sequence
form an XML file, Generic XML Wrapper classifies corre-
sponding tree paths, such as “/genbank_db/genbank_entry/
origin”, into the Generic API Ontology.
Similar to FlatEx [27], the component of Generic Text

Wrapper is designed to automatically extract biological
data from various biological structured flat files.
As illustrated in Figure 4, to be integrated into the

Data Concierge, a new type of structured flat file will be
first sampled for generating its text schema file. The
Text Schema Configuration Tool defines Tokens, delimit-
ing patterns, and other Meta elements according to
sampled text documents. All extracted metadata are
configured and recorded into an internal Text Schema
Object. Then the generated Text Schema Object instance
is parsed and classified into the Generic API ontology,
and is serialized into corresponding text schema file.
At runtime, to access an instance of the integrated flat

file type, the configured text schema file is deserialized
into the corresponding internal text schema object, which
guides the Text Parser component to parse the structured
flat file instance into specific XML document instance.

The internal XML document instance is in a tree struc-
ture. The elements of the parsed XML document objects
are obtained by using XPath-like access mechanism which
is similar to The Generic XML Wrapper.
In Generic Text Wrapper, the internal Text Schema ob-

ject is critical to data extraction from customized flat files.
It defines delimiting patterns for every text node and
describes the hierarchical structure of text documents.
The Text Schema guides the Generic Text Wrapper to
parse corresponding structured flat files into internal
XML document instance.
An example for the integration and runtime access of

NCBI-GenBank flat file type is illustrated in Figure 5.
The NCBI-GenBank flat file instances are sampled for
generating text schema file. Some unchanged terms such
as “LOCUS”, “FEATURES”, and “ORIGIN” are recog-
nized as tokens. Delimit patterns are formed by the
composition of tokens and regular delimiters such as
Space, Return, and punctuations. For example, the de-
limit pattern of “\nFEATURES\s+Location/Qualifiers” is
used to separate the HEAD TextNode with others.
To integrate various biological Web pages, Generic

Web Page Wrapper (Figure 6) is designed, which con-
tains components of Web Page API Configuration Tool,
Web Page API model, and Web Page API.
When a new Web page needs to be integrated into the

Data Concierge, the Web Page API Configuration Tool
monitors user’s Web page interaction processes and
extracts metadata from the sampled Web pages, corre-
sponding HTTP requests, and HTTP responses. The
obtained metadata are configured into an internal Web
Page API model, which is finally serialized into a Web
page API configuration file.
Web Page API model includes necessary information

to issue HTTP requests and filter results from HTTP

Figure 2 The architecture of generic XML wrapper.
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Figure 4 The architecture of generic text wrapper.

Figure 3 An example of XML file integration.
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Figure 5 An example of structured flat file integration.

Figure 6 The architecture of generic web page wrapper.
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responses and helps the Data Concierge to automatically
interact with Web pages and extract user-interested data
at runtime.
Figure 7 illustrates the procedure of integrating an

NCBI-Blast Web page. When this Web page needs to be
integrated into the Data Concierge, it first needs to be
sampled and configured into Web page API configur-
ation file.
In the Web page API configuration file, Web page

URL and HTTP request method “POST” are configured
as attributes of WebPageAPI element. HTTP request
properties such as “Accept” and “Host”, are sampled from
real HTTP interactions and default values of these prop-
erties are saved into this configuration file. User input
parameters such as “QUERY”, “JOB_TITLE”, and
“DATABASE”, and other default parameters such as
“QUERYFILE”, “db”, and “BLAST_PROGRAMS”, are
configured as multipart-form data contents with an ap-
propriate boundary. In addition, a text tag filter with
the path of “HTML[0]/BODY[3]/DIV[1]/DIV[3]/DIV[7]/
TABLE[7]/TR[1]/TD[1]” is set to extract job ID from the
responded Web page. These metadata are classified into
the Generic API Ontology.
At runtime, when the Data Concierge accesses data

from the integrated Web page, the configured metadata
of the Web page API configuration file guide Generic
Web Page Wrapper to generate correct HTTP requests.
Then Generic Web Page Wrapper parses the responded
Web page into a serial of tag paths. According to the
text tag filter which is configured in Web page API con-
figuration file, the job ID “Z8PEFDYB016” is extracted
according to the provided tag paths.

Generic Relational Database Wrapper (Figure 8) is
designed to integrate diverse relational databases into
the Data Concierge. This wrapper contains components
of Database Schema Reader, SQL statement model, and
JDBC invoker.
When a new relational database needs to be inte-

grated, the Database Schema Reader extracts tables and
field columns from the database, and classifies these
metadata into the Generic API Ontology.
SQL statement model defines basic elements for creat-

ing various SQL statements such as Insert, Select, Up-
date, and Delete and is used to build SQL statements for
the automatic access to integrated databases. To access
the relational database at runtime, the Data Concierge
uses classified API methods to equip an instance of SQL
statement model with values from state machine context.
After deparsing this instance into the corresponding
SQL statement, The JDBC Invoker uses the deparsed
SQL statement to manipulate the integrated relational
database.
As illustrated in Figure 9, the schema of table bio_gen-

e_db is firstly classified into the Generic API ontology.
According to the classified results and input parameters,
Generic Relational Database Wrapper selects appropri-
ate SQL pattern and dynamically constructs a Select
SQL statement, which is further invoked by JDBC In-
voker. Its final JDBC execution result is the required
value of the field origin.

Data source API description tool The Data Source
API Description Tool facilitates the construction and
maintenance of a Generic API Ontology. It uses Java

Figure 7 An example of web page integration.
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Reflection to access biological data source API, and then
the tool user classifies the API as metadata described in
the Generic API Ontology. Using this tool, biological
data source schemas and their corresponding marshaling
methods are categorized into unified terminologies in
the ontology.

State machine generator The State Machine Generator
is a graphical description tool, which facilitates the gen-
eration of XML-based state machine models that de-
scribe a sequence of Generic API calls. The state
machines provide flexible configurations for complex
API access protocols with features of quick changes or
multiple usages.

Components for dynamic invocation of data source APIs

DCS API service The DCS API Service implements the
Data Concierge Services (DCS) API as a set of Web ser-
vices. Each DCS API specifies an abstract operation that
can be performed on biological data sources. The DCS

API Service processes biologist’s request by searching the
ontology for the operations.

Generic adaptor interface The Generic Adaptor Inter-
face parses and executes DCS API operations. Simple
DCS API operations map to a generic API call for the
data source, while complex operations reference a state
machine that generates a sequence of generic API calls.

Data source call constructor The Data Source Call
Constructor translates generic API operations to specific
data source API calls through the mappings defined in
the Generic API Ontology. Reflection is used to dynam-
ically construct API calls to data sources.

Integration of new bioinformatics sources
In this section, we give an illustration on how the Data
Concierge is used to integrate new biological data
sources at runtime.

Figure 8 The architecture of generic relational database wrapper.

Figure 9 An example of relational database integration.
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Construct and maintain generic API ontology
The dynamic feature of efficient access to new types of
biological data sources in the Data Concierge is achieved
by the Generic API Ontology. In Data Concierge, such
knowledge-based integration model is used to sample and
classify the contents of biological data sources and their
functionalities, and to collect the biologists’ data interests
and preferences. For a clear illustration, we separate the
Generic API Ontology into two parts with different
usages. One is used for the dynamic construction of data
source API calls. The other is the generic API ontology for
improving the flexibility of client applications.
The challenges caused by unpredictable changes could

be tackled if the integration system were able to dynamic-
ally connect and invoke previously unknown APIs on the
basis of the semantics of source functionalities. The top-
level model of the first part in the ontology (Figure 10) is
used by the Data Concierge to dynamically construct calls
to data sources APIs. It represents the semantics of the
data source API and associated data schema. The classi-
fied metadata in the Generic API ontology shield the het-
erogeneities of low-level source interfaces and data models
from the Data Concierge middleware and client applica-
tions. After classifying data source APIs and data schemas
into the Generic API Ontology with the Data Source API
Description Tool, these metadata help the Data Concierge
to discover and invoke the desired biological data source
functionalities for accomplishing biologist manipulations.
To be able to access biological data sources dynamic-

ally, client applications and user GUIs must be able to
discover newly available biology data types and func-
tions, and utilize the results meaningfully. To make it
possible for a user GUI to be created that can display
data from data sources with a priori unknown content,
semantic information of query results must be available.
Figure 11 illustrates the ontology structure for this pur-
pose. In this structure model, the classified abstract

metadata, which takes charge of interpreting biologist
manipulations, provide flexible mechanisms for biolo-
gists and client applications to dynamically and transpar-
ently access new integrated biological data sources.
The Generic API Ontology mechanism and configur-

able state machine models endow the Data Concierge
and client applications with the capability of flexible
adaptation to the changes of biological data sources.
As illustrated in Figure 12, the Generic API Ontology

dynamically extends with the increase of new types of
integrated biological data sources. The DataSourceType
Class covers but not limits to source types such as XML,
flat file, web page, web service, relational database, FTP,
email, and ontology. Some biological analysis and comput-
ing functions such as Blast and Clustalw are classified into
the Method Class. Subclasses of the DataType Class pro-
vide unified terms for both biological domain and com-
puter computations. Biologists utilize these metadata to
customize their specific user operations such as submit-
Query and FetchData, on their interested DatasourceDa-
taElements such as Gene, Protein, and DNA.

Classify biological data source API and generate
configurable state machine models
When a new biological data source needs to be inte-
grated into the Data Concierge, its functionalities and
accessible biological data types have to be classified into
the Generic API Ontology by the Data Source API De-
scription Tool. The Data Source API Description Tool
uses Java reflection to present the API method signa-
tures and parameter types to a data source API expert
for classification.
In order to support dynamic data exchange, custo-

mized data schemas in biological data sources need to
be decomposed into data elements that the integration
system can recognize and use. The execution of this dy-
namic transformation depends on the knowledge in the

Figure 10 The generic API ontology for the semantic description of data source API
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Generic API Ontology. After the classification of bio-
logical data source API, the State Machine Model Gener-
ator is used to generate XML-based state machine
models. Biologists can customize their own state ma-
chine models for their specific interests by using a
downloaded State Machine Generator. The XML-based
state machine models provide flexible configuration for
various complex operations relevant to biologists, which
requires a sequence of biological data data source API
functions. The Data Concierge interprets the state ma-
chine models at run time to dynamically construct calls

to each data source API in the sequence. The XML-
based state machine models are based on Unimod [28]
using SWITCH-technology [29], and follow Event-
Condition-Action (ECA) rules, which take the form of
ON Event IF Condition DO Action, to express control
flows in state machines. These rules specify event trig-
ger and guard conditions for each action. An action is
executed when the triggering event occurs, if and only
if the guard condition is true. In the following example
of an XML-based state machine model, (Figure 13)
three Generic API operations, webserviceInitialization,

Figure 11 The generic API ontology for client application usages.

Figure 12 The extension of the generic API ontology for biological domain. (a) For dynamic construction of data source API calls. (b) For
client application usages.
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webserviceConstructor, and Access-Read are sequentially
executed for biologist’s FetchData operation.

Invoke biological data source operations at run time
New biological data sources and related user operations
are available to DC Clients after classifications. Biolo-
gists can operate new integrated biological data sources
at run time. For example, the sequence in Figure 14
illustrates how a biologist uses the Data Concierge to
access a new integrated EBI biological Web service [30]
and to perform FetchData operation on Protein data.
Through invoking getDSList() (step 1), DC client gets

integrated biological sources from Data Concierge (step
2). Then the list guides a biologist to select a data
source of interest, e.g. EBI. After the selection, DC cli-
ent will issue getDSMetadata(EBI) method (step 3),
which is a Web service and aims to extract the data
source metadata classified in the Generic API Ontol-
ogy. As results, the metadata extracted from Figure 15
contribute to form data source tree view illustrated in
Figure 14 (step 4).
The returned metadata guide the biologist to do the

FetchData operation on Protein and guide the DC

client to load appropriate components for preparing
parameters of the FetchData operation (step 5–7). For
example, the ProteinID can be obtained through the in-
vocation of getValue method in imp.ui.StringInput
class.
After preparing parameters, DC client sends the Fetch-

Data operation request to Data concierge by calling
an available DCS API with the format of DSOpera-
tion(“FetchData”, “EBI”, “Protein”, {parameter array})
(step 8).
Upon receiving the client request, Data Concierge

initializes context (step 9) and loads configured state
machine model (step 10), FetchData.xml, for the Fetch-
Data operation. The state machine model is executed
by a state machine engine which issues a sequence of
Generic API calls such as Initialize, Create, and Access-
read (step 11–13).
During the execution of the loaded state machine,

every generic API will be mapped to corresponding data
source API. For example, following the ontological def-
inition for the fetchData API (Figure 16) and the state
machine context, Access-read is translated to object1.
fetchData(“pdb:1e12”, “pdb”, “raw”) (step 12).

Figure 13 An example of state machine model.
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Finally, the execution result of the FetchData operation
is sent to the client application (step 14). The extracted
metadata guides the DC client to load appropriate class
and invoke its method for displaying obtained protein data
(step 15).

Results and discussion
Performance
We have implemented the Data Concierge dynamic inte-
gration mechanisms with FTP, SMTP, POP3, and some
biological data sources.

Figure 14 Fetching protein data using data concierge.

Figure 15 An example of classified results for biological client applications.
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For the integration of biological data sources at run-
time, Data Concierge sacrifices extra performance on
reasoning knowledge models and dynamically doing data
source API invocations. To investigate the overheads of
using Data Concierge, some validation experiments were
carried out. The experiments on the middleware part
were performed on 2 machines connected by a local area
network (100M bps):

1. a 2×2.4 GHz Mac Pro with 16 GB RAM and Mac
OS X Version 10.6.7, executing the Data Concierge
Web Service layer;

2. a 3.00 GHz PC with 2 GB of RAM and Windows XP
Service Pack 2, executing the Generic Adapter
Interface and Data Source Call Constructor
components.

Tests on generic API ontology
As illustrated in Figure 17, the performance of getDSList
operation remains stable with the increase of integrated
data source instances (up to 200), which costs about
0.0018 ms to get data source list from the Generic API
ontology. However, because we take iterative comparing
and matching state machine models in the algorithm of

lookupStateMachineModel, the results on locating corre-
sponding state machine models are different. The mini-
mum performance value remains at about 0.00037 ms
while its maximum increases linearly with integrating
new data sources.
In Figure 18, the performance of getDSMetadata varies

for different data sources. It is decided by how many meta
attributes in Generic API Ontology are associated with
each data source instance. If one classified data source in-
stance has more associated meta attributes such as data
elements and related user operations than the others, Data
Concierge will spend a much longer time on querying
these metadata from Generic API Ontology. For example,
the performance of getting metadata of an FTP data
source, which includes data elements File and Directory
and their user operations (such as Read, Write, Delete,
Up_Navigation, Down_Navigation) and other attributes
(such as name, size, date, type, userID, groupID, permis-
sions, numberofLinks, etc.) is 0.0034 ms. While querying
metadata for a simple SMTP mail server that has Mail
element, Write operation, and some simple attributes, is
only 0.0014 ms.

Tests on null methods
The real performance and functionality of the Data Conci-
erge are related to classified data source functions and
their collaborations. To avoid interference from the in-
ternal implementation of biological data source functions,
null methods are used to evaluate the performance of our
Data Concierge.
To compare generic API invocation with the corre-

sponding simple static API call, we created a null
method m(), which does not have any parameter in its
API definition. In the first row of Table 1, the average
overhead of the static method call on this null method is

Figure 16 An example of classifying biological data source functionality.

Figure 17 Tests on getDSlist and lookupStateMachineModel.
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0.000042 ms. While the overhead of the generic API call
on this null method is 0.116487 ms, in which the bind-
ing time from generic API call to real data source API
call costs 0.08748 ms and java reflection invocation costs
about 0.029 ms.
If there are no required parameter types existing or

available in state machine context when constructing an
API method call, the performance of Generic API invo-
cation will be affected by constructing these required
API parameters from Context. Therefore, we also cre-
ated three other null methods m(C1 p1), m(C1 p1, C2
p2), and m(C1 p1, C2 p2, C3 p3) which have different
numbers of parameters, to test the impact of state ma-
chine context on generic API invocations and state ma-
chine models. The performance comparison results of
different null methods (Table 1) show that the binding
time is affected by state machine context. If there are no
required API parameter types in the state machine con-
text, the Data Concierge needs to construct correspond-
ing parameters to issue a real data source API call after
a generic API is invoked. As a result, constructing and
preparing API parameters increases the overhead of gen-
eric API invocations. As shown in Table 1, constructing
every parameter for a null method invocation adds about
0.2 ms to the overhead of binding time, while the java
reflection invocation on real API call almost keeps the
same value, 0.029ms.
As shown in Figure 19, the state machine engine

spends 0.15-0.25 ms on controlling and scheduling the
invocation of every generic API and the overall overhead
of executing state machine models increases with the
API parameter complexity.

In addition, we tested the impact of the complexity of
state machine models on the performance of the Data
Concierge. We created different state machine models
which have different quantities of generic API opera-
tions. All generic API operations are mapped to the
same null method m(). As illustrated in Figure 20, the
time for loading the state machine model rises slightly as
the size of the state machine model increases. The more
complex the state machine model, the more overhead is
added to its performance.

Tests on biological FTP and customized data sources
Time spending on individual hard-coded calls directly to
the methods of ftp and customized biological data
source APIs was compared with the counterpart of Data
Concierge generic API calls (Figure 21). Overall, query-
ing the ontology and using Java reflection added ap-
proximately 0.2~30ms to each API call. In addition,
comparison results also show that with the increase of
execution time of static method calls, the extra overhead
of the generic API invocations has less impact on the
whole execution performance.
Figure 22 illustrates that executing complex DCS API

operations adds approximately 700~900ms overhead on
their performance. This extra overhead is due to net-
work message exchanges between Data Concierge Web
Service and Generic Adapter Interface as well as loading
and executing state machine models. A mechanism
which can dynamically manage network communication
and preload state machine models needs to be investi-
gated in our future work, which would significantly

Figure 18 Tests on getDSMetadata.

Table 1 The performance results of generic API invocations and static method calls on different null methods

Null method Generic API call (1000 calls/1000 ms) Static method calls
(1000 calls/1000 ms)Binding Time Invocation time Total

No parameter() 0.087480 0.029007 0.116487 0.000042

One parameter m(C1 p1) 0.278896 0.027818 0.306714 0.000974

Two parameters m(C1 p1, C2 p2) 0.465648 0.028491 0.494139 0.001772

Three parameters m(C1 p1, C2 p2, C3 p3) 0.713984 0.029231 0.743215 0.002601
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reduce the overhead and improve the Data Concierge
performance.

Related work
Huge amounts of biological data research projects put
their efforts on the data source integration issue. Some
of them target at providing flexible mechanisms for vari-
ous biologist requirements and quick changing biological
data source environment.
TAMBIS [31], BioMedoator [32], [33], and [34] cope

with frequent modification of data source schemas.
Based on a domain ontology, TAMBIS provides homoge-
neous views of various data sources. The ontology is
designed to relieve biologists from heavy query tasks by
shielding them from low data source details and is
updated to cater for schema changes in the sources. To
reduce the workload of database integration, the LIMBO
architecture in [33] is designed as light-weight approach
to overcome the problems with constantly evolving data
warehousing schema. Both BioMedoator and [34] extract

and represent metadata on the content of sources and
relationships among sources. BioMedoator aims to facili-
tate the easy use of this tool with no informatics training
required for the biologists, while [34] targets optimizing
user’s query plans according to semantic equivalence.
Although these approaches provide significant flexibility
to deal with user’s queries and changes of data source
contents, they lack dynamic mechanisms to deal with
the rapid and frequent changes of biological data source
functionalities.
IBM’s DiscoveryLink [35] is a database middleware sys-

tem that extracts data from multiple biology sources in re-
sponse to a single query. This method promises there is
no functionality lost in access the data source through Dis-
coveryLink. To make wrapper authoring as simple as pos-
sible, DiscoveryLink requires a small set of key services
from a wrapper, which makes the cost of writing a basic
wrapper small. Its DiscoveryLink Server compensates for
missing functionality at data sources. This approach
claims that data source schema can evolve without

Figure 19 The performance results of state machine models with different null methods.

Figure 20 The performance results for state machine models with different complexity.
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requiring any change in the wrapper for the reason that
the wrapper does not encode information on the schema
used in the data source. However, the wrapper needs to be
developed when its source API is changed.
The rapid integration of biological data web pages on

the Internet is addressed by the approaches of [24], [6],
[36], and [37]. [24] highly depends on the description of
service classes, which provides general descriptions of
types of sources to integrate. However, the integrated
biological data sources are restricted to biological data
Web pages that must have a start page to include an
HTML form with at least one text entry field. It also
needs examples to analyze sources. Because of these lim-
itations, the percentage of experimentally successful
integrated web sources is lower than 70%. [6] aims to
generate automatically the data source schema of each
source by means of meta-information. The meta-
information is extracted from output of a source query
tool which identifies terms from tags of a set of Web

pages examples. However, it cannot deal with some par-
ticular output formats which are provided by certain
data source query tools. Based on its OWW Search View
mechanism, [36] pursues no programming efforts for
accessing any new integrated web pages. However, it
cannot efficiently process user’s complex queries which
include multiple joints of several data sources. [37] pro-
poses using reconfigurable web wrapper agents for user
to represent Web browsing session. Based on sequential
pattern mining techniques, web wrapper agents can
automatically discover and extract patterns from struc-
turally formatted biological data Web pages. However,
the initial purposes of these methods limit the scale of
integrated biological data sources. These approaches will
not be available to other types of data sources except
Web pages.
Biological data projects such as, [38-40], and ISYS [41],

focus on component based integrations for biological data
sources. [38-40] use CORBA to dynamically integrate

Figure 21 Performance results for different generic API operations. (a) FTP API calls. (b) Biological data source API calls.

Figure 22 Performance results for DCS API operations.
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biological data sources. These approaches aim to achieve
flexible, scalable, and reconfigurable system architecture.
However, these methodologies mainly focus on specifying
syntactic interfaces of integrated components, while the
semantics of these interfaces are implied in their imple-
mentations. ISYS emphasizes a decentralized integration
mechanism for dynamically synchronizing component be-
haviour and exchanging their services without direct
knowledge of one another. However, the programming
tasks of building thick client components would be heavy
for the communication with others. And biologists who
are not familiar with information techniques have to resort
assistance from IT expertise for building their client
components.
SIBIOS [42] and Bio-Broker [9] are dynamic workflow-

based systems. To achieve highly adaptability, SIBIOS
separates individual service description from wrapper
engine. The service description is stored in a service
schema file. This file includes domain specific knowledge
described by using ontology and a set of rules that de-
scribe how the data can be extracted from the services.
The wrapper engine reads these service schema files and
dynamically generates specific data source wrappers.
However, this approach only targets services which are
provided Web pages. Bio-Broker is an architecture for
XML-based mediator systems. The system uses EVAS to
construct mediator-services for the integration of het-
erogeneous data sources. The EVAS benefits user to eas-
ily construct workflows for their recurrent biological
data processes. However, in this architecture, wrappers
are created manually.
With the emergence of Web 2.0, Mashup applications

such as Bio2RDF [43] and Damia [44], provide

mechanisms for users to customize new services through
combining data and services from multiple Web sources.
Bio2RDF converts various biological documents into
standard RDF formats so that client applications can have
unified access to various biological sources. Damia is a
lightweight web style data integration platform which
helps enterprise users to quickly combine data from differ-
ent data sources and easily develop new enterprise appli-
cations. However when a new type of source appears, new
wrappers such as rdfizers in Bio2RDF and connectors in
Damia still need to be created.
The methods mentioned above provide solutions to

some aspects of dynamic features in biological data
source integration. The majority of these methodologies
focus on the heterogeneity of data content. Some take
the dynamic features of source functionalities into ac-
count. However, none of these methods uses ontology to
represent the semantics of both biological data source
functionality and data schema. As a result, they lack suf-
ficient flexibility and adaptability to solve challenges
arisen from dynamically integrating new previous un-
known biological data sources at runtime.

Analysis
For integrating new appearing biological data sources,
traditional static integration techniques (Figure 23a),
which tightly couple with low level implementations, re-
quire program code changes along with subsequent test-
ing and deployment. Although these static approaches
achieve good performance, they are expensive in terms of
engineering efforts.
Interface-based integration mechanisms such as

CORBA and COM platforms decrease coupling with low

Figure 23 The comparison of direct call, interface and data concierge. (a) Direct call. (b) Interface. (c) Data concierge.
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level implementations according to their predefined
Meta models (Figure 23b). They can achieve polymorph-
ism and can dynamically compose software components
and change system behaviors at run-time. However,
when data source interfaces are modified, code changes
cannot be avoided.
In contrast, the Data Concierge deals with interface

changes without application code changes. This is be-
cause the Generic API Ontology provides a declarative
mechanism that can be modified and deployed when an
interface change occurs. At run-time, the Data Conci-
erge dynamically constructs biological data source API
calls based on their classified API semantics and corre-
sponding state machine context (Figure 23c). The
mechanism of dynamically accessing new data sources at
run-time relieves developers from hard coded programming.
Our approach aims to use the Data Concierge to dy-

namically access new biological data sources at runtime
without hard coded programming. This architecture
provides sufficient flexibility to handle changes of bio-
logical data sources. Its dynamic call construction mech-
anism has several significant advantages over hard-coding
calls to pre-fabricated wrappers:

� No wrapper component is needed. In effect, the
wrapper code is constructed dynamically from the
information held in the meta-data repository. This
potentially significantly reduces the software
engineering effort needed to connect to a new type
of biological data source.

� Ease of modification: If the underlying data source
API changes, only changes to the meta-data
repository are required. As the calls to the API are
dynamically constructed, the changes will take effect
as soon as the meta-data is updated.

� Hot swapping: As there is no wrapper, updating a
data source API to provide bug fixes has no
downstream implications. If the interface does not
change, then the Data Concierge remains oblivious
to the fact that a modified version of the API has
been installed.

The Data Concierge relieves programmers from the
routine maintenance tasks of integrating new biological
data sources. However, this approach carries the costs of
building and maintaining the Generic API Ontology for
a given data source, and organizing classified API meta-
data to build state machine models. We use the Generic
Wrappers, Data Source API Description Tool and the
graphical State Machine Generator to minimize the
maintenance costs.
In addition, some biological data sources provide ab-

stract functionalities. The semantics of these biological
data functionalities are implied in the parameter

contents of data source APIs. Therefore, it is hard for
the Data Concierge to classify these data source API
semantics through their API syntax. One of our future
targets is to find mechanism to extract the semantics of
data source functionalities from the contents of their
interface parameters.

Conclusions
To adapt to dynamic network environments and to meet
diverse biologist’s requirements, we propose an adaptive
middleware, the Data Concierge, to easily and rapidly in-
tegrate heterogeneous biological data sources at runtime.
In this innovative architecture, the Generic API Ontol-
ogy is proposed to declaratively model the semantics of
data source APIs. Based on the unified semantic meta-
data, XML-based state machines model sequences of
requests to biological data services for complex biologist
manipulations. This middleware provides adaptive func-
tionalities for both the integration system and its client
application to tackle the rapid changes of biological data
sources without expensive and time-consuming software
development and maintenance. The costs to integrate
new biological data sources in the Data Concierge are
significantly lower than that of static coding integration
methods.
Our future work includes enabling the Data Concierge

to represent the knowledge of the biological data func-
tionalities’ relations in the Generic API Ontology.
According to classified metadata, the Data Concierge
would be able to reason about the execution sequence
for biologist manipulations. Thus, tasks of configuring
and maintaining XML-based state machine models
would be eased and even be avoided, which therefore
would significantly reduce the integration costs further.
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