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Vitamin D possesses renoprotective effects beyond mineral metabolism, potentially

reducing arterial blood pressure and inflammation and vitamin D enzymes (CYP24A1

and CYP27B1) as well as vitamin D receptor (VDR) contribute to its homeostasis. In

the present study, we aimed to determine vitamin D association with kidney volume,

blood pressure parameters and inflammatory markers in ADPKD. This cross-sectional

study, conducted from August 2011 through May 2016, evaluated 25(OH)D, 1,25(OH)2D

and other hormonal/biochemical serum and urinary parameters, inflammatory markers

and monocyte expression of VDR, CYP24A1, CYP27B1 in 74 ADPKD patients. The

height-adjusted total kidney volume (htTKV) was determined by MRI and blood pressure

(BP) measured through 24-h ambulatory BP monitoring (ABPM).Vitamin D insufficiency

was present in 62% of patients and CYP24A1 was overexpressed in this group,

raising a hypothesis of 25(OH)D increased catabolism. Serum 25(OH)D levels and VDR

expression were negatively correlated with htTKV as was VDR with IL-6, IL-10, CRP, and

NFκB. A multiple linear regression analysis with htTKV as dependent variable, including

hypertension, CRP, eGFR, age, time since diagnosis, VDR, and 25(OH)D adjusted for

season of the year showed that only the first three parameters were independent

predictors of the former. There has been no association of serum 25(OH)D and VDR

expression with ABPM parameters. Present findings suggested that low levels of serum

25(OH)D and VDR expression are associated with a higher kidney volume in ADPKD

patients, but do not represent independent risk factors for htTKV.

Keywords: vitamin D, hypertension, inflammatory markers, VDR, total kidney volume (TKV)

INTRODUCTION

The increase in total kidney volume (TKV) is a prognostic biomarker of decreased renal
function in Autosomal Dominant Polycystic Kidney Disease (ADPKD) (1–3). Hypertension, which
occurs prior to loss of kidney function in 60% of ADPKD patients, represents a significant
independent risk factor for progression of the disease, contributing to cyst expansion and intrarenal
ischemia hence activating intrarenal renin-angiotensin-system (RAS) (4–6). Besides genetic factors,
predictors that may lead to cyst growth and increase in TKV in ADPKD also include male
gender, high salt and protein intake, caffeine consumption, level of fluid intake, gross hematuria,
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nephrolithiasis, proteinuria among others (7–13). Inflammation,
present even in initial stages of the disease may also influence
the progression of ADPKD (14). Vitamin D3 (cholecalciferol)
is synthesized in human skin from the conversion of 7,8-
dehydrocholesterol by UV radiation and then hydroxylated in
the liver to give origin to the circulating form 25-hydroxyvitamin
D3 [25(OH)D or calcidiol]. The hormonal active metabolite of
vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2Dor calcitriol],
is further produced in the kidneys though the enzyme CYP27B1
(1-α hydroxylase) and functions as the ligand for the nuclear
vitamin D receptor (VDR) (15). Both forms of vitamin D are
catabolized by CYP24A1. Vitamin D regulates the expression of
pro-inflammatory genes and might act as an anti-inflammatory
hormone (16). In an experimental non-orthologous model of
PKD, cholecalciferol supplementation was capable to reduce
proteinuria and interstitial inflammation (17). Nevertheless, few
human studies focused on the relationship of vitamin D with BP
and inflammation in ADPKD (18) and its impact on predictors of
disease progression remains unknown. We aimed to investigate
vitamin D status, serum levels of 1,25 (OH)2D, the expression
of regulatory enzymes [CYP24A1 and CYP27B1] and VDR and
their association with BP, inflammatory markers and TKV in
ADPKD patients.

MATERIALS AND METHODS

Ninety eligible participants with ADPKD confirmed by positive
family history and renal cysts according to ultrasonographic
diagnostic criteria by Pei et al. (19), were recruited from the
outpatient Polycystic Kidney Disease Unit of the Universidade
Federal de São Paulo, since August 2011 through May 2016,
to participate in this study. Exclusion criteria were age <18
years old, serum calcium >10.5 mg/dL and current/past use
of calcium or vitamin D. The reason for excluding users of
vitamin D supplements or hypercalcemic patients relied on
the necessity of vitamin D supplementation foreseen for the
patients exhibiting hypovitaminosis D, as a further planned
intervention study, which is still ongoing. Hypertension was
defined by either measurements upon enrollment, history of
hypertension or use of antihypertensive medications. Body
weight, height and waist circumference were obtained and
Body mass index (BMI) calculated. Body fat composition was
assessed by bioelectrical impedance analysis (BIA 101 Quantum,
RJL Systems, Detroit, MI). Consumption of macronutrients,
vitamin D, calcium, phosphorus and caffeine were assessed
through a 24-h dietary recall and daily intakes were calculated
as previously described (10). After this initial clinical evaluation,
enrolled patients were scheduled for one blood sample drawn
following an overnight fast and a 24-h urine collection, obtained
during the preceding day. Subsequently, patients were scheduled
to undertake a 24-h ambulatory blood pressure monitoring
(ABPM) and a magnetic resonance imaging (MRI) scan to
determine total kidney volume (TKV). Patients were divided
in vitamin D-sufficient (>30 ng/mL) and vitamin D-insufficient
(<30 ng/mL) groups for comparisons. The study was reviewed
and approved by the Ethics Advisory Committee of the

Universidade Federal de São Paulo, and each patient signed the
informed consent form.

Ambulatory Blood Pressure Monitoring
(ABPM)
ABPM was recorded using the automatic oscillometric monitor
(Spacelabs 90207, Spacelabs Inc., Redmond, USA) with patients
taking anti-hypertensive medications. Reference normal values
were taken from guidelines and a reduction in BP < 10% at
night-time was considered as non-dipping (20).

Imaging Protocol
MRI was performed using a standardized respiratory-triggered,
T2-weighted, axial, fat-suppressed fast-spin echo sequence
without gadolinium on a 1.5-T scanner. TKV was determined
from 3-mm axial T2 magnetic resonance images with renal
volumetrics performed by obtaining length, width, and depth
to calculate total TKV using the ellipsoid equation, with values
combined from both kidneys, corrected for height (htTKV) (1).

Clinical and Laboratory Measurements
Creatinine was determined by an isotope dilution mass
spectrometry traceable method and estimates of glomerular
filtration rate (eGFR) were obtained using the CKD-EPI
equation. Stages of CKD were defined according to KDIGO.
Serum calcium, phosphorus, alkaline phosphatase (colorimetric
methods), urinary urea (enzymatic assay), sodium (ion
selective electrode), and albuminuria (immunoturbidimetry)
were measured in a Beckman Clinical Chemistry Analyzer
(AU480-America Inc., Pennsylvania, USA) and intact PTH
by chemiluminescence assay (Architect intact PTH, Abbott,
Germany). Serum intact Fibroblast growth factor 23 (FGF-
23- R&D Systems Inc., Minneapolis, MN), interleukin-6 (IL-6),
interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and
nuclear factor kappa B (NFκB) (BD-Biosciences/eBiosciences,
San Diego, CA) were determined by enzymatic immunoassays.
Serum 25(OH)D was measured by chemiluminescence (Abbott
Laboratories, Abbott Park, Illinois, USA) and 1,25(OH)2D
by HPLC. Hypovitaminosis D was defined according to the
K/DOQI by 25(OH)D levels <30 ng/mL. Expression of VDR,
CYP24A1, and CYP27B1 in monocytes were determined by
flow cytometry (BD FACSCanto, San Jose, CA), as described
elsewhere (21). Figure 1 shows the monocytes characterized by
CD14 and the expression of VDR as an example. Adenosine
3′:5′-cyclic monophosphate (cAMP) was determined by an
immunoenzymatic kit (cAMP Biotrak enzyme immunoassay,
GE Healthcare, Amersham). Sodium chloride (NaCl) intake was
estimated from urine sodium and protein intake by the protein
equivalent of nitrogen appearance (PNA).

Statistical Analysis
Categorical variables were compared between vitamin D
insufficient and sufficient groups using χ2 or Fisher’s exact
tests. Continuous variables were submitted to a normality
test (Kolmogorov–Smirnov) and nonparametric tests (Mann–
Whitney) were performed when appropriate. Data were
expressed as mean ± SD, median and interquartile, or
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FIGURE 1 | Representative flow cytometry plot showing the monocytes population (CD14+) (A). Monocytes were gated into VDR (B). The MFI of VDR from patients

with vitamin D (25(OH)D) levels less than (closed circle) and more than (open circle) 30 ng/ml (C).

proportions according to the distribution of variables.
Spearman’s correlation coefficients measured associations
between variables. A multiple linear regression analysis with
htTKV as the dependent variable, including hypertension,
CRP, eGFR, age, time since diagnosis, VDR and 25(OH)D
adjusted for season of the year was performed. P < 0.05 were
considered as significant and the statistical package used was
SPSS (Chicago, IL, USA). Given the lack of studies investigating
the association between Vitamin D status and Kidney Volume
in ADPKD, the sample size calculation was based on reports
aimed to find inverse correlations between 25(OH)D and
IL-6 (22, 23). As aforementioned, in line with an intervention
study supplementing vitamin D foreseen for the patients with
hypovitaminosis D, the current sample size was estimated as
28 patients in each group with or without hypovitaminosis D,
with a drop-out of 20% (n = 12), based on a power of 95% and
significance level of 1%, calculated through GPower program,
version 3.1.9.2 (Franz Faul, University of Kiel, Germany).

RESULTS

Participants Characteristics
Of the 90 recruited patients, 14 were excluded because of previous
use of vitamin D and 2 declined to participate in the study, so
that 74 patients (30 M/44 F), aged 19–64 years old (40 ± 12),
were enrolled. Hypovitaminosis D was observed in 46 (62%)
patients, with insufficient levels (<30 ng/mL) in 39 (53%) and
deficient levels (<15 ng/mL) in 7 (9%) of them. Seventy-three
(73%) of patients were hypertensive and 65% were at CKD
stage 1/2 and 35% at CKD 3/4. Table 1 shows characteristics
of VitD-insufficient or sufficient groups, which did not differ
with regard to mean age, gender, and race distribution, time
since diagnosis and presence of hypertension. The percentage of

patients under anti-hypertensive medication such as ACEi, ARB,
or ACEi+ARB also did not differ between VitD-insufficient or
sufficient groups (59 vs. 61%, p = 0.864; 11 vs. 7%, p = 0.703
and 0 vs. 7%, p = 0.140, respectively, data not shown). There
has been no statistical difference in ABPM parameters and
the percentage of non-dipping patients was similar for both
groups (44 vs. 44%, data not shown). The percentage of blood
collections obtained during the winter season was higher in VitD-
insufficient group. Mean BMI, waist circumference and body
fat were similar (Table 1), with an inadequate distribution of
body fat in women (56 vs. 35%, p = 0.190) and in men (21
vs. 30%, p = 0.689), respectively for 25(OH)D<30 and >30,
without statistical differences between them (data not shown).
Nutritional data and median eGFR also did not differ between
them. The percentage of individuals with CKD stages 1, 2, 3,
and 4 was not statistically different, 37 vs. 46%; 22 vs. 28%; 30
vs. 22%; 11 vs. 4%, p = 0.716, respectively for VitD-insufficient
vs. sufficient (data not shown in tables). Except for median
1,25(OH)2D and CYP24A1, that were significantly higher in the
former group, mineral metabolism and inflammatory markers
were not statistically different. Of the 74 patients, 10 refused
to undergo MRI because of claustrophobia and 8 presented a
MRI scan with incomplete coverage of both kidneys, rending
it inappropriate to perform a reliable calculation of TKV. The
median htTKV of vitamin D insufficient group was higher, 782
(440–10,540) mL/m (n = 36) when compared to vitamin D
sufficient group 552 (308–817) mL/m (n = 20) but without
statistical difference. Albuminuria and cAMP did not differ
between groups. Figure 1A shows the representative plot of
monocytes, Figure 1B represents the mean fluorescence intensity
(MFI) of VDR gated from monocytes. There was no correlation
between MFI of VDR and 25(OH)D levels (Figure 1C; Table 2).
As shown in Figure 2, significant negative correlations between
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TABLE 1 | Demographic, clinical, nutritional, and laboratorial characteristics of the

patients.

Parameters 25(OH)D (ng/mL)

Total

(n = 74)

≥ 30

(n = 28)

<30

(n = 46)

p

Age (years) 40 ± 12 39 ± 11 41 ± 12 0.493

Female/Male (n) 44/30 17/11 27/19 0.864

Afro-Brazilians [n (%)] 33 (45) 13 (46) 20 (43) 0.804

Time since diagnosis (years) 9 (4–13) 8.5 (4.5–12) 9 (4–14) 0.635

Winter season [n (%)] 22 (30) 2 (7) 20 (43) <0.001

Hypertensives [n (%)] 54 (73) 21 (75) 33 (72) 0.759

ACEi [n (%)] 44 (81) 17 (61) 27 (59) 0.864

ARB [n (%)] 8 (15) 6 (11) 2 (7) 0.703

ACEi/ARB [n (%)] 2 (4) 2 (7) 0 0.140

Mean 24-h ambulatory BP (mmHg)

Systolic 121 ± 11 121 ± 12 120 ± 11 0.971

Diastolic 77 ± 8 78 ± 8 77 ± 7 0.668

Mean daytime ambulatory BP (mmHg)

Systolic 125 ± 12 125 ± 13 125 ± 11 0.722

Diastolic 82 ± 9 82 ± 10 82 ± 8 0.809

Mean nighttime ambulatory BP (mmHg)

Systolic 111 ± 12 112 ± 12 110 ± 12 0.473

Diastolic 66 ± 8 68 ± 7 66 ± 8 0.266

Non-dippers [n (%)]

BMI (kg/m2) 27 ± 5 26 ± 6 27 ± 5 0.416

Waist circumference (cm) 94 ± 14 93 ± 14 95 ± 14 0.522

Body fat (%) 27 ± 9 26 ± 8 29 ± 9 0.440

Nutritional data

PNA (g/d) 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.2 0.435

NaCl (g/d) 11 (7–13) 12 (6–14) 10.5 (8.5–12) 0.911

Caffeine (mg/d) 44 (4–75) 49 (21–76) 43 (4–78) 0.683

Calcium (mg/d) 566 ± 320 620 ± 288 540 ± 338 0.157

Phosphorous (mg/d) 1111 ± 506 1172 ± 442 1082 ± 542 0.203

Vitamin D (UI/d) 60 ± 73 73 ± 63 54 ± 78 0.081

eGFR (mL/min/24 h/1,73 m2) 76 (49–108) 88 (60–103) 72 (45–111) 0.479

Serum

Calcium (mg/dL) 9.4 ± 0.4 9.4 ± 0.4 9.4 ± 0.4 0.654

Phosphorus (mg/dL) 3.3 ± 0.5 3.3 ± 0.6 3.2 ± 0.5 0.619

FGF-23 (pg/mL) 248

(83–2,192)

333

(85–2,277)

217

(83–1,818)

0.532

25(OH)D (ng/mL) 27 ± 9 36.5 ± 7 22 ± 5 <0.001

1,25(OH)2D (pg/mL) 17 (14–25) 16 (13–19) 21 (15–26) 0.018

PTH (pg/mL) 52 (33–69) 45 (33–62) 56 (36–82) 0.107

Alkaline phosphatase (UI/L) 57 (47–71) 57 (53–71) 58 (46–72) 0.688

IL-10 (pg/mL) 59 (31–202) 50 (9–243) 60 (40–148) 0.436

IL-6 (pg/mL) 9.5 (7.4–18) 11 (7–18) 8.7 (7.5–18) 0.667

TNF-α (pg/mL) 10 (8–14) 9.5 (7.8–14.5) 11 (7.8–14) 0.862

CRP (mg/dL) 0.16

(0.08–0.35)

0.17

(0.08–0.40)

0.16

(0.08–0.34)

0.696

NFκB 0.21

(0.11–0.41)

0.26

(0.11–0.41)

0.20

(0.09–0.41)

0.605

Urine

Albuminuria [n (%)] 35 (47) 13 (46) 22 (48) 0.979

(Continued)

TABLE 1 | Continued

Parameters 25(OH)D (ng/mL)

Total

(n = 74)

≥ 30

(n = 28)

<30

(n = 46)

p

Urinary cyclic AMP (pMol/mL) 109 (73–237) 112 (77–228) 107 (72–251) 0.761

Expression in monocytes (MFI)

VDR 849

(649–1,896)

1018

(792–1,896)

794

(649–1,677)

0.306

CYP24A1 548

(474–706)

483

(423–567)

640

(486–755)

0.007

CYP27B1 212

(192–250)

205

(197–221)

218

(188–285)

0.463

htTKV (mL/m) 679

(335–1,012)

552

(308–817)

782

(440–1,054)

0.124

TABLE 2 | Correlation (r) between parameters.

25(OH)D

(ng/mL)

1,25 (OH)2D

(pg/mL)

VDR

(MFI)

SBP24 (mmHg) 0.02 −0.08 −0.11

DBP24(mmHg) 0.09 −0.09 −0.22

Albuminuria (µg/min) −0.12 0.0001 −0.02

eGFR (ml/min/24 h/1.73 m2) 0.11 −0.09 0.15

Body fat (%) −0.09 −0.08 −0.16

PTH (pg/mL) −0.23b 0.04 0.04

FGF-23 (pg/mL) 0.07 0.16 0.12

1,25(OH)2D3 (pg/mL) −0.41a – –

VDR (MFI) 0.07 0.31b –

CYP24A1 (MFI) −0.38b 0.07 0.17

CYP27B1 (MFI) −0.18 0.41c 0.66a

htTKV (mL/m) −0.28b −0.07 −0.28b

IL-6 (pg/mL) −0.03 −0.07 −0.25b

IL-10 (pg/mL) −0.08 0.01 −0.28b

TNF-α (pg/mL) −0.10 0.12 −0.05

CRP (mg/dL) 0.05 −0.22 −0.28b

NFκB 0.02 −0.06 −0.31b

ap = 0.0001; bp < 0.05; cp = 0.006.

VDR expression with IL-6, IL-10, CRP, and NFkB were found.
As depicted in Figure 3, significant negative correlations between
htTKVwith either 25(OH)D andVDR expression were observed.
Other significant correlations, shown in Table 2, were detected
between 25(OH)D and PTH, 1,25(OH)2D, and CYP24A1;
1,25(OH)2D with VDR and CYP24B1 expression and VDR with
CYP27B1 expression. The multivariate linear regression analysis
(Table 3) with htTKV as the dependent variable showed an
independent and positive association of hypertension, CRP and
negative with eGFR.

DISCUSSION

Vitamin D pleiotropic effects beyond mineral metabolism, such
as potential reduction of arterial BP and inflammation (24), may
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FIGURE 2 | Correlation (r) between VDR and inflammatory markers (A) IL-6, (B) (IL-10), (C) (CRP), and (D) NFκB, p < 0.05.

FIGURE 3 | Correlation (r) between htTKV with 25(OH)D and VDR (A) 25(OH)D and (B) VDR expression, p < 0.05.

be of relevance inADPKD (6, 14, 25). Increased inflammatory
markers in serum, urine, and fluids of cysts have been detected
in ADPKD patients (14, 26, 27). Preliminary data by Gitomer
et al. (28) have suggested an inverse association between serum
vitamin D and kidney volume in ADPKD but to the best of
our knowledge, this is the first study to evaluate the association
between vitamin D, its regulatory proteins and expression of
VDR with predictors of ADPKD progression.

Vitamin D insufficiency was present in 62% and CYP24A1
was overexpressed in this group. Serum 25(OH)D and VDR
expression were negatively correlated with htTKV, as was VDR
with inflammatory markers.

Hypovitaminosis D was more prevalent for patients who
had their blood samples drawn during winter, as already
evidenced in our country (29, 30). Some studies have reported
an association between hypovitaminosis D with BMI (29, 31)

possibly due to either the low exposure of obese individuals
to sunlight or sequestration and storage of vitamin D in
adipose tissue (32). We did not observe a higher BMI,
waist circumference or percentage of body fat in vitD-
insufficient patients, differing from previous studies by our
group and others in CKD or after renal transplant (29, 31),
but corroborating with Gronborg et al. (33), who found
no association. Among potentially modifiable factors affecting
progression of ADPKD (8), daily intakes of protein, NaCl,
caffeine, calcium, phosphorous, and vitamin D did not differ
between groups with or without hypovitaminosis D but both
presented an intake of vitamin D under the recommended
allowance (600 IU/day) and of NaCl, three-fold higher than the
recommended by the American Heart Association (4 g/day).
Caffeine intake was low, as already observed by our group in a
previous evaluation (10).
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TABLE 3 | Multivariate linear regression analyses with htTKV as dependent

variable.

Independent variables Multivariate analysis

Coeficiente β (EP) p R2

Hypertension 13.09 (4.40) 0.005 0.100

Age (years) 0.276 (0.13) 0.040 0.076

Time since diagnosis (years) −0.027 (0.13) 0.842 0.001

CRP (mg/dl) 0.283 (0.106) 0.011 0.073

VDR (MFI) −0.319 (0.155) 0.046 0.080

25(OH)D (ng/ml) −0.2018 (0.142) 0.149 0.081

eGFR (ml/min/24 h/1.73 m2) −0.446 (0.112) <0.001 0.346

The percentage of hypertensive patients and 24-h ABPM
parameters did not differ between vitD-insufficient vs.
sufficient groups diverging from epidemiological data in
general population using office BP measurements (34). The
employment of 24-h ABPM in the current series reinforces the
reliability of our findings, who agreed with other studies not
showing an association (35, 36). On the other hand, it is possible
that the anti-hypertensive treatment with ARB and/or ACEi
by 72% of our patients could have contributed to the lack of
association between vitamin D and BP. However, even under
anti-hypertensive therapy, 31/70 (44%) of patients from the
current series presented a non-dipping pattern, in accordance
with several investigators (19, 37, 38), who have detected it even
in otherwise normotensive ADPKD subjects (38), as an early
manifestation of endothelial dysfunction (39). We observed
a high percentage of albuminuria (48%), particularly among
hypertensive patients, corroborating with data from Chapman
et al. (40), but without association with hypovitaminosis D.
The use of ARB and/or ACEi might have also accounted for by
the absence of such association. As cAMP accumulation plays
a central role in cystogenesis (41), we determined urine levels
of cAMP in the present series, but no statistical difference has
been detected between vitD-insufficient or sufficient groups. The
median level of eGFR and the percentage of CKD patients (stages
3/4) distributed among vitD-sufficient (26%) and insufficient
groups (41%) were not statistically different (p = 0.716), what
rendered more adequate the comparison of all parameters
between groups.

Serum 25(OH)D was negatively correlated with PTH, as
expected (42), although median PTH did not differ between
vitD-sufficient and insufficient groups. Surprisingly, the latter
presented a significantly higher median 1,25(OH)2D compared
to the sufficient group, and a negative correlation between
25(OH)D with 1,25(OH)2D in the whole sample was disclosed.
These unforeseen findings might have been attributed, as
suggested by Need et al. (43), to a biphasic relationship
between calcidiol and calcitriol depending on the level of
25(OH)D: positive whenever it is in the normal range (attributed
to substrate deficiency), but negative when it is low, due
to secondary hyperparathyroidism. Although inflammatory
parameters were similar among vitD-insufficient and sufficient

patients, an inverse association of VDR expression with IL-
6, IL-10, NFκB, and CRP was observed, supporting that
VDR is directly involved in the regulation of inflammatory
response (16). A chronic inflammatory milieu is observed in
cystic PKD kidneys, as evidenced by the large numbers of
interstitial macrophages ultimately promoting cyst epithelial
cell proliferation, cyst expansion, and disease progression
(44). Cultured Pkd1-deficient cells express the monocyte
chemoattractant protein-1 (MCP-1) and CXCL16 (C-X-C
Motif Chemokine Ligand 16) and large numbers of activated
macrophages surrounding the cysts have been observed in
orthologous models of PKD (45). Peda et al. (44) have
demonstrated that cystic epithelial cells induce renal M2-
like macrophage polarization which in turn enhances the
ability to promote cyst cell proliferation. IL-10 was shown
to be upregulated in human ADPKD tissue and present in
cyst fluid, and although this regulatory cytokine has anti-
inflammatory functions, M2-phenotype requires IL-10 secretion
by the macrophages and IL-10-stimulated activation of STAT3 is
required for this pathological macrophage differentiation (44).
M2-like macrophages have been identified in interstitial areas
juxtaposed to cysts in human ADPKD kidneys, potentially
promoting cyst growth by stimulating nearby cyst lining
epithelial cells (46). Recently, lysine methyltranferase SMYD2
was shown to increase cystic renal cell proliferation through
methylation and activation of STAT3 and the p65 subunit
of NFκB (47). VDR can form a complex with the p65
subunit of NFκB to produce anti-inflammatory actions (24) and
vitamin D supplementation has already been reported to help
reducing circulating levels of IL-6 in other populations such as
end-stage renal disease patients (21). The inverse correlation
between VDR with IL-10 and NFκB observed in the present
series, suggest that targeting reduction of inflammation with
vitamin D or other VDR-stimulating agents may represent
an effective strategy for slowing PKD progression and further
studies are needed to test this hypothesis. We cannot exclude
the possibility of vitamin D deficiency being a consequence
rather than the cause of inflammatory response, as excess of
1,25(OH)2D is produced in an effort to up-regulate the VDR
and 25(OH) is rapidly metabolized in this process (48). D. In
the present series, median serum calcium, phosphorus, alkaline
phosphatase did not differ between vitD-sufficient vs. insufficient
patients. Median FGF-23 in the whole sample, composed mostly
of ADPKD patients at CKD stages 1 and 2, was high if
compared to CKD caused by other conditions (49, 50), being
in agreement with Pavik et al. (51) who observed a four-
fold increase in FGF-23 from ADPKD compared to CKD of
other etiologies with similar eGFR, although no association
with 25(OH) and 1,25 (OH)2D was detected. Accordingly,
in the present sample, FGF-23 was not statistically different
between groups with or without hypovitaminosis D, nor
correlated with 25(OH)D or 1,25(OH)2D. Since both groups
had been equally exposed to the use of ACEi (61 vs. 59%), the
latter could have acted as a confounder, negatively regulating
FGF-23 levels and disrupting the cross-talk between vitamin
D and RAS (24). Moreover, as shown by Spichtig et al.
(52), FGF-23 is detected in cells lining renal cysts of PKD
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animals but it fails to appreciably downregulate CYP27B1 due
to resistance.

With regard to vitamin D regulatory enzymes, the vitD-
insufficient D group presented a higher median expression of
CYP24A1, which in turn correlated negatively with 25(OH)D,
raising the hypothesis of vitamin D catabolism. As expected,
we found a positive correlation between CYP27B1 with both
1,25(OH)2D and VDR. In line with the data by Spichtig et al.
(52) correlations between FGF-23 and CYP24A1 have not been
disclosed in the current study as well (data not shown).

Finally, the negative correlation between both 25(OH)D levels
and VDR expression with htTKV disclosed in the present
study, suggested a potential contributionof hypovitaminosis D
to kidney enlargement in ADPKD. However, the results of the
multivariate regression analysis with htTKV as the dependent
variable, including hypertension, CRP, eGFR, age, time since
diagnosis, VDR and 25(OH)D adjusted for season of the year
showed that only the first three parameters were independent
predictors of the former.

Limitations of the present study included its cross-sectional
design and the need of concomitant use of anti-hypertensive
therapy, which could have contributed, at least in part, to the
negative results obtained with respect to blood pressure. The high
proportion of hypovitaminosis D obtained in samples collected
during the winter might have influenced our results. Therefore,
an adjustment of the serum 25(OH)D results according to
the season of the year in the multiple regression analysis was
performed to take into account this confounded limitation.
On the other hand, our study also has strengths such as the
employment of 24-h ABPM for BP measurements.

In conclusion, present findings suggested that low levels of
serum 25(OH)D and VDR expression are associated with a

higher kidney volume in ADPKD patients, but hypovitaminosis

D does not represent an independent risk factor for increasing
kidney volume.
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