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Abstract

Background

Tsetse flies are the major vectors of human trypanosomiasis of the form Trypanosoma bru-

cei rhodesiense and T.b.gambiense. They are widely spread across the sub-Saharan Africa

and rendering a lot of challenges to both human and animal health. This stresses effective

agricultural production and productivity in Africa. Delimiting the extent and magnitude of

tsetse coverage has been a challenge over decades due to limited resources and unsatis-

factory technology. In a bid to overcome these limitations, this study attempted to explore

modelling skills that can be applied to spatially estimate tsetse abundance in the country

using limited tsetse data and a set of remote-sensed environmental variables.

Methodology

Entomological data for the period 2008–2018 as used in the model were obtained from vari-

ous sources and systematically assembled using a structured protocol. Data harmonisation

for the purposes of responsiveness and matching was carried out. The key tool for tsetse

trapping was itemized as pyramidal trap in many instances and biconical trap in others.

Based on the spatially explicit assembled data, we ran two regression models; standard

Poisson and Zero-Inflated Poisson (ZIP), to explore the associations between tsetse abun-

dance in Uganda and several environmental and climatic covariates. The covariate data

were constituted largely by satellite sensor data in form of meteorological and vegetation

surrogates in association with elevation and land cover data. We finally used the Zero-

Inflated Poisson (ZIP) regression model to predict tsetse abundance due to its superiority

over the standard Poisson after model fitting and testing using the Vuong Non-Nested

statistic.
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Results

A total of 1,187 tsetse sampling points were identified and considered as representative for

the country. The model results indicated the significance and level of responsiveness of

each covariate in influencing tsetse abundance across the study area. Woodland vegeta-

tion, elevation, temperature, rainfall, and dry season normalised difference vegetation index

(NDVI) were important in determining tsetse abundance and spatial distribution at varied

scales. The resultant prediction map shows scaled tsetse abundance with estimated fitted

numbers ranging from 0 to 59 flies per trap per day (FTD). Tsetse abundance was found to

be largest at low elevations, in areas of high vegetative activity, in game parks, forests and

shrubs during the dry season. There was very limited responsiveness of selected predictors

to tsetse abundance during the wet season, matching the known fact that tsetse disperse

most significantly during wet season.

Conclusions

A methodology was advanced to enable compilation of entomological data for 10 years,

which supported the generation of tsetse abundance maps for Uganda through modelling.

Our findings indicate the spatial distribution of the G. f. fuscipes as; low 0–5 FTD (48%),

medium 5.1–35 FTD (18%) and high 35.1–60 FTD (34%) grounded on seasonality. This

approach, amidst entomological data shortages due to limited resources and absence of

expertise, can be adopted to enable mapping of the vector to provide better decision support

towards designing and implementing targeted tsetse and tsetse-transmitted African try-

panosomiasis control strategies.

Author summary

Tsetse flies are the major vectors of human and animal trypanosomiasis. To support con-

trol efforts, there is need to understand the location of these vectors in terms of distribu-

tion and abundance. Due to limited resources and unsatisfactory technology, delimiting

the extent and magnitude of tsetse coverage remains a challenge. In a bid to overcome

these limitations, this study attempted to explore modelling skills that can be applied to

inform decision makers about the status of tsetse abundance using limited historical tsetse

data and a set of remote-sensed environmental variables. Two regression models; standard

Poisson and Zero-Inflated Poisson (ZIP) were fitted and evaluated for superiority. The

results indicated the level of responsiveness of each covariate in influencing the vector

across the study area. Tsetse abundance was found to be largest at low elevations in areas

of high vegetative activity, in game parks, forests and permanently flooded shrubs during

the dry season. This approach can be adopted to enable mapping of any tsetse species to

provide better decision support towards designing and implementing targeted tsetse and

tsetse-transmitted African trypanosomiasis control strategies amidst entomological data

shortages due to limited resources and absence of expertise.
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Introduction

The World Health Organization aims for the elimination of Human African Trypanosomiasis

(HAT) as a public health problem by 2020 and for full elimination by 2030 [1–5]. One of the

strategies to achieve this is by reducing the tsetse-human interaction [6]. Trypanosomiasis is a

vector-borne disease of humans and animals caused by species of Trypanosoma transmitted

by tsetse flies [7]. This implies that African trypanosomiasis (AT) is maintained by the interac-

tion amongst three elements: vertebrate host (humans or livestock)[, Trypanosomes species

and Glossina species [8,9]. Therefore, mapping the distribution and abundance of tsetse flies

assists in improving the understanding of Trypanosomiasis risk and developing rational tsetse

and AT control decisions.

Vector control programmes often make use of vector abundance and spatial distribution data

sets to plan control interventions. Vector abundance, which is a measure of the vector population

in a unit area and over a given time-scale, is commonly determined using detailed field survey

data. Such data, especially for large areas, are often not readily available. In many cases, vector

control programme managers depend on estimates of vector abundance obtained through appli-

cation of probability-based sampling techniques using fine-resolution field vector survey count

data from small areas to plan their activities [10,11]. Fine resolution data are key to ensuring deliv-

ery of reliable estimates of vector abundance within an area [12,13]. However, a major problem

that has to be addressed explicitly when estimating vector abundance is false negatives: zero tsetse

catches in areas where tsetse do exist [8]. Vectors do not always occupy all areas that are suitable

for them, or are not always found even when they do occur, due to low abundance and chance

[14]. Spatial heterogeneity in abundance within “suitable” areas impacts on disease transmission.

The abundance of a target vector species is a fundamental ecological parameter and a criti-

cal consideration when making vector management and control decisions. Location-specific

tsetse count data collected by entomologists during tsetse control and monitoring programmes

are good estimates of approximate levels of tsetse abundance in a given area. Sileshi [15] asserts

that; “there are many kinds and levels of decisions that need to be made based on vector abun-

dance”. For example, monitoring the performance of tsetse (Glossina spp.) control pro-

grammes largely depends on periodic measurements of tsetse abundance; tsetse abundance

often determining appropriate tsetse control interventions.

Glossina spp. abundance; how common or rare a particular tsetse species or sub-species is

in a defined location or community is a component of biodiversity and can be viewed from an

ecological perspective. Vector abundance is regulated by abiotic factors (such as temperature,

moisture of breeding habitat and humidity) and biotic factors (parasites, predators, vegetation

and pathogens) and their interaction. These factors uniquely determine the spatial patterns of

vector abundance [16]. Among abiotic factors, temperature and humidity are the most impor-

tant factors that constrain Glossina spp. abundance and distribution [17]. Temperature regu-

lates the ecology of Glossina spp. communities. Overall, Glossina spp. are very sensitive to

climatic changes [18]. Glossina spp. (G. pallidipes and G.m.morsitans) abundance, for example,

has been positively correlated with temperature [19]. Tsetse fly physiology and behaviour

influence their abundance and spatial distribution. This study focused on the interaction of

micro-climate and environment as represented by remote sensed surrogates in influencing

tsetse abundance (Glossina fuscipes fuscipes). Taylor [20] contended that the landscape yields

characteristic parameters that segregate species, and that these parameters are the population

expression of the individual behaviour defined by the ethologists and observed by the natural-

ists. Like other organisms, Glossina spp. are linked to unique spatial patterns that are influ-

enced by ecological settings. The environment influences the behaviour and physiology of

Glossina spp., which then determines their spatial patterns.
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Glossina spp. abundance maps have been constructed in some countries at very small scales;

commonly 1:1,000,000. For example, during the period 1979–1980, Cote d’Ivoire with the sup-

port of the Food and Agriculture Organization of the United Nations (FAO) and German

Technical Cooperation Agency (GTZ) collected Glossina spp. from sampled points and pro-

duced sub-national Glossina spp. abundance maps [14]. These have been a resource to the

entomology sector in the country. Similar studies leading to mapping of Glossina spp. distribu-

tion and abundance have been conducted in East Africa [21], Togo [14], Zimbabwe [14],

Kenya / Tanzania [14], Ghana [11] and Kenya [22].There are no records signifying any previ-

ous mapping leading to the production of National level Glossina spp. abundance maps in

Uganda. At sub-national level efforts have been made to produce abundance maps for north-

ern Uganda [23]. The current national Glossina spp. data available for Uganda [8,24] are

explicitly on presence / absence predictions rather than abundanc.

Methods

Study area

Uganda is located along the Equator, positioned nearly at the centre of Africa, and is land-

locked by DRC, Kenya, Rwanda, South Sudan and Tanzania. Although much of Uganda is a

plateau, its altitude varies between 615 m to 5111 m above sea level. The country has a wide

variety of tropical vegetation, abundant seasonal rainfall and plenty of water stored in lakes,

rivers and swamps. Over 70% of the country is estimated to be tsetse infested [8]. Due to the

widespread presence of tsetse flies, over 11 million people and 10million cattle in the country

are at risk of contracting trypanosomiasis.

The livestock sector contributes 17% of the agricultural gross domestic product. As such,

3.8 million households (58% of the entire 40 million national population) draw their direct

livelihoods from the livestock sector [23]. The majority of the population lives in rural areas

and, thus, most people earn their living through direct interaction with the natural environ-

ment (farming, fishing, forestry, mining, hunting etcetera). It should be observed that while

close to 80% of the country is arable, the majority of farming is subsistence agriculture, highly

dependent on natural rainfall and use of traditional farming technologies. The burden of

tsetse-transmitted trypanosomiasis affects the livelihoods of many rural communities in the

country both directly and indirectly [25,26].

Historically, most tsetse fly control operations were initiated and implemented by the cen-

tral government. Key operations included; bush clearing, game elimination through hunting,

game eviction, cattle evacuation, maintenance of tsetse pickets, application of insecticide on

cattle, and ground spraying using Dieldrin-3% [27,28]. These interventions were geared

towards removal of the tsetse habitat or direct killing of the tsetse flies themselves. While these

interventions had a significant impact on creation of tsetse free zones at the time, the

approaches, especially those involving bush clearance and game elimination, caused environ-

mental degradation [27,29–33]. Hence, they have since been discontinued due to environmen-

tal concerns. Recently, most successful tsetse interventions have been carried out under

‘project conditions with substantial funding. Unfortunately, sustaining achievements in most

cases has been a great challenge since projects are usually short-lived [18]. The response has

been to promote community-based interventions involving animal spraying by farmers them-

selves and tsetse trap deployment by community members [34,35]

Tsetse fly count data

Comprehensive national tsetse count data are difficult to obtain and, in many cases, not avail-

able. The data used in this paper were obtained from different sources grounded on a
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structured protocol. The Coordinating Office for Control of Trypanosomiasis in Uganda

(COCTU) and Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) database was

the main source of data. Such data are usually obtained from district entomologists who con-

duct routine entomological surveillance and those that carry out baseline surveys before any

well-planned tsetse control intervention is implemented. Secondly, we also used data collected

through tsetse projects implemented by the central government at sub-national level. Thirdly,

we used data generated by individuals or groups of researchers under research engagements.

Note that some parts of the country have detailed tsetse data while in other areas data are

sparse (Fig 1). We also observed and took advantage of the information on tsetse presence and

abundance available in literature. This process involved a review and synthesis of several rele-

vant tsetse and trypanosomiasis publications with tsetse survey work undertaken in Uganda

between the years 2008 and 2018. Where this occurred, relevant data were extracted for use as

part of candidate data for the model. This data assembly methodology was adopted from Cec-

chi et al [36] and the precise data abstraction protocol used is included as additional informa-

tion (S1 Protocol of data abstraction).

A challenge with the candidate data is the need to integrate data collected by different

groups or individuals, in different years and at different locations. To deal with this challenge,

data harmonisation for the purposes of responsiveness and matching was carried out. This

involved clustering data based on seasonality (dry and wet).

Fully aware that seasonal variation influences tsetse activity and survival, our focus was on

dry season tsetse data which constituted the candidate data for measurement of tsetse abun-

dance. Wet season data were less responsive during the exploratory stage. The species in focus

was the Glossina fuscipes fuscipes (G. f. fuscipes), which is the dominant tsetse species in

Uganda.

The major tool for tsetse capture was registered as pyramidal trap in many instances and

biconical trap in others. The methods used for tsetse data collection were recorded, for exam-

ple, with respect to standard operating procedures e.g., a total tsetse fly catch over 72 hours

duration of each trap was almost universal for the majority of the data considered [31,32,37–

39]. The model made use of tsetse catch totals for each trap site for the three days (72hrs).

Remotely sensed variables

The covariates considered in this study include; temperature, normalised difference vegetation

index (NDVI), elevation, precipitation and land cover. Land cover layer (Fig 2) is from the

Africover (global land cover) and associated variables were generated from a full spatial resolu-

tion, multipurpose land cover database, produced from visual interpretation of digitally

enhanced LANDSAT-Thematic Mapper (TM) images [40]. Due to spatial resolution of the

land cover data used, a buffer distance of 1 Km was found appropriate and applied to each of

the trap-sites to allow computation of the required parameters for use in the model. For each

individual buffer (3.14Km2), respective areas for the various land cover types were computed

in square kilometres and subsequently converted into percentages. Only ecologically influen-

tial land cover classes linked to tsetse existence [41–43] were considered. These were; natural

forest, savannah vegetation, woodland, and shrub land.

Normalised difference vegetation index (NDVI) (Fig 3) is a measure of vegetation cover or

biomass production from multispectral satellite sensor imagery, derived from the National

Oceanic and Atmospheric Administration (NOAA) satellites Global Inventory Monitoring

and Modelling Studies group (GIMMS) data. Raster values of NDVI for vegetated land gener-

ally range from about 0.1 to 0.9, with values greater than 0.5 indicating dense vegetation

(USGS FEWS NET Data Portal). All data are provided in GeoTIFF format with embedded
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Fig 1. Location of areas (points) with tsetse data in Uganda as applied in the model. Base map showing country boundaries of Uganda constructed using GIS shapefiles

was obtained from the public domain https://data2.unhcr.org/en/documents/details/83043. This map has been processed and visualization enabled using ArcGIS 9.1 as the

GIS software.

https://doi.org/10.1371/journal.pntd.0009820.g001
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colour tables. Coordinate System Description: Geographic; Units: DD (decimal degrees),

Spheroid: WGS84.

The precipitation (Fig 4) and temperature (Fig 5) datasets used in the model were obtained

as interpolated raster data and processed at a fine spatial resolution of 30 arc-secs (~1 km).

Fig 2. Land cover and Elevation as predictor variables used in the model. This landcover map was processed using

ArGIS 9.1 based on open-source data obtained from https://data.apps.fao.org/map/catalog/srv/api/records/2a32ca87-

0504-4700-8005-7a8b93974b65. While the elevation map was processed using ArcGIS 9.1 based on data from https://

www.usgs.gov/core-science-systems/ngp/tnm-delivery/gis-data-download.

https://doi.org/10.1371/journal.pntd.0009820.g002

Fig 3. Normalised Difference Vegetation Index as predictor variable for the model. This NDVI map was processed

using ArcGIS 9.1 based on data from https://fews.net/

https://doi.org/10.1371/journal.pntd.0009820.g003
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The processed data were supplied by the WorldClim—Global Climate Data facility. These data

were for both dry and wet season for comparison purpose. Elevation data (Fig 2) were

obtained from the Shuttle Radar Topography Mission (SRTM). The SRTM is an international

project spearheaded by the National Geospatial-Intelligence Agency (NGA), National Aero-

nautics and Space Administration (NASA), the Italian Space Agency (ASI) and the German

Aerospace Centre (USGS, 2004). The elevation data were obtained and aggregated at a spatial

scale of 1 km within the study area. Summary data specifications are provided in Table 1.

Fig 4. Precipitation Index as predictor variable for the model. This precipitation map was processed using ArcGIS

9.1 based on data from https://www.worldclim.org/data/worldclim21.html.

https://doi.org/10.1371/journal.pntd.0009820.g004

Fig 5. Temperature Index as predictor variable for the model. This temperature map was processed using ArcGIS

9.1 based on data obtained from https://www.worldclim.org/data/worldclim21.html

https://doi.org/10.1371/journal.pntd.0009820.g005

PLOS NEGLECTED TROPICAL DISEASES Spatial analysis of G.f.fuscipes abundance in Uganda

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009820 December 6, 2021 8 / 24

https://www.worldclim.org/data/worldclim21.html
https://doi.org/10.1371/journal.pntd.0009820.g004
https://www.worldclim.org/data/worldclim21.html
https://doi.org/10.1371/journal.pntd.0009820.g005
https://doi.org/10.1371/journal.pntd.0009820


Statistical analysis

Two methods commonly considered for statistical analysis of count data were adopted. These

are Poisson regression and Zero-Inflated Poisson regression [44]. The choice of method was

dictated by the data characteristics. The abundance variable is essentially a count variable and,

in this case, contained many zeros and clear outliers accounting for apparent overdispersion

(Fig 6). Thus, two regression models were fitted (i.e the standard Poisson regression and Zero-

Table 1. Predictor variables used in the analyses of tsetse fly abundance including their observed maximum and minimum values in the training dataset.

Code Name Max value Min value

Meteorological data surrogates Precipitation(mm)
Monthly average–January 2018-dry season 137 6

Monthly average–May 2018 –wet season 339 65

Temperature (0C)
Temperature-Monthly average–January 2018 28.5 4.9

Temperature-Monthly average–May 2018 28.2 4.6

Vegetation surrogates Normalised difference vegetation index (NDVI) Raster values
NDVI-1- January 2018 dry season 188 94

NDVI-2 –May 2018 wet season 190 92

Altitude Elevation (m) 4427 615

Land cover Land cover (09 Classes) n/a

Game Parks Game parks distribution layer

Tsetse dry season data Apparent trap catch 576 0

�The final model makes use of dry season environmental and climatic variables. These are the variables that influence and determine tsetse abundance.

https://doi.org/10.1371/journal.pntd.0009820.t001

Fig 6. Frequency histogram showing number of tsetse flies at all locations in Uganda–a case of zero-inflation and

over-dispersion. This is an output of the tsetse data exploration performed using R-tool.

https://doi.org/10.1371/journal.pntd.0009820.g006
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Inflated Poisson regression). The study made use of ‘weights by inverse distance’ as the dis-

tance–weighting scheme in the final mapping within the ArcGIS facility.

Exploratory analysis was undertaken to guide model selection. It involved the construction

of; (i) scatterplots (to test for collinearity), (ii) boxplots / dot-plots (to identify outliers), (iii)

correlation matrix (to test for multicollinearity) and (iv) histograms / QQ-plots (to test for nor-

mality) within the datasets [45,46].

Fitness of the Poisson and Zero-Inflated Poisson regression models was assessed through;

(i) computation and examination of the deviance as an approximate goodness-of-fit test, (ii)

comparison of residual deviance with the χ2 distribution, (iii) examination of the Akaike infor-

mation criterion (AIC) score and (iv) generating residual plots. The standardised deviance

residuals were approximately normally distributed with equal variance if the model assump-

tions were satisfied [18,45–47]. Further, the correlation between observed and predicted values

was computed. Model outputs were evaluated against each other to confirm if the ZIP model

outperformed the standard Poisson regression in tsetse abundance estimation. This was done

by performing a Vuong test of the two models [48]. Spatial prediction of tsetse abundance in

the country was carried out using the final multivariate Zero-Inflated Poisson model

parameters.

Model specifications

The Poisson regression model expresses the log of the observed count as a linear function of a

set of predictors, such that; loge (Y) = β0 + β1Χ1 + β2Χ2 + εχ0 and Y = (eβ0) (eβ1
Χ

1) (eβ2
Χ

2) etc
[44,46,49,50]. Consider Y = Tsetse fly number (variable to be predicted by the model), β0 =

intercept / estimated constant (also taken as ln(n)), βi = computed coefficients for each explan-

atory variable and Χi = explanatory variable (model can be extended to include multiple

predictors).

The dependent variable is a count of the occurrences of interest; in this case the tsetse fly

numbers identified in a geographical location. This method enables one to estimate an Inci-

dence Risk Ratio (IRR) associated with a given predictor or exposure [46]. This ratio is impor-

tant as it informs of incremental changes in the outcome variable (tsetse abundance) due to

variations in predictor variables or covariates. To determine the appropriateness of Poisson

regression, a histogram for tsetse count (Fig 6) was constructed and the mean, variance, stan-

dard deviation and deviance computed. The shape of the outcome histogram guides on the rel-

evance of applying the Poisson regression on the dataset.

The second stage of data analysis was based on the Zero-Inflated Poisson regression. This

regression is considered as a generalization of Poisson regression as it has the same mean

structure as Poisson regression but with an extra parameter to account for the over-dispersion.

It is a modification of the standard Poisson regression model to allow for an over-abundance

of zero counts in the data [44,46]. Failure to address the over-dispersion condition usually

leads to underestimation of standard errors causing incorrect assessment of the significance of

individual regression parameters. The essential idea is that the data come from two regimes. In

one regime (RI) the outcome is always a zero count, while in the other regime (RII) the counts

follow a standard Poisson process [46].

Preliminary visualisation of the point-based tsetse survey data and extraction of covariate

values needed for analysis was enabled through the use of the ArcMap10 GIS software. Explor-

atory analysis, that is, univariate and multivariate analyses, were performed using the R statisti-

cal software–Zanzibar version (R Development Core Team 2019). In this study, the two

approaches were assessed statistically and the best fitting model used in the final prediction of

tsetse fly abundance for the study area.

PLOS NEGLECTED TROPICAL DISEASES Spatial analysis of G.f.fuscipes abundance in Uganda

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009820 December 6, 2021 10 / 24

https://doi.org/10.1371/journal.pntd.0009820


Univariate parameter estimation for Poisson regression

For both regression models, all covariates were assessed individually against the tsetse count

data for responsiveness. As a set condition, all covariates with a p-value greater than 0.05 were

excluded from further analysis. Significant variables in the univariate analysis were further

subjected to cluster correlation and a correlation matrix generated to detect any aspects of

multi-collinearity. Where this occurred, it was decided to remove the least significant covari-

ates from further analysis.

Multivariate parameter estimation for Poisson regression

Significant predictors delivered from the univariate analysis stage (p<0.05) were combined in

a multivariate regression analysis to find the best fitting model in each case. A forward-step-

wise approach was applied to enable exclusion of next level non-responsive variables from the

model, resulting in a final multivariate regression model. Covariates were added starting with

the most significant; cumulatively one after the other. Each covariate had to maintain its statis-

tical significance (p-value< 0.05) to be retained. Estimated model coefficients were compared

with those obtained at the univariate analysis stage to ascertain the consistency of final covari-

ates in influencing the outcome variable. To check for spatial autocorrelation in the residuals

from the final model, a residual variogram [46,51] was constructed. The process enabled com-

putation of the coefficients, Incidence Risk Ratio (IRR), standard errors, probability values and

the confidence interval for the standard Poisson regression model [46].

Multivariate parameter estimation for Zero-Inflated Poisson (ZIP)

regression

A ZIP model was fitted based on the final standard multivariate Poisson regression model out-

comes. The ZIP model has two parts, a Poisson count model and the (Zero) logit model for

predicting excess zeros [46,48] This is intended to account for the excess zeros with the under-

standing that these are generated by a separate process from the count values and that the

excess zeros can be modelled independently. Similarly, the process enabled computation of the

coefficients, Odds Ratio (OR), standard errors, probability values and the confidence interval

for the Zero-Inflated Poisson model. Finally, the two models were compared against each

other using the Vuong test-statistic which is asymptotically distributed as ~N(0,1) under the

null hypothesis that the models are indistinguishable [46,48]

Results

During exploratory analysis, several plots and charts were generated. An example of two plots

is given in Figs 7 and 8, which enable visualisation of the tsetse data in relation to elevation and

temperature using box-plots and dot-charts, respectively [3,17]. These plots reveal the exis-

tence of outliers in the candidate data.

Table 2 lists the estimated predictor variable coefficients with their associated statistics for

the multivariate Poisson analysis. All covariates were found to be significantly associated with

the exploratory variable at p<0.05 [45,46]. Association for six of these studied covariates were

positively significant (IRR>1) and the rest were negative. Significance of the association of

Woodland, Elevation and Temperature were negative (IRR<1). The results from the standard

Poisson model indicate that tsetse abundance is largest at low elevations, in areas of high vege-

tative activity, in game parks, in forests and in permanently flooded shrubs.

In one regime (RI) the outcome is always a zero-count, while in the other regime (RII) the

counts follow a standard Poisson process. Under Regime (RII), game parks with statistics of
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p = 0.489, IRR = 2.365 and a coefficient of 0.011 appear to be insignificantly associated with

tsetse abundance. The rest of the predictors are strongly associated with tsetse abundance

(p<0.01) with different magnitudes. Table 3 illustrates the superior fit of the ZIP model over

the Poisson model. The test statistic is significant, indicating that the zero-inflated model is

superior to the standard Poisson model.

The ZIP statistics indicate that natural forests, woodlands, NDVI, Rainfall and game parks

positively influence tsetse abundance. Under regime RI, savannah vegetation and shrubs on

flooded land loose their significance as p-value is greater than 0.05 (Table 3). Temperature and

elevation inversely impact on tsetse abundance (OR<1). This analysis shows that the major

drivers of tsetse abundance across Uganda are natural forests, woodlands, NDVI, Rainfall and

game parks. From the data used, monthly rainfall amounts varied between 6 mm and 339 mm

for the different parts of the study area. The low rainfall in the dry season had a marked, signif-

icant association with tsetse abundance in the univariate analysis. Actually, both Temperature

and Rainfall had no effect on tsetse abundance during the wet season. But again rainfall

became key and significant in the meaningful measurement of tsetse abundance based on the

dry season data.

Fig 7. Exploratory analysis of elevation. In terms of altitude, the boxplot shows that the majority of tsetse points were

recorded within 1100 and 1500m above sea level. One point lies above 4000m and that is a typical outlier. These points

do not show the same relationships as the bulk of the data. Therefore, it was decided to eliminate such extreme outliers

in all cases.

https://doi.org/10.1371/journal.pntd.0009820.g007
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The empirical variogram of the Pearson’s residuals [45,46] in the Poisson regression model

in Fig 9 indicates the presence of non-explained spatial variation in the residuals. This shows

that the model residuals are not independent and thus invalidates the model in a formal sense.

Residual spatial autocorrelation from the ZIP regression model is much less evident (Fig

10). This provides confidence that the ZIP model has, to some extent, accounted for the spa-

tially correlated variation in tsetse count data.

Fig 11 shows the predicted tsetse abundance based on the final ZIP regression model. The

model identifies areas of scaled tsetse abundance with estimated apparent fly densities ranging

from 0 to 58 tsetse flies. The predicted abundance map reveals some isolated areas which are

thought to be tsetse free zones to return high apparent tsetse densities and vice versa. Higher

predicted abundances of G.f. fuscipes tsetse flies were observed in areas around all game

Fig 8. Exploratory analysis of temperature. In terms of temperature, the dot-chart shows that the majority of points

lie between 23˚C and 26˚C with a few outliers at 6˚C. Therefore, it was decided to eliminate such extreme outliers in all

temperature figures or cases.

https://doi.org/10.1371/journal.pntd.0009820.g008
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Table 2. Multivariate Poisson regression coefficients and their p-values, IRR and confidence intervals.

Predictor variable Est.Coefficient P_Value IRR 95%CI

Intercept 14.5539 P<0.01 2.092720e+06 1.5e+06–2.9e+06

Natural Forest�� 0.1509 P<0.01 1.1629 1.1174–1.2103

Savannah�� -0.0867 P<0.01 3.3730 3.3439–3.4023

Shrubs on flooded land�� 0.2721 P<0.01 1.3128 1.3038–1.3218

Woodland�� -5.0189 P<0.01 0.3291 0.2992–0.3618

Elevation -2.1852 P<0.01 0.4136 0.3894–0.4394

NDVI� 0.6219 P<0.01 1.8625 1.7708–1.9591

Rainfall -0.1933 P<0.01 3.0320 3.0182–3.0460

Temperature -3.2549 P<0.01 0.5221 0.4724–0.5770

Game Parks -0.3151 P<0.01 2.6842 2.6025–2.7683

�NDVI: Normalised Difference Vegetation Index

��The parameters used against each landcover variable were entirely computed as a percentage of composition in the 1km buffer drawn at each trap site.

https://doi.org/10.1371/journal.pntd.0009820.t002

Table 3. Zero-Inflated Poisson regression results for estimation of tsetse abundance based on climatic and environmental factors. Below are two blocks (regimes);

one is a block of output containing Poisson regression coefficients for each of the variables along with p-values, incident risk ratios and confidence intervals for the coeffi-

cients. The second block includes logit coefficients for predicting excess zeros along with their Odds Ratios (OR), confidence intervals and p-values.

Predictor variable (1) EST.Coefficient P_Value IRR 95%CI

Natural Forest 0.404 P<0.01��� 1.499 1.437–1.563

Savannah - 0.044 P<0.01��� 3.519 3.486–3.551

Shrubs on flooded land 0.327 P<0.01��� 1.387 1.377–1.397

Woodland - 3.267 P<0.01��� 0.516 0.470–0.566

Elevation - 2.749 P<0.01��� 0.866 0.815–0.919

NDVI 1.002 P<0.01��� 2.723 2.584–2.870

Rainfall - 0.277 P<0.01��� 2.790 2.776–2.803

Temperature - 5.204 P<0.01��� 0.273 0.246–0.304

Game Parks 0.011 0.489 2.365 3.605–1.043

Predictor variable (2) Est.Coefficient P_Value OR 95%CI

Intercept 12.1380 0.0023 �� 1.86e+05 7.57e+01–4.60e+08

Natural Forest 0.77174 0.0500� 2.1635 3.6727–4.6886

Savannah -0.00973 0.9080 3.6431 1.1681–3.0885

Shrubs on flooded land 0.06263 0.5141 1.0646 1.2850–3.2448

Woodland 3.79927 1.65e-08 ��� 12.1422 3.2467–12.3435

Elevation -1.71091 0.0144 � 0.6647 0.6208–2.6186

NDVI 1.28711 0.0393 � 3.6223 1.0647–3.3496

Rainfall -0.32996 7.38e-08 ��� 2.6448 2.3454–2.9825

Temperature -5.44601 3.43e-06 ��� 0.2147 0.0792–0.5816

Game Parks 0.86096 0.0097 �� 2.3654 1.2313–4.5439

(1) Regime (RII): Count model coefficients (Poisson with log link)
(2) Regime (RI): Zero-inflation model coefficients (binomial with logit link)
� p-value <0.05

�� p-value <0.01

��� p-value<0.001

https://doi.org/10.1371/journal.pntd.0009820.t003
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reserves (Kidepo, Murchison, and Queen Elizabeth), all the Lake Victoria shores including its

islands, parts of Lake Kioga and Lake Albert shores.

This output illustrates the tsetse extent as categorised into low, medium and high with par-

ticular reference to tsetse constrained and non-constrained populations

Discussion

To predict abundance of G. f. fuscipes across Uganda, a total of nine predictor variables were

investigated in two models, standard Poisson, and ZIP. The standard Poisson model indicated

that all nine predictors were associated with tsetse abundance. The ZIP model demonstrated

that only six predictors (i.e. rainfall, temperature, game parks, NDVI, elevation and woodland)

strongly influenced tsetse abundance. Natural forests and shrubs on flooded land were both

not associated with the response variable. Savannah vegetation returned a statistically insignifi-

cant association. Specifically, only six predictors highly and positively influenced tsetse abun-

dance. Two covariates showed a negative influence on tsetse abundance. These were;

temperature and elevation.

Fig 9. Residual variogram of the Pearson residuals based on the Poisson regression model (reveals the existence of

spatial autocorrelation within the residuals). This residual variogram is an output of model fitting using R-tool

under ordinary Poisson regression.

https://doi.org/10.1371/journal.pntd.0009820.g009
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G. f. fuscipes abundance was positively correlated with the presence of shrubs along the

flooded land. This class of land cover consists of shrub vegetation on permanently or tempo-

rarily flooded land (crown cover between 15 and 100%); the height is in the range of 0.3–5 m.

This class occupies more than 4% of the total surface of Uganda (10,000 km2) [41,42,52–54].

The humid environment and the shading provided by the shrub vegetation can provide a suit-

able habitat for many tsetse species. This is supported by the model results. The model identi-

fies this land cover class as being influential and it indicates that tsetse abundance increases

proportionate (OR = 1.065) to the increase in percentage of shrubs existing on flooded land.

The near permanent interaction between shrub vegetation and water provides ideal survival

conditions for G. f. fuscipes.
Elevation influences the micro-climatic conditions of an area. The entire study area has sig-

nificant height variation (615 to 4427 m above sea level) and the ZIP model illustrates an altitu-

dinal control on tsetse abundance within the study area (p = 0.0144, OR = 0.6647). Altitudinal

control is illustrated by an odds ratio (OR) below one. Tsetse abundance is perceived to

increase with declining altitude at a rate of 0.66. Areas at significantly high altitudes (above

3000 m asl) have their tsetse abundance rated as zero or at least closest to zero. Such areas are

clearly observed in Kigezi highlands, Rwenzori and Elgon mountains (Fig 12) among others.

The model illustrates that tsetse abundance increases steadily as altitude decreases. Similarly,

areas below 1000 m asl do not favour tsetse existence and are, thus, marked with low tsetse

abundance by the model. Altitude influences surface temperature and rainfall. Lowlands have

drier environmental conditions with low humidity while highlands are cooler with high

humidity: both extremes constrain the life of the tsetse fly [19,55].

Fig 10. Residual variogram of the Pearson residuals based on the ZIP regression model (largely reveals the spatial

independence of the residuals). This Residual variogram is an output from model fitting using R-tool under Zero-

inflated Poisson regression

https://doi.org/10.1371/journal.pntd.0009820.g010

PLOS NEGLECTED TROPICAL DISEASES Spatial analysis of G.f.fuscipes abundance in Uganda

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009820 December 6, 2021 16 / 24

https://doi.org/10.1371/journal.pntd.0009820.g010
https://doi.org/10.1371/journal.pntd.0009820


Tsetse flies thrive in areas with mean annual temperatures of 19–30˚C [17,19]. Tempera-

tures below 19˚C slow down tsetse activity and general physiology [19], while extreme temper-

atures increase fly mortality [19,55,56]. Tsetse are severely affected by high temperature

conditions and once exposed to a temperature of more than 36˚C, tsetse will have a survival

capacity of close to zero [19,33]. According to the data used, the lowest temperature was regis-

tered as 6˚C, the mean temperature was 24˚C and the maximum temperature recorded was

28.5˚C for the study area. Temperature variation was by about 23˚C at most across the region.

The model illustrates the nature of the association between dry season temperature and tsetse

abundance. That is, tsetse infestation increases with a comparable decline in temperature

Fig 11. Predicted tsetse fly (Gff) abundance using the ZIP model. This tsetse prediction map is an output of the

Zero-inflated Poisson regression model using R-tool and ArcGIS 9.1. Base map showing country boundaries of

Uganda processed from GIS shapefiles obtained from the public domains https://data2.unhcr.org/en/documents/

details/83043.

https://doi.org/10.1371/journal.pntd.0009820.g011
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(p<0.001, OR = 0.2147) during the dry season. These temperature extents have specific conse-

quences on fly abundance in the study area as they do affect tsetse fly activity, general physiol-

ogy and survival.

Surrogates of vegetation and meteorological data have been correlated with vector abun-

dance and even vector mortality [14,57]. In the majority of previous tsetse distribution and

abundance models, temperature emerges as the most important predictor followed by NDVI

and then precipitation [14]. These findings are supported by this study. NDVI captured in the

dry season has a positive correlation with tsetse abundance (p = 0.0393, OR = 3.622, 95%

CI = 1.0647 to 3.3496). The model statistics indicate that tsetse abundance increases propor-

tionate to increases in NDVI levels (green vegetative cover) in the dry season. Thus, during the

Fig 12. Predicted tsetse fly (Gff) abundance using the ZIP model categorized in three classes. Base map showing

country boundaries of Uganda processed from GIS shapefiles obtained from the public domains https://data2.unhcr.

org/en/documents/details/83043.

https://doi.org/10.1371/journal.pntd.0009820.g012
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dry season, high abundance is expected in areas where there is substantial vegetation cover

and vice versa.

The model identifies areas with high rainfall and matches them with high tsetse abundance.

The rate of incremental change in abundance is 2.6448 per degree as illustrated by the corre-

sponding odds ratio. During the dry season, rainfall is greatly limited and any chance of heavy

rains will influence environmental conditions (humidity, temperature, air circulation etc.) pos-

itively for the tsetse fly. Therefore, most tsetse flies will be traced within or very close to areas

receiving most rainfall with fewer flies or no flies at all in areas with the least rainfall in the dry

season.

Woodland is a class of land cover characterised by open trees with crown cover of between

10 and 70% and height ranging between 3 to 30 m or more. The vegetation is spread over the

occupied area without intervals or breaks. In Uganda, this class of land cover occupies close to

4000 km2 (i.e 6% of the total surface of the country). Woodlands are typical habitats of tsetse

flies [41,42,53,58]. Woodlands are favourite habitats for all the three major groups of tsetse (i.e

morsitans, palpalis and fusca groups). This fact is validated by the ZIP model (Table 4) as it

conveys this implicit suitability. The model illustrates the strongest association of woodland

with tsetse abundance (p<0.001, OR = 12.1422, 95%CI = 3.2467 to 12.3435) among all predic-

tors. The model shows that tsetse abundance increases considerably with increasing propor-

tion of woodland as a land cover.

In Uganda, game park s occupy close to 40% of the land mass. This class of predictor over-

laps with some of the already listed predictors. It contains national game parks, game reserves

and gazetted hunting areas. The advantage with this predictor is that it carries with it essential

natural attributes as a tsetse predictor [58]. It has wild game and natural environmental set-

tings. These zones have also benefited from zero (or limited) human interference. It is gener-

ally acknowledged that game parks are heavily tsetse-infested in Uganda. Equally, the model

identifies a strong positive association between game parks and tsetse abundance and hence-

forth categorises it as a key predictor. The model statistics (p = 0.0097, OR = 2.3654, 95%

CI = 1.2313 to 4.5439) indicate that tsetse abundance increases with game park presence. Our

results designate the gradual reduction in tsetse apparent densities away from the game parks

due to declining intensity of savannah vegetation. Similar responses particularly for G. morsi-
tans have been reported in Tanzania and Malawi [58].

Tsetse abundance increased with the presence of a significant interaction between natural

forest cover and water environments. Tsetse, especially G.f.fuscipes, thrives in environmental

conditions where the vegetation is not too dense such as to enable them fly easily and to be

able to spot the feeding host readily in some situations [8]. Above all, G.f.fuscipes is ecologically

considered as a riverine species commonly found in zones of high humidity offered by the

interaction between forest vegetation and water bodies [14,41,42,49,53]. Thus, this finding

supports existing entomological understanding of the G.f.fuscipes vector. However, the low

spatial resolution of the land cover layer which served as the source of the forest cover was

unable to allow detection of very small rivers and water features associated with forest cover.

This consequently affected the model results for forest influence as very fine spatial resolution

Table 4. Vuong Non-Nested Hypothesis Test-Statistic: comparison of ZIP model against the standard Poisson

model. This Test-statistic is asymptotically distributed N(0,1) under the null that the models are indistinguishable.

Vuong z-statistic H_A P-value

Raw -15.21836 model2 (ZIP) > model1(Poisson) < 2.22e-16 ���

AIC-corrected -15.21325 model2 (ZIP) > model1(Poisson) < 2.22e-16 ���

BIC-corrected -15.20016 model2 (ZIP) > model1(Poisson) < 2.22e-16 ���

https://doi.org/10.1371/journal.pntd.0009820.t004
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effects could not be realised. Despite this, the model illustrates that tsetse abundance increases

with an increase in the proportion of natural forest cover (p = 0.0504, OR = 2.1635, 95%CI =

3.6727 to 4.6886). The model also picks up the riverine and lakeshore forest vegetation leading to

predicted high tsetse abundance along river systems and the lakeshores of Victoria and Kyoga.

Many traditionally known tsetse habitats have been opened up for agricultural expansion,

settlement and public infrastructure. Considering agricultural practices in particular, most

areas consist of permanently cropped, rain-fed small fields with one additional herbaceous

crop growing in sequence in the same field within one growing season and sparse tree crops.

Although this is typically a humanised ecological landscape, intercropping usually done with

sparse trees provides suitable niches for the tsetse [8,19]. We believe that tsetse is adapting to

humanised landscapes for survival and existence. Cases of species retreating or spreading into

new territories appear to be a public discovery [14,22,58]. This may explain why the model

identifies some unique sections of the country as being tsetse infested although at a low scale.

This outcome is important for tsetse survey and control efforts.

The strength and reliability of the assembled vector data is anchored on the properly well-

suited data sourcing protocol applied. Seasonal data matching across different years was

undertaken leading to the creation of wet and dry season tsetse data. This data collation

approach had some weaknesses but enabled us to demonstrate the strength of the modeling

tool in predicting tsetse abundance. This model can be of great value and highly reliable if

accurate field based entomological data and high precision predictor variables are applied.

Conclusion

The purpose of this research was to develop a predictive model that can reliably inform deci-

sion-makers about the tsetse abundance in Uganda, based on limited entomological survey

data and a set of environmental covariates represented by vegetation and meteorological data

surrogates. The study was intended to contribute to solving the data scarcity problem by pro-

viding reliable national tsetse data (maps) to guide control interventions. The need for infor-

mation on the prevailing spatial patterns of tsetse fly abundance, especially in inaccessible

habitats, at national and sub-national levels, with very limited resources continues to call for

this kind of approach to vector mapping. It is worth observing that habitat modification by

humans in the form of agricultural expansion, industrialisation, urbanisation and infrastruc-

ture development will all greatly impact and shape future tsetse fly presence and abundance in

Uganda and sub-Saharan Africa in general.

There are no tsetse abundance maps for Uganda. Thus, it was not possible to compare the

study results in terms of both similarities and differences with existing maps. However, under

such circumstances, an attempt was made to compare the results with the available tsetse pres-

ence–absence maps by Wint [21], Albert [8] and by Ford & Katondo [12,59–61] for the pur-

pose of identifying spatial consistency and identifying any unfamiliar or possibly new tsetse

vector niches. The investigation indicated broadly comparable findings and representations,

with limited species recession.

The final model revealed, with high certainty, the role of woodland vegetation, altitude, dry

season temperature, dry season rainfall, dry season NDVI and game parks in shaping the tsetse

abundance within Uganda. From these results, national parks will remain a source of tsetse re-

infestation if no vector control is undertaken in the parks. It is also true that vector abundance

will continue to be influenced by ecological factors at a finer scale, like host availability and

proximity to transient or small bodies of water that were not considered in this model. These

findings are expected to offer avenues for making better, spatially targeted tsetse control inter-

ventions by individuals, communities, local and central governments.
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