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Abstract: The AP2/ERF transcription factors are widely involved in the regulation of plant growth,
development and stress responses. Arabidopsis ERF012 is differentially responsive to various stresses;
however, its potential regulatory role remains elusive. Here, we show that ERF012 is predominantly
expressed in the vascular bundles, lateral root primordium and vein branch points. ERF012 overex-
pression inhibits root growth, whereas it promotes root hair development and leaf senescence. In
particular, ERF012 may downregulate its target genes AtC4H and At4CL1, key players in phenyl-
propanoid metabolism and cell wall formation, to hinder auxin accumulation and thereby impacting
root growth and leaf senescence. Consistent with this, exogenous IAA application effectively re-
lieves the effect of ERF012 overexpression on root growth and leaf senescence. Meanwhile, ERF012
presumably activates ethylene biosynthesis to promote root hair development, considering that the
ERF012-mediated root hair development can be suppressed by the ethylene biosynthetic inhibitor. In
addition, ERF012 overexpression displays positive and negative effects on low- and high-temperature
responses, respectively, while conferring plant resistance to drought, salinity and heavy metal stresses.
Taken together, this study provides a comprehensive evaluation of the functional versatility of ERF012
in plant growth, development and abiotic stress responses.

Keywords: ERF012; plant growth and development; phytohormones; abiotic stress response

1. Introduction

Transcription factors (TFs), which are central to gene expression regulation, play
critical roles in regulating major developmental processes in the plant life cycle, including
seed germination, seedling growth, tissue morphogenesis, reproduction and senescence.
Meanwhile, accumulating evidence implicates the importance of various TFs, such as
NAC (no apical meristem (nam), arabidopsis transcription activation factor (ataf) and cup-
shaped cotyledon (cuc)), WRKY, MYB, bHLH (basic helix–loop–helix), bZIP (basic-region
leucine zipper) and ERF (ethylene-responsive element binding), in mediating plant growth,
development and responses to environmental stresses [1]. For example, the MYC2 TF,
a master regulator of the JA signaling pathway, is essentially involved in plant growth,
development and defense responses to biotic and abiotic stresses [2–4].

The APETALA2/ethylene-responsive factor (AP2/ERF) superfamily widely exists
in the plant kingdom, consisting of AP2 (APETALA2), DREB (dehydration-responsive
element binding), ERF, RAV (related to ABI3/VP) and Soloist (few unclassified factors)
subfamilies [5–8] based on the number of AP2-conserved domains. In recent years, the roles
of ERF TFs in plant growth, development and stress adaptability have become increasingly
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prominent including, but not limited to, somatic embryogenesis [9], plant root growth [10],
internode and shoot elongation [11,12], fruit ripening [13,14], secondary metabolism [15,16],
submergence or hypoxia stress [11], heavy metal stress [17], drought stress [10,18,19], high
salinity [15,20] and cold stress [16]. For instance, OsERF3 was identified as an important
player in cytokinin signaling-mediated crown root development in rice [21]. OsERF3
induces a cytokinin type-A response regulator (RR) gene, RR2, to regulate crown root
initiation, whereas it represses RR2 expression during crown root elongation through
interacting with WOX11, a key regulator in crown root development. In Arabidopsis,
the AP2/ERF superfamily has 147 members, of which the ERF subfamily accounts for
122 genes [6]. As a model plant, studies of AP2/ERF TFs in Arabidopsis provide the greatest
amount of basic knowledge for understanding the implication of AP2/ERF TFs in plant life.
A good example is the dose-dependent regulation of Arabidopsis root development mediated
by PLETHORA (PLT) proteins (AP2 TFs) [22]. A clade of four PLT homologs creates a
protein gradient distribution along the root apical meristem (RAM) with maxima in the stem
cell niche (SCN). A high level is necessary for SCN maintenance and a low level is necessary
for cell differentiation [22]. The Arabidopsis AP2/ERF TF has been successfully applied in
crop engineering for developing sustainable agriculture. For instance, Arabidopsis HARDY
(HRD), encoding an AP2/ERF-like TF, confers drought and salt stress resistances in rice
and Trifolium alexandrinum L. (an important type of forage crop), due to the reduction of
transpiration and sodium uptake [23,24].

The Arabidopsis ERF012/DREB26 gene encodes a nuclear transcription factor and is
differently responsive to NaCl, freezing, heat and drought stresses, as well as to jasmonate
(JA) and salicylic acid (SA), whereas the biological function of ERF012 is poorly under-
stood [25]. Here, we performed a systematic analysis of the ERF012 expression profile and
evaluated its involvement in plant growth and development by establishing null mutants
and overexpressing plants. In addition, we investigated the potential roles of ERF012 in
plant resistance to drought, salinity or heavy metals stresses. Our findings highlight the
functional versatility of the ERF012 transcription factor in Arabidopsis growth, development
and abiotic stress responses.

2. Results
2.1. Tissue-Specific Expression of ERF012 in Arabidopsis

To understand the tissue-specific expression of ERF012, we performed qRT-PCR
analysis of ERFF012 transcription levels in Arabidopsis tissues. Strong expression levels were
detected in the root, leaves, stem and pod, whereas they were significantly reduced in the
bud and flower (Figure 1A). To obtain a high-resolution image of the ERF012 expression in
tissues, the pERF012:GUS (β-glucuronidase) transgenic lines were established (Figure 1B).
Based on the GUS staining, the tissue-specificity was detailed. The whole cotyledon
was stained, showing that true leaves possessed margin labeling and scattered spots
(Figure 1C,D). Interestingly, these spots were specifically localized on the vein branch
points. In the root, no GUS staining was observed in the primary and lateral root tip
(Figure 1H,I). However, the mature regions, especially the lateral emerged and emerging
cells that included the lateral root primordium and vascular cells, had elevated expression
(Figure 1E–G). These findings were contrary to a previous report [25] that only strong
GUS activity was observed in the cotyledon. We further performed a transactivation assay
of ERF012 in the Arabidopsis protoplast. Expression of GAL4-ERF012 activated GAL4-
LUC activity largely compared with the GAL4-BD control (Figure 1J), demonstrating
that ERF012 can regulate downstream gene transcription. These results indicate that the
ERF012 transcription factor may play an important role in the growth and development
of Arabidopsis.
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Figure 1. Tissue expression and transactivation assay of Arabidopsis ERF012. (A) Expression levels 
of ERF012 in different tissues. Thirty-five-day-old Arabidopsis was used for qRT-PCR analysis. Let-
ters indicate significant differences between different tissues: Duncan’s test (p < 0.05). (B–I) Ex-
pression pattern analysis of ERF012 in seedlings. Twelve-day-old seedling expressing 
pERF012:GUS was used. A close-up was indicated by a black frame in (C). Scale bar = 100 μm in 
(C–I). (J) Transactivation assay of ERF012 genes in protoplast. GAL4-ERF012 is the effector and 
GAL4-LUC is the reporter. GAL4-DB is the control. The values are means ± SD, n = 5. Asterisks in-
dicate significant differences between different treatments: Student’s t-test, *** p < 0.001. 
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ERF012-overexpressing (OE) transgenic lines were established (Figure 2E) by trans-
forming a 35S:ERF012 plasmid in Col-0. In parallel, the erf012 mutants were established 
using a gene-editing system (CRISPR-Cas9) (Figure 2F). Under normal conditions (1/2 
MS medium), Col-0 and erf102 mutant lines developed comparable primary root lengths 
and fresh weights, whereas the primary lengths and fresh weights of ERF012-OE plants 
were reduced by 58–68% and 50–70% compared to Col-0, respectively (Figure 2A–C). As 
shown in Figure 2A,D, ERF012-OE lines obviously had a lower lateral root number than 
Col-0 and erf012 mutants. We noticed that the root tips of ERF012-OE plants were signif-
icantly shorter than that of Col-0 plants, including the meristem zone (MZ) and elonga-
tion zone (EZ) (Figure 3A,B). Microscopic statistics showed that cell numbers, but not the 
cell lengths, of MZ and EZ in ERF012-OE roots were less than the Col-0 roots (Figure 
3C,D). These results suggest that ERF012 expression might downregulate cell division. 
To this end, we compared the cyclin-dependent protein kinase (CYCB1;1) activity in 
Col-0 and ERF012-OE backgrounds. CYCB1;1 functions as an effector of growth control 
at G2/M, thus indicating the cell division rate. We speculated that CYCB1;1 has higher 
activity in Col-0 than in ERF012-OE plants (Figure 3E). As expected, pCYCB1;1:GUS 
showed stronger expression and activity in the meristem zone of Col-0 than in that of 
ERF012-OE plants (Figure 3F). 

Figure 1. Tissue expression and transactivation assay of Arabidopsis ERF012. (A) Expression levels of
ERF012 in different tissues. Thirty-five-day-old Arabidopsis was used for qRT-PCR analysis. Letters
indicate significant differences between different tissues: Duncan’s test (p < 0.05). (B–I) Expression
pattern analysis of ERF012 in seedlings. Twelve-day-old seedling expressing pERF012:GUS was used.
A close-up was indicated by a black frame in (C). Scale bar = 100 µm in (C–I). (J) Transactivation
assay of ERF012 genes in protoplast. GAL4-ERF012 is the effector and GAL4-LUC is the reporter.
GAL4-DB is the control. The values are means ± SD, n = 5. Asterisks indicate significant differences
between different treatments: Student’s t-test, *** p < 0.001.

2.2. ERF012 Regulates Plant Growth and Development

To explore the effect of ERF012 on plant growth and development, the ERF012-
overexpressing (OE) transgenic lines were established (Figure 2E) by transforming a
35S:ERF012 plasmid in Col-0. In parallel, the erf012 mutants were established using
a gene-editing system (CRISPR-Cas9) (Figure 2F). Under normal conditions (1/2 MS
medium), Col-0 and erf102 mutant lines developed comparable primary root lengths and
fresh weights, whereas the primary lengths and fresh weights of ERF012-OE plants were
reduced by 58–68% and 50–70% compared to Col-0, respectively (Figure 2A–C). As shown
in Figure 2A,D, ERF012-OE lines obviously had a lower lateral root number than Col-0
and erf012 mutants. We noticed that the root tips of ERF012-OE plants were significantly
shorter than that of Col-0 plants, including the meristem zone (MZ) and elongation zone
(EZ) (Figure 3A,B). Microscopic statistics showed that cell numbers, but not the cell lengths,
of MZ and EZ in ERF012-OE roots were less than the Col-0 roots (Figure 3C,D). These
results suggest that ERF012 expression might downregulate cell division. To this end, we
compared the cyclin-dependent protein kinase (CYCB1;1) activity in Col-0 and ERF012-OE
backgrounds. CYCB1;1 functions as an effector of growth control at G2/M, thus indicating
the cell division rate. We speculated that CYCB1;1 has higher activity in Col-0 than in
ERF012-OE plants (Figure 3E). As expected, pCYCB1;1:GUS showed stronger expression
and activity in the meristem zone of Col-0 than in that of ERF012-OE plants (Figure 3F).
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Figure 2. ERF012 regulates plant growth and development. (A) Phenotypical comparison of Col-0, 
ERF012 overexpression in plants and erf012 mutants. Twelve-day-old seedlings grown on 1/2 MS 
solid medium were imaged, scale bar = 1 cm. (B–D) The primary root length, shoot fresh weight 
and the lateral root number were statistically measured in (A), n = 18 plants. (E) Validation of 
ERF012-OE plants by qRT-PCR analysis; n = 3 pools, with about 20 plant roots per pool. (F) Muta-
tion information of ERF012 in its exon sequence established by a CRISPR/Cas9 system. Letters in 
(B–E) indicate significant differences between different plants: Duncan’s test (p < 0.05). 

Figure 2. ERF012 regulates plant growth and development. (A) Phenotypical comparison of Col-0,
ERF012 overexpression in plants and erf012 mutants. Twelve-day-old seedlings grown on 1/2 MS
solid medium were imaged, scale bar = 1 cm. (B–D) The primary root length, shoot fresh weight and
the lateral root number were statistically measured in (A), n = 18 plants. (E) Validation of ERF012-OE
plants by qRT-PCR analysis; n = 3 pools, with about 20 plant roots per pool. (F) Mutation information
of ERF012 in its exon sequence established by a CRISPR/Cas9 system. Letters in (B–E) indicate
significant differences between different plants: Duncan’s test (p < 0.05).

2.3. ERF012 Downregulates Gene Expression of Cell Wall Formation and Phenylpropanoid
Metabolism Pathway

To interpret the growth alterations of ERF012-OE plants, we performed the interaction
gene analysis of ERF012 (https://bar.utoronto.ca/eplant/ accessed on 1 April 2022). Many
genes were predicted to be the targets of ERF012 (Supplementary Figure S1A). A part of cell
wall formation involves genes such as At1g27440, AT2G34710, AT3G18660, AT5G15630 and
AT5G17420 encoding the cell wall formation-related proteins [26]. In addition, the upstream
regulatory genes of cell wall formation, At2g30490 and At1g51680, which are involved in the
phenylpropanoid metabolism pathway, were listed in the target candidates. At2g30490 and
At1g51680 encode a cinnamate 4-hydroxylase (AtC4H) [27] and a 4-coumarate:coenzyme A
ligase (At4CL1) [28], respectively, and AtC4H1 directly functions upstream of At4CL1. All
predicted targets were downregulated in the ERF012-OE plants (Supplementary Figure S1B).
The phenylpropanoid metabolism makes an important contribution to the coordination of
plant development and plant–environment interaction via cell wall formation containing
diverse metabolic routes; thus, the disruption of phenylpropanoid metabolism severely
limits plant growth, development and stress responses [29]. Compared with Col-0, the
expression levels of AtC4H in the shoot and root of ERF012-OE plants and At4CL1 in
the shoot of ERF012-OE plants were significantly reduced (Figure 4A), demonstrating

https://bar.utoronto.ca/eplant/
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that ERF012 overexpression disrupts the phenylpropanoid metabolism. To validate the
interaction of ERF012 with AtC4H and At4CL1, a yeast one-hybrid assay was conducted.
The results showed that both promoters of AtC4H and At4CL1 can directly interact with the
ERF012 protein (Figure 4B). These results suggest that ERF012 expression downregulate
gene expression in cell wall formation and the phenylpropanoid metabolism pathway,
which might lead to limited growth.
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Figure 3. ERF012 involves root cell growth and division. (A,B) Root tip images of Col-0 and ERF012-
OE lines. The red lines indicate the meristem zone (A) and elongation zone (B). (C,D) The statistical
calculation of zone length, cell number and average cell length in root tips of Col-0 and ERF012-OE
lines; n = 12 roots. Values represent means ± SD. (E) The expression of CYCB1:1 in the roots of Col-0
and ERF012-OE lines. Twelve-day-old seedlings were used. Values represent means ± SD, n = 3
pools, with about 20 plant roots per pool. (F) Transcription activity analysis of CYCB1;1 in Col-0
and ERF012-OE backgrounds expressing the pCYCB1:1:GUS. Letters in (C–E) indicate significant
differences between different plants: Duncan’s test (p < 0.05).
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Figure 4. Overexpression of ERF012 regulates lateral root formation. (A) The expression of At4CL and
AtC4H in 12-day-old Col-0 and ERF012-overexpressing lines (OE #4). Values represent means ± SD,
n = 3 pools, with about 20 plant roots per pool. Asterisks indicate significant differences between
different plants: Student’s t-test, * p < 0.05. (B) ERF012 binds to the promoter of the At4CL and AtC4H.
The promoter sequences of the 4CL and C4H were subcloned into the pHis2 vector and the ERF012
CDS sequence was subcloned into the pGADT7-rec2 vector for yeast one-hybrid assay. (C) The
images of DR5:GFP in root tips of Col-0 and ERF012-OE lines (OE#4). (D) Exogenous application
of IAA (0.1 µM) can effectively restore the lateral root formation. The 5-day-old seedlings were
transferred to the medium supplemented with or without IAA for 6 days of growth. (E) The lateral
root number was statistically calculated in figure (D). Values represent means ± SD, n = 12. Letters
indicate significant differences between different plants: Duncan’s test (p < 0.05).

2.4. Auxin and Ethylene Involvement in the Root Growth and Lateral Root Formation in
ERF012-OE Plants

Loss of lateral roots was obvious in the ERF012-OE plants (Figure 2A). It was reported
that the Atc4h/ref3 mutant reduced lateral roots because blocking of the AtC4H1 function
largely hinders the accumulation of lignin and causes slow, phloem-mediated auxin trans-
port [30]. Indeed, the auxin level in the root tip of ERF012-OE plants was lower than the
Col-0, evidenced by DR5:GFP signals (Figure 4C). Plant hormone auxin is a key factor that
controls lateral root formation [31–33] due to the auxin-dependent signaling. To investigate
whether auxin is involved in lateral root formation in ERF012-OE lines, exogenous IAA was
used to treat Col-0 and ERF012-OE lines under normal growth conditions. Five-day-old
seedlings were transferred to normal growth conditions supplemented with 0.1 µM IAA
for a further 6 days of growth. With the IAA addition, the lateral roots were formed in
large quantities in ERF012-OE lines (Figure 4D,E). This result demonstrates that ERF012
expression limits the formation of lateral roots.

Short root tips and high root hair density are the typical characteristics of excess
ethylene in plant roots. Compared to Col-0, the roots of ERF012-OE plants developed
shorter root tips and dense root hair (Figure 5A), indicating the high ethylene level in
ERF012-OE roots. To investigate whether ethylene is involved in the root growth of ERF012-
OE plants, we compared the expression levels of the ethylene precursor and biosynthetic
gene 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) between Col-0 and
ERF012-OE plants. Two ERF012-OE lines had significantly higher expression levels of ACS7
and ACS11 than in Col-0 (Figure 5B), suggesting ethylene accumulation in ERF012-OE
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lines. We further used an ethylene biosynthesis inhibitor to estimate the involvement of
ethylene in the root growth of ERF012-OE lines. AVG treatment largely improved the
root growth of ERF012-OE lines (Figure 5C). The root tips were elongated and root hair
density was dramatically reduced in the AVG-treated ERF012-OE lines (Figure 5B–D).
These results demonstrate that ERF012 expression enhances ethylene biosynthesis, leading
to root growth inhibition.
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namics, Col-0, erf012 mutants and ERF012-OE lines were phenotypically compared at 
different temperatures. At normal conditions (22 °C), ERF012-OE shoots had lower 
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Figure 5. ERF012 activates ethylene biosynthesis in the root and regulates root tip growth. (A) Ethy-
lene biosynthetic inhibitor AVG (1 µM) treatment downregulated root hair density in ERF012-OE lines.
Scale bar = 100 µm. (B) Expression levels of ethylene precursors and biosynthetic genes ACS7 and
ACS11 in Col-0 and ERF012-OE lines. Values represent means ± SD, n = 3 pools, with about 20 plant
roots per pool. (C) Ethylene biosynthetic inhibitor AVG (1 µM) treatment restored root growth in
ERF012-OE lines. Five-day-old seedlings were transferred to the medium supplemented with or
without IAA for 6 days of growth. Scale bar = 1 mm. (D) Statistical calculation of the newly developed
root length treated with or without AVG (1 µM) in figure (C). Values represent means ± SD, n = 16.
Letters indicate significant differences between different plants: Duncan’s test (p < 0.05).

2.5. ERF012 Responds Quickly to Temperature Dynamics

To estimate the responses of ERF012 to environmental stresses, temperature dynamics
were first tested. Col-0 seedlings grown under normal conditions (22 ◦C) were transferred
to high temperatures (37 ◦C) or low temperatures (4 ◦C) for several hours. Time-course
qRT-PCR analysis of ERF012 expression in the shoots and roots was performed. The rapid
responses (within 2 h) to dynamics were observed for Col-0 shoots, whereas no significant
changes occurred in the roots (Figure 6A,B). The consistent results were confirmed by
pERF012:GUS lines treated at different temperatures (Figure 6C), suggesting that ERF012
plays a critical role in shoots under temperature dynamics. To validate the involvement
of ERF012 expression in shoot response to temperature dynamics, Col-0, erf012 mutants
and ERF012-OE lines were phenotypically compared at different temperatures. At normal
conditions (22 ◦C), ERF012-OE shoots had lower chlorophyll content than the Col-0 and
erf012 mutants, corresponding to visible chlorosis (Figure 6D,E). High temperature (37 ◦C)
largely reduced the chlorophyll content in all plants with chlorosis, although the ERF012-OE
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lines still had the lowest levels (Figure 6D,E). Interestingly, the chlorosis of ERF012-OE lines
at 22 ◦C and all plants at 37 ◦C can be lightened largely by the IAA supply (Figure 7A,B). In
contrast, the low-temperature treatment (4 ◦C) did render growth retardation (Figure 6D)
and the erf012 mutants accumulated the highest anthocyanin content and ERF012-OE lines
accumulated the lowest anthocyanin content (Figure 6D,F). Anthocyanin accumulation is
usually an adaptation strategy of plants to low temperatures [34]. Thus, ERF012 expression
disturbed anthocyanin biosynthesis, leading to reduced low-temperature tolerance. These
results indicate that ERF012 expression negatively regulates Arabidopsis adaptation of
temperature dynamics.
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Figure 6. ERF012 responds to temperature dynamics. (A,B) Time-course analysis of ERF012 expres-
sion exposed to 4 ◦C or 37 ◦C for 0.5 h, 1 h, 2 h, 4 h, 6 h. Twelve-day-old seedlings were used for
qRT-PCR. Values represent means ± SD, n = 3 pools, with 12 seedlings per pool. Letters indicate signif-
icant differences between different plants: Duncan’s test (p < 0.05). (C) GUS staining of pERF012:GUS
seedlings exposed to C for 0.5 h. (D) The shoot phenotype of 6-day-old Col-0, ERF012-OE lines and
erf012 mutant lines at 4 ◦C or 37 ◦C. Six-day-old seedlings grown at 22 ◦C were transferred to 4 ◦C or
37 ◦C for 6 days of growth. (E,F) The chlorophyll content (37 ◦C treatment) and anthocyanin content
(4 ◦C treatment) of all plants were statistically calculated. Values represent means ± SD, n = 4 pools,
with 5 shoots per pool. Letters indicate significant differences between different plants: Duncan’s test
(p < 0.05).
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Figure 7. Auxin significantly relieves ERF012-mediated leaf senescence under temperature dynamics.
(A) Phenotypical comparison of leaf senescence of Col-0, ERF012-OE lines and erf012 mutants at
22 ◦C or 37 ◦C. Six-day-old seedlings grown on 1/2 MS medium at 22 ◦C or 37 ◦C were transferred
to the medium with or without 1 µM IAA for 6 days of growth. (B) The chlorophyll content of all
plants was statistically calculated. Values represent means ± SD, n = 4 pools, with 5 shoots per pool.
Letters indicate significant differences between different plants: Duncan’s test (p < 0.05).

2.6. ERF012 Overexpression Reduces Plant Sensitivity to Abiotic Stresses

To further dissect the possible function of ERF012 in plant responses to various abi-
otic stresses, we performed a phenotypical evaluation among Col-0, erf012 mutants and
ERF012-OE lines under various stresses including drought (100 mM mannitol), salinity
(100 mM NaCl) and arsenite (10 µM NaAsO2) and cadmium (15 µM CdSO4) toxicity.
Drought stimulation limited plant growth to a large extent (Figure 8A–C). Compared
with normal conditions (CK), the relative root lengths (RRLs) and relative shoot fresh
weights (RSFWs) of erf012 mutants were lower and greater, respectively, whereas the
RRLs and RSFWs of ERF012-OE plants did not alter (Figure 8G), suggesting that ERF012
expression is not sensitive to drought stress. Consistent with this, expression levels of
drought stress-responsive genes [35–37] were comparable in Col-0 and ERF012-OE plants
(Supplementary Figure S2A). Except that the #7 ERF012-OE line showed worse growth,
a similar result was observed due to the salt stress, including the plant growth changes
and gene responses to salt stress [38] (Figures 8A–D,G and S2B). Cd toxicity was indicated
by the shoot chlorosis in all plants with a reduction of fresh weights and primary root
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length (Figure 8A,E). Compared with normal conditions (CK), the RSFWs and the RRLs
of ERF012-OE plants were greater and lower, respectively (Figure 8G). Both upregulation
of NRAMP3 and NRAMP4 and the downregulation of GSH2 and PCS2 [39] in ERF012-OE
plants would reduce the ability of Cd tolerance in the root (Supplementary Figure S2C).
Intriguingly, stress largely caused growth retardation of Col-0 and erf012 plants, whereas
the ERF012-OE plants showed tolerance accompanied by RRLs and RSFWs (Figure 8A,F,G),
suggesting that ERF012 overexpression reduces the plant sensitivity to As toxicity. The
downregulation of NIP1;1, an arsenite channel [40], might contribute to the As tolerance
of ERF012-OE plants (Supplementary Figure S2D). In summary, because of the strong
inhibitory effect of ERF012 overexpression on plant growth and development at normal
conditions, the low sensitivity of ERF012-OE plants to various abiotic stress was evident.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 17 
 

 

tolerance of ERF012-OE plants (Supplementary Figure S2D). In summary, because of the 
strong inhibitory effect of ERF012 overexpression on plant growth and development at 
normal conditions, the low sensitivity of ERF012-OE plants to various abiotic stress was 
evident. 

 
Figure 8. ERF012 reduces plant sensitivity to various abiotic stresses. (A) The phenotypical com-
parison of Col-0, ERF012-OE lines and erf012 mutant lines. Six-day-old seedlings grown on 1/2 MS 
medium were transferred to the medium with 100 mM mannitol, 100 mM NaCl, 10 μM arsenite 
and 15 μM CdCl2 for 6 days of growth. (B–F) The shoot fresh weight and primary root length were 
statistically calculated. (G) The relative primary root length of Col-0 and relative shoot fresh weight 
of Col-0 under each stress were statistically calculated. (B,G) Values represent means ± SD, n = 4 
pools, with 5 shoots per pool. Letters indicate significant differences between different plants: 
Duncan’s test (p < 0.05). Dotted lines (G) indicate the relative Col-0 root length and relative Col-0 
shoot fresh grown in normal conditions. 

  

Figure 8. Cont.



Int. J. Mol. Sci. 2022, 23, 6841 11 of 17

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 17 
 

 

tolerance of ERF012-OE plants (Supplementary Figure S2D). In summary, because of the 
strong inhibitory effect of ERF012 overexpression on plant growth and development at 
normal conditions, the low sensitivity of ERF012-OE plants to various abiotic stress was 
evident. 

 
Figure 8. ERF012 reduces plant sensitivity to various abiotic stresses. (A) The phenotypical com-
parison of Col-0, ERF012-OE lines and erf012 mutant lines. Six-day-old seedlings grown on 1/2 MS 
medium were transferred to the medium with 100 mM mannitol, 100 mM NaCl, 10 μM arsenite 
and 15 μM CdCl2 for 6 days of growth. (B–F) The shoot fresh weight and primary root length were 
statistically calculated. (G) The relative primary root length of Col-0 and relative shoot fresh weight 
of Col-0 under each stress were statistically calculated. (B,G) Values represent means ± SD, n = 4 
pools, with 5 shoots per pool. Letters indicate significant differences between different plants: 
Duncan’s test (p < 0.05). Dotted lines (G) indicate the relative Col-0 root length and relative Col-0 
shoot fresh grown in normal conditions. 

  

Figure 8. ERF012 reduces plant sensitivity to various abiotic stresses. (A) The phenotypical com-
parison of Col-0, ERF012-OE lines and erf012 mutant lines. Six-day-old seedlings grown on 1/2 MS
medium were transferred to the medium with 100 mM mannitol, 100 mM NaCl, 10 µM arsenite
and 15 µM CdCl2 for 6 days of growth. (B–F) The shoot fresh weight and primary root length were
statistically calculated. (G) The relative primary root length of Col-0 and relative shoot fresh weight of
Col-0 under each stress were statistically calculated. (B,G) Values represent means ± SD, n = 4 pools,
with 5 shoots per pool. Letters indicate significant differences between different plants: Duncan’s
test (p < 0.05). Dotted lines (G) indicate the relative Col-0 root length and relative Col-0 shoot fresh
grown in normal conditions.

3. Discussion

The AP2/ERF superfamily is one of the biggest TF families in higher plants and
regulates various biological processes of plant growth and development, as well as the
response to biotic and abiotic stresses. Most proteins in this superfamily, characterized
by a single AP2 domain and introns, are assigned to the ERF family, whereas the proteins
characterized by a tandem repetition of two AP2 domains and a small number of proteins
with a single AP2 domain are assigned to the AP2 subfamily [6]. It was proposed that
AP2 TFs are primarily involved in developmental programs, whereas ERF TFs are mainly
responsible for environmental stimuli or hormones [8].

A general DNA element A/GCCGAC usually exists in many ABA-, drought- and
cold-responsive genes and can be bound by the DREB proteins. For example, the one AP2
domain containing the CBF1/DREB1B TF was demonstrated to bind to A/GCCGAC in
gel-shift assays and showed rapid cold response within 2 h, but did not change apprecia-
bly at 24 h [41]. The ERF012 protein also contains one AP2 domain and belongs to the
group II, A5 subfamily corresponding to the ERF subfamily in Nakano’s classification [6]
and the dehydration-responsive element binding proteins (DREBs) group in Sakuma’s
classification [42]. It has been shown that ERF012 gene expression in the root of the 12-day-
old seedlings was not responsive to the temperature dynamics [25], which is consistent
with our observation (Figure 6). However, rapid responses for ERF012 were detected in
seedling shoots within 2 h of low-temperature (4 ◦C) or high-temperature (37 ◦C) treat-
ments (Figure 6A,B). Thus, ERF012 and CBF1/DREB1B have a similar response to low
temperature, suggesting that both might play a role in cold stress adaptation. Indeed,
the overexpression of CBF1 in Arabidopsis induces the expression of several COR (cold-
regulated) genes and increases the freezing tolerance of plants [43]. In agreement with the
function of CBF1, the higher anthocyanin content in ERF012-OE plants and lower antho-
cyanin content in erf012 mutants and Col-0 plants suggest that the expression of ERF012
plays a positive role in cold adaptability. By contrast, at 22 ◦C and 37 ◦C, the ERF012-OE
plants showed severe chlorosis accompanied by reduced chlorophyll content as compared
with Col-0 and erf012 plants (Figures 6 and 7), suggesting that ERF012 plays a negative role
in photosynthesis at normal-temperature and high-temperature conditions and promoting
the leaf senescence process. Leaf senescence represents the functional transition from nutri-
ent assimilation to nutrient remobilization, a process involving complex genetic programs
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caused by various stresses such as phytohormone dynamics, drought, heat, heavy metal
and nutrient deficiency, etc. The ERF012-OE plants showed leaf senescence under normal
conditions (Figure 6E), which may be caused by phytohormones or nutrient deficiency. The
underdeveloped roots of ERF012-OE plants would significantly reduce nutrient uptake
such as of magnesium (Mg) and iron (Fe). However, the Mg concentration in the shoots of
ERF012-OE plants was higher than in that of Col-0, and no different Fe concentrations were
observed in the shoots of both plants (Supplementary Figure S3), excluding their contribu-
tion to leaf senescence of ERF012-OE plants. It has been reported that elevated auxin levels,
by expressing an auxin biosynthetic enzyme called the YUCCA6, which mutation can
significantly delay the leaf senescence [44]. Indeed, exogenous application of IAA largely
delayed the leaf senescence and accompanied the elevation of chlorophyll content in all
plants at 22 ◦C and 37 ◦C conditions (Figure 7), although it was still lower in the ERF012-OE
plants. The increased root hair and the enhanced expression of ethylene biosynthetic genes
ACS7 and ACS11 in ERF012-OE plants (Figure 5A–C) indicate that there is more ethylene in
ERF012-OE plants. This does not exclude the ethylene, which plays an important role in the
onset of leaf senescence. For example, overexpression of AtERF4 positively regulates leaf
senescence and loss of function of AtERF4 delays leaf senescence in an EIN3-dependent
manner [45,46]. These results indicate that expression of ERF012 might repress endogenous
auxin accumulation, which at least partially contributes to leaf senescence.

The auxin-deficient growth was also evident in the ERF012-OE roots with few lateral
roots (Figures 2 and 4). The root system is crucial for plant growth and the lateral roots
contribute, essentially, to ensuring anchorage acquisition of water and nutrients from the
soil. In Arabidopsis, lateral roots are initiated at the protoxylem poles, called founder cells,
by high levels of auxin stimuli. A series of auxin components have been widely identi-
fied, for example, in a study that evaluated auxin and found it causes the degradation of
IAA/AUX and increases the auxin response factors, ARF7 and ARF19, which directly regu-
late the auxin-mediated transcription of lateral organ boundaries-domain16/asymmetric
leaves2-like18 (LBD16/ASL18) and/or LBD29/ASL16 to activate lateral root formation
in roots [47]. ERF TFs regulate auxin signaling or are regulated by auxin in lateral root
formation. Arabidopsis ERF109 binds directly to the promoters of auxin biosynthesis, ASA1
and YUC2, to evaluate the auxin level in lateral root primordium [48] and auxin induces
degradation of the ERF13 and releases fatty acid elongase KCS16 to initiate lateral root
emergence [49]. Exogenous IAA applications largely restored the lateral root formation
(Figure 4D), suggesting that ERF012 expression represses auxin accumulation in roots
as validated by the DR5:GFP signals between Col-0 and ERF012-OE roots (Figure 4C).
The auxin reduction in ERF012-OE roots may also be attributed to the disturbed phenyl-
propanoid metabolism pathway. In ERF012-OE plants, the key enzyme gene AtC4H1 of the
phenylpropanoid metabolism pathway was downregulated and directly interacted with the
ERF012 protein (Figure 4A). Mutation of the AtC4H1 gene severely impairs the synthesis
of lignin and cell wall formation, leading to slow, phloem-mediated auxin transport [30].
Certainly, many cell wall formation genes were downregulated in ERF012-OE seedlings
(Supplementary Figure S1B), implying that ERF012 expression coordinated multilayered
regulation to ensure auxin decline in the root. Besides, ERF012 expression displayed a
negative effect on the root tip growth and development, which may be due to ethylene accu-
mulation. Ethylene accumulation dramatically inhibits root elongation and promotes root
hair lushness [50,51]. Overexpression of ERF012 activated the ethylene biosynthetic genes
ACS7 and ACS11 to cause root growth retardation and root hair increase (Figure 5A–C),
which could be partially counteracted by the AVG, an ethylene biosynthetic inhibitor
(Figure 5B,C). On the other hand, overexpression of ERF012 in plants did appear to lose
sensitivities to various environmental stresses such as drought, salinity and heavy metals,
although some of the related genes were still regulated by ERF012 directly or indirectly
(Figures 8 and S2), suggesting that ERF012 has more effects on growth and development
than on environmental stresses. Taken together, our findings provide a comprehensive
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evaluation of the functional versatility of the ERF012 transcription factor in Arabidopsis
growth, development and abiotic stress responses.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

For the solid medium growth, seeds were sterilized with 75% alcohol (v/v) for 1 min
and then immediately immersed with 1% (w/v) NaClO for 10 min. The seeds were then
washed with pure water 5 times. Then, vernalization of the washed seeds was conducted
and they were incubated at 4 ◦C for 2 days. The 1/2 strength MS medium supplemented
with 1% sucrose and 1% (w/v) gellan gum (Wako Pure Chemicals, Osaka, Japan) was
used for normal conditions. The solid plates were grown in a growth chamber with a
16 h light/8 h dark cycle at 22 ◦C. For the IAA and AVG treatments, 5-day-old seedlings
grown on a normal growth medium were transferred to the medium supplemented with
IAA (1 µM) or aminoethoxyvinyl glycine (AVG) (1 µM) for another 6 days of growth. In
the temperature stress and the abiotic stress experiments, the 6-day-old seedlings were
treated at 4 ◦C or 37 ◦C, or with mannitol (100 mM), sodium chloride (NaCl, 100 mM),
sodium arsenite (NaAsO2, 10 µM) or cadmium chloride (CdCl2, 15 µM) for another 6 days
of growth, respectively. Plant growth parameters were measured by using Image J software
(National Institutes of Health, and LOCI University of Wisconsin; USA), with images
obtained from an Olympus SZX16 stereoscopic microscope (Olympus, Tokyo, Japan) and a
digital camera.

4.2. Vector Generation and Plant Transformation

To construct 35S:ERF012 transgenic plants, the open reading frame (ORF) sequences
of ERF012 were amplified by polymerase chain reaction (PCR) using specific primers
(Supplemental Table S1). The ERF012 CRISPR vector was generated according to the
method of Yang [52]. To construct the pERF012:GUS vector, the promoter sequence of
ERF012 was amplified by PCR using the specific primers, then fused with the Sma I
restriction endonuclease-digested DX2181 using a 5× infusion kit (Clontech, Takara, Beijing,
China). The Agrobacterium GV3101-mediated flower-dip method was used to generate the
transgenic lines [53]. For the transcription activation assay of ERF012, the effector vectors
were constructed according to the methods [45,54]. The ERF012 CDS sequence fragment
was amplified by PCR, then inserted into the binary vector GAL4DB [55] using the EcoR I
restriction endonuclease. For the yeast one-hybrid assay, the promoter of 4CL and C4H
were inserted into a pHis2 vector using Sma I by the 5× infusion kit (Clontech, Takara,
Beijing, China), and the CDS sequences of ERF012 were inserted into the pGADT7-rec2
vector using Xma I and Xho I with specific primers. All the specific primers are listed in
Supplementary Table S1.

4.3. Transient Expression in Arabidopsis Protoplasts

The Arabidopsis protoplasts’ preparation, cotransfection and the expression analysis
were carried out by the modified method, as previous described [56]. We used 3 µg of
the GAL4-LUC reporter plasmid and GALDB-ERF012 effector plasmid, respectively. In
addition, to normalize each transfection value, 1 µg of plasmid Ubi-Rennila LUC was used
as an internal control [49]. The Dual-Luciferase Reporter Assay System was used to detect
the luciferase assays through a luminescence reader (TECAN Infinite M200, Switzerland;
Promega, Madison, WI, USA). The data were from at least three independent experiments
with consistent results.

4.4. β-Glucuronidase (GUS) Histochemical Staining and Quantification of GUS Activity

Seedlings of pERF012:GUS lines were incubated in a staining solution prepared using
the GUS Histochemical Kit (bioshap, China, Cat. BL622A). The samples were observed
under an Olympus SZX16 stereomicroscope. GUS activity was assayed according to the
method [57].
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4.5. Yeast One-Hybrid Assay

The Y1H assay was performed according to the modified method [57]. Briefly, 1000 ng
pHis2-4CL or pHis2-C4H plasmids were cotransformed into the yeast strain Y187 with
the 1000 ng pGADT7-rec2-ERF012 plasmid. The transformed Y187 competent cells were
spotted onto a medium (SD/-Trp-Leu, Clontech, Takara, Beijing, China) and grown for
3 days at 30 ◦C. Subsequently, 10 µL of each diploid of the yeast cultures (OD600 = 0.1)
with 1-fold, 10-fold, or 100-fold dilution was plated to solid SD/-Trp-Leu-His suppled with
or without 50 mM 3-AT for 3 days at 30 ◦C. pGADT7-rec2-53 and pHis2-53 were the active
control, and pGADT7-rec2-ERF012 and pHis2 were the negative control.

4.6. Anthocyanin Measurement

To analyze anthocyanin content, 0.3 mg shoots were harvested and frozen with liquid
nitrogen immediately. Anthocyanins were extracted with 1 mL methanol containing 1%
(v/v) hydrochloric acid and then were shaken at room temperature (50 R/min) with a
shaker for 18 h. After centrifuging at 14,000 rpm for 10 min, 0.4 mL of the suspension
was transferred to 0.6 mL methanol containing 1% (v/v) hydrochloric acid in a 1.5 mL
tube. The absorbance of diluted supernatants was measured using a microplate reader
(TECAN Infinite M200, Switzerland) at 530–675 nm. The anthocyanin calculation formula
is QAnthocyanins = (ODA530-0.25×ODA657)/sample fresh weight (g).

4.7. Quantification Chlorophyll Concentration

The quantification of chlorophyll concentration was performed following the modified
protocol that was described by Lichtenthaler and Buschmann [58]. About 100 mg fresh
weight of leaves in seedlings was ground with 2 mL of 80% isopropyl alcohol (v/v), which
contained 10 mg CaCO3. After centrifuging at 12,000 rpm for 10 min at 4 ◦C, then the suspen-
sion was transferred to a 1.5 mL tube. The diluted supernatants were measured using a mi-
croplate reader (TECAN Infinite M200, Switzerland) at the absorbance wavelengths of 663.2
and 646.8 nm. The concentrations for chlorophyll a (Ca) and chlorophyll b (Cb) were calcu-
lated according to the formula: Chlorophyll = (20.29A646.8 + 8.05 A663.2) × v/w × 1000.

4.8. RNA Extraction and qRT-PCR ANALYSIS

The shoots and roots of the Col-0 and OE ERF012 grown under indicated growth
conditions were sampled with three independent biological replicates for the analysis of
the ERF012 expression. Total RNA was extracted using the Trizol Reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions. Then, 1 µg total RNA in
a 10 µL reaction volume was used for reverse transcription into a single cDNA. Once the
reverse transcription reaction was finished, the cDNA was diluted 20 times. A quantitative
reverse transcription-PCR (qRT-PCR) for detecting the relative expression of genes was
performed using the SYBR Green Real-Time PCR Master Mix Kit (TOYOBO, Osaka, Japan)
and the CFX96TM Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The
composition (4 µL cDNA templates, 0.2 µL 10 µM primers, 5 µL SYBR Green mix, 0.4 µL
sterile ddH2O) were based on 10 µL reaction volume per well for 96-well plates. Arabidopsis
actin and UBQ5 were used as two endogenous controls for sample normalization. The
gene-specific primer sequences used are listed in Supplementary Table S1. Expression
data were normalized with the expression level of the AtActin and AtUBQ5 by the 2−∆∆CT

method [59].

4.9. Statistical Analysis

Statistical analysis was performed using SPSS16.0 for Windows software (SPSS 249
Inc., Chicago, IL, USA). Significant differences among treatments were analyzed by analysis
of variance and Duncan’s test at the p < 0.05 level, and Student’s t-test at the * p < 0.05,
** p < 0.01 and *** p < 0.001 level.
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