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Abstract

Background: Deregulation between two different cell populations manifests itself in changing gene expression
patterns and changing regulatory interactions. Accumulating knowledge about biological networks creates an
opportunity to study these changes in their cellular context.

Results: We analyze re-wiring of regulatory networks based on cell population-specific perturbation data and
knowledge about signaling pathways and their target genes. We quantify deregulation by merging regulatory
signal from the two cell populations into one score. This joint approach, called JODA, proves advantageous over
separate analysis of the cell populations and analysis without incorporation of knowledge. JODA is implemented
and freely available in a Bioconductor package ‘joda’.

Conclusions: Using JODA, we show wide-spread re-wiring of gene regulatory networks upon neocarzinostatin-
induced DNA damage in Human cells. We recover 645 deregulated genes in thirteen functional clusters
performing the rich program of response to damage. We find that the clusters contain many previously
characterized neocarzinostatin target genes. We investigate connectivity between those genes, explaining their
cooperation in performing the common functions. We review genes with the most extreme deregulation scores,
reporting their involvement in response to DNA damage. Finally, we investigate the indirect impact of the ATM
pathway on the deregulated genes, and build a hypothetical hierarchy of direct regulation. These results prove that
JODA is a step forward to a systems level, mechanistic understanding of changes in gene regulation between
different cell populations.

Background
Molecular profiling of cells sampled from healthy
patients and patients suffering from diseases led to the
discovery of signatures of deregulated genes, i.e., distinc-
tive expression patterns of genes that are differentially
regulated and thus change expression between these two
populations of cells. Such deregulated genes facilitate
classification into different tumors [1-5], define new
cancer subtypes and can serve as predictors of tumor
differentiation stages and patient survival [6-10].
In recent years, the focus of research has moved from

analyzing differentially expressed genes to analyzing dif-
ferential regulatory networks [11]. These approaches are

based on the observation that cellular adaptation to dif-
ferent environments and stimuli [12], to changes
induced by diseases [13-16] or gene mutations [17], as
well as to developmental processes [18] results in gains
or losses of interactions in the molecular networks of
the cell [19]. For example, Workman et al. [12] showed
extensive re-wiring of gene regulatory networks in yeast
cells undergoing DNA damage by using genome-wide
measurements of gene expression upon transcription
factor (TF) perturbations, as well as TF binding to DNA.
Computational and statistical analysis of changes in

network structure between two cell populations has
become a rapidly expanding field of research [11]. Many
methods have been developed to infer differential inter-
actions from gene expression data, either based on lin-
ear measures of correlation [20,21,14,22] and regression
[23] or non-linear information theoretic criteria [13].
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Additional to methods comparing two cellular popula-
tions, there are dynamic approaches to infer re-wiring
over time [24,18].
However, these extant approaches to analyze deregula-

tion between two different cell populations do mostly
not take into account available knowledge about cellular
signaling pathways nor their transcriptional targets,
which may also differ between the cell populations. For
example, Mani et al. [13] and Taylor et al. [14] take as
input a static interactome, which is not specific for the
two cell populations, to discover loss or gain of expres-
sion correlation between its nodes. The advanced
approach of Workman et al. [12] could be further
improved by incorporating prior information about the
signaling pathways that are differentially activated
upstream of the re-wired gene regulatory network, and
the complementarity between the TF DNA-binding and
the TF perturbation data.
Here, we present a novel approach to assess re-wiring

in two cell populations that combines two key ideas: (1)
we analyze the effects of pathway-targeted experimental
single-gene perturbations and (2) we explicitly include
knowledge of pathway topologies and their downstream
targets. In this way, our approach facilitates research in
a particular context of the biological system under
study, implementing the concept of data analysis that
gains power from incorporation of knowledge [25]. Our
knowledge-based approach is designed for quantifying
deregulation, i.e., changes in gene regulatory network
between two different populations of cells. It performs
joint analysis of perturbation data from the two cell
populations, and is referred to as joint deregulation ana-
lysis (JODA) throughout the text. The cell populations
may correspond to healthy and diseased cells, or dis-
eased cells in two different stages, or, more generally,
cells exposed to two different external stimuli, with dif-
ferent cellular signaling and downstream transcriptional
targets.
JODA analyzes high-throughput perturbation experi-

ments, where genome-wide expression is measured
upon single-gene knock-outs or knock-downs. It is
assumed that the set of perturbed genes is composed of
regulators, i.e., genes active in signaling or gene regula-
tion systems of the analyzed cells. The perturbations
need to be performed on the same set of regulators in
both cell populations.
The first kind of knowledge given as input to JODA is

the information about the topology of the signaling
pathways active in the two cell populations. The path-
way topologies are graphs, which represent regulators
with nodes and the known signaling relations between
the regulators with edges. Internally, based on the given
pathway topologies, JODA builds two binary matrix
models (one per each cell population). The models are

used by the algorithm to determine which perturbation
experiments affect which regulators in the pathways.
Second, JODA takes as input the known regulator-target
gene relations downstream of the pathways. Those rela-
tions, when available, are given for those regulators,
which are also TFs, and their known target genes. Since
both the signaling and regulatory relations may differ
between the two cell populations, they need to be pro-
vided for both of them separately.
The output of JODA are deregulation scores that

quantify deregulation using the difference in perturba-
tion effects in the two cell populations. An up-regula-
tion effect indicates (possibly indirect) inhibition, and
down-regulation indicates activation by the perturbed
regulator. The most extreme deregulation scores are
assigned to those genes which switch regulatory
mechanism between the cell populations and show a dif-
ferent perturbation effect in the one cell population than
in the other. We show that JODA performs better than
investigating gene regulation in each cell population
separately: with the deregulation scores, JODA priori-
tizes genes that are more enriched in those Gene Ontol-
ogy (GO [26]) terms which are important for the switch
between the compared cell populations. Similarly, func-
tionally important genes can be missed when deregula-
tion is analyzed without incorporation of prior
knowledge, but based only on differences in expression
correlation, adapting the ideas of Mani et al. [13] and
Taylor et al. [14]. An R package ‘joda’, implementing
the JODA algorithm, is released by Bioconductor [27]. A
short summary of the package functionality and its
demo are available at http://joda.molgen.mpg.de/.
In application to analysis of deregulation driven by

DNA damage in Human cells, JODA reveals broad
changes of gene regulatory network downstream of the
ATM signaling pathway. The analysis integrates expres-
sion data from perturbation experiments in the healthy
cells and in cells undergoing DNA damage [28] (see Fig-
ure 1A), the knowledge about ATM signaling down to
RelA and p53 (absent in the healthy cells and active in
the damaged cells), together with the known targets of
RelA and p53 in both cell populations. The damaged
cells are obtained by exposure to neocarzinostatin
(NCS), an antibiotic that induces DNA double strand
breaks and activates the ATM pathway [29-31]. Original
data analysis [28] rigorously but exclusively focused on a
small set of 112 genes responding to NCS treatment,
which showed perturbation effects that correctly recon-
structed the known ATM pathway interactions. Here,
based on the deregulation scores, we cluster 645 genes
into thirteen functional clusters, reflecting the rich spec-
trum of biological activities in the DNA damage
response program. We review genes in the functional
clusters in terms of the known impact of NCS on its
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gene targets. Analyzing enrichment in canonical path-
ways and known gene-regulatory and protein-protein
interactions, we elucidate the connectivity within those
functional clusters. We list genes with the most extreme
deregulation scores reporting their involvement in DNA
damage response. Our results validate that genes with
dominant deregulation scores are directed by the ATM
pathway and are functionally involved in the switch
between the healthy and damaged cells induced by NCS.
In the final section we show that the approach can also
lead to testable hypotheses: we investigate the indirect
regulatory impact of each ATM, RelA and p53 on the
deregulated genes, and build a hypothetical hierarchy of
direct regulation.

Results
A method for quantifying deregulation
JODA reveals deregulation between two different popula-
tions of cells. We distinguish two sets of genes: regulators,
and all remaining genes (shortly, genes). The regulators are
components of a signaling pathway, which is important
for the switch between the cell populations, and which
may have a different topology in one cell population than
in the other. We require that each regulator is perturbed
in both cell populations. The remaining genes show effects
of the perturbations in their expression. We are interested
in regulatory relations connecting regulators to the
remaining genes and how these relations change between
the cell populations.

Figure 1 Method overview. (A) Two different cells (ovals): a healthy cell h in a neutral environment (left) and a damaged cell d treated with
neocarzinostatin (right). Inside each oval: a pathway topology, with regulators RelA, ATM and p53, and a set of remaining genes g1-g4. Solid edges:
signaling relations (e.g. in d, ATM signals down to RelA). Dashed edges: transcriptional regulation. Δ RelA - an experiment, where RelA is perturbed.
Gene colors: effect of perturbation (up-regulation in red, down-regulation in green and no change in white). (B) The JODA algorithm. Input: (i)
perturbation data, (ii) known TF-targets, and (iii) known pathway models encoded in matrices with an entry 1 when a perturbation experiment
(rows) affects the regulator (columns; otherwise the entries are 0). Experiments affecting RelA are marked in blue. The input is processed for the
healthy (left) and the damaged cells (right) separately in three steps, until merged in deregulation scores. Examples on the right illustrate the steps
for RelA. First step: ‘bgmm’ [32] is applied to identify probabilities of differential expression of the genes under perturbation of each regulator v
(denoted ph

v and pd
v for the two cell populations h and d). Each probability is multiplied by -1 when the effect of perturbation was down-

regulation, or by +1 when the effect was up-regulation. Second step: we compute regulation scores Rh
v and Rd

v , which quantify the effect of
each regulator v on the genes in a given cell population. Third step: we subtract regulation scores in the healthy cells from regulation scores in the
damaged cells to obtain deregulation scores Dv, quantifying how strongly each regulator v deregulates the genes.
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In addition to perturbation data, for each cell popula-
tion, JODA takes as input two kinds of qualitative
knowledge. The first kind of knowledge are two path-
way topologies, which describe the signaling relations
between all regulators within the pathway in the two
cell populations. The set of regulators involved in the
two topologies is assumed to be the same, but the sig-
naling relations can be different. The signaling relations
describe ‘who signals to whom’ in both populations and
may be derived from multiple sources: the researcher’s
expertise, literature findings, external experimental data
or application of a reverse engineering method of
choice. This knowledge is given to the input of JODA in
a form of two directed graphs (one per each cell popula-
tion). The nodes in the graphs correspond to the regula-
tors (pathway components). There is an edge between
two nodes in a given pathway topology whenever it is
known that the pathway component corresponding to
one node activates the component corresponding to the
other node. The graphs may be cyclic and may have sev-
eral connected components. Examples of two given
ATM pathway topologies, one in the healthy cells
(denoted h) and second in cells undergoing DNA
damage (shortly, damaged cells, denoted d), are illu-
strated in Figure 1A.
Internally, based on the given pathway topologies,

JODA builds two binary matrix models. The pathway
models are used by the algorithm to determine which
perturbation experiments affect which regulators in the
pathways. For a given pathway topology graph, JODA
first adds an edge going from each node to itself, which
corresponds to the trivial fact that a perturbation of a
given regulator influences this regulator. Next, JODA
computes a transitive closure of the graph, which corre-
sponds to predicting how the effects of the perturbation
experiments propagate in the pathway. The pathway
model is given by a matrix representation of the result-
ing graph. It contains an entry 1 whenever a perturba-
tion of a regulator corresponding to the row affects the
regulator corresponding to the column (otherwise the
entries are 0). For each regulator, the model defines a
set of perturbation experiments which affect this regula-
tor’s activity. See Methods for a formal introduction of
the model. Example pathway models for the ATM path-
way in the healthy and in the damaged cells are shown
in Figure 1B.
The second kind of knowledge are regulator-gene rela-

tions, given for some regulators, which are also TFs, and
for some remaining genes. This knowledge, similarly as
pathway topologies, is cell-population specific and thus
is given separately for each population. It originates
either from the individual TF targets established in the
literature, or from high-throughput TF DNA-binding
data. The known TF targets are expected to show an

effect to the perturbation experiments, and serve as
examples of genes that are differentially expressed upon
their TF perturbation. This kind of knowledge is rarely
certain and in our approach is given as a belief about
the TF-target relationships, rather than a fixed
statement.
JODA processes given data and knowledge in three

steps (Figure 1B). In the first step, we analyze the input
data from each perturbation experiment to estimate the
effect of the perturbation on the genes. To this end, we
apply our belief-based differential expression analysis
method (Methods), implemented in the R package
‘bgmm’ [32]. The method assigns each gene a probabil-
ity that it was differentially expressed in the experiment.
In this step, the knowledge about the known TF targets
is used. To improve the estimation, the known targets
of the perturbed regulator are given a high prior of dif-
ferential expression in the perturbation experiment. We
multiply each returned probability by +1 or -1 to indi-
cate whether the effect of the perturbation was up- or
down-regulation, respectively. Thus, each signed prob-
ability lies in the [-1, 1] interval. For a given perturba-
tion of regulator v in cell population t, the vector of
signed differential expression probabilities of the genes

in this experiment is denoted pt
v .

In the second step, for each regulator v and cell popu-
lation t, we obtain a vector Rt

v of regulation scores that
quantify the effect of v on the genes in t. In this step,
the knowledge about the pathway topologies is used.
For a given cell population and regulator, regulation
scores are computed as an average over the signed prob-
abilities of differential expression in all perturbation
experiments that affect this regulator in this cell popula-
tion. Using the pathway model, the affecting experi-
ments are defined as both the perturbation of the
regulator itself, and perturbations of its upstream activa-
tors in the pathway (Methods). For example, in Figure

1B the regulation scores Rd
RelA for RelA in the damaged

cells are an average of signed probabilities for the per-
turbations of RelA and of its upstream activator ATM.
In the healthy cells, only its own perturbation affects

RelA, and its regulation scores Rh
RelA are the same as its

signed probabilities ph
RelA . Assuming that the model is

correct, the experiments affecting a given regulator
should have a common effect on this regulator’s target
genes. In other words, each target gene is expected to
have either high or low signed probabilities of differen-
tial expression that are consistent between all affecting
experiments. Thus, taking an average yields either high
or low regulation scores for the true targets, and rules
out those genes which respond to the perturbation
experiments in a model-independent manner. A
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negative regulation score indicates (possibly indirect)
activation of a gene, and a positive score indicates inhibi-
tion. This rule, counter-intuitive at first sight, is moti-
vated by the fact that genes with positive regulation
scores have mostly positive probabilities of differential
expression, i.e., tend to be up-regulated in those pertur-
bation experiments that affect their regulator. The genes
with negative scores have mostly negative probabilities, i.
e., are down-regulated. Accordingly, we define genes
more activated in a given cell population (e.g., damaged
d), as having lower regulation score in this cell popula-
tion than in the other (e.g., healthy h). For example, in
Figure 1 g1 is up-regulated upon the RelA perturbation
(possibly indirectly inhibited by RelA) in h and is down-
regulated (possibly indirectly activated by RelA) in d. g2
is up-regulated upon the perturbation in h and shows no
effect in d. Thus, genes g1 and g2 are more activated in d.
In the third step, to quantify deregulation of genes by

a given regulator v, we define a vector Dv of deregula-
tion scores as the difference between the regulation
scores for v in the two cell populations. In this way,
each deregulation score lies in the [-2; 2] interval. For
example, in Figure 1 genes g1 and g2 are deregulated
between the healthy and damaged cells, while gene g3
stays regulated the same way, and g4 is not dependent
on the pathway. Accordingly, g1 and g2 have dominant
deregulation scores, which are well discriminated from
the scores of g3 and g4 (Figure 1B). Note that in the
case when regulation scores for cell population h are
subtracted from scores for cell population d, genes more
activated in d (e.g., genes g1 and g2 in Figure 1) obtain
negative deregulation scores, whereas genes more acti-
vated in h obtain positive scores.

Deregulated genes identified by JODA group into
biologically relevant functional clusters
JODA was applied to identify genes deregulated in
response to DNA damage induced by NCS, a drug
known to cause double strand breaks in the DNA [29].
We analyzed transcriptional effects of silencing the reg-
ulators ATM, RelA and p53, performed by Elkon et al.
[28] on the healthy and the damaged cells (together six
perturbation experiments). The data for each perturba-
tion experiment are log expression ratios of a regulator
knockdown versus control in a given cell population.
See Methods for data processing. Additionally, we pro-
vided two kinds of knowledge. First, the ATM pathway
topologies in the damaged and in the healthy cells. As
presented in Figure 1A, in the damaged cells NCS trig-
gers a cellular pathway, where the central kinase ATM
signals down to TFs RelA and p53 [30]. This pathway is
inactive in the healthy cells. Second, we provided known
targets of RelA and p53 in the two cell populations
(listed in Additional file 1; see Methods).

Application of our approach resulted in three lists of
deregulation scores (shortly, deregulation lists), one for
each of the regulators ATM, RelA and p53. We sorted
the deregulation lists decreasingly, so that the one
extreme of each list contains genes more activated in
the healthy cells, and the other contains genes more
activated in the damaged cells. We performed Gene Set
Enrichment Analysis (GSEA [33]; see Methods) to iden-
tify gene sets significantly overrepresented on the
extremes of the lists. We focused the analysis first on
the enrichment of GO terms (taken from the MSigDB
database [33]).
Figure 2 presents 51 identified overrepresented GO

terms and their enrichment in the deregulation lists.
The terms were grouped by hierarchical clustering
according to the ‘relevance’ similarity measure [34] into
thirteen functional clusters, where each cluster is labeled
with a common general biological function (see Meth-
ods). Several functional clusters, e.g. DNA repair, Chro-
matin organization, Transcriptional regulation and Cell
cycle, indicate that our method assigns dominant dereg-
ulation scores to genes playing crucial roles in response
to DNA damage. Moreover, we find enrichment of
deregulated genes in mRNA/RNA and Nucleotide proces-
sing, Complex assembly, Protein folding, Transport as
well as transcription- and translation-related processes.
This rich involvement of genes up-regulated in response
to DNA damage in various processes is in agreement
with previous findings [35,36].
Eleven clusters of GO terms are found for the genes

more activated in the damaged cells and only two in the
healthy cells, even though the distributions of the dereg-
ulation scores have the median of zero and are not
biased in number towards the negative values (Addi-
tional file 2, Figure S1). The eleven clusters more acti-
vated in the damaged cells are shortly referred to as
damage-activated, and the two more activated in the
healthy cells are called healthy-activated throughout the
text. Strikingly, the regulators agree on the functional
processes they activate: no GO term overrepresented in
the genes more activated in the damaged cells is also
overrepresented in the genes more activated in the
healthy cells. This shows the tightly coordinated way in
which the ATM pathway governs the downstream
response to the damaging agent. From the functional
clusters of GO terms we identified clusters of deregu-
lated genes, which reside on the extremes of the deregu-
lation lists, and are annotated with those terms
(Methods). As a result, 645 genes are separated into
thirteen functional gene clusters of different sizes (Addi-
tional file 2, Figure S2). The number of clusters was
chosen to maximize the ratio of the number of clusters
over the number of genes shared between the clusters.
This choice is a tradeoff between maximizing the
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Figure 2 Functional enrichment. The matrix shows GO terms enriched with high confidence (FDR ≤ 0.01, indicated in blue, and FWER ≤ 0.5;
identified using GSEA [33]) in the genes more activated in the damaged cells by ATM, RelA and p53 (left three columns) and in the genes more
activated in the healthy cells (right three columns). Each GO term shown is enriched in at least one column. The terms were grouped into
functional clusters with names indicated on the left (Methods), and sorted by the average enrichment in the first three columns. The GO term
enrichment is mutually exclusive for the genes more activated in the healthy and in the damaged cells. Eleven functional clusters of GO terms
are enriched exclusively in genes more activated in the damaged, and two exclusively in the healthy cells. Abbreviations: mtbl, metabolic; nc,
nucleo; pol, polymerase; reg, regulation; neg, negative; pos, positive; proc, process; arch, architecture; nnnna, nucleobase, nucleoside, nucleotide,
and nucleic acid. The identified clusters confirm that the dominant deregulation scores are correlated with a functionality which is highly
relevant to the switch between the compared cell populations.
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diversity of functions in the clustering and minimizing
the overlap between the clusters (Additional file 2, Fig-
ure S3). The main general function of each gene cluster
is captured by its label. To annotate clusters with addi-
tional, secondary functions we used the Ingenuity Path-
way Analysis software (Ingenuity Systems). Additional
file 3 lists all Ingenuity functions that are significantly
overrepresented in each of the five largest clusters.
Importantly, enrichment analysis of the DNA repair,
Transcription regulation and Chromatin organization
clusters revealed that they also contribute to cell death,
cell cycle, as well as cellular growth and DNA replica-
tion, recombination, and repair. These three clusters are
also significantly enriched in cancer-related genes. All
three have strong enrichment for tumorigenesis pro-
cesses, leukemia-related genes, as well as other cancer
types (Additional file 4), which agrees with the known
connection between DNA damage and cancer [37]. To
address the quality of the deregulation scores, we review
the genes in the deregulated functional clusters in terms
of knowledge about the impact of NCS treatment on
the genes in the treated cell. Using Ingenuity, we col-
lected a set of 27 genes which are directly or indirectly
influenced by NCS.
Additional file 2, Figure S4 presents what is known

about the type of action of NCS on the targeted genes,
as well as what is known about the NCS not acting on
the genes. In majority of cases, this knowledge is consis-
tent with the presence or absence of genes in the func-
tional clusters. There is a significant overlap between
the NCS-targeted genes and the deregulated functional
clusters (hypergeometric higher tail p-value 7.75 e-05).
These results confirm that our findings are consistent
with the current knowledge about the action of NCS
and expand it to the level of transcriptional and regula-
tory switch between the two analyzed cell populations.

The deregulated functional clusters and pathways cannot
be found without prior knowledge or in separate analysis
The power of JODA becomes apparent when comparing
it to two simpler methods. First, an analysis without
incorporation of prior knowledge, which is based only
on taking differences of correlation (decorrelation) of
expression between the regulators and the remaining
genes. Second, to a separate analysis of the two cell
populations, which is based on inferring regulation in
the two compared populations of cells separately, and
only then finding the differences. The grounds for the
comparison of JODA to the two simpler methods is the
significance of scores assigned to genes with key func-
tions that are expected to be deregulated between the
two compared populations.
To analyze decorrelation, for each analyzed gene and

each regulator (ATM, RelA, and p53) we computed

Pearson correlation first between the expression profiles
of the regulator and the gene measured in the healthy
cells, and second between the profiles of the regulator
and the gene in the damaged cells. Strong positive cor-
relation in a given cell population can be interpreted as
an activation of the gene by the regulator in this cell
population, whereas strong negative correlation can be
interpreted as inhibition. To obtain the decorrelation
scores for each regulator, we subtracted the correlation
values for all genes in the damaged cells from the corre-
lations in the healthy cells. In this way, the decorrelation
scores, belonging to the interval [-2, 2], can be read
similarly as the deregulation scores: strongly negative
decorrelation scores indicate more activation in the
damaged cells, and strongly positive indicate more acti-
vation in the healthy cells. The decorrelation scores are
a simple implementation of the ideas applied by Taylor
et al. [14] and Mani et al. [13]. Taylor et al. [14] used
Pearson correlation of interactome hubs to their interac-
tion partners to verify whether these interactions are
context-specific. Mani et al. [13] investigated gain and
loss of correlation between cell populations using a
mutual information-based approach. Although inter-
preted in the same way, the decorrelation scores differ
from the deregulation scores in two important ways.
First, they do not incorporate given prior knowledge
about the known cell population-specific pathway topol-
ogy nor target genes downstream of the pathway. Sec-
ond, they measure the activity of the regulators (which
are proteins) by their expression levels, ignoring the fact
that it is modulated on post-translational level. To per-
form the separate analysis, we analyze the regulation
scores. Regulation scores are returned from the second
step of JODA (Figure 1B), separately for each cell popu-
lation. Thus, in contrast to the decorrelation scores,
they are obtained using both types of knowledge given
as input to the algorithm. Recall that in a given cell
population, extreme regulation scores are given to those
genes which according to the perturbation data and
knowledge are directly or indirectly controlled by the
regulators.
JODA outperforms the analysis performed with the

decorrelation scores. Figure 3 shows that the genes in
functional clusters have deregulation scores that stand
out significantly from the background of deregulation
scores for all analyzed genes. Using the decorrelation
scores, the same two clusters can be identified as
healthy-activated and eleven as damage-activated, but
they are less significant than when deregulation scores
are used. Similarly, several clusters, although performing
functions important for the switch between the healthy
and damaged cells, are likely to be missed when analyz-
ing the cell populations separately. For example, based
on the regulation scores in the damaged cells only, the
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genes in the DNA repair cluster cannot be significantly
differentiated from all genes (Figure 3B).
To further compare the joint approach to the separate

analysis, we applied GSEA to perform GO term enrich-
ment analysis in the sorted lists of regulation scores.
Such a list contains on the one end the genes which are
up-regulated by the regulator perturbation (i.e., are pos-
sibly indirectly inhibited by the regulator) and on the
other the genes that are down-regulated by the pertur-
bation (indirectly activated by the regulator). Additional
file 2, Figure S5 compares GO terms or pathways over-
represented on the extremes of deregulation lists with
the terms/pathways overrepresented on the extremes of
sorted lists of regulation scores. First, the separate analy-
sis misses gene sets that are only slightly down-regulated
in one cell population and slightly up-regulated in the
other. Deregulation scores, being a difference of the
small but opposing effects, amplify them, making detec-
tion of such gene sets possible. For example, significant
enrichment of the GO term regulation of transcription

is only found by our approach and not by the separate
analysis (Additional file 2, Figure S5 A). Second, the
separate analysis identifies also GO terms or pathways
annotating genes that show the same effect to perturba-
tion in both cell populations, e.g. the glycolysis pathway,
which is up-regulated upon knockdown of RelA and
ATM both in the healthy and in the damaged cells
(Additional file 2, Figure S5 B). Importantly, such effects
do not characterize the difference between the two cell
populations and in our analysis automatically cancel out
when computing the deregulation scores. Taken
together, deregulation scores are more sensitive to and
oriented on differences between the cell populations
(Additional file 2, Figure S5 C).

Deregulated pathways and complexes elucidate
cooperation within the functional clusters
Since the genes in each cluster share the same function-
ality, they may directly interact in a common cellular
pathway or complex. To determine these interactions

Figure 3 Functional gene clusters are significantly deregulated. (A) Distributions of the deregulation scores of the genes in the functional
clusters (averaged over the three regulators, ATM, RelA and p53) strongly deviate from the distribution of averaged deregulation scores for all
genes (left plot). The distributions of average decorrelation scores (middle left), as well as of average regulation scores in the healthy (middle
right) and in the damaged cells (right), are more similar to the distributions of the same scores for all genes. Gray dashed vertical lines mark
score 0 in each plot. The names of the eleven damage-activated clusters are in bold. (B) A t-test comparing the cluster deregulation scores with
the deregulation scores for all genes (Deregulation; red squares) gives for majority of the clusters the most significant p-values, when contrasted
with: the p-values obtained in a t-test comparing cluster regulation scores to regulation scores of all genes in the healthy cells (Regulation,
Healthy; blue pluses), and the same t-test but in the damaged cells (Regulation, Damage; light blue crosses), the p-values in a t-test comparing
cluster regulation scores in the healthy directly to regulation scores in the damaged cells (Healthy vs Damage; green diamonds), and in a t-test
comparing the cluster decorrelation scores with the decorrelation scores for all genes (Decorrelation; yellow triangles). All tests are two-sided.
Taken together, our joint and knowledge-based approach assigns more significant scores to the functional clusters than a separate analysis, or
an analysis without incorporation of knowledge.
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we first identified pathways and complexes that are over-
represented on the extremes of the deregulation lists.
Next, we checked their overlap with the functional clus-
ters. The enrichment in pathways, similarly as for GO
terms, was assessed using GSEA. The identified pathways
are stored in the MSigDB database as sets of genes, but
their signaling relations are well described in the litera-
ture. Eleven MSigDB pathways that are overrepresented
on the extremes of the deregulation lists significantly
overlap with our functional clusters (Figure 4A). For
example, the apoptosis pathway contains genes from the
DNA repair and Transcription regulation clusters. More-
over, we found the Exon junction complex and several
spliceosome complexes (Figure 4B) significantly overre-
presented in the genes more activated in the damaged
cells (best hyper test, see Methods). Interestingly, these
complexes overlap (hyper-geometric higher tail p-value
1.1·10 -29) with the MRNA processing cluster. Similarly as
pathway interactions, membership in complexes explains
the way the genes in the clusters are interconnected and
collaborate to exhibit the common function.
Finally, we focused on the DNA repair cluster, which

is of pivotal interest in the context of the switch
between the healthy and the damaged cells. We investi-
gated physical relations among genes within this cluster.
The cluster is strongly enriched in eight pathways
involved in response to DNA damage (p-values from

1.33·10-41 to 8.17·10-11; identified using SPIKE [38]).
SPIKE is a database and an analysis tool, storing manu-
ally curated pathways, which play key roles in response
to damage. The table in Figure 5A lists 51 genes from
the DNA repair cluster, which belong to those canonical
pathways stored in SPIKE as well as three additional
pathways, described in a comprehensive review on DNA
damage response by Wood et al. [39]. The significantly
enriched pathways include non-homologous end-joining
and homologous recombination, which are typical path-
ways responsive to DNA double strand breaks [40,41].
The position of the listed genes in the well known
damage response pathways describes their role in the
response, as well as their interaction partners in the
cluster. To further infer the cooperation between the
remaining genes in the DNA repair cluster we collected
their interactions using SPIKE and Ingenuity (Figure 5B;
see Methods). The analysis revealed a number of com-
plexes that join subsets of genes together, e.g. the Origin
of Replication complex (ORC) containing five DNA
repair genes. Grouping the complexes by common func-
tionality, we selected functional sub-parts of the net-
work. For example, we identified a sub-network of genes
belonging to the RFC, DNA polimerase epsilon, and the
ORC complexes, which are involved in the DNA replica-
tion process (marked with a light grey background in
Figure 5B).

Figure 4 Connectivity between genes in the functional clusters. (A) Deregulated pathways. Matrix shows pathways (columns) enriched in
the genes more activated in the damaged cells that overlap significantly with functional clusters (rows). Only pathways and clusters overlapping
with higher-tail hyper-geometric p-value at most 0.001 (indicated in red) are reported. Abbreviations of pathway names: SI, snare interactions; U,
ubiquitin. (B). Deregulated complexes. Top left: The Exon junction (EJ) complex and five spliceosome complexes (rows) are overrepresented (best
hyper test, see Methods) in the genes more activated in DNA-damage by the regulators ATM, RelA and p53 (columns). Only complexes with a p-
value at most 10-5 (indicated in red) are reported. Genes in those complexes overlap significantly with the functional cluster MRNA/RNA
processing. Right: Graph representation of the genes (round nodes shaded in violet by their average deregulation scores) in the complexes
(rounded square nodes). Edges represent gene - complex membership. Abbreviations are reported in Additional file 2, Table S1. Pathways and
complexes carry information about relations between their member genes. Therefore, these enrichment results broaden our view on the
connectivity within the sets of genes in the functional clusters.
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Genes most activated in damaged cells function in the
ATM pathway-induced damage response
Functional clusters contain deregulated genes that accu-
mulate within the extremes of the deregulation lists, but
not on the strict top or bottom. We investigated the
composition of three sets of one hundred genes that are
most activated in the damaged cells by each regulator
RelA, ATM and p53 (Additional file 5A). All three sets

are significantly enriched in genes involved in transcrip-
tion, with five common genes active in this process:
CHD4, RBM14, RCAN1, SMAD4, and UBN1. Interest-
ingly, some of the genes most activated by RelA are
interaction partners (for example, SMARCB1) of the
genes most activated by p53 (SMARCB4). Apart from
transcription, the set most activated by ATM is also
enriched in cell death, cell cycle, and growth-related

Figure 5 Cooperation of the genes in the DNA repair cluster. (A) The matrix shows 51 out of 117 genes in the DNA repair cluster, which
belong (marked in red) to eleven known pathways involved in DNA repair (columns; listed on the top). First eight of those pathways are
strongly enriched in the cluster (identified using SPIKE [38]). Three other patways (reviewed by Wood et al. [39]) overlap with the cluster, but not
significantly (p-values are listed on the bottom). Abbreviations: ATM, ATM pathway; IC, repair of interstrand crosslinks; DSB, repair of double
strand breaks; BER, base excision repair; NER, nucleotide excision repair; MR, mismatch repair; G1-S, G1-S pathway; p53, p53 pathway; HR,
homologous recombination; PD, polymerase; RAD6, RAD6 pathway. Such strong enrichment in canonical pathways confirms the biological
relevance of the deregulated genes in the DNA repair cluster. (B) To identify interconnections between the remaining 66 genes in the cluster, we
searched for pathways of length at most one connecting each pair of those genes in a protein-protein and protein-DNA interaction network
(using SPIKE and Ingenuity). The resulting graph connects 33 genes (remaining 33 are isolated and not displayed) and represents the complexes
to which the genes belong. Some of the complexes are involved in a common process: DNA replication, apoptosis, cell cycle, or telomere
maintenance. The network explains connectivity within the DNA repair cluster that goes beyond the canonical pathways.
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genes. Moreover, both sets of genes most activated by
ATM and p53 are enriched in cancer-related genes
(Additional file 5B).
The stability of deregulation scores for the genes most

activated by any of the three regulators (ATM, RelA, and
p53) was assessed based on p-values for a permutation
test. Deregulation scores measure the relative change of
probability that a gene is up- or down-regulated. The
permutation test was used to verify a hypothesis that for
a given gene its deregulation score is significantly differ-
ent than zero. To perform the test, the signed probabil-
ities of differential expression for all genes and regulators
were permuted at random 1000 times. The p-value for
the permutation test was calculated as a probability that
the observed deregulation score is closer to zero than the
deregulation scores calculated for the permuted differen-
tial expression probabilities. There are two benefits of
permuting the differential expression probabilities
(returned from the first step of JODA) instead of the
input expression dataset. First, we directly test the effect
of the pathway models on the deregulation scores (since
the pathway models are incorporated in the second step).
Second, we avoid fitting Gaussian mixtures to the data
based on beliefs with random observations. Additional
file 2, Figure S6 presents the distribution of p-values for
the most activated genes versus all other genes. All genes
most activated by RelA and p53 have p-values lower than
0.05. Genes most activated by ATM have less significant
scores.
Next, we reviewed the individual examples out of

three shorter lists of twenty genes that are most acti-
vated in the damaged cells by RelA, ATM and p53.
Those shorter lists contain together 51 unique genes
(see Additional file 6 for a detailed list of their regula-
tory relations, collected in Ingenuity). Figure 6A pre-
sents a network interconnecting 28 of the 51 genes, for
which regulatory interconnections are known. Both p53
and RelA, with seven and five regulatory targets, respec-
tively, are major regulators for the genes in this network.
Moreover, 10 out of the 28 genes in the network are
transcription regulators themselves. From all 51 most
activated genes there are 12 transcription regulators, 19
genes involved in apoptosis, 18 in proliferation and 6 in
cell cycle progression.
Additional file 2, Figure S7 A visualizes expression pro-
files of the most activated genes. Expression data
explains the deregulation p-values showing that those
genes tend to be repressed in the healthy, and activated
in the damaged cells.

RelA and p53 are the key deregulators of genes in
functional clusters
Deregulation is inferred from perturbation effects, and
as such can be due to an indirect impact of the

regulators on the genes. Here, we summarize these pos-
sibly indirect effects on functional clusters of the
deregulated genes identified by JODA.
Figure 7 reports deregulation and regulation scores of

the genes in functional clusters, for each regulator
ATM, RelA and p53. The per cluster distributions of
deregulation scores for RelA and p53 are shifted further
away from zero than for ATM, suggesting a stronger
deregulatory impact on the clusters (Figure 7A). Indeed,
Figure 7B shows that the distributions of regulation
scores for ATM in the healthy and in the damaged cells
are generally less separated than for RelA and for p53.
Interestingly, for all three regulators, the regulation
scores indicate that the damage-activated clusters are
only slightly (possibly indirectly) activated in the
damaged cells. Instead, these clusters are strongly (possi-
bly indirectly) inhibited in the healthy cells both by RelA
and by p53, as indicated by the respective distributions
of regulation scores shifted towards value 1. The inhibi-
tory impact of ATM on these clusters in the healthy
cells is less prominent. In the case of the two healthy-
activated clusters, a strong, possibly indirect inhibition
in the damaged cells is observed for all three regulators.
Distinctively, the Potassium ion transport cluster is also
(possibly indirectly) activated in the healthy cells by
RelA and p53.

Deregulation can be explained by a hierarchy of direct
TF-DNA binding events
Finally, we investigate the hierarchy of direct regulatory
relations, which could explain the effect of the ATM
pathway on the deregulated target genes. The first possi-
ble scenario would involve regulation by direct binding
of the regulators in the pathway to the gene promoters.
Alternatively, the most parsimonious hierarchy would
connect the regulators to the genes via a single TF. To
investigate these hypotheses, we follow a two step pro-
cedure. In the first step we computationally predict the
TFs directly binding to the promoters of the genes. In
the second step we verify whether the TFs are the regu-
lators themselves, or whether they are controlled by the
regulators.
To implement the first step, we applied TransFind

[42] to predict TFs binding to the promoters of the
genes in each functional cluster (Figure 8A; see Meth-
ods). Among the identified TFs, CREB has binding sites
significantly enriched in the promoters of genes in the
DNA repair cluster. Neither RelA nor p53 were pre-
dicted to bind directly to the promoters of the genes in
the functional clusters. Thus, in the second step we con-
sider the hypothesis of the parsimonious hierarchy.
Here, we focus on CREB, leaving other predicted TFs as
candidates for future investigation. The hypothesis con-
sists of a deregulatory connection from the ATM
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pathway to CREB, implemented by RelA or p53 directly
binding to CREB promoter in the damaged cells and not
binding in the healthy cells.
To complete the picture, based on several different

criteria we collected nine most likely direct target genes
of CREB, which are also deregulated in our system (Fig-
ure 8B). EXO1, PPP1R15A, NAP1L1, ORC5L, BRCA2,
MCM2 and UBE2B belong to the DNA repair cluster
and have a high affinity binding of CREB to their pro-
moters conserved in mouse. Additionally, we report two
genes outside of the cluster, PWP1 and NOLC1. Both
are deregulated and have yeast homologs, which were
identified by Workman et al. [12] to be deletion-buf-
fered by SKO1, an yeast homolog of CREB. That means,
both their homologs change expression in wild-type
cells in response to methyl-methanesulfonate (shortly,
MMS, a double-strand breaks-inducing drug) and do
not change when SKO1 is perturbed. Moreover, the
promoters of PWP1 and NOLC1 yeast homologs are
not bound by SKO1 in the healthy yeast cells, and are
bound by SKO1 in the cells damaged by MMS. The
data of Zhang et al. [43] supports that the promoters of
all nine target genes but NOLC1 are bound by CREB in
HEK293T cells.
Figure 8C brings together these pieces of evidence

into a hypothetical regulatory network. The network
shows a two-step hierarchy, going from the ATM

pathway, via CREB, to the nine most likely CREB target
genes, which are deregulated between healthy and the
damaged cells. Thus, we hypothesize that the ATM
pathway indirectly deregulates those genes by deregulat-
ing CREB. In Additional file 2, Figure S7 B confronts
the expression profile of the CREB1 gene with the
expression profiles of its nine predicted targets.

Discussion
In our approach, the information about the pathway topol-
ogies in the two analyzed cell populations is formalized in
two simple models. Note that neither the pathway topolo-
gies nor the pathway models are intended to capture the
dynamics and full spectrum of molecular interactions in
signaling pathways. Instead, they are static and limited
only to activatory signaling relations. Each model in a sim-
plified way represents the knowledge of how the perturba-
tions interrupt the flow of activations in the modeled
pathway topology. The perturbations are required to turn
the targeted regulator down (i.e., we do not model over-
expressions). To relax these constraints the approach
could be adapted to incorporate logical models (as applied
by Szczurek et al. [44]), formalizing a broad range of sig-
naling relations and allowing all possible perturbation
experiments. Such extension would require distinguishing
the experiments affecting a given regulator into two
classes: one of experiments which down-regulate, and one

Figure 6 A network of interactions between genes most activated in DNA damage. A network of known relations (edges) connecting 28
genes (nodes) from the three lists of top twenty most activated by RelA, ATM or p53 in DNA damage. The relations are collected from the
Ingenuity Pathway Analysis (Ingenuity Systems) database. The nodes are labeled with gene names and colored according to gene functions,
whereas relations are given edge styles according to their type.
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of experiments which up-regulate the target genes of this
regulator.
Unlike numerous approaches inferring gene regulation

from expression data [45,46], here we do not measure
the activity of the regulators from their expression
levels. Concluding activity from expression has several
drawbacks. First, TFs are often expressed on low mRNA
levels and thus detection of their activity profile based
on expression measurements may fail due to noise in
the data. Second, regulator activity is modulated in
many ways on post-translational level of signaling, by
phosphorylation, ligand binding, degradation, etc. Thus,
we follow Gat-Viks and Shamir [47] and Szczurek et al.
[44] and derive the regulator activity from a given
model of signaling pathway. The regulators are treated
as proteins, and their activity in a given perturbation
experiment depends on the perturbation and on signal-
ing relations which exist on post-translational level.
Thus, assuming the input pathway topologies are cor-
rect, the pathway models should encompass all means
of influencing the regulators present in the two cell
populations, such as phosphorylation or ligand binding.

This dependence on the pathway models implies that
the correctness of the models is critical for the correctness
of our results. JODA may fail when the input pathway
topologies are insufficient. To assure high quality of the
pathway models, they should first be confronted with
available data and corrected using refinement procedures
(see, for example, refinement strategy introduced by Gat-
Viks and Shamir [47]). Moreover, the remaining genes
(not the regulators) are measured from their expression
levels, and their regulation is judged based on their tran-
scriptional response to the perturbations of the regulators.
The current view of regulation of gene expression in mole-
cular biology [48] is more complex and includes, for
example, post-transcriptional degradation by microRNAs.
Ideally, our approach should integrate evidence of all
means of gene regulation. We hope such integrative meth-
ods will be developed in the future. Importantly, our ana-
lysis can still be performed without any input knowledge.
This option is valuable particularly in non-model organ-
isms or under unusual experimental circumstances, where
not much more is available other than newly generated
expression data. In case when signaling relations between

Figure 7 Summary of indirect deregulation and regulation of each functional cluster. (A) Distributions of the deregulation scores (x-axis)
of the genes in the functional clusters (y-axis). (B) Distributions of the regulation scores (x-axis) in the healthy cells (drawn in green) and in the
damaged cells (drawn in blue) of the genes in the functional clusters (y-axis). In A and B the score distributions are plotted separately for the
three regulators, from left to right: ATM, RelA and p53. The names of the eleven damage-activated clusters are in bold.
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the regulators are not known, the input topologies given to
JODA should be fully disconnected graphs. This corre-
sponds to inferring regulator-target gene relations for each
regulator independently, only based on the perturbation
data for this regulator. In case when no regulator-target
gene relations are given, JODA evaluates probabilities of
differential expression (see the first step of the algorithm
above) using unsupervised, instead of partially supervised
mixture modeling [32]. However, as we show, incorpora-
tion of knowledge greatly improves the quality of deregu-
lation analysis. Therefore, even if only partial information
is available either about the signaling pathways, or about
the target genes, it is still beneficial to provide it as input
to JODA.

Conclusions
Reprogramming of cellular character manifests itself in
different cellular signaling, and, in a consequence, re-

wiring of the downstream transcriptional network.
JODA combines cell population-specific data and prior
information from these interconnected levels. Moreover,
deregulation is quantified in one score, merging effects
from the two cell populations. Our results show advan-
tage of JODA over investigating each cell population
separately or without incorporation of prior knowledge.
JODA keeps the deregulation analysis in the strict bio-

logical context of pathway-induced gene regulation in
the cell populations under study. To our knowledge, it
is the first deregulation approach to take advantage of
prior information about signaling pathway topology that
differs between the compared populations of cells. The
analyzed perturbations target common components of
this signaling pathway in both cell populations. The
known gene regulatory targets downstream of this path-
way, specific for each cell population, are utilized as
examples of differentially expressed genes.

Figure 8 A hypothetical deregulatory hierarchy. (A) TFs with high affinity binding overrepresented in the promoters of genes in the
functional clusters and in promoters of their mouse orthologs. Only binding predictions with FDR ≤ 0.05 are shown. (B) Nine deregulated genes
with strong evidence of regulation by CREB. Column titles: Name, gene names; AvgD deregulation scores averaged over RelA, ATM and p53; YH,
yeast homologs (NA - homolog not known); DB, p-values for deletion-buffering of the homologs by SKO1, a CREB homolog in yeast. YPD, p-
values for the binding of SKO1 to the promotors of the yeast homologs in YPD medium; MMS, p-values for SKO1 binding to the promoters of
the homologs in cells damaged by MMS. CREB, p-values for CREB binding to promoter, averaged over three time points of forskolin stimulation
in HEK293T cells. Colored background marks genes from the DNA repair cluster that have a high affinity binding of CREB to their promoters
conserved in mouse. (C) Putative gene deregulatory network. Top: ATM pathway. Middle: The pathway deregulating CREB. Below: CREB
regulating its most likely gene targets (the genes shown in B). Genes are colored in shades of violet according to their deregulation, averaged
over the regulators RelA, ATM and p53. The hierarchy is a hypothetical mechanistic explanation of deregulation of those genes, observed
between the healthy and the damaged cells.
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In our analysis we focused on the deregulation
between healthy cells and damaged cells treated with
NCS. The obtained deregulation scores were further
analyzed, first validating their congruence with the exist-
ing biological knowledge and next bringing new results.
By finding functional clusters of the deregulated genes,
we showed that the method assigns dominant deregula-
tion scores to the genes playing important roles in the
program of general response to DNA damage, in parti-
cular double strand breaks induced by NCS. Addition-
ally, we investigated cooperativity between these
deregulated genes, identifying known pathways and
complexes in which the genes participate. We reviewed
the DNA-damage related functionality of the genes with
most extreme deregulation scores. Finally, we analyzed
the indirect regulatory impact of the regulators in the
ATM pathway on the genes in the functional clusters.
An important advantage of our methodology is that it
leads to testable mechanistic hypotheses. Here, we pro-
posed a hierarchy of direct regulatory interactions by
connecting the pathway to the deregulated DNA repair
genes via the transcription factor CREB. Taken together,
JODA is a step forward to a systems level, mechanistic
understanding of changes in gene regulation between
different cellular environments.

Methods
Perturbation dataset
We used the dataset of 30 expression measurements by
Elkon et al. [28], in normal and in NCS-treated human
HEK293 cells, composed of three replicates for each
siRNA knockdown of ATM, RelA, and p53, and six
replicates for control, in both cell populations (GEO ser-
ies GSE1676, with 8794 genes measured). The raw data
was normalized using quantile normalization and trans-
formed into robust multi-array average expression
values [49]. Quality of expression measurements was
assessed with arrayQualityMetrics [50]. Four low-quality
measurements were removed. We filtered out all genes
without an ENTREZ identifier. In the case of multiple
genes with the same identifier, we selected the one with
the highest interquartile range (leaving 8498 genes).
Consequent removal of outliers left 8463 genes. Next,
we calculated vectors of log mean gene expression ratios
for each knockdown versus control in both cell popula-
tions (averaging over repeats; together six vectors).

Input TF-targets
Known target genes were collected for p53 both in the
healthy and in the damaged cells, and for RelA only in
the healthy cells (Additional file 1). For p53 in the
damaged cells, we composed a set of 47 targets by
selecting genes that have a DNA repair or chromatin
modification function from experimentally verified p53

targets collected by Horvath et al. [51], the direct p53
targets detected with ChIP-PET and confirmed by
expression analysis by Wei et al. [52], and finally by
adding genes targeted by p53 upon ionizing radiation
[53]. For p53 knockdown in the healthy cells, we took
those verified targets of Horvath et al., and those direct
p53 targets of Wei et al., which were not selected as tar-
gets in the damaged cells. Finally, for the analysis of
RelA knockdown in the healthy cells we utilized a set of
genes, identified using the ChIP-PET technology by Lim
et al. [54], whose promoters are bound by RelA and
contain an NF-�B consensus motif.

Differential expression probabilities
For each gene, we obtain a probability of differential
expression upon each perturbation experiment using a
belief-based partially supervised mixture modeling
method implemented in an R package ‘bgmm’ [32]. For
a given perturbation experiment, the method takes as
input the data in a form of expression ratios and, if
available, known examples of genes expected to be dif-
ferentially expressed in this experiment. The examples
are utilized to better fit a mixture of two Gaussians
model to the expression data. In case when examples
are not provided, unsupervised mixture modeling is
applied instead. One Gaussian model component is
interpreted as the cluster of differential genes, whereas
the other as the cluster of genes which remained
unchanged upon the perturbation as compared to con-
trol. Model-based clustering assigns each gene the prob-
abilities to belong to the differential and to the
unchanged cluster. The probability of differential expres-
sion for each gene is defined as the posterior probability
to belong to the differential cluster. Here, the belief-
based method is applied to each of the six vectors of log
mean gene expression ratios for the knockdown experi-
ments of RelA, ATM and p53 in the healthy and in the
damaged cells (Additional file 2, Figure S8). For three of
them the input TF-targets (see above) are used to define
data points which are believed to belong to the differen-
tial cluster. The belief value is set to 0.95.

Pathway topologies and models
The knowledge about a given pathway in a given cell
population is first formalized in a graph, and next trans-
lated into a matrix showing how the perturbations affect
the regulators. This formalism follows the idea of
Nested Effects Models [55], where it is assumed that
perturbation effects propagate through a given pathway.
We denote the set of regulators as V = {v1, ..., vn}. The
pathway topology in cell population t is a graph Gt =
(V, At) with the set of nodes V and directed edges At.
There is an edge (vi, vj) Î At whenever it is known that
the pathway component vi activates vj in cell population
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t. Gt may be cyclic and may have several connected
components.
Internally, for each cell population separately, JODA

utilizes the known pathway topologies to predict effects
of perturbation experiments. Consider an experiment
Δtv, where a given regulator v is knocked down in a
given cell population t. The regulator v together with all
regulators, which are reachable from v in the pathway
topology t, are called affected by the experiment Δtv.
The set of all experiments perturbing the regulators in
V in cell population t is denoted Et. The predictions of
affected regulators for all perturbations in Et are given
by the transitive reflexive closure G∗

t =
(
V, A∗

t

)
of the

pathway topology Gt. To compute G∗
t , we add an edge

(
vi, vj

) ∈ A∗
t whenever there exists a directed path from

vi to vj in the pathway topology Gt (including vi = vj, i.e.,
there are empty paths from each node to itself). The
incidence matrix for G∗

t is called the pathway model,
and is denoted Mt . There is an entry 1 in row vi and

column vj of the model matrix when
(
vi, vj

) ∈ A∗
t , other-

wise the entries are 0. In this way, an entry 1 tells that
its row’s perturbation affects its column’s regulator.
Thus, the set Ev,t of all perturbation experiments that
affect regulator v in cell population t is given by the
rows of Mt which have an entry 1 in column v:

Ev,t = {�tw ∈ Et|Mw,v
t = 1}. (1)

This means that the set of affecting experiments Ev,t
contains both the perturbation of the regulator v itself,
and perturbations of its upstream activators in the path-
way. Assuming the model Mt is correct, the experi-
ments in Ev,t are expected to have a similar effect on the
target genes of v.

Regulation scores
To compute the regulation scores for a given regulator v
Î V and a given cell population t, the pathway model
Mt is used. Mt defines the set Ev,t (Eq.1) of experi-
ments that affect the regulator v in t. The regulation
scores (each lying in the [-1, 1] interval) are computed
as an average over the signed probabilities of differential
expression in the set of experiments Ev,t:

Rt
v =

∑
w∈{vi|�tvi∈Ev,t} pt

w

|Ev,t| . (2)

Functional and pathway enrichment analysis
GO biological process categories as well as canonical
pathways with fewer than 15 and more than 500 genes
were excluded. Enrichment at the extremes of the

ranked deregulation lists was computed using the GSEA
algorithm [33] with default parameters. Only results
with false discovery rate (FDR) ≤ 0.01 and family-wise
error rate (FWER) ≤0.5 were considered significant.

Functional clustering of GO terms and the resulting gene
clustering
Similarity between the GO terms was assessed using the
GOsim [56] implementation of the ‘relevance’ measure
[34]. Next, the terms were hierarchically clustered by
this similarity. We checked the possible clusterings with
the number of clusters from five to twenty. For an
assumed clustering size, the GO term clusters were
formed by cutting the hierarchical clustering tree on a
corresponding level. Next, from the functional clustering
of GO terms, we obtained a functional clustering of
genes, where each gene cluster corresponds to one GO
term cluster. To this end, we collected the deregulated
genes that are annotated with the terms from the GO
term clusters, using the following procedure: First, for
each GO term, we collected the corresponding deregu-
lated genes in three steps: (i) Identify the deregulation
lists in which this term is significantly overrepresented.
(ii) From each identified deregulation list, collect the
leading edge genes for this term, i.e., genes that contrib-
uted to the enrichment of the term in this list [33]. (iii)
Take the intersection of the sets of genes collected from
all lists identified for this term. Next, for each cluster,
we took a union of the sets of genes collected for the
terms in this cluster. The clustering size of both GO
term and gene clusterings was set to thirteen. This
number was chosen from a [5,20] interval such that the
ratio of the number of clusters over the number of
genes that are shared between the clusters is maximized
(Additional file 2, Figure S3). Each of the resulting clus-
ters was assigned a general name, summarizing the GO
terms grouped in this cluster.

Collection of genes from the enriched pathways
The deregulated genes, which belong to the enriched
canonical pathways, were collected following the same
three steps as for collection of genes for GO terms
(steps (i)-(iii) above), but executed for each pathway.

Complex enrichment analysis
Sets of genes forming each tested complex were down-
loaded from the Reactome database [57] (together 2816
complexes). For a set of genes in a given complex, and
for a given deregulation list, we performed higher-tail
hypergeometric enrichment tests iteratively for a num-
ber of 10 up to 500 most extreme (top or bottom)
deregulated genes from the list. Finally, the minimum
resulting p-value was selected to signify the enrichment
of this complex in this deregulation list. Complexes with
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fewer than 15 genes, overlapping by less than 10 with
the current set of deregulated genes in the iteration,
were excluded. The size of the universe was set to all
genes analyzed on the array (8498). Only results with
the minimum enrichment p-value ≤ 10-5 were consid-
ered significant.

The DNA repair cluster network
66 genes in the DNA repair cluster are not included in
canonical DNA damage response pathways. To charac-
terize the connectivity between those genes, we applied
SPIKE and Ingenuity. We identified together 126 rela-
tions connecting 52 of those genes either with each
other or with other intermediate genes, complexes or
protein families. SPIKE was applied to find all direct
connections via at most a single intermediate node not
included in the set. The connections may represent
membership in a complex or regulation of different bio-
chemical types, e.g. phosphorylation, protein-DNA
(transcriptional) regulation, activation and protein-pro-
tein interaction. Ingenuity was applied to find intercon-
nections restricting that each relationship was reported
to appear for Human molecules, and that it is of one of
the following types: expression, transcription, protein-
DNA (all summarized as transcriptional regulation),
activation, inhibition, membership, modification, phos-
phorylation, or protein-protein interaction. We collected
all such direct relationships that are stored in the Inge-
nuity database. In addition, we applied Ingenuity to
score known networks based on their enrichment in the
input set of genes and collected all direct interactions
present in the top three scoring networks (with scores
57, 45 and 18, respectively). The top scoring networks
are related mostly to DNA replication, recombination,
and repair, as well as tumor morphology, cell cycle and
cell death. The networks have additional nodes that are
not included in the input set but are highly connected
to the genes in the set.

TF binding prediction
For each functional cluster, we applied TransFind [42]
to search the promoters of the genes in the cluster for
over-representation of high-affinity binding of human
TFs, which is conserved in their mouse orthologs. Given
a set of genes, TransFind predicts TFs with affinities to
the gene promoters significantly higher compared to a
background set of genes (by default, all genes in the
Ensembl57 database). Affinities are computed from a
physical model, based on positional TF weight matrices.
We tested a reduced set of human TRANSFAC [58]
matrices, containing only a single, the most informative
matrix for each TRANSFAC TF, setting all parameters
to default. TransFind assesses the significance of binding
to the promoters of a set of input genes with a

multiple-testing-corrected (FDR) version of the Fisher’s
exact test. Only results with FDR ≤ 0.05 were considered
significant.

Additional material

Additional file 1: Known target genes given as input to JODA
(listed in an Excel file).

Additional file 2: Figures S1-S8, Table S1.

Additional file 3: Functional enrichment in the largest functional
clusters (listed in an Excel file).

Additional file 4: Disease gene enrichment in the largest functional
clusters (listed in an Excel file).

Additional file 5: Functional and disease enrichment in the genes
most activated in DNA damage (listed in an Excel file).

Additional file 6: Interactions between the top most damage-
activated genes (listed in an Excel file).
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