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Abstract 

Virtual screening has significantly improved the success rate of early stage drug discovery. Recent virtual screening 
methods have improved owing to advances in machine learning and chemical information. Among these advances, 
the creative extraction of drug features is important for predicting drug–target interaction (DTI), which is a large‑scale 
virtual screening of known drugs. Herein, we report Kullbeck–Leibler divergence (KLD) as a DTI feature and the fea‑
ture‑driven classification model applicable to DTI prediction. For the purpose, E3FP three‑dimensional (3D) molecular 
fingerprints of drugs as a molecular representation allow the computation of 3D similarities between ligands within 
each target (Q–Q matrix) to identify the uniqueness of pharmacological targets and those between a query and a 
ligand (Q–L vector) in DTIs. The 3D similarity matrices are transformed into probability density functions via kernel 
density estimation as a nonparametric estimation. Each density model can exploit the characteristics of each pharma‑
cological target and measure the quasi‑distance between the ligands. Furthermore, we developed a random forest 
model from the KLD feature vectors to successfully predict DTIs for representative 17 targets (mean accuracy: 0.882, 
out‑of‑bag score estimate: 0.876, ROC AUC: 0.990). The method is applicable for 2D chemical similarity.

Keywords: Chemocentric, 3D Molecular Fingerprint, 3D Similarity, Drug–Target Interaction Feature, Nonparametric 
Density Estimation, Kullbeck–Leibler Divergence, Machine Learning
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Introduction
Several machine learning (ML)-based methods have 
been widely applied in chemo-informatics-related 
areas. From the classical Bayesian approach to recent 
deep-learning technologies, novel molecular represen-
tations and descriptors for characterizing molecules 
are vital to computer-aided drug discovery [1–4]. 
In drug–target interaction (DTI) prediction, versa-
tile featurization methods and learning methods have 
been developed from a “network analysis based on 

experimental DTI information as feature vectors” to 
a “deep learning-based DTI prediction from diverse 
representation (protein or gene sequences, drug struc-
tures, explicit target-drug binding structures)” [5–12]. 
While former studies mainly used independent fea-
ture vectors for each representation, recently reported 
studies used the featurization of “target–drug binding 
complexes” (e.g., IFP, PLIP, SIFt, and SMPLIP) [13–16]. 
Despite the efficiency of the above mentioned featuri-
zation, explicit binding poses are not applicable to an 
undefined and endless number of target proteins, in 
particular, epigenetically modulated proteins (different 
from native proteins of ca. 20,000 human genomes), 
their mutants, and fusion proteins. Thus, we judge 
“chemical features” remain effective for DTI prediction 
beyond the explicit binding. Chemocentric methods 
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using chemical features can describe both indirect 
DTIs (via controlling a target without physical binding 
with a drug) and direct DTIs (via a binding complex of 
drug-target). Historically, both chemocentric DTI pre-
diction and quantitative structure–activity relationship 
(QSAR) studies have been conducted using molecular 
descriptors and similarity scores [4, 17–22]. Reported 
chemical feature-based DTI studies have commonly 
focused on known drugs and their properties, such 
as toxicity, repositioning, or polypharmacology [5, 8, 
23–25]. In those studies, two-dimensional (2D) simi-
larity methods (with 2D features) are typically used [5, 
6, 8, 24] because they are more economical than three-
dimensional (3D) similarity methods (with 3D features) 
[17, 21]. While both 2D methods and synthetic chem-
ists’ intuition commonly use 2D structures of chemicals 
and drugs, 3D methods can provide another view (con-
sequently, for new knowledge), which is not accessible 
by synthetic chemists’ intuition and is distinct from 
2D DTI prediction [26]. Meanwhile, despite the avail-
ability of 3D descriptors such as E3FP [18], 3D chemi-
cal similarity has rarely been applied to DTI prediction 
[25]. Moreover, reported DTI prediction studies using 
similarity transform similarity scores into statistical 
values in a probability density distribution (e.g., p- and 
E-values, Z-score) and compare the values with a cut-
off [5, 23–25]. The schemes for DTI prediction devel-
oped so far do not focus on modeling the heterogeneity 
of probability densities [5–16, 23–25]. In this study, 
we used a heterogeneous probability density distribu-
tion of 3D similarity vectors to obtain a reliable DTI 
predictive model. In particular, we incorporated a non-
parametric density model into our previous Kullbeck–
Leibler divergence (KLD)-based quantifying method 

[26], which observes ligands from the viewpoint of can-
didate targets, such that multiple KLD measurements 
can be performed to describe a drug (query).

Feature engineering is essential for ML-based drug 
discovery. Recently, ML-based DTI detection (descrip-
tive  and  predictive) and ML-aided drug discovery stud-
ies have contributed positively to the feature engineering 
of molecular data. The performance of ML approaches 
relies on their molecular representations. These ML 
approaches require the perfect transferability of molecu-
lar information during molecular representation, similar-
ity scoring, and learning. Hence, we attempt to link our 
3D similarity-based quantitative method [26] with an 
ML algorithm to predict whether each query belongs to a 
candidate target. Furthermore, we introduce chemocen-
tric assumptions and the 3D similarity used in our previ-
ous study [26] First, based on E3FP (3D radial molecular 
fingerprints), pairwise similarities are calculated between 
ligands within each target (Q–Q matrix) and between a 
query and a ligand (Q–L vector) for DTIs. Second, 3D 
similarity vectors (Q–L) and matrices (Q–Q) are proba-
bilistically modeled to describe the uniqueness of targets 
(Q–Q) and to quantify ligand-specific information for 
DTIs (Q–L). Finally, the KLD works as a “quasi-distance” 
among the density models, and KLD as a novel DTI fea-
ture vector is successfully extended to the DTI predic-
tion model (Fig. 1).

Methods and materials
Dataset and data preparation
We obtained biological activity data from the publicly 
available CHEMBL 26 database [27]. The database con-
tains information regarding more than 200 single-pro-
tein targets and their chemical and genomic properties. 

Fig. 1 Overview of this study. Kullbeck–Leibler divergence (KLD) between chemical similarity distributions (of the Q–Q matrix and the Q–L vector) 
provided feature vectors for drug target interaction (DTI) prediction. The distributions were generated through kernel density estimation (KDE) as a 
nonparametric density model, which is quite distinct from the Gaussian distribution defined by the mean and standard deviation of a sample
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In this study, we used 17 targets selected from a bench-
mark paper [28]. The downloaded information table con-
tains a list of smiles from CHEMBL26 databases, which 
describes the “molecule name,” “SMILES,” and “IC50” 
value for each listed CHEMBL ID. Duplicate items were 
removed to avoid sampling bias. We focused on 26,452 
ligands and 2.976 million conformers. Data handling and 
algorithm computing were conducted using Python and 
its modules. The 3D conformers were generated under 
conditions reported by OpenEye Omega [29, 30] and 
under RDKit.

Three‑dimensional fingerprinting and ligand pairwise 3D 
molecular similarity.
All the original ligand spaces from the 17 targets were 
randomly resampled using 15,000 conformers. The size 
of each molecular conformation was limited to 15,000 
conformers. Thus, we attenuated the problems of dimen-
sionality and data imbalance. Ten-time tests were per-
formed to determine the stability of random sampling. 
We confirmed that changes in “random seeds” real-
istically provided stability to the similarity score den-
sity structure. Among the numerous descriptors for 
molecular representation, E3FP was selected to effec-
tively  describe the 3D structure of the molecules. Each 
3D fingerprint depicting a ligand conformer was encoded 
using the E3FP in the RDKit library. In other words, E3FP 
generated 3D molecular fingerprints in the RDKit library, 
and each 3D conformer was converted to the RDKit for-
mat to calculate the similarity scores among the ligands. 
The 3D coordinates of each conformer expressed in sdf 
format were converted and encoded to a sequence of bit-
vectors composed of 1024 “0” and “1”. Subsequently, the 
similarity scores were calculated by comparing the bit-
vectors. This bit = vector-based similarity score calcula-
tion is computationally less expensive than the maximum 
common substructure-based approach or shape-based 
approach (Openeye Shape Toolkit) and retains the 3D 
conformation [30, 31].

Q–Q matrix
The Q–Q matrix contains the pairwise similarity scores 
of all the ligands belonging to a candidate target. Its 
dimensions were up to 15,000 × 15,000. Let MQ−Q be 
the similarity matrix obtained from 17 independent tar-
gets; its elements a1,1, . . . , a15,000,15,000 are set of pairwise 
similarity scores of ligands belonging to a certain target. 
These matrices can be regarded as benchmarks for meas-
uring target-specific (collective and global) information. 
The descriptive statistics (density information) of the 
Q–Q elements are expected to differ among the targets. 
However, it preserves the stability of ligand sampling.

Q–L vector
Next, we prepared the Q–L similarity vector to express 
and measure the interaction between a (certain) query 
and the candidate target. These vectors preserve ligand-
specific information, whose descriptive statistics dif-
fer based on the ligand, and the size of each vector is 
1 × 15,000 (maximum). While a Q–Q matrix indicates 
the comparison of ligands “within” a target, a Q–L vec-
tor can be obtained from each column vector of the pair-
wise similarity matrix “between” two targets. This can be 
referred to as a query’s “observation” in terms of the can-
didate target’s view. Each vector is comparable to each 
matrix when they share a common ligand.

Probability density function of each vector space
In our experiment, we considered probabilistic informa-
tion reflecting the target representation and ligand-to-tar-
get interaction. Generally, the shapes of the Q–Q and Q–L 
matrices, whose number of ligands depends on the target, 
are different. A method to unify and structure their infor-
mation is to use their probability density functions. We 
determined the distributions of both the matrix and vec-
tors (Fig.  2). Each matrix density function (pdf) projects 
unique representations of each target. Specifically, the tail 
shape, symmetry, bias, and sharpness differ between the 
targets. Similarly, the vector density reflects the informa-
tion obtained from the query (ligand)–target interaction. 
Each probability density function is represented by the 
function y = p(x), and q(x) for each x-axis point divides 
the interval [0, 1] into 100 equal sections. After being 
combined with the information metric, these probability 
distributions p(x) and q(x) are the main components that 
constitute the feature vector of our classification model.

Kernel density estimation
A well-known nonparametric density estimation method, 
kernel density estimation (KDE), was selected to estimate 
the probability density function [32–35]. The built-in 
likelihood function was maximized to estimate the prob-
ability distribution function for the data obtained. For 
probability distributions obtained via KDE, the probabil-
ity of points on each x-axis can be obtained as follows:

MQ−Q =




a1,1 a1,2 · · · a15,000
· · ·

a15,000,1





MQ−L =





b1
b2
· · ·

b15000,1
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In KDE, when the input matrix and vector are con-
structed, the estimation is performed using a Python 
script, and a 1 × 100 vector containing each pdf value 
is output. Scipy’s Python package [36], which automati-
cally selects the optimal bandwidth for KDE, allows us to 
apply a Gaussian kernel. We confirmed that the density 
structure in this study rarely depends on the KDE meth-
odology and bandwidth. Both Silverman’s and Scott’s 
methods yielded satisfactory results. Moreover, such 
a nonparametric approach provides flexible and stable 
results regardless of the experimental environment, and 
also provides results with fewer density estimation errors. 
In this study, KLD was used to calculate the “difference” 
between the estimated density functions from each Q–Q 
matrix and Q–L vector. The difference between the den-
sity models is interpreted as a measure of a query’s inter-
action with a target.

KLD
KLD is a relative entropy that measures whether two 
probability density functions are different or equal [37–
39]. Lower KLD values imply a higher similarity between 
two density functions and vice versa. The KLD values 
of each query serve as a metric to measure the  relative 
similarity of the query against possible targets. The fea-
sibility of a query belonging to a target was determined 
by comparing the KLD values of the mapped Gaussian 
mixture model [26]. In other words, KLD can be com-
puted from the pdf in [0, 1]. Let q(x) be the 17 Q–Q den-
sities postulated to be fixed to describe the representative 
characteristics of certain targets. Our observation of a 

p̂(x) ∝

100∑

i=1

kernel

(
x − xi

(Bandwidth)

) ligand toward a candidate target, p(x), was obtained from 
the Q–L vector. We used KLD to measure the degree 
to which the Q–L vector density (p(x)) differs from the 
17 matrices (i.e., the candidate target density, q(x)). The 
divergence between the query and query similarity den-
sity function and the Q–L density measures the magni-
tude of the difference between a query and a candidate 
target and illustrates the process by which KLD is cal-
culated. To calculate the KLD directly, a small number 
is added to the functional value of both p(x) and q(x) by 
considering the point where q(x) is zero. Let P = {p_1,…, 
p_17}, q = {q1,…, Q_17}. Subsequently, the KLD is calcu-
lated as follows:

Seventeen KLD values and the ligands (query) from 
the candidate targets were obtained. The divergence of q 
from p approximates to a minimum if the Q–L density is 
similar to the Q–Q density, such that the value provides a 
measurement of the distance between a query and several 
candidate targets for a certain query. In general, a small 
KLD value suggests that a query has a high similarity to 
the target, which corresponds to whether a certain query 
belongs to the target and vice versa. In random-forest 
(RF) models, individual KLD values become a feature 
of each query that describes the measurement from the 
viewpoint of the candidate target. Finally, we obtained a 
labeled vector with a  divergence measuring 1 × 17 from 
each ligand (query) for the RF classifier.

RF classifier
The  RF models, which comprise an ensemble of sev-
eral decision-tree models, were selected for this 

KL(p|q) =
∑

x
p(x)ln

p(x)

q(x)
∗ dx +

∑
x
(q(x)− p(x)) ∗ dx

Fig. 2 Transformation of Q–Q matrix or Q–L vector into KDE distribution
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nonparametric methodology [40, 41]. The well-known 
classification and regression tree algorithm can be eas-
ily extended to large-scale data [42–46]. We considered 
a feature measuring 17 × 1 for each ligand. Each query 
was labeled with its target number (1, 2, …, 17), and each 
decision process of the RF algorithm was generated by 
comparing the KLD values of each query. For the 17 × 1 
feature vector, which comprises KLD values, the target 
was predicted by combining the decisions from indi-
vidual features. In other words, by measuring the KLD 
values, the RF classifier was instructed to determine 
whether a query is suitable for a target. The RF classi-
fier implicitly facilitated correspondence in the value of 
KLD between such a similarity density and an indirect 

difference between a query and a candidate target. The 
optimal parameters for our RF model were automatically 
adjusted using the scikit-learn package [36]. In our exper-
iment, the RF predicted the most probable target from 
the KL-divergence measured by each candidate target. 
Combining nonparametric density estimation and KLD, 
the RF model can provide a solution to the DTI predic-
tion problem.

Results and discussion
In this study, the probabilistic modeling of chemical 
similarity was performed to describe the features of a 
certain ligand (drug) in the RF model. First, similarity 
information was implemented into the KLD equation via 

Fig. 3 Comparison of their probability densities with a 3D similarity distribution (of the Q–Q matrix). A 3D similarity histogram and probability 
densities, GMM (n = 2) and KDE of sigma opioid receptor (Q3), B 3D similarity histogram and probability densities, GMM (n = 2) and KDE of fibroblast 
growth factor receptor 1 (Q10), and C Heterogenous 3D similarity distribution between three targets, heat shock protein 90 (Q2), fibroblast growth 
factor receptor 1 (Q10), serine threonine‑protein kinase mTOR (Q14). X‑axis: 3D similarity (Jaccard–Tanimoto coefficient), Y‑axis: relative frequency
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nonparametric density estimation. Second, the calculated 
KLD values enabled quantitative comparisons between 
targets and a ligand (query). Finally, the RF classifier was 
built using the KLD feature vectors for DTI prediction. In 
this section, we present the results of our study, including 
the predictive power of the RF classifier and the results of 
feature analysis.

Representation of targets and ligands via nonparametric 
probability distribution model
Herein, we introduce the terminology “target class.” 
Because a Q–Q matrix is obtained from a group (a class) 
of ligands sharing a target protein, the matrix character-
izes a target using its ligand information to represent the 
target under the chemocentric assumption [26, 47]. Thus, 
to conveniently name the group of a specific Q–Q matrix, 
we named each group of the target class with its target 
name. The similarity information of the target classes 
was represented by a nonparametric probability distri-
bution model of the respective Q–Q matrix. Whereas 
many classes were slightly skewed but similar to a Gauss-
ian distribution, some classes differed significantly from 
the  Gaussian distribution, e.g., the sigma opioid recep-
tor (Q3) of Fig.  3A, fibroblast growth factor receptor 
1(FGFR1) of Fig. 3B shows that the probability density of 
each target class can be severely asymmetric and skewed, 
rendering it difficult to assume structural consistency. 
Notably, FGFR1 (Q10), which contains > 1000 ligands, 
cannot be fitted well to a Gaussian model. Without 
structural (e.g., Gaussian and gamma) assumptions on 

similarity data, nonparametric density estimation pro-
vides more flexibility and less information loss than pre-
vious Gaussian mixture models (GMM) [26]. As shown 
in Fig.  3 and Additional file  1: Figure S1, the KDE per-
fectly fits the unique distribution of the respective target 
classes. The results in Fig.  3 are different from most of 
the studies involving chemical similarity, which assume 
that the similarity distribution is a Gaussian distribution 
[48]. Because the composition of the target classes differs 
based on the orthosteric ligands, allosteric ligands, and 
non-direct binding regulators, their distributions are dis-
similar to each other and do not conform to the Gaussian 
distribution. Thus, we conclude that the KDE distribution 
is a more reasonable method than the parametric GMM 
for describing chemocentric DTI prediction.

In addition to the representation of targets, the rela-
tionship between a specific ligand (drug) and a target was 
represented in the KDE model of the respective Q–L vec-
tor. The data dimensions between the Q–L vectors dif-
fered significantly due to the different number of ligands 
within a target class (the maximum size of a Q–L vector 
was 15,000). However, the KDE provided a stable (suffi-
ciently good) density distribution regardless of the data-
set size. The probability density distribution describes 
the respective pair’s characteristics (a ligand and a tar-
get class) and allows a comparison between the “target 
class–drug” pairs. In other words, the KDE distributions 
of the Q–L vectors imply DTIs. Whereas a pairwise com-
parison within a fixed target class is facile and reason-
able (e.g., Drug 1⎼Target 1 (D1–T1) vs. D2–T1), the 

Table 1 KLD between target pairs (Q–Q matrix vs. another Q–Q matrix, 17 × 17 target)a

a The lower KLD values indicate that the pairs has similar distribution

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0.00 0.11 0.57 0.12 0.02 0.03 0.38 0.13 0.15 0.47 0.29 0.11 2.54 0.09 0.04 0.02 0.03

2 0.11 0.00 0.50 0.22 0.16 0.21 0.13 0.41 0.08 0.42 0.18 0.33 1.85 0.32 0.13 0.16 0.17

3 0.36 0.55 0.00 0.20 0.43 0.41 1.13 0.33 0.89 0.27 1.17 0.37 1.15 0.29 0.40 0.27 0.48

4 0.09 0.24 0.23 0.00 0.13 0.14 0.66 0.10 0.43 0.17 0.66 0.06 1.38 0.06 0.19 0.07 0.14

5 0.02 0.18 0.63 0.17 0.00 0.01 0.40 0.10 0.15 0.66 0.27 0.11 2.90 0.08 0.03 0.04 0.01

6 0.04 0.23 0.69 0.21 0.01 0.00 0.46 0.10 0.18 0.77 0.28 0.13 3.19 0.09 0.04 0.05 0.02

7 0.35 0.11 0.66 0.53 0.40 0.45 0.00 0.80 0.09 0.79 0.09 0.71 2.07 0.68 0.33 0.44 0.41

8 0.18 0.55 0.54 0.14 0.17 0.15 1.18 0.00 0.74 0.49 1.03 0.03 2.49 0.01 0.24 0.09 0.17

9 0.13 0.09 0.78 0.38 0.13 0.16 0.10 0.42 0.00 0.86 0.03 0.39 2.98 0.36 0.11 0.21 0.14

10 0.40 0.61 0.31 0.16 0.48 0.48 1.28 0.32 1.00 0.00 1.33 0.27 0.87 0.27 0.52 0.28 0.49

11 0.28 0.26 1.08 0.68 0.25 0.25 0.16 0.61 0.04 1.45 0.00 0.64 4.21 0.57 0.18 0.38 0.27

12 0.12 0.39 0.47 0.07 0.12 0.12 0.86 0.03 0.53 0.34 0.76 0.00 2.11 0.02 0.22 0.07 0.11

13 3.43 3.99 2.22 2.39 3.49 3.47 4.80 2.71 4.52 1.74 4.98 2.51 0.00 2.72 4.08 3.30 3.45
14 0.12 0.40 0.45 0.07 0.12 0.11 0.95 0.01 0.58 0.38 0.84 0.02 2.15 0.00 0.18 0.05 0.12

15 0.05 0.17 0.72 0.28 0.04 0.04 0.41 0.19 0.15 0.84 0.26 0.23 3.31 0.17 0.00 0.07 0.06

16 0.03 0.18 0.45 0.08 0.04 0.05 0.56 0.08 0.30 0.38 0.49 0.07 2.30 0.05 0.06 0.00 0.05

17 0.03 0.19 0.75 0.21 0.01 0.02 0.43 0.11 0.15 0.73 0.28 0.10 3.21 0.10 0.05 0.05 0.00



Page 7 of 13Ahn et al. Journal of Cheminformatics           (2022) 14:67  

target-wise comparison (D1–T1 vs. D1–T2) or a cross-
comparison (e.g., D1–T2 vs. D2–T1) is difficult. Notably, 
the difference between the characterized targets (con-
founding effects) should be adjusted for the pair compar-
ison. Thus, pair comparisons should be generalized and 
quantified across the targets for DTI prediction. To per-
form this, we used the KLD as an information measure 
or relative entropy. Because the KLD measures the differ-
ence between two statistical or probabilistic distributions 
[26], it can provide the similarity information of any “tar-
get class–drug” pair considering the characteristics of the 

target in the pair. This allows us to incorporate the char-
acteristics of targets q(x) into the pairwise comparison, 
p(x) (the equation in Subsection 2.7 of the Materials and 
Methods section) for cross-comparison (e.g., D1–T2 vs. 
D2–T1) or target-wise comparison (D1–T1 vs. D1–T2). 
In other words, the probability density function q(x) is 
the KDE model of the respective Q–Q matrix. There-
fore, the cross- or target-wise comparison changes the 
q(x) across targets. Meanwhile, the three comparisons 
require only two q(x) generated from two Q–Q matri-
ces and three p(x) generated from three Q–L vectors. 
Thus, paradoxically, the “extraordinary” density distribu-
tion (showing severe asymmetry, skewness, and a fat tail) 
is preferred to verify the practicability of this method, 
where the information entropy (KLD) is calculated and 
used without considering a statistical rule or a cut-off 
(e.g., comparison between the significance and p-value 
under the null hypothesis).

KLD as DTI descriptor
To our knowledge, chemical similarity is not popu-
larly used as a single feature in DTI prediction [5–12, 
24, 25]. Thus, we investigated a chemo-centric DTI 
descriptor able to give better discriminative power 
than the similarity scores of one drug for multiple tar-
gets. As mentioned above, the probability densities of 
target classes vary considerably (Fig.  3). Thus, when a 
new drug is compared with multiple target classes, the 
relative location of a similarity score in the probability 
densities, like the  E-value of SEA, is more important 

KL(p|q) =
∑

x
p(x)ln

p(x)

q(x)
∗ dx +

∑
x
(q(x)− p(x)) ∗ dx

Fig. 4 Comparison between 2 and 3D based KLD values between target (Q‑Q) density and ligand distribution (Q‑L). X‑axis: KLD value, Y‑axis: 
relative frequency. The Q‑Q density in the orange colored histogram is FGFR1 (Q10), that of the blue colored is mTOR (Q14) A KLD measurement 
from 3D‑similarity (E3FP fingerprints of conformers from FGFR1 and mTOR ligands), B KLD measurement from 2D‑similarity (Morgan fingerprints of 
ligands from FGFR1 and mTOR)

Table 2 The performance of the RF model in predicting DTI

Target no. Precision Recall F1‑score

Q1 0.91 0.93 0.92

Q2 0.97 0.95 0.96

Q3 0.99 0.95 0.97

Q4 0.98 0.95 0.97

Q5 0.88 0.92 0.9

Q6 0.84 0.79 0.81

Q7 0.95 0.97 0.96

Q8 0.83 0.87 0.85

Q9 0.87 0.91 0.89

Q10 0.97 0.9 0.94

Q11 0.76 0.78 0.77

Q12 0.85 0.9 0.87

Q13 1 1 1

Q14 0.81 0.9 0.85

Q15 0.84 0.79 0.81

Q16 0.93 0.92 0.93

Q17 0.79 0.67 0.73
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than the highest score (e.g., max of Tc) extracted from 
similarity scores [47]. Meanwhile, the KLD calculation 
includes the relationship between all ligands of a tar-
get class based on the q(x) of the Q–Q matrix (target-
specific information) and the relationship of a query 
drug with a target class based on the p(x) of the Q–L 
vector (ligand-specific information). The  KLD value 
doesn’t reply on either the highest similarity score 
or the  cut-off (of similarity score, statistical Z-score, 
p-value, E-value), but describes the relative similar-
ity between a new drug and a target class. When a new 
drug shows a smaller KLD value for a specific target 
class than those for other classes, we predict the DTI 
of the drug–target pair. This point renders KLD values 
as a new chemo-centric DTI descriptor distinct from 
any molecular descriptor or similarity score (one KLD 
value; relationship of one drug–target pair vs. one simi-
larity value; that of one drug–drug pair vs. one molecu-
lar descriptor; information regarding one drug). Thus, 
we attempted to determine the potential of distribution 
divergence as a DTI descriptor. As mentioned in  the 
“KLD as DTI descriptor” section, the KDE distribution 
showed a suitable proxy representing the q(x) of the 
Q–Q matrix and the p(x) of the Q–L vector. The diver-
gence quantifies the DTI prediction between an indi-
vidual drug and target class by comparing q(x) and p(x).

The probability density q(x), which identifies the rel-
evance between ligands “within” a target class, provides 
target-specific information. Thus, notably, both individ-
ual (ligand–target) density and collective (target–target) 
density can be compared via the KLD. For collective (tar-
get–target) density, we could examine the target–target 
density with pairwise target analysis (Table  1). In other 
words, the KLD values between paired target classes 
(Q–Q vs. Q–Q matrix) were calculated. In addition, the 
reverse divergence quantity was calculated by substituting 
q(x) and p(x) in the reverse position (Table  1). The dual 
quantities (KLD and reverse KLD) describe the relevance 
between the target classes. The pair with lower diver-
gence suggests that the target classes exhibit similar dis-
tributions, implying similar characteristics between them. 
The KLD measures the extent to which a query (drug or 
target) is different from a target. Thus, we spontaneously 
applied this notion to the DTI classification model.

Furthermore, the results in Fig.  4 show that the KLD 
values are applicable to both 2D and 3D similarity-based 
DTI predictions. Because the current 2D methods can be 
used in the DTI network and QSAR of multiple classes 
without causing the uncountable data point issue (con-
formational sampling), the utility of the KLD as a DTI 
descriptor may not be as significant in 2D methods as it 
is in 3D methods. By contrast, if a novel target contains 

Fig. 5 The ROC curves of the test data show DTI prediction performance. X‑axis: false positive rate; Y‑axis: true positive rate. Each line indicates the 
respective target class with AUC values
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only a few ligands, then 3D similarity methods can pro-
vide more enriched information regarding the target 
using conformational ensembles, and our method can 

assist known 2D methods and other DTI prediction. 
Moreover, as shown in our previous study [26], although 
2D methods are more cost-effective in terms of on-target 
(primary target) predictions than 3D methods [17, 21], 
the 3D similarity remains crucial for the in silico target 
screening of unprecedented drugs [49] because (1) novel, 
unprecedented drugs exhibit extremely low 2D similarity 
to known drugs [50–52], (2) novel pharmacological pro-
files of drugs are more frequently determined using simi-
lar 3D off-target predictions [53], and (3) realistic drug 
properties can be generated from their factual and flex-
ible 3D structures (conformers) [23, 54, 55].

DTI prediction of RF classifier
A binary  classification model was constructed using the 
KLD for the DTI prediction of individual query drugs. 
Predictive models from divergence-coordinated features 
were investigated based on training (75%) and test (25%) 
datasets. The RF algorithm showed reliable statistical per-
formance and is a desirable classifier for DTI prediction 
(Table 2, Figs. 5, 6, 7). Despite the imbalanced number of 
ligands between different targets, the ensemble learning 
indicated acceptable precision and recall in the test set for 
every target (Table 2). Epidermal growth factor receptor 
(Q17), which shares some ligands with all targets except 
for Q4 and Q13, showed lower performance than that 
of other targets. Similarly, Q11 also shared some ligands 
with twelve targets. Based on fivefold cross-validation, the 
average validation accuracy was 0.88. Moreover, we visu-
alized our model by constructing both the receiver oper-
ating characteristic (ROC) curve and a box plot. As shown 
in Fig. 5, the area under the curve (AUC) values (> 0.96), 
which indicate the area under the ROC curve, signify pre-
dictive performance with a successful confusion matrix of 
Fig. 6A (also see Additional file 1: Table S3). Furthermore, 
the ROC curve shows no significant dependence on accu-
racy among the ligands classified by the targets. Further-
more, the average precision based on the percentile rank 
of the KLD features described the distributional infor-
mation of the predictive model in the box plot (Fig.  7). 
The patterns in the “RESPONSE” of the RF classifier are 
shown in the box plot. The horizontal line (orange) shows 
a skewed decision boundary in the RF classifier, which 
is inherited from the characteristics of our RAW dataset 
with an irregular probability density.   

In sequence, we compared the performance of 
the  KLD-RF model with other chemical similar-
ity-based DTI studies (PASS, SEA, CSNAP2D, and 
CSNAP3D) as shown in Table 3 [5, 24, 25, 47, 56–58]. 
Despite the difference in the types  of used data (tar-
get and their ligands), these studies were compared 
through statistical values, recall, and AUC. Notably, the 

Fig. 6 The confusion matrix of the test set showing DTI prediction 
performance. X‑axis: True DTI; Y‑axis: Predicted DTI. A 3D KLD‑RF 
classifier, B 2D KLD‑RF classifier

Fig. 7 The box plots showing DTI prediction performance. X‑axis: 
percentile rank of KLD features; Y‑axis: average precision
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CSNAP3D cannot consider conformational flexibil-
ity. In addition, SEA has the assumption of a probabil-
ity density function. Now that the utility potential  of 
KLD-RF was  presented, we tried to build the KDL-RF 
model using 2D similarity and out-of-set data (Table 4). 
While  the probability density function of the  sigma 
opioid receptor (Q3) was fitted to a  3D similarity his-
togram (of 634 conformers), only five ligands were too 
small to build a  2D histogram of Q3. Thus, the  Q–Q 
matrix of the target was not used and only Q–L vectors 
between the five ligands and 16 targets were calculated 
to make 16 KLD feature vectors. Clearly, the  average 
performance of 3D KLD-RF was superior to that of 2D 
KLD-RF. Moreover, the 3D KLD-RF model was vali-
dated by another out-of set, unprecedented bis-N,N-
diarylamino tetrahydropyran compounds, which are 
modulators for Vitamin D receptor (VDR) expression) 
[26, 50]. In this case, similarly to target Q3 in 2D KLD-
RF, the VDR modulators have a  target label (Q0) but 
don’t have a KLD vector for VDR. The out-of-set vali-
dation showed comparable performance to the valida-
tion of 17 targets. 

Table 3 Test comparison between the KLD–RF model and DTI prediction models

AUC of CSNAP3D*: the average area-under-curve (AUC) was calculated from the curve having rank orders (%) as x-axis and TPR as y-axis. The AUC range was achieved 
from used different Sim metric. CSNAP2D, SEA, and PASS**: the described performance metric, TPR and AUC were citied from CSNAP3D [25]. The AUC of SEA was citied 
[59]

Model Test Set Drug structure (Sim) Similarity metric Highest recall AUC Refs.

KLD‑RF 17 Targets in ChEMBL Multiple Conformers (3D‑Sim) KLD vector from TC 1.00
Average:
0.889

Average:
0.992
HSP90:
0.998

This Work

CSNAP3D 6 Targets in DUD One Conformer with Lowest 
Energy
(3D‑Sim)

28 including TC with cut‑off 
0.85

0.98 AUC*
0.54—0.70
HSP90:
0.79

Lo et al. [25]

CSNAP2D** 6 Targets in DUD 2D Structure
(2D‑Sim)

TC with cut‑off 0.6 0.83 – Lo et al. [24]

SEA** TC with cut‑off 0.57 0.64 0.972*** Keiser et al. [47]

PASS** Probability Function 0.11 – Lagunin et al. [56]

SwissTarget 17 Targets in ChEMBL 2D + 3D‑Sim Probability Function from 2 
and 3D TC

0.99
Average:
0.748

Average:
0.869

Gfeller et al. [58]

Table 4 Comparison between KLD–RF model and DTI prediction models

2D KLD-RF*: Because Sigma opioid receptor of Q3 has 5 ligands not enough to make probability density (2D: 5 ligands vs 3D: 634 conformers), KLD-Q3 feature (KLD 
feature vector of Q3) was excluded in 2D KLD-RF model and just data of Q3 were included during training/test

2D KLD‑RF* 3D KLD‑RF

Molecular representation Morgan 2D E3FP (Omega Conf ) E3FP (Omega Conf ) E3FP (Rdkit Conf )

Number of KLD feature vectors 16 17 17 17

Number of targets 17 17 17 + 1(out‑of‑set) 17

Out‑of‑bag score estimate 0.786 0.876 0.874 0.811

Mean accuracy score 0.794 0.882 0.884 0.815

Fig. 8 Correlation map between KLD feature vectors in the RF model

superiority of KLD-RF over CSNAP3D was observed 
in the common target HSP90(Q2). Moreover, the per-
formance of network-based methods (CSNAP2D and 
CSNAP3D) and SEA depends on the similarity cut-off. 



Page 11 of 13Ahn et al. Journal of Cheminformatics           (2022) 14:67  

Feature correlation and importance of KLD‑based classifier
To interpret the DTI model, we conducted a feature anal-
ysis of the correlation matrix between features (Fig.  8) 
and pruned less important features (Fig. 9). In addition to 
the correlation, the relative importance of a feature in an 
RF model can be measured with respect to the depend-
ent variable. Figure 8 shows the pairwise correlation coef-
ficients, which reflect the amount of dependence among 
the features. Each value corresponds to a lower diver-
gence between the q(x) densities of target classes. By pro-
viding a criterion for variable selection, a high correlation 
is achieved among the subset of features, which reduces 
the importance of such features and hence the predic-
tion accuracy. However, most of the DTI features, except 
for the 17th feature vector (generated from the ligands of 
the epidermal growth factor receptor Q17), showed an 
acceptable correlation coefficient of less than 0.7. Sev-
eral methods can be used to calculate the feature impor-
tance in terms of their effect on the model. The most 
typical metric, i.e., the mean decrease in impurity, defines 
the mean impurity reduction as the importance crite-
rion when each feature is deleted in a model. If the cor-
responding feature value is randomly assigned, then the 
predicted value become less than the benchmark value, 
and vice versa. The higher importance of a feature in our 
study implies the uniqueness of the q(x) density function, 
which is comparable. Figure 9 illustrates the importance 
of these features in the DTI model. Generally, pruning 
less important features is expected to result in higher 

classification accuracy. In our DTI model, more than 10 
features indicated an accuracy exceeding 0.8. Feature 
selection is vital to model stability and accuracy. Focus-
ing on small numbers of features (10 to 15) is acceptable 
to avoid dimensionality issues. Because the standard size 
of the training samples is 15,000 for each target, 10 to 15 
features are reasonable to avoid overfitting. 

Conclusion
Herein, we presented an RF model to identify the targets 
of a drug using KLD vectors. Our novel combination of 
nonparametric density estimation, KLD, and RF mod-
els resulted in an effective chemocentric DTI prediction 
for  drug discovery. Examples showing the use of a new 
similarity vector and the consideration of the heteroge-
neity of similarity distributions for reliable DTI predic-
tions were presented. To our best knowledge, this study 
is the first 3D-chemocentric DTI classifier without a 
user-defined similarity cut-off. The RF model uses an 
information metric-designed feature vector to leverage 
more specific information than our previous approaches. 
Furthermore, pairwise comparison of ligands and their 
candidate targets explicitly describes a ligand’s charac-
teristics, which serves as a bridge for an ML classifier. 
In a computationally limited environment, the dimen-
sions (the size of the feature vectors) can be controlled 
based on the number of target spaces. In addition to the 
Jaccard–Tanimoto coefficient, another similarity metric 

Fig. 9 Feature pruning of less important features to show out‑of‑bag score. X‑axis: the number of KLD feature vectors; Y‑axis: the accuracy with 
respect to the number of features
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(e.g., the cosine similarity and Soergel similarity) of the 
descriptor (fingerprint) becomes a proxy for describ-
ing a ligand in the context of our methodology. In future 
studies, we will further clarify this framework based on 
diverse ML algorithms. In particular, the development 
of novel unprecedented drugs will be applied to our DTI 
prediction framework to expand our method to more 
practical biomedical contexts.
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