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Abstract: In the last few decades, attention on new natural antimicrobial compounds has arisen due
to a change in consumer preferences and the increase in the number of resistant microorganisms.
Macroalgae play a special role in the pursuit of new active molecules as they have been traditionally
consumed and are known for their chemical and nutritional composition and their biological
properties, including antimicrobial activity. Among the bioactive molecules of algae, proteins and
peptides, polysaccharides, polyphenols, polyunsaturated fatty acids and pigments can be highlighted.
However, for the complete obtaining and incorporation of these molecules, it is essential to achieve easy,
profitable and sustainable recovery of these compounds. For this purpose, novel liquid–liquid and
solid–liquid extraction techniques have been studied, such as supercritical, ultrasound, microwave,
enzymatic, high pressure, accelerated solvent and intensity pulsed electric fields extraction techniques.
Moreover, different applications have been proposed for these compounds, such as preservatives
in the food or cosmetic industries, as antibiotics in the pharmaceutical industry, as antibiofilm,
antifouling, coating in active packaging, prebiotics or in nanoparticles. This review presents the main
antimicrobial potential of macroalgae, their specific bioactive compounds and novel green extraction
technologies to efficiently extract them, with emphasis on the antibacterial and antifungal data and
their applications.

Keywords: antimicrobial applications; antimicrobial compounds; bioactive compounds; macroalgae;
novel technologies

1. Introduction

Approximately 70% of the Earth’s surface is covered by marine waterand thus, the marine world
is home to a huge diversity of species. Several organisms have been proposed as sources of known
beneficial compounds and other new molecules with biological potential [1,2]. Nowadays, there are
more than 200,000 eukaryotic marine species validated, among which, algae contribute nearly 44,000
described species [3]. Among algae, macroalgae (also called seaweed) constitute a new source of
compounds, as they have been used traditionally for nutritional or medicinal purposes [4]. They are
defined as marine macroscopic eukaryote photosynthetic organisms. Among them, plenty of divisions
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can be established depending on the chosen criteria, however the most common classification divides
macroalgae in three groups depending on their pigments: green (Chlorophyceae), red (Rhodophyceae)
and brown algae (Ochrophyta) [5,6].

More recently, functional products and especially, natural functional ingredients have enjoyed a
boost in consumer demand. These products are usually preferred by the client over synthetic ingredients;
a trend that is growing not only in the food industry but also in other sectors. In this context, macroalgae
entail a source of valuable compounds for their nutritional and chemical composition [7]. Algae’s
nutritional profile usually consists of minerals (7–36%), lipids (1–5%), polysaccharides (15–76%) and
proteins (5–47%) [3,8,9]. Concretely, algae polysaccharides (namely, agar, alginate or carrageenans,
among others) have been widely studied for their food applications as thickener, stabilizer or emulsifier
agents [10,11]. On the other hand, even though macroalgae have a low lipid content, they have a high
proportion of poly-unsaturated fatty acids (PUFAs) and other lipid compounds with beneficial health
properties [9,12]. Moreover, they also show an elevated content of micro-nutrients such as vitamins and
other secondary metabolites, usually antioxidants, such as polyphenols or pigments [10]. In sight of the
variety of active molecules reported in algae, their extracts have been submitted to different bioactivity
tests showing plenty of biological properties, such as: anti-inflammatory, antioxidant, antimicrobial,
antidiabetic, anticancer, neuroprotective and photoprotective, among others [13–15]. Regarding all
these aspects, macroalgae may be considered as a source of active molecules with biological properties
and with a huge potential for application in food, cosmetic and pharmacological industries, not only
because of their composition but also for their diversity and the availability of resources [16–18].

During the last decades, two main trends have stimulated interest in new natural antimicrobial
compounds. First, natural ingredients with preservative properties have experienced an increasing
demand, in replacement of the use of synthetic ingredients, to prevent microbial contamination as they
are safer, ecofriendly, they possess a wide spectra of actions and they avoid some of the side-effects
associated with synthetic antimicrobials [19,20]. Second, in recent decades, an increase in the number
of pathogens (bacteria and fungi) resistant to antimicrobial drugs has occurred. This issue is considered
now as a public health problem since traditional antibiotics and antifungals have lost efficacy [21].

In Figure 1, a schematic summary of the main resistance acquisition pathways (fundamentally by
mutation or by acquiring mobile genetic elements with resistance genes) [22] and the main mechanisms
of resistance to antibiotics is shown. In this context, marine macroalgae have shown antimicrobial
potential and in some cases, a synergistic effect with conventional antimicrobial agents against
drug-resistant pathogens [1]. Thus, this association can be applied to the pharmaceutical sector and
also to the food industry, where consumer resistance is also a reality and food-spoilage-microorganisms
control is a must in the food chain supply [23]. Nevertheless, the search for antimicrobial compounds
in algae is not a recent idea. A study carried out in 1974, screened 151 species of British marine algae
against different microorganisms in order to find new alternatives for the production of antibiotics [24].
However, considering the reviewed bibliography, the vast majority of the studies have focused on
the general screening of the antimicrobial properties of algae extracts, whereas information about the
purified molecule’s specific mechanism of action is quite scarce, with polyphenols being the molecules
most studied [20,23]. Moreover, research has mostly focused on clinical bacteria, not on food related
pathogens [25].
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Figure 1. Summary of the resistance acquisition pathways: mutation and mobile genetic elements: by 
transduction, transformation or conjugation. Schema of the six main mechanisms of antibiotics 
resistance. Modified from [1,26,27]. 
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Sometimes these compounds could be synthesized chemically, however, regarding the availability 
of algae, their recovery using green extraction technologies is an economic and environmentally 
friendly alternative that also avoids the use of dangerous chemical compounds. The extraction of 
bioactive compounds has always been a fundamental step in recovering these molecules from vegetal 
matrixes. New techniques have been developed in order to reduce extraction time, energy 
consumption, quantity of solvent, environmental implications, economical cost and waste 
productions while increasing the extraction efficiency and the quality of the obtained extract [29].  

The most common classic technique applied to extract bioactive compounds from macroalgae is 
the maceration at different temperatures, followed by Soxhlet. It is also notable that the most 
frequently chosen solvents are methanol and ethanol even though other solvents with different 
characteristics are also successfully used. In this regard, Table 1 presents a compilation of the last 10 
years of literature, refereeing studied algae species, the focus on the extraction conditions and 
highlighting the major outcomes achieved. Nowadays, novel liquid–liquid and solid–liquid 
extraction techniques are currently more applied, including: supercritical, ultrasound, microwave, 
enzymatic, high pressure, accelerated solvent and intensity pulsed electric fields extraction 
techniques [30]. In this regard, the combination of green technologies and safe environmental 
solvents is desirable to obtain efficient extraction of biocompounds, preserving their biological 
properties and opening the door to their implementation in the food, cosmetic and pharmaceutical 
industries. Once the target compounds are efficiently well extracted, the resultant extracts can be 
incorporated into different products. In general, the most common application would be the 
incorporation into food matrixes as preservatives [25], to cosmetic products [31] or as antibiotics with 
a synergistic effect on the pharmaceutical industry [1]. Moreover, other applications have been 
investigated such as antibiofilm [32], antifouling [33], coating in active packaging [34] or as prebiotics 
[11], among others. Therefore, the aim of this article is to review the main compounds responsible for 
the antimicrobial activity of algae, the novel extraction techniques for obtaining them and their 
applications.  

Figure 1. Summary of the resistance acquisition pathways: Mutation and mobile genetic elements:
By transduction, transformation or conjugation. Schema of the six main mechanisms of antibiotics
resistance. Modified from [1,26,27].

Given the actual interest in identifying antimicrobial compounds from algae, it is essential to
achieve profitable and sustainable recovery of these compounds, in an easy and fast process [28].
Sometimes these compounds could be synthesized chemically, however, regarding the availability of
algae, their recovery using green extraction technologies is an economic and environmentally friendly
alternative that also avoids the use of dangerous chemical compounds. The extraction of bioactive
compounds has always been a fundamental step in recovering these molecules from vegetal matrixes.
New techniques have been developed in order to reduce extraction time, energy consumption, quantity
of solvent, environmental implications, economical cost and waste productions while increasing the
extraction efficiency and the quality of the obtained extract [29].

The most common classic technique applied to extract bioactive compounds from macroalgae is
the maceration at different temperatures, followed by Soxhlet. It is also notable that the most frequently
chosen solvents are methanol and ethanol even though other solvents with different characteristics
are also successfully used. In this regard, Table 1 presents a compilation of the last 10 years of
literature, refereeing studied algae species, the focus on the extraction conditions and highlighting the
major outcomes achieved. Nowadays, novel liquid–liquid and solid–liquid extraction techniques are
currently more applied, including: supercritical, ultrasound, microwave, enzymatic, high pressure,
accelerated solvent and intensity pulsed electric fields extraction techniques [30]. In this regard, the
combination of green technologies and safe environmental solvents is desirable to obtain efficient
extraction of biocompounds, preserving their biological properties and opening the door to their
implementation in the food, cosmetic and pharmaceutical industries. Once the target compounds are
efficiently well extracted, the resultant extracts can be incorporated into different products. In general,
the most common application would be the incorporation into food matrixes as preservatives [25],
to cosmetic products [31] or as antibiotics with a synergistic effect on the pharmaceutical industry [1].
Moreover, other applications have been investigated such as antibiofilm [32], antifouling [33], coating
in active packaging [34] or as prebiotics [11], among others. Therefore, the aim of this article is to
review the main compounds responsible for the antimicrobial activity of algae, the novel extraction
techniques for obtaining them and their applications.
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Table 1. Antimicrobial activity of algae crude extracts obtained using classic extraction technologies
from 2010 to 2020.

Alga Species Conditions Bacteria Tested Main Outcomes Ref.

L. brandenii—(India)
HAE, MeOH:

CHCl3 (6:4), 35 ◦C,
120 rpm, 7 days

S. aureus/B.
subtilis/M.luteus/R.

rhodochrous/E.
coli/P.aeruginosa/Vibrio

cholerae/Salmonella
typhi/Streptococcus

pneumoniae

All organisms were
inhibited. High

activity against B.
subtilis whereas it

was moderate
against E. coli

[35]

G. ornata—(Brazil) HAE, H2O, 25 ◦C,
24 h

B. subtilis/S. aureus/E.
aerogens/E. coli/P.

aeruginosa/S. choleraesuis/S.
typhi

Only exhibits
inhibition to E. coli [36]

C. rubrum—(Chile) HAE (3x), 96%
EtOH, 24 h. S. parasitica/Y. ruckeri

Antibacterial and
antifungal activities

against fish
pathogens

[37]

G. changii—(Malaysia)
Solid liquid

extraction, MeOH,
4 days.

P. aeruginosa
Minimal inhibitory
concentration (MIC)

6. 25 mg/mL
[38]

P. capillacea/O.
obtusiloba—(Brazil)

Solid liquid
extraction, cold Hx

and 70% EtOH.

E. coli/S. aureus/Salmonella
sp./V. harveyi

No antimicrobial
activity. [39]

P.
gymnospora—(Brazil)

Percolation with
MeOH S. aureus MIC 500 µg/mL [40]

S. latifolium/S.
platycarpum/C.

socialis—(Arabian
Gulf)

HAE extraction,
MeOH and AcO 25
◦C, 150 rpm, 7 days

S. aureus/S.
xylosus/MRSA/E. faecalis/B.

subtilis/E. coli/P.
aeruginosa/Salmonella sp./K.

pneumoniae/C. albicans

Higher activity
against Gram

positive bacteria than
Gram negative

[41]

L. japonica—(Korea,
Japan, China)

HAE (x3), EtOH, 25
◦C, 1 day.

S. mutans/S. sobrinus/A.
naeslundii/A.

odontolyticus/A.
actinomycetemcomitas/F.
nucleatum/P.gingivalis

Inhibitory activity
against all

microorganisms
[42]

D. membranacea—
(Mediterranean Sea)

Column extraction,
EtOH, AcO and

MeOH/DCM

S. aureus/S. agalactiae/B.
subtilis/E. faecium/E.

faecalis/E. coli/C. albicans

EtOH and AcO
showed higher

antimicrobial activity
[43]

S.
oligocystum—(Persian

Gulf)

HAE, hot and cold
H2O and glycerin

S. aureus/S. epidermidis/P.
aeruginosa/E. coli

Hot water extract
exhibited activity

against S. aureus, S.
epidermidis, and P.

aeruginosa

[44]

C. myrica/C. trinodis/P.
gymnospora/S.

dentifolium/S. hystrix/A.
fragilis/C. racemosa/C.

fragile—(Red sea)

HAE, MeOH, 25
◦C, 50 rpm, 7 days.

E. coli/S. aureus/E.
faecalis/Salmonella sp./B.

cereus/P. aeruginosa.

MeOH extracts P.
gymnospora and C.
fragile showed the
highest activities

[45]

S. polycystum/P.
australis—(Malasya)

HAE, Hx, DCM,
MeOH, 72 h

S. aureus/B. cereus/E. coli/E.
coli/P. aeruginosa

S. polycystum extracts
exhibited higher

bacteriostatic activity
[46]

Gracilaria
sp.—(Malaysia
farmed algae)

HAE, MeOH, 48 h
B. subtilis/S. aureus/S.
epidermidis/E. coli/V.

cholera/E. cloacae.

Moderate
antibacterial activity

but S. aureus, S
epidermidis, E. cloacae
were not inhibited

[47]
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Table 1. Cont.

Alga Species Conditions Bacteria Tested Main Outcomes Ref.

P. antillarum/P.
boergesenii/U.

flexuosa—(Persian
Gulf)

HAE, EtOAc,
MeOH; 48 h

B. subtilis/B. pumulis/E.
faecalis/S. aureus/S.

epidermidis/E. coli/K.
pneumoniae/P. aeruginosa/A.
niger/C. albicans/S. cerevisiae

A. niger, P. aeruginosa
were not inhibited. P.
antillarum extracts do
not have effect in K.

pneumoniae

[48]

U. lactuca/U.
intestinales/C.

vagabunda—(Black
sea)

HAE, EtOH 70% S. aureus/E. coli Antibacterial activity
was higher in E. coli [49]

U. rigida—(Turkey) HAE, DCM; then
DCM/MeOH

S. agalactiae./S. aureus./E.
faecalis/Micrococcus sp./V.
tapetis/V. anguillarum/V.

alginolyticus E. coli/P.
cepacia/P. fluorescens/P.

aeruginosa/A. salmonicida/A.
hydrophila/S. typhimurium

No significant
variation with

seasons. The most
sensitive bacteria

were A. salmonicida,
S. typhimurium, S.

agalactiae, A.
hydrophila, P. cepacia,

S. aureus and E.
faecalis

[50]

G. doryphora—(Egypt)
HAE, MeOH,

EtOH, EtOAc, 72 h,
150 rpm.

B. subtilis/E.
faecalis/S. aureus/E. coli/P.

aeruginosa/C. albicans

Inhibitory effects
except against E. coli [51]

E. prolifera/U.
reticulata/C. myrica/P.
pavonica/T. triquetra/S.

portieriatum/G.
multipartita—(Saudi

Arabia)

HAE, PeEt, DEt,
EtOAc, MeOH, 30
◦C, 120 rpm, 24 h

B. subtilis/MRSA/S aureus/E.
coli/K. pneumoniae/P.

aeruginosa

P. pavonica and T.
triquetra extracts
showed better

activity. In some
cases, inhibitory

effects changed with
seasons

[52]

G. multipartita/U.
reticulata/S.

marginatum—(Turkey)

HAE, Hx, DCM,
MeOH, 72 h

B. subtilis/MRSA/S. aureus/E.
coli/K. pneumoniae/P.

aeruginosa

B. subtilis, MRSA,
and E. coli were

susceptible
[53]

L. obtusa/C.
elongatum/C.

multifida—(Adriact
sea)

Soxhlet extraction,
AcO

B. mycoides/B.
subtilis/S. aureus/E. coli/K.
pneumoniae/A. flavus/A.
fumigatus/C. albicans/P.

verrucosum

All the tested extracts
showed

antimicrobial activity
[54]

C. iyengarii/S.
asperum/S.

marginatum/C. indica/S.
variegatum/S.

swartzii/S.
tenerrimum/S.

ilicifolium/I. stellata/S.
robusta/H. tuna/R.

implexum/D. dichotoma
var. intricata/D.

indica/M. afaqhusainii/J.
laminarioides—(Pakistan)

HAE, EtOH, 1
week

B. subtilis/S. aureus/E. coli/S.
typhi/P. aeruginosa/R.
solani/Macrophomina
phaseolina/F. solani/F.

oxysporum

Brown species have
shown more

potential than red
algal species.
The highest

antibacterial activity
was found in EtOH

extract of D.
dichotoma var intricata
and D. indica against

S. typhimurium

[55]

C. linum/C. rupestris/G.
dura/G. gracilis/G.

longissima/U.
prolifera—(Italy)

Soxhlet extraction,
CHCl3/MeOH, 60

◦C, 24 h

V. ordalii/V. salmonicida V.
alginolyticus/V. splendidus/V.

harveyi/V. vulnificus

Different
susceptibilities to

algal extracts were
detected. G.

longissima was the
most effective

[56]

C.
rupestris—(Mediterranean

Sea)

HAE, MeOH,
CHCl3, H2O

Enterococcus sp./S.
agalactiae/V. cholerae

Results showed
seasonal variety [57]
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Table 1. Cont.

Alga Species Conditions Bacteria Tested Main Outcomes Ref.

G. longissima—
(Mediterranean Sea)

Soxhlet extraction,
CHCl3/MeOH (2:1),

60 ◦C, 24 h

P. aeruginosa/Enterococcus
sp./S. agalactiae/V.

salmonicida/V. fluvialis/V.
vulnificus/V. cholerae/V.

alginolyticus/C. albicans/C.
famata/C. glabrata

Moderate
antimicrobial effect

except on V.
salmonicida and
fungal species

[58]

C. antemmina/C.
peltata/C.

scalpelliformis/D.
dichotoma/S.

marginatum/A.
specifera/G.

lithophilia/G.
corticata—(India)

HAE, MeOH
E. coli/P.

aeruginosa/S. aureus/K.
pneumoniae

G. lithophila presents
the most promising

results
[59]

J. rubens/C. elongata/P.
capillacea/U. fasciata/U.
lactuca/E. compressa/E.

linza/S. vulgare/C.
sinuosa—(Egypt)

HAE, EtOH 70%,
MeOH 70% AcO

70%, 150 rpm, 72 h

B. subtilis/S. aureus/E. coli/S.
typhi/K.

pneumoniae/C. albicans.

In all the tests, AcO
showed the biggest

inhibition halos
[60]

D. flabellata/P.
concrescens/L.
johnstonii/G.

martinensis/U.
lactuca/C.

fragile—(Mexico)

HAE, AcO:MeOH E. coli/S. aureus/B. cereus/B.
subtilis/S. epidermidis

L. johnstonii, D.
flabellata and U.

lactuca presented
activity against

pathogenic bacteria
tested

[61]

E. bicyclis—(South
Korea)

HAE, MeOH, 70
◦C, 3 h

C. acnes/S. aureus/S.
epidermidis/P. aeruginosa

Inhibitory effects
except against P.

aeruginosa
[62]

C. trinodis—(Persian
Gulf)—(Persian Gulf)

HAE,
DEt:EtOH:Hx

S. aureus/S. epidermidis/E.
coli/P. aeruginosa

The best Inhibitory
effect was against S.
epidermidis was the

worst against P.
aeruginosa

[63]

C. glomerata,/E. linza/U.
rigida/C. barbata/P.

pavonica/C. ciliatum/C.
officinalis—(Black sea

Turkey)

HAE, 95% EtOH

S. aureus/B. cereus/A. niger/S
typhimurium/L.

monocytogenes/E.
coli/C. albicans/P. aeruginosa

All alga extracts
present antimicrobial

activity
[64]

S. vulgare/C. hirsutus/R.
verruculosa—(Coast of

Algeria)

Soxhlet extraction,
MeOH, MeOH:

CHCl3, 6h

B. cereus/S. aureus/M.
luteus/P. aeruginosa/E. coli/K.

pneumoniae/C. albicans

Positive
antimicrobial results
against S. aureus and

B. cereus

[65]

Laurencia ssp.
(aldingensis/catarinensis/

dendroidea/intricata/
translucida)–(Brazil)

HAE, Hx, CHCl3,
MeOH, H2O

C. albicans/C. parapsilosis/C.
neoformans

L. aldingensis showed
the best antifungal

effects
[66]

D.
membranacea—(Tunisia)

HAE, H2O, CHCl3,
EtOAc

S. aureus/S. epidermidis/L.
monocytogenes/M. luteus/E.

faecium/E. coli/P.
aeruginosa/S.

typhimurium/C. albicans/C.
kefyr/C. krusei/C.

dubliniensis/C. glabrata

Inhibitory effects
against M. luteus,

S. aureus, S.
epidermidis, L.

monocytogenes, C.
krusei, C. dubliniensis

and C. kefyr

[67]

S. wightii/C. linum/P.
gymnospora—(India)

HAE, Hx, EtOAc,
AcO, MeOH

P. aeruginosa/S. typhi/E.
amylovora/E. aerogens/P.
vulgaris/K. pneumonia/E.
coli/MRSA/B. subtilis/E.

faecalis

EtOAc and AcO
extracts were more

efficient, but no
inhibitory effects
were observed

against S. paratyphi
and K. pneumonia.

[68]
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Table 1. Cont.

Alga Species Conditions Bacteria Tested Main Outcomes Ref.

Fucus spp./P.
elongata/Rhodomela

confervoides/S.
latissima./C. rupestris/D.

contorta/F.
vesiculosus/C.

rubrum/M. stellatus/L.
digitata—(Germany)

HAE, DCM
E. amylovora/E. coli/P.

aeruginosa/B. subtilis/S.
lentus

The macroalgae
presented

antibacterial activity
against at least one of

the test strains

[69]

H. tuna/C. barbata/C.
bursa—(Montenegro)

HAE, DCM:MeOH,
48 h

E. coli/S. aureus/B. subtilis/E.
faecalis/C. albicans

C. barbata
demonstrated as
having the best

antimicrobial activity
for S. aureus and B.

subtilis

[70]

G. corticata/G.
edulis—(India)

HAE, DMSO, 70%
MeOH, 130 rpm, 16

h

E. coli/Photobacterium sp./P.
fluorescens/S. aureus/B.

subtilis

MeOH and DMSO
extracts inhibited B.

subtilis
[71]

L. digitata/S.
latissima/H. elongata/P.

palmata/C.
crispus—(Ireland)

HAE, MeOH,
EtOH, AcO, 2 h

L. monocytogenes/S. abony/E.
faecalis/P. aeruginosa

The extraction of
antimicrobials from

macroalgae were
solvent dependent

[72]

S.
marginatum—(India)

HAE, DCM, EtOAc,
AcO, MeOH Candida spp. Low antifungal

properties. [73]

S. lomentaria/P.
pavonica/C.mediterranea/

H. musciformis/S.
filamentosa—(Turkey)

HAE, MeOH, 8 h,
200 rpm

S. aureus/S. typhimurium/E.
coli/E. faecalis/C. albicans

S. lomentaria
inhibited S.

typhimurium. C.
mediterrranea

inhibited C. albicans

[74]

U. lactuca/E.
intestinalis—(Adriatic
coast of Montenegro)

HAE, Hx, DCM,
MeOH, 72 h

B. mycoides/B. subtilis/E.
coli/K.

pneumoniae/S. aureus/A.
flavus/A.

fumigatus/C. albicans/P.
purpurascens/P. verrucosum

Inhibitory effects
were observed

against B. mycoides
and B. subtilis

[75]

A. fragilis/C.a myrica/H.
cuneiformes/L.

papillosa/S. cinereum/T
turbinata—(Egypt)

HAE, 80% MeOH,
25 ◦C

B. subtilis/S. aureus/E.
coli/C. albicans

H. cuneiformis extract
showed stronger

activity
[76]

E.cava—(Korea)
HAE, EtOH, n-Hx,

DCM, EtOAc,
n-BuOH, H2O

S. aureus/MRSA/S. typhi/S.
enteritidis/S. gallinarum

EtOH had
antibacterial activity
S. aureus, MRSA and

Salmonella spp.

[77]

C. barbata—(Red Sea,
Egypt)

Soxhlet extraction,
EtOH

B. subtilis/S. aureus/M.
luteus/E. coli/P.

aeruginosa/Serratia.
marcescens/S. typhi/Vibrio

sp./A. hydrophila/C. albicans

Inhibitory activity
except against M.

luteus
[78]

K. alvarezii—(Malaysia) HAE, EtOH, H2O E. coli/B. cereus
B. cereus was

inhibited but no E.
coli.

[79]

U. lactuca/D.
dichotoma/P.

gymnospora/S.
vulgare/H. musciformis/
D. simplex—(Brazil)

HAE, DCM,
MeOH, EtOH, H2O

T. rubrum/T. tonsurans/T.
mentagrophytes/M. canis/M.

gypseum/E.
flocossum/C. albicans/C.

krusei/C. guilliermondi/C.
parapsilosis/

EtOH and MeOH
extracts were the

most effective
[80]

B.
bifurcata—(Portugal)

HAE, MeOH,
DCM, 12 h

E. coli/P. aeruginosa/B.
subtilis/S. aureus/S. cerevisiae

MeOH extracts had
inhibitory effects in

all the
microorganisms

[81]
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Table 1. Cont.

Alga Species Conditions Bacteria Tested Main Outcomes Ref.

H. flagelliformis/C.
myrica/S.

boveanum—(Persian
Gulf)

HAE, DCM, 48 h

E. coli:/K. pneumonia/S.
typhi/S. aureus/S.

epidemidis/B. subtilis/A.
niger/C. albicans

The antimicrobial
activity was

solvent-dependent
[82]

T. conoides—(India)
HAE, n-Hx, MeOH
and EtOH: H2O, 72

h.

S. aureus/S. epidermidis/E.
coli/P. aeruginosa/A.

niger/C. albicans

MeOH and EtOH:
H2O extracts were
the most effective

against the
microorganisms

studied

[83]

D. dichotoma/P.
pavonica/S.

vulgare—(Adriatic
Sea)

HAE, AcO, 50 ◦C;4
h

B. mycoides/B.
subtilis/S. aureus/E. coli/K.
pneumoniae/A. flavus/A.
fumigatus/C. albicans/P.

purpurescens/P. verrucosum

All crude extracts
have a statistically

significant inhibitory
effect on microbial

growth

[84]

C. racemosa/
C. sertularioides/

K. alvarezii
—(Malaysian coast)

HAE, Hx, CHCl3,
EtOAc, EtOH,

MeOH, H2O, 1 day

B. cereus/S. aureus/A.
baumannii/E. coli/K.

pneumoniae/P.
aeruginosa/C. albicans/C.
parapsilosis/C. krusei/C.

neoformans/A. fumigatus/T.
interdigitale

Inhibitory effects
except against A.

fumigatus
[85]

U. lactuca—(Gulf of
Maine) HAE, MeOH, 70 ◦C S. aureus/S. epidermidis Inhibitory effects

against both species [86]

T. ornata/T. decurrens/
T. conoides/

S. polycystum/S.
incisifolium/S.
ilicifolium/H.a

cuneiformis—(Madagascar)

HAE, MeOH,
EtOAc

B. cereus/S. aureus/S.
pneumoniae/E. cloacae/K.
oxytoca/S. boydii/E. coli/S.

enteridis/P.
aeruginosa/C. albicans/C.

membranaefaciens/C.
neoformans/T. mucoides

Antimicrobial tests of
the crude extracts
revealed a strong
activity against
S. aureus and S.

pneumoniae

[87]

A.
specifera/Cladophoropsis

sp./L.
paniculata/Tydemania

sp./U. prolifera

Soxhlet extraction,
EtOH and PeEt,

24 h

C. albicans/A. niger/Mucor
sp./Paeciliomyces sp.

EtOH extract of L.
paniculata showed

the best antimicrobial
activity

[88]

H. esperi/C.
prolifera—(Egypt)

Soxhlet extraction,
MeOH, 40 ◦C, 24 h

E. coli/P. aeruginosa/S.
typhimurium/A.

hydrophila/B.
subtilis/S. aureus

Inhibitory effects
against B. subtilis and
S. aureus growth but

no against P.
aeruginosa and S.

typhimurium,

[89]

Grateloupia sp./G.
corticata/Halymenia
sp./Metamastophora

sp./Spyridia sp.

HAE, MeOH, 24 h

E. cloacae/K. oxytoca/E. coli/S.
enteridis/B.

cereus/S. aureus/S.
pneumoniae/C. albicans.

All the crude extracts
obtained can inhibit
microbe’s growth.

[90]

H. elongata—(Ireland) HAE, H2O, MeOH,
40 ◦C, 100 rpm, 2 h

L. monocytogenes/S. abony/E.
faecalis/P. aeruginosa

60% MeOH extract
showed the best

results.
[91]

F. serratus/F.
vesiculosus—(Ireland)

HAE, H2O, MeOH,
EtOAc, AcO MRSA 28 strains

Both species present
antibacterial activity

against several
MRSA strains.

[92]

U.
reticulata—(Vietnam)

HAE,
MeOH:CHCl3:

H2O

B. cereus/S. faecalis/E.
cloace/S. aureus/E. coli/P.

aeruginosa/V. haveyi

U. reticulata showed
high antimicrobial
activity, against E.

cloace and against E.
coli.

[93]
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Table 1. Cont.

Alga Species Conditions Bacteria Tested Main Outcomes Ref.

U. rigida—(Tunisia) HAE, EtOH:H2O,
48

B. subtilis/B.
cerus/S. aureus/S.

epidermis/E. faecalis/L.
monocytogenes/E. coli/P.

aeruginosa/K. pneumoniae/A.
niger/F. graminearum/F.

culmorum/F.
oxysporum/C. albicans

Antimicrobial
activity varied

depending on the
season

[94]

U. fasciata/G.
salicornia—(Honolulu,

USA)
HAE, EtOH

E. faecalis/V. alginolyticus/V.
cholerae/S. aureus/S.
typhimurium/E. coli

U. fasciata had
significantly higher

antimicrobial activity
compared to G.

salicornia

[95]

U. lactuca/D.
dichotoma/C.

elongata—(Algeria)

HAE, MeOH, DEt,
CHCl3

E. coli/S. aureus/Salmonella/
C. albicans/Penicillium sp.

CHCl3 extracts of U.
lactuca and C.

elongata had the
highest activity

against E. coli and
Salmonella sp. MeOH
of all species showed

antifungal activity
for C. albicans.

[96]

Conditions: Heat-assisted extraction (HAE) Acetone (AcO), Ethanol (EtOH), Methanol (MeOH); Dichloromethane
(DCM), Water (H2O), Hexane (Hex), Dimethilsulfoxide (DMSO), Chloroform (CHCl3), Petroleum ether (PeEt), Ethyl
acetatete (EtOAc), Diethyl ether (DEt), n- Butanol (n-BuOH), n-Hexane (n-Hx). Main outcomes: Minimal inhibitory
concentration (MIC).

2. Macroalgae as a Promising Source of Valuable Antimicrobial Compounds

The nutritional composition of seaweed is strongly influenced by factors such as the species,
environmental conditions, geographical place, seasonality and characteristics of the growth medium
as well as by the developmental stage [97]. Seaweeds are an excellent source of biologically active
compounds that includes proteins and peptides, polysaccharides, polyphenols, PUFAs and pigments [98,99].
The resistance of pathogenic microorganisms to synthetic antibiotics has become a concern of public
health systems [33] and therefore, it is imperative to explore new alternatives to solve this problem.
In particular, among the different compounds that exhibit bioactivity that are present in macroalgae,
interest in their antimicrobial potential has increased in the last few years in order to develop new
antimicrobial therapies with less secondary effects, that are more cost effective and with minor toxicity,
when compared to the synthetic antibiotics [33]. Although research on the antimicrobial properties of
seaweed compounds is a topic of great interest, until now the attribution of a particular compound
to such activity was a challenge as they are usually evaluated as extracts and not as a compound
constituted by different biomolecules; in most cases, the antimicrobial effect is probably a consequence
of a synergic effect between these compounds. The main components of seaweeds are described in the
following sections.

2.1. Protein and Peptides

The protein content is highly variable, ranging between 10 to 30% of the dry weight (DW) in red
seaweeds, from 5 to 15% DW in brown seaweeds and from 3 to 47% DW in green seaweeds [9,97].
Moreover, these contents vary depending on the season, founding the highest concentration during the
winter–early spring and the lowest during summer–early autumn [97,100,101]. The proteins that are
actively functional in seaweeds belong to two groups, namely, lectins and phycobiliproteins [14,102].
Particularly, whereas lectins have been identified in several species of seaweeds, phycobiliproteins are
found in red macroalgae [102].
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Protein from seaweeds contains all amino acids, chiefly glycine, alanine, arginine, proline, glutamic
and aspartic acids [103]. However, seaweeds present reduced content of lysine, threonine, tryptophan,
cysteine and methionine in comparison with other protein foods [102]. Peptides obtained from seaweeds
have experienced an increasing interest in recent years due to their multiple bioactivity compounds
(angiotensin converting enzyme inhibition, antihypertensive, antioxidative and antidiabetic) [104].

Regarding the antimicrobial activity, the only seaweed protein described in the literature as
antibacterial is lectin [14,105]. The information about bioactive peptides with antibacterial properties is
scarce. For example, Beaulieu et al. (2015) obtained antibacterial peptides after hydrolysis of proteins
from macroalgae S. longicruris. These authors evaluated the antibacterial activity of the >10 kDa protein
hydrolysate fraction against S. aureus and observed a significant decrease in the maximum specific
growth rate when using a quantity between 0.31 mg/mL to 2.5 mg/mL [105]. Another example is the
study by Cordeiro et al. (2006), which extracted protein fractions rich in lectin from the red seaweed
H. musciformis and assessed its antifungal properties against human pathogen yeasts C. albicans and
C. guilliermondii. Specifically, the F40/70 fraction demonstrated the capacity to inhibit the growth
of C. guilliermondii at 45, 100 and 450 µg protein/mL, but a poor inhibition was observed against
C. albicans independent of the evaluated concentrations [106]. Lectin was also isolated from red
macroalgae S. filiformis [107]. Antibacterial activity was assessed on the growth of eight Gram-negative
(E. coli, S. marcescens, S. typhi, S. typhimurium, K. pneumoniae, E. aerogenes, Proteus spp, and Pseudomonas
aeruginosa) and three Gram-positive (B. cereus, B. subtilis and S. aureus). The authors found different
results regarding the effects of lectin against Gram-negative and Gram-positive bacteria growth.
The lectin at 500 µg/mL stimulated the growth of B. cereus and inhibited the growth of S. marcescens, S.
typhi, K. pneumoniae, E. aerogenes, Proteus sp, and P. aeruginosa at 1000 µg/mL. The compound did not
exhibit an effect, at any of the tested concentrations, on the growth of S. aureus and B. subtilis, or on E.
coli and S. typhimurium. The authors concluded that more studies are necessary to evaluate the action
of lectin on bacterial growth in order to evaluate further clinical applications.

2.2. Polysaccharides

Polysaccharides are the main components of seaweeds, having a structural role in algal cell
walls [108]. Polysaccharides can be neutral or acidic, linear or branched [108]. Green, red and brown
algae are defined by the presence of sulfated polysaccharides with a high degree of complexity in the
range from 4% to 76% DW [109]. In green seaweeds, polysaccharides represent between 38 and 54% of
their dry matter [110]. These macroalgae are rich in ulvan (another sulfate polysaccharide), sulfated
rhamnans and sulfated galactans. The main component of these polysaccharides are sulfate groups
and moreover they contain repeating units of rhamnose, xylose and uronic acids (glucuronic and
iduronic acids) and minor contents of glucose, galactose, rhamnose and arabinose [110]. Red seaweeds
present different sulfated galactans, sulfated rhamnans or mannans, carrageenans and agars. The main
polysaccharides found in red macroalgae are galactans with a backbone composed of repeating units
of three-linked β-D-galactopyranosyl and four-linked α-galactopyranosyl units: if the configuration
of the four-linked α-galactopyranosyl units is L the polysaccharide is agar and if the configuration
of the four-linked α-galactopyranosyl units is D then the polysaccharide is carrageenan. Agars are
typically low in sulfate ester substitution, whereas carrageenans are comparatively rich in sulfate
ester substitution [111]. Brown macroalgae are a rich source of alginate with a content that varies
between 14 and 40% of their dry mass [7]. After the alginates, β-glucans (laminarans), cellulose and
heteroglycans are present in important amounts in brown algae [7]. Laminarans are β-D-glucans
with low molecular weight that are linear polysaccharides of glucose linked by 1→3 β-glycosidic
bonds. There are different types of laminarans classed in accordance of their length and branching
degree. Laminarans contain some 6-O-branches in their backbone and some β-(1→6)-intrachain links.
Fucoidans are a family of sulfated homo and heteropolysaccharides that are mainly composed of
(1→3)-linked-L-fucopyranose units. Moreover, fucoidans can present a main chain of alternating (1→3)
and (1→4)-linked-L-fucopyranose units, and sulfate groups located mainly at C2, C4, or disubstituted
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at both C2 and C4. In addition, acetyl groups and D-galactose, D-xylose, D-mannose, L-rhamnose and
D-glucuronic acid residues were identified as components of fucoidans [112].

The antimicrobial activity of polysaccharides from seaweeds depends on factors such as molecular
weight, charge density, sulfated content in the case of sulfated polysaccharides and structural and
conformation characteristics [33]. Several studies have been reported. For example, sulphated
polysaccharides (alginates, fucoidans and laminaran) extracted from different seaweeds, such as
L. japonica, A. nodosum, or U. pinnafitida have demonstrated an inhibitory effect on the growth of
pathogenic bacteria [113]. Similarly, extracts rich in either laminarin or fucoidan isolated from Laminaria
spp, decreased the fecal E. coli populations in piglets (0.3 and 0.24 g/kg, respectively), observing a
reduction in the initial bacterial load in derived raw meat products [114].

2.3. Fatty Acids

Seaweeds produce PUFAs and are also important sources of essential fatty acids [115–117].
The most predominant PUFAs are ω3 such as 16:4 ω3 and 18:4 ω3 and some species also
present important amounts of eicosapentaenoic acid (20:5 ω3, EPA) [118], α-linolenic (18:3 ω-3),
octadecatetraenoic (18:4ω-3) and arachidonic (20:4ω-6) [116]. Several studies have reported the
antimicrobial properties of macroalgal fatty acids. For example, different sulfolipid classes isolated
from the total lipids of two species of U. fasciata (Chlorophyta), L. papillosa, G. cylindriea (Rhodophyta),
D. fasciola and T. atomaria (Ochrophyta). Authors assessed the antimicrobial activity of these compounds
and they observed a high inhibition of the growth of B. subtilis and E. coli, using 100 µg/well. However,
these compounds did not exhibit any inhibition against the fungi or yeast tested [119]. Another study
obtained G. vermiculophylla, P. dioica and C. crispus using solvents with different polarity (DEt < EtOAc
< MeOH:H2O (1:1)). The authors identified the fatty acid profile of ethyl acetate extracts and observed
that saturated fatty acids (SFA), especially palmitic acid (16:0) was the more abundant, followed
by polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). They tested the
antimicrobial activity against Gram-positive bacteria (L. innocua, B. cereus, E. faecalis, L. brevis, S. aureus
and Gram negative (E. coli, S. enteritidis, P. aeruginosa) and the yeast Candida sp. The EtOAc extract
showed the high inhibition capacity of the tested strains [17].

2.4. Polyphenolic Compounds

Polyphenolic compounds are secondary metabolites of seaweeds whose composition vary from
simple phenolic acids to complex molecules such as phlorotannins [120]. Macroalgae are excellent
sources of catechins, flavonols and phlorotannins [121,122]. Green and red algae contain high
proportions of bromophenols, phenolic acids and flavonoids. Brown algae present predominant
polyphenolic compounds such us phlorotannins, which are complex polymers of phloroglucinol
(1,3,5-trihydroxybenzene), and are classified into different groups in function of the bonds of the
phloroglucinol units. They are divided in eckols and carmalols (dibenzodioxin linkage), fuhalols (ether
bonds and hydroxyl groups), fucophlorethols (ether and phenyl bonds), phlorethols (ether bonds),
fucols (phanyl linkages), and ishofuhalols [121,123]. In addition, some brown algae can contain bromo-,
chloro- and iodo-phlorotannins [123]. These compounds represent 20% DW of algae [120] and have
only been described in the composition of brown algae [123]. Other polyphenols such as catechins,
flavonoids and flavonol glycosides have been identified in brown seaweeds [124].

Referring to the antimicrobial activity of polyphenols, several authors have studied the properties
of phlorotanins. In this context, Nagayama et al. (2002) [125] evaluated the antibacterial effect
of phlorotannins from E. kurome against several food-borne pathogenic bacteria, different MRSA
strains and S. pyogenes. They observed that the phlorotannins were effective against MRSA and also
Campylobacter spp., which presented the highest susceptibility to these compounds. The minimal
bactericidal concentration of the crude phlorotannins, dieckol and 8,8′-bieckol against C. jejuni were
50 mg/L, 0.03 µmol/mL and 0.03 µmol/mL, respectively [125].
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2.5. Pigments

Based on their content in pigments, macroalgae are classified into three groups: green algae
(Chlorophyta, ca. 1200 species), red algae (Rhodophyta, ca. 6000 species) and brown algae (Ochrophyta,
ca. 1750 species). Macroalgae are described to present three types of natural pigments: chlorophylls,
carotenoids and phycobilins. Chlorophylls are greenish lipid-soluble natural pigments which contain
a porphyrin ring and are found in all algae [102]. Four forms of chlorophylls have been identified
in macroalgae with the most important being chlorophyll a; chlorophyll b and c are also described
and the chlorophyll d is present in red algae [102]. Phycobiliproteins are other natural pigments
and are water soluble fluorescent proteins present in seaweeds [126,127]. There are three types of
phycobiliproteins: phycocyanins (blue pigment), phycoerytrins (red pigment) and allophycocyanins
(light-blue pigment) [102,126], with phycoerytrins being the most abundant in many red macroalgae
species. Carotenoids are linear polyenes and can be classified in carotenes (α yβ-carotene, lycopene) and
xanthophylls (fucoxanthin, violaxanthin, antheraxanthin, zeaxanthin, lutein, neoxanthin). The most
abundant carotenoid is fucoxanthin, a brown pigment that confers the coloration to brown algae [102].

Regarding the antimicrobial activity of pigments, there are few studies that evaluate the activity of
isolated compounds. A recent study has evaluated the antimicrobial properties of fucoxanthin against
different Gram-positive and Gram-negative bacteria. The results showed that the compound was more
effective against Gram-positive bacteria, with S. agalactiae being the most affected bacteria (with a MIC
of 62.5 µg/mL), followed by S. epidermidis and S. aureus [128].

3. Mechanisms of Action of Antimicrobial Compounds

In the previous section, numerous compounds extracted from macroalgae with proven
antimicrobial activity are mentioned. In the following paragraphs, the mechanisms of action of
these compounds will be explained. A summary of these mechanisms is presented in (Figure 2).
In Table 2, several studies demonstrating the antimicrobial properties of macroalgae compounds have
been compiled.
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Table 2. Antimicrobial properties of compounds extracted from macroalgae.

Type Compounds Macroalgae Antimicrobial Activity Ref.

Polyphenols

Phlorotannins F. vesiculosus

Alteration of the cell
membrane and cell

destruction of S. aureus,
S. pneumonia and P.

aeruginosa

[129]

Phlorotannins S. thunbergii

Alteration of the cell
membrane, cytoplasm’s

leakage and cell destruction
of V. parahaemolyticus

[130]

Phlorofucofuroeckol E. bicyclis

Cell membrane damage and
suppression of genes related
to methicillin resistance in

S. aureus

[131]

Bromophenols K. alvarezii
Downregulation of
pathogenic genes of

P. gingivalis
[132]

Dieckol E. clava Alteration of cell integrity
and metabolism of T. rubrum [133]

Phlorotannins
C. nodicaulis,

C. usneoides, F.
spiralis

Alterations of the cell wall
composition, increased

mitochondrial respiration.
Inhibition of the formation

of the germ tube of
C. albicans

[134]

Phlorotannins E. clava
Inhibition of the enzyme

neuraminidase of the
Influenza A virus

[135]

Polyphenolic rich
extracts

E. arborea,
S. filiformis

Inhibition of the viral
particle [136]

Polysaccharides

Depolymerized
fucoidans L. japonica

Interaction with protein of
the cell membrane and

cellular rupture of E. coli and
S. aureus

[137]

Fucoidan F. vesiculosus
Inhibition of dental plaque

bacteria and foodborne
pathogens.

[138]

Laminarin rich
extracts

A. nodosum, L.
hyperborea

Inhibition of S. aureus, L.
monocytogenes, E. coli and S.

typhimurium.
[139]

Water soluble
polysaccharide

extracts

P. capillacae, D.
membranacea

Inhibition of F. oxysporium
Inhibition of C. albicans and

M. phaseli
[140]

Sulfated
polysaccharides

G. skottbergii

Obstruction of herpes
simplex virus type 1 and 2

attachment to the cells [141]
Interference with fusion

between HIV infected cells.
Inhibition of the viral

enzyme reverse transcriptase

C. okamuranus

Inhibition of dengue virus
by interaction with the

glycoprotein of the viral
envelop
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Table 2. Cont.

Type Compounds Macroalgae Antimicrobial Activity Ref.

Proteins & peptides

Lectins E. serra, G.
marginata

Inhibition of the growth of V.
vulnificus and V. pelagicus.

Interaction between lectins
and components of the

bacterial cell wall

[25]

Protein hydrolysate
fraction S. longicruris Inhibition of S. aureus

growth [105]

Lectins S. filiformis

Inhibition of several
Gram-negative bacteria by

interaction with compounds
of the cell wall

[142]

Lectins H. musciformis Inhibition of T. rubrum and
C. lindemuthianum

Lectins B. coacta, Griffithsia
sp.

Antiviral effects against HIV,
Hepatitis C virus and

SARS-CoV by preventing
the entry in the host cells

[143]

Fatty acids

Bioactive fraction S. vulgare, S.
fusiforme

Perforation of the cell wall of
S. aureus and K. neumoniae,

cytoplasmic leakage and cell
death

[144]

Bioactive fraction G. edulis Rupture of cell membrane of
Vibrio spp and A. hydrophila [145]

Bioactive fraction S. marginatum, U.
lactuca

Fatty acids could be
involved in the inhibition

S. aureus, E. coli and P.
vulgaris

[146]

Bioactive fraction B. tenella

Inhibition of C.
cladosporioides and C.
sphaerospermum by
disrupting the cell

membrane

[147]

Sulfoquinovosyldia-
cylglycerol C. racemosa

Antiviral effects against HSV
type 2 by disturbing the

initial stages of the viral life
cycle

[148]

Pigments

Fucoxanthin H. elongata Inhibition of L.
monocytogenes [149]

Fucoxanthin Commercial extract

Inhibition of several
pathogenic bacteria by

increasing cell membrane
permeability, leakage of

cytoplasm and inhibition of
nucleic acid

[128]

In the case of proteins and peptides, their inhibitory effects are associated with their amphiphilic
nature, which allows them to interact with polar and non-polar sites of the membranes. The interaction
leads to the apparition of pores, causing disruption of the membrane and cellular rupture.
These compounds have demonstrated antibacterial activity against bacteria, such as P. aeruginosa,
K. pneumoniane, S. typhi. or B. subtilis [23]. However, in many cases, the mechanism of action is not
yet understood. Lectins isolated from macroalga have gained attention due to their great range of
bioactivities. E. serra and G. marginata lectins showed antibacterial activity against V. vulnificus and
V. pelagicus through the interaction between these compounds and components of the bacterial cell
wall, such as lipopolysaccharides or peptidoglycans [25]. Lectins extracted from S. filiformis presented
inhibitory effects against Gram-negative bacteria, like S. marcescens, S. typhi, K. pneumoniae, E. aerogenes,
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Proteus sp. and P. aeruginosa. This effect was associated with the interaction between glycol-compounds
present on the cell wall. In a similar way, lectins extracted from macroalga H. musciformis exhibited
antifungal activity against T. rubrum and C. lindemuthianum [142]. They have also displayed antiviral
effects against human immunodeficiency, hepatitis C, severe acute respiratory syndrome coronavirus
(SARS-CoV) viruses, mainly by preventing the entry of the virus in the host cells and thereby their
propagation [143].

The antimicrobial properties of macroalgae polysaccharides are attributed to the interaction
between glyco-receptors of the bacterial cell wall, compounds of the membrane and nucleic acids and
the polysaccharides. Those interactions lead to the disruption of the membrane stability and cellular
functions [34]. Several factors have been shown to influence this activity, such as the molecular weight,
charge density, structure and conformation [20]. Sulfated polysaccharides have demonstrated their
antibacterial activity in several studies. For example, depolymerized fucoidans of L. japonica showed
antibacterial activity against E. coli and S. aureus, which is caused by the interaction of fucoidans
with membrane proteins, leading to membrane rupture and further cell death [137]. In other study,
sulfated polysaccharides were extracted from different marine macroalgae and their antibacterial
and antibiofilm properties were assessed against dental plaque bacteria. Fucoidan extracted from
F. vesiculosus inhibited the mentioned bacteria and foodborne pathogens. In this case, the results
suggest that fucoidan may not present a direct killing effect and may act by trapping nutrients, reducing
the bioavailability [138]. To our knowledge, few studies have evaluated the antifungal properties and
mechanisms of algal polysaccharides. Water soluble polysaccharides extracted from P. capillacea and
D. membranacea displayed antifungal activity against different yeast and fungi. P. capillacea inhibited
the growth of F. oxysporium, while D. membranacea inhibited C. albicans and M. phaseli. In future studies,
it is expected that the compounds involved in this activity, as well as their mechanisms of action will
be identified [140]. Regarding antiviral effects, these have been studied more extensively. Macroalgal
polysaccharides can inhibit the multiplication of viruses such as the herpes simplex virus (HSV),
human immunodeficiency virus (HIV) or the dengue virus. They can also obstruct the interaction
between viruses and cells and inhibit enzymes [141]

The antibacterial activity of algal lipids and fatty acids has been attributed to their ability to
inhibit the electron transport chain and oxidative phosphorylation in cell membranes, leading to the
formation of peroxidation and auto-oxidation degradation products and the cellular lysis [34,145].
To our knowledge, no studies have isolated and then tested the antibacterial activity of macroalga
fatty acids, but they have been successfully identified in bioactive extracts. In the study by El Shafay
et al. [144], fatty acids were identified in the bioactive fraction of the extracts of S. vulgare and S.
fusiforme, but no isolation was performed. The analysis demonstrated that the cell wall of S. aureus and
K. pneumoniae was perforated, which resulted in the rupture of the cell wall, leakage of the cytoplasm
and further cell death. Similarly, fatty acids were detected in the active fractions extracted from the
red algae G. edulis. Although fatty acids were not isolated and their antimicrobial activity was not
separately verified, authors attributed the antibacterial effects against Vibrio spp. and A. hydrophila
to these compounds [145]. In the case of fungi, it has been proposed that fatty acids may act in
disrupting the cell membrane, inhibiting the reproduction. Antifungal activity has been observed
against C. cladosporioides and C. sphaerospermum, in addition to antiprotozoal effects against T. cruzi and
L. amazonensis [147]. A sulfoquinovosyldiacylglycerol isolated from the n-BuOH fraction of C. racemosa
showed antiviral effect against HSV type two by disturbing the early stage of the viral life cycle [148].

Among the literature, the most studied antimicrobial compounds are the polyphenols. Their
antimicrobial action has been associated with their ability to alter membrane permeability (causing
cell lysis), inhibit enzymes and different metabolic pathways, bind to surface molecules and other
mechanisms. This activity seems to be related to the number of hydroxyl groups and also the degree
of polymerization [20,23]. Several studies have assessed the antimicrobial properties and the diverse
action mechanisms of polyphenols. For example, a recent study evaluated the antibactericidal action
of phlorotannins (a type of polyphenol found in macroalgae of the class Phaeophyta) extracted from
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F. vesiculosus. The results showed that these compounds presented a significant bactericidal effect
against S. aureus, S. pneumonia and P. aeruginosa. Phlorotannins presented a higher effectivity against
Gram-positive bacteria than against Gram-negative bacteria, probably due the differences between
their cell membranes, since Gram-negative bacteria are surrounded by an outer membrane which is
rich in polysaccharides. The authors attributed the observed effects to the ability of phlorotannins to
inhibit bacterial growth by the alteration of the cell membrane [129]. Similarly, phlorotannins from
S. thunbergii have ben demonstrated to inhibit V. parahaemolyticus, causing damage to the cell wall
and the membrane, which increased the membrane permeability and caused further leakage and
destruction of the bacterial cells [130]. A phlorofucofuroeckol of the brown macroalga E. bycliclis has
shown antibacterial effects against methicillin-resistant S. aureus. This compound produced damage in
the cell membrane, leading to the leakage of cytoplasm and cell death. Furthermore, this compound
suppressed the expression of genes related to resistance to methicillin in a dose-dependent manner [131].
Bromophenols, extracted from the red macroalga K. alvarezii, showed activity against P. gingivalis, the
principal agent of chronic periodontitis. These compounds were able to downregulate the expression
of the proteins involved in the infectious pathways of the bacteria [132]. Regarding yeast and fungi, the
phlorotannin dieckol, extracted from E. clava, was tested against the fungi T. rubrum, associated with
dermatophytic nail infections. The results exhibited alterations in membrane integrity and also in cell
metabolism [133]. Another study evaluated the antifungal properties of the phlorotannins extracted
from the brown macroalgae C. nodicaulis, C. usneoides and F. spiralis against different pathogenic yeast
and fungi. Antifungal activity against all the studied species was observed, with the yeast C. albicans
ATCC 10231 being the most susceptible, while the most susceptible fungi were E. floccosum and
T. rubrum. The action mechanisms of phlorotannins were also evaluated. In the case of phlorotannins
of C. nodicalus and C. usneoides, the results indicated a lower ergosterol content in the cell membrane
of the yeast and fungi, respectively, which disrupted cellular integrity and functions. On the other
hand, F. spiralis phlorotannins reduced the chitin content of the fungi cell wall, an essential wall
component. Furthermore, they inhibited the formation of the germ tube of C. albicans, reducing its
virulence and its capacity to adhere to epithelial cells. Finally, all phlorotannins increased the activity of
the mitochondrial respiratory rate, which may increase the production of reactive oxygen species [134].
Phlorotannins also present antiviral activity. Five phlorotannins extracted from the brown algae E. clava
displayed inhibitory effects against the Influenza A virus, through the inhibition of the neuraminidase,
a critical enzyme for the life cycle of the virus [135]. Polyphenolic rich extracts from E. arborea and
S. filiformis have demonstrated antiviral effects against Measles virus. Authors have proposed that
polyphenols act by direct inactivation of the viral particle, which prevents the infection of cells [136].

Finally, in the case of pigments, the antimicrobial mechanism has not been fully understood.
The most studied pigments are the carotenoids, which are supposed to act trough the accumulation of
lysozyme, an enzyme able to digest bacterial cell walls [20]. Among carotenoids, fucoxanthin stands
out and its antimicrobial properties have been tested against different pathogenic bacteria [34]. Recently,
this compound has been tested against E. coli, B. cereus, B. subtilis, K. pneumoniae, S. aureus, P. aeruginosa
and L monocytogenes. The proposed mechanisms consist of an increase in permeability, leakage of the
cytoplasm and inhibition of nucleic acid formation [128]. Regarding antifungal activity of pigments,
chlorophyll extracts from S. pallidum was tested against fungi S. glycines and A. niger and shown to
possess low antifungal activity. However, the action mechanism has not been elucidated [150].

4. Novel Liquid–Liquid and Solid–Liquid Extraction Technologies to Efficiently Extract Algal
Bioactive Compounds

Over the years, significant research efforts have been made to efficiently extract algae bioactive
compounds by applying different methodologies. Conventional extraction methods (solid–liquid
extraction) have numerous limitations, e.g., lower efficacy, high energy cost and low yield, thus new
state-of-the-art extraction methodologies are required. Table 3 presents several articles in respect of the
antimicrobial activity of macroalgae crude extracts, using the technologies mentioned below.
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Table 3. Antimicrobial activity of macroalgae crude extracts obtained using emerging
extraction technologies.

Method Conditions Macroalgae Bioactive
Compound Main Outcomes Ref.

SFE
314 bar, 10 ◦C D. salina Fucoidans

Inhibition of E. coli,
S. aureus, and C. albicans,

growth
[151]

300 bar, 50 ◦C F. vesiculosus Fucosterol Inhibition of Fusarium
sp. [152]

UAE 200 W, 20 kHz; 55 ◦C;
20 min N. zanardinii Fucoidans

No activity against E.
coli, L. monocytogenes P.
aeruginosa and S. aureus

[153]

MAE
1500 W; 150 ◦C; 10

min (× 2) N. zanardinii Fucoidans Positive activity against
E. coli [153]

50 ◦C, 500 W, 10 min,
MeOH, EtOH

Oedogonium
sp./Stigeoclonium

sp./Ulothrix
sp./Nitzschia sp.

n.d.
All extracts inhibited at
least one microorganism

tested
[154]

UMAE 65 ◦C, 3 h (× 2) N. zanardinii Fucoidans

Inhibition of P.
aeruginosa, but no effect

on E. coli L.
monocytogenes and

S. aureus

[153]

EAE

Alcalase: 2.5 mL (2.4
U/g), pH 8, 50 ◦C, 24 h
Flavourzyme: 2.5 mL
(500 U/g), pH 7, 50 ◦C,

24 h
Cellulase: 2.5 g (3

U/mg), pH 4.5, 50 ◦C,
24 h

Viscozyme: 2.5 mL
100 fungal

β-glucanase U/mL,
pH 4.5, 50 ◦C, 24 h

N. zanardinii Fucoidans
No activity against E. coli

L. monocytogenes, P.
aeruginosa and S. aureus

[153]

Viscozyme L: pH 4.5
(0.1M, AB), 50 ◦C;

AMG 300 L: pH 4.5
(0.1M, AB), 60 ◦C;
Celluclast: pH 4.5
(0.1M, AB), 50 ◦C;

Termamyl: pH 6 (0.1
M, SPB), 60 ◦C;

Ultraflo: pH 6 (0.1 M,
SPB), 40 ◦C;

Flavourzyme: pH 7
(0.1 M, SPB), 50 ◦C;

Alcalase: pH 8 (0.1 M,
SPB), 50 ◦C;

Neutrase: pH 8 (0.1
M, SPB), 50 ◦C;

S. boveanum, S.
angustifolium, P.
gymnospora, C.
cervicornis, C.

sinuosa, I.
stellate, F.
irregularis

Polyphenols/
polysaccharides

F. irregularis extracts
obtained with

Viscozyme, Celluclas
and Flavourzyme

inhibited S. aureus. P.
gymnospora and C.

sinuosa extracts obtained
with Celluclast inhibited

E. feacalis.

[155]

EUAE 65 ◦C, 3 h (× 2) N. zanardinii Fucoidans

Inhibition of P.
aeruginosa, but no effect

on E. coli L.
monocytogenes and

S. aureus

[153]

SWE 1500 W, 150 ◦C, 10
min (× 2) N. zanardinii Fucoidans

Inhibition of E. coli and P.
aeruginosa, but no effect
on L. monocytogenes and

S. aureus

[153]

SWH
200–280 ◦C, 1.3–6.0

MPa, Catalyst -Acetic
acid

L. japonica n.d.
Strong antibacterial
activity against S.

typhimurium and E. coli,
[156]
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Table 3. Cont.

Method Conditions Macroalgae Bioactive
Compound Main Outcomes Ref.

PLE

Hx, EtOAc, AcO,
EtOH, EtOH: H2O

(50:50)

U. intestinalis,
U. lactuca, F.

vesiculosus, D.
dichotoma, C.

baccata, H.
elongata

Fatty acids
F. vesiculosus extract
exhibited the best

antimicrobial properties
[157]

Hx, EtOH, W; 200 ◦C,
20 min H. elongata Fatty

acids/pigments

All extracts presented
antimicrobial activity

against S. aureus, E. coli,
C. albicans and A. niger

[158]

H2O, MeOH, DCM
Temperature (20, 40,

60 ◦C)
F. vesiculosus

Phlorotannins/
phosphatidylcholine/

betaine/lipids/
chlorophylls/
carotenoids

F. vesiculos extract was
only effective as an

antimicrobial agent to
MRSA

[159]

Conditions: Acetone (AcO), Ethanol (EtOH), Methanol (MeOH); Dichloromethane (DCM), Water (H2O), Hexane
(Hex), Ethyl acetatete (EtOAc). n.d: not described. Methods: Supercritical fluid extraction (SFE), Ultrasound
Assisted Extraction (UAE), Microwave-assisted extraction (MAE), Ultrasonic-Microwave Assisted Extraction
(UMAE), Enzymatic-Assisted Extraction (EAE), Enzymatic-Ultrasound Assisted Extraction (EUAE), Subcritical
Water Extraction (SWE), Subcritical Water Hydrolysate (SWH), Pressurized Liquid Extraction (PLE).

4.1. Supercritical Fluid Extraction (SFE)

Supercritical fluid extraction (SFE) is a green analytical methodology used for the extraction of
high-value bioactive compounds from complex matrixes [160]. SFE uses supercritical fluids, which
above their critical point exhibit liquid-like characteristics such as solvent power, and negligible surface
tension, as well as gas-like features such as enhanced transport properties.

Comparing SFE with other conventional extraction techniques, SFE presents several advantages,
namely the use of minimal solvents, great extraction selectivity, short processing time, and a low
degradability of the extract, showing a broad application for different bioactive compounds [161].

The thermodynamics properties of carbon dioxide (CO2) make it the preferred solvent for
SFE-based extraction processes [151]. Moreover, due to its low toxicity, low cost, low explosivity, facile
availability and environmentally friendly nature, it also presents major factors favoring the choice of
CO2 as the SFE solvent [162]. Considering the physical characteristics, CO2 can only be used as the
extraction solvent for the extraction of nonpolar or low polarity compounds (as supercritical CO2 is a
nonpolar solvent). Nevertheless, the polarity of CO2 can be modulated using co-solvents such as small
amounts of ethanol or methanol, increasing the extraction yields of polar compounds [162]. Recently,
several reports described the application of SFE to extract high value bioactive molecules in arctic brown
algae of the species F. vesiculosus. The arctic brown fraction extracts present a predominant content
of fatty acids [151,163], polyphenols [163,164], carotenoids and chlorophylls [164]. Moreover, these
artic brown algae SFE extracts also possess pronounced bacterial, fungicidal and immunostimulant
activities [163].

Despite the potential of the SFE technique and its suitability to extract high-value bioactive
compounds from algae, clearly the extraction depends on the nature of the target compounds. Using
the SFE technique, a study concluded that D. salina extracts in the presence of SFE at 314 bar and
9.8 ◦C showed a substantial antimicrobial activity against E. coli, S. aureus, C. albicans and A. niger.
As indicated in the work, this notable antimicrobial activity could be attributed to the presence of
indolic compounds, PUFAs, and carotene metabolism, such as β-ionone and neophytadiene in the SFE
D. salina extracts [151].

The antifungal potential of the brown algal F. vesiculosus was studied. To perform this study, algal
extracts were obtained using SFE at a temperature of 50 ◦C and a pressure of 300 bar. Using aqueous
algal extracts at the concentrations of 0.5% and 1.0%, a 100% growth inhibition of macroconidia within
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144 h was obtained. Moreover, F. vesiculosus SFE extracts also promoted a 48% and 72% mycelial
growth of phytopathogenic F. oxysporum and F. culmorum, respectively, after 168 h of incubation [152].

4.2. Ultrasound Assisted Extraction (UAE)

Ultrasound assisted extraction (UAE) technique uses acoustic waves in the kilohertz range (20 kHz
to 100 kHz) that travel through the solvent producing cavitation bubbles. When the cavitation bubbles
burst at the surface of the complex sample matrix, a shockwave induces damage to the sample cell
wall enhancing the mass transfer of high-value bioactive compounds across cellular membranes into
the solution [165]. Two different types of equipment can be used to carry out UAE: the ultrasonic bath
(indirect sonication) that operates at a frequency between 40–50 kHz using a power of 50–500 W and
the ultrasonic probe which operates only at 20 kHz. The principal difference between this equipment
is the way that the ultrasound wave affects the sample [166].

The UAE technique is considered a cold extraction technique, as temperature during the extraction
process is comparatively low and does not affect the stability of extracted compounds. UAE presents
several advantages, such as the potential to reduce or eliminate the use of toxic chemical solvents
and it is a more economic process (no need of supplementary energy to separate phases and to
eliminate solvent). Moreover, using UAE, full extractions can be completed in a few minutes with high
reproducibility, simplifying the manipulation and work-up, giving a higher purity to the final product
and eliminating post-treatment of water waste [167].

UAE was the method of choice to extract bioactive compounds (total phenolics, fucose and
uronic acid) from A. nodosum. To investigate the effect of process variables (extraction time, acid
concentration, ultrasonic amplitude) response surface methodology (RSM) was employed. Higher
extraction yields were obtained for total phenolics, fucose and uronic acid, respectively, at optimized
extraction conditions of 25 min 0.03 M HCl and 114 µm of ultrasonic amplitude. Furthermore,
it was demonstrated that UAE can be used to enhance the extraction of bioactive compounds from
seaweed [168].

The extraction of phenolic compounds including gallic acid, catechins and their galloylated esters
(gallates) in red and brown edible seaweeds, Palmaria sp., Porphyra sp., H.elongata, L. ochroleuca and
U. pinnatifida, was carried out using ultrasonic bath, magnetic stirring and water bath with constant
shaking [169].

UAE was also used to extract polysaccharides (fucose and glucans) from L. digitata [170] and
L. obtuse [171]. In this case, the RSM was used to investigate the effect of the UAE variables (temperature,
time and ultrasonic amplitude) on the macroalgal extracts to enhance the yields of polysaccharides
and its antioxidant activities. A study observed that the UAE studied parameters showed significant
influence on the levels of fucose. The highest fucose levels were obtained at optimized conditions of
76 ◦C during 10 min and ultrasonic amplitude of 100% using 0.1 M HCl as solvent [170]. While, the
optimum UAE extraction parameters for the maximum phenolic content in L. obtusa extracts were a
solvent seaweed ratio of 30:1; extraction temperature of 50 ◦C and extraction time of 42.8 min [171].

The same experimental design approach was used to compare UAE and microwave-assisted
extraction (MAE), where the combination of both methodologies generated higher yields of compound
extraction when compared to the use of UAE and MAE methods separately [172].

4.3. Microwave Assisted Extraction (MAE)

Microwave-assisted extraction (MAE) is one of the most advanced techniques used for the
extraction of bioactive compounds from numerous seaweeds [173,174]. Microwaves are a nonionizing
radiation with wavelengths ranging from as short as 1 mm to as long as 1 m and frequencies between
300 MHz and 300 GHz. Microwaves induce molecular motion in materials and solvents with dipoles,
leading to subsequent heating of the sample. This heating leads plant cells to lose their moisture
content through evaporation; the steam produced swells and ultimately ruptures the cells, releasing
their bioactive components more easily. MAE of bioactive compounds might be affected by numerous



Antibiotics 2020, 9, 642 20 of 41

factors, such as the frequency, power, time of extraction, moisture content and particle size of the
sample, type and concentration of the solvent, ratio of solid to liquid, extraction temperature, extraction
pressure, and number of extraction cycles [174,175].

Carrageenans from S. chordalis (Rhodophyceae,) harvested from the Brittany coast (France) were
successfully extracted by MAE methodology. Native carrageenan extracted by MAE had the highest
yield (29.3%) after 10 min at 90 ◦C. Evaluation of the antiviral activity of S. chordalis carrageenan against
HSV-1 (Herpes simplex virus type one) showed a EC50 of the iota-carrageenans fractions in the range
of 3.2 to 54.4 µg/mL (MOI 0.01 ID50/mL) with no cytotoxicity in that range of concentrations [176].

Microwave-assisted aqueous two-phase extraction was utilized for simultaneous extraction and
separation of polysaccharides from S. pallidum. Using the optimal extraction conditions of 21% ethanol
(w/w) and 22% ammonium sulfate (w/w), ratio of material to liquid 1:60 (g/mL), extraction time of
15 min, microwave power of 830 W, and extraction temperature 95 ◦C, an aqueous extracts rich in fucose,
galactose, mannose, and glucuronic acid was obtained [177]. This approach demonstrated to be a
high-efficient and practical method for the bioactive compounds extraction from seaweeds [178]. Others
seaweeds such as S. thunbergii, and red algae P. haitanensis [179]; G. lemaneiformis [180]; U. pertusa [181];
S. ceylonensis, U. lactuca, G. lemaneiformis and Durvillaea antarctica, [180] were also subject to MAE
to obtain polysaccharides. Shuntaro Tsubaki et al. [182] proved the efficacy of microwave-assisted
hydrothermal extraction for the production of sulfated polysaccharides from U. meridionalis, U. ohnoi
and M. latissimum [182].

Four seaweed species: A. nodosum, L. japonica, L. trabeculata and L. nigrecens were investigated
for phenolic compounds extraction and their antioxidant capacity was also evaluated by MAE.
These extracts presented a higher crude yield and higher total phenolic content when compared to
conventional extraction techniques. MAE was also employed for the antioxidant extraction from
green algae Chaetomorpha sp. [183]. Alternative microwave-assisted configurations such as microwave
hydrodiffusion and gravity (MHG), were also used for the extraction of phenolic compounds in
L. ochroleuca a brown seaweed [184].

Phlorotannin was obtained from C. flexuosum, C. plumosum and E. radiata by MAE. Using water
as extraction solvent a most efficient extraction process with shorter processing times and a higher
purity product was obtained [185]. The same compounds were also attained from the brown seaweed
C. sedoides [186].

Pigments like fucoxanthin, were also recovered by MAE from L. japonica, U. pinnatifida and
S. fusiforme [187]. MAE under optimum extraction conditions was an effective method to recover
fucoidan from F. vesiculosus. [188] and from E. radiata [189].

Fucoidans from brown alga N. zanardinii [153] were isolated using conventional and
non-conventional extraction procedures (subcritical water extraction, UAE and MAE), in order
to evaluate the effects of the recent introduced technologies on the biochemical characteristics and
saccharide composition of the extracts, along with their antibacterial, antiviral and cytotoxic properties.
The highest and lowest fucoidan yields were obtained by sub critical water extraction and UAE,
respectively. It has been reported that the use of different extraction methods resulted in the
achievement of fucoidans with various chemical compositions and molecular weights. The algal
extracts were tested against E. coli, P. aeruginosa, L. monocytogenes and S. aureus. Fucoidans extracted by
MAE and sub critical water extraction were able to inhibit the growth of E. coli. However, fucoidans
isolated by EUAE, UAE and MAE showed inhibitory effects against P. aeruginosa [153].

A comparison between hot reflux extraction and MAE was conducted, leading to the conclusion
that the amount of polysaccharides achieved by both techniques were similar [190]. Studies using
hydrodistillation SFE and focused microwave-assisted hydrodistillation indicated that the highest
extraction yield was obtained when SFE was used, even though the bioactive terpenes and fatty acids
were obtained in greater quantity by the MAE method.
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In other studies, MAE and UAE methodologies were shown to be the more efficient techniques
for the chlorophyll and carotenoid isolation from freshwater green algae: C. glomerata, C. rivularis and
U. flexuosa compared to the Soxhlet extraction and solid phase extraction [191].

The algal contents of Oedogonium sp., Stigeoclonium sp., Ulothrix sp. and Nitzschia sp. were
extracted by MAE, using methanol an ethanol as extracting agents. The obtained crude extracts were
tested against E. coli, S. aureus and S. typhi. All the four algal species inhibited Gram-positive and
Gram-negative bacteria, except S. aureus which was resistant to the algal extracts. Only the ethanolic
extracts of Nitzschia sp. and Ulothrix sp. showed antibacterial activity against this strain [154].

4.4. Enzymatic-Assisted Extractions (EAE)

Enzymatic-assisted extraction (EAE) is based on the innate ability that enzymes have to catalyze
reactions with a high specificity, selectivity and an ability to function under mild processing conditions
in aqueous solutions [192], the EAE of bioactive compounds from numerous sources, including marine
ones, has received much attention in recent years. As compared to other reported conventional
extraction methods, EAE offers some noteworthy advantages namely, high selectivity, overall efficacy,
rapid extraction, eco-friendly procedures, low-energy consumption, minimal usage of harsh chemicals
and process recyclability [160]. A range of enzymes including ligninolytic, cellulolytic and proteolytic
enzymes has been extensively used as EAE catalysts. Enzyme-based pre-treatment or catalysis easily
causes the breakdown and/or hydrolysis of complex materials on the cell walls and membranes, thus
also supporting the recovery of intracellular bioactive constituents which are not easily extractable
through conventional extraction methods [193].

A study used an EAE coupled with UAE to achieve the eco-friendly extraction of soluble bioactive
fractions from the macroalga S. muticum. Using a mixture of commercial complex enzyme formulations,
these authors obtained an S. muticum extract rich in bioactive components such as carbohydrates,
monosaccharides, oligosacaccharides and polyphenols [194]. A similar strategy was used by other
authors [195] to extract bioactive compounds from green and brown seaweed C. tomentosum, S. muticum
and O. pinnatifida. Extracts obtained from those seaweeds were evaluated for proximate characterization
and biological properties. According to the authors, high extraction yields of cellulase, viscozyme,
nitrogen, total phenolics and sugars and sulfated polysaccharide were measured.

EAE was used (using five carbohydrases and three proteases) to extract multiple bioactive
compounds such as polyphenols, proteins and polysaccharides from several seaweeds, namely
S. boveanum, S. angustifolium, P. gymnospora, C. cervicornis, C. sinuosa, I. stellata and F. irregularis [155].
Several fractions of the seaweed extracts were used against S. aureus, E. faecalis, S. cerevisiae, B. cereus and
A. hydrophila. Although antimicrobial activities of the enzymatic extracts were low, flavourzyme resulted
in a higher number of seaweed extracts with antimicrobial activity against foodborne pathogens [155].

4.5. Accelerated Solvent Extraction (ASE)

Accelerated solvent extraction (ASE) also referred as pressurized liquid extraction (PLE) is deemed
an excellent technique for the extraction of polar compounds [196,197]. ASE is a solid–liquid extraction
process performed at high temperatures (50–200 ◦C) and high pressures (10–15 MPa). Its main
advantages over traditional extraction methods are the dramatic decrease in the amount of solvent
used and extraction time [198].

A recent study used ASE to extract phenolic contents (using water, ethanol:water and acetone:water
as extraction solvents) from algae A. nodosum, P. canaliculata, F. spiralis and U. intestinalis [199]. This
paper compared ASE with the conventional solid–liquid extraction technique. It was observed that
ASE was more effective for the extraction of polyphenols when acetone:water (80:20) was used as
solvent. However, the traditional solid–liquid extraction (using ethanol:water (80:20) or 100% of water)
resulted in higher phenolic content in brown macroalgal extracts.
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Another experiment used ethyl acetate and water by ASE to extract bioactive compounds from
P. pavonica seaweed. High-performance thin-layer chromatography was used to analyze the ethyl acetate
and water ASE P. pavonica extracts. Chromatograms indicated that several families of compounds
(terpenes, flavonoids and amino acids) were extracted from the studied seaweed but only the ethyl
acetate extracts contained polyphenols and lipids [200].

In another case, the antimicrobial activity of H. elongata ASE extracts was assessed. In this work,
the use of several solvents (ethanol, hexane, and water) demonstrated that ASE technology was
able to extract a variety of bioactive molecules namely, fatty acids, tocopherols, alkanes and phenols
from H. elongata. The highest yield was reached when only water was used as the extraction solvent.
Additionally, the antibiotic and antifungal activity were also tested in S. aureus, E. coli and fungus
C. albicans and A. niger. In this case, the best results were obtained when ethanol was used as the ASE
solvent [158].

ASE was also used to extract several bioactive compounds such as phlorotannins,
phosphatidylcholine, betaine lipids, chlorophylls and carotenoids from the algae S. muticum [201,202].
A study used a combination of ASE and water extraction to withdrawal molecules of interest from
seaweeds. Furthermore, those authors [159] also tested the antimicrobial activity of F. vesiculosus extracts
against E. faecium, MRSA, K. pneumoniae, A. baumannii, P. aeruginosa, E. coli, C. albicans, C. neoformans,
V. anguillarum, P. bacteriolytica and P. elyakovii. Although F. vesiculosus extracts produced evident MRSA
growth inhibition, radical scavenging and pro-apoptotic activities, this study highlighted the significant
effect of seasonal sampling on these activities [159].

4.6. Intensity Pulsed Electric Fields (IPEF)

In intensity pulsed electric fields (IPEF), the complex biological samples are placed between two
electrodes hosted in a treatment chamber and exposed to high intensity electric fields (10–50 kV/cm),
applied in the form of repetitive pulses of very short duration (from several nanoseconds to a few
milliseconds), inducing the permeabilization of the cell membranes by electroporation, easing the
subsequent release of intracellular matter as demonstrated in a recent study with microalgae [203,204].
The advantages of IPEF are short treatment time, low treatment temperature, increase in shelf life,
increased extractive yield, use of both batch and continuous processes and improved metabolite
extraction [203].

Polikovsky and co-workers [205] investigated a new technology to process macroalgae into
biorefinery, employing efficient energy and zero waste conversion of macroalgae biomass into food,
chemicals and fuels. For this purpose, a selective extraction of proteins from Ulva genus green
macroalgae was carried out using an IPEF process. Using 75 pulses with an average electric field
strength of 3 kV/cm and pulse duration of 6 µs, several proteins were extracted from the Ulva genus,
namely, calreticulin, ferredoxin-NADP+ reductase, fructose-1,6-bisphosphatase, fructose-bisphosphate
aldolase 1, phosphoglycerate kinase and ribosomal protein L12 (chloroplast). Polikovsky demonstrated
that IPEF process, despite some proteins were partially or completely degraded by the pulse electric
field treatment, this method is selective and efficient [205].

5. Applications

5.1. Food Industry and Animal Feed

Nowadays, it has been demonstrated that synthetic antimicrobials, like sodium benzoate, sodium
nitrite or sorbic acid, used in the food industry, can produce negative effects on the consumer’s health.
Thus, the search for new antimicrobials, obtained from natural sources is gaining importance [206].
Different studies have reported the inhibitory effects of macroalgae compounds against food-borne
pathogens such as E. coli, L. monocytogenes, S. aureus or Salmonella sp. Antimicrobials could be included
in both the food products as novel functional ingredients, or in the packaging material [207]. In the
first case, antimicrobials could be added to the food directly to prevent the spoilage due to the growth
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of microorganisms. Recently, the polysaccharide fucoidan extracted from F. vesiculosus showed in vitro
inhibitory effects against L. monocytogenes and S. enterica serovar Typhimurium. Furthermore, this
compound was included in the formulation of a functional apple beverage. The results showed
that fucoidan was significantly effective in preventing the spoilage produced by the mentioned
pathogens [208]. On the other hand, antibacterial compounds isolated from macroalgae could be used
in the active packaging sector, which faces the same spoilage produced by microorganisms. Studies
in this area have been focused on the incorporation of antimicrobial compounds into the packaging
material to eliminate or reduce the growth of pathogens, extending the shelf life of the products.
Currently, several edible films contain alginates and carrageenans to prevent microbial spoilage. For
example, carrageenan and chitosan containing films demonstrated inhibitory effects against C. jejuni
and lactic acid bacteria in raw chicken breast. Biodegradable films containing F. spiralis extract and
sorbic acid have been developed to enhance the shelf life of food products [34].

Regarding animal feed, antimicrobial compounds like laminarin and fucoidan could be used in
the animal feeding to substitute commercial antibiotics (which may cause negative effects both on
animals treated and environment), enhance the animal survival and also the safety and nutritional
characteristics of animal products consumed by humans [209]. For example, the administration of
fucoidan to monogastric animals inhibited the attachment of bacterial species in the gut and also
obstructed the binding of Enterococci and Streptococci sp. to the extracellular matrix, preventing the
colonization of the mucosa [209]. Likewise, fucoidan and other antimicrobial compounds are useful
tools in aquaculture, which can increase the resistance of the aquatic species against bacterial and viral
diseases. For instance, dietary supplementation with fucoidan, alginate and ulvan have demonstrated
the ability to improve the survival of several fish and crustaceans species against bacteria and viruses
that threaten aquaculture production [210].

5.2. Cosmetics and Pharmaceuticals

Considering the large amount of studies that have demonstrated that some compounds in
macroalgae might have antimicrobial capabilities, there is a possibility that these compounds may
be used in the development of treatments against pathogens and diseases. In Table 4, some
examples of the antimicrobial properties against bacteria, antibiotic-resistant bacteria, fungi and
viruses have been shown. For example, polyphenols could be used in dental products for the
treatment of chronic periodontitis [132], nail treatments to eliminate fungi [134] or in the development
of new antivirals [135,136], among other interesting applications. Polysaccharides have shown
antimicrobial effects against bacteria and fungi, but their antiviral properties are gaining attention
in the pharmaceutical sector [132]. In the case of other compounds, like proteins and pigments,
their antimicrobial properties have not yet been widely studied and understood, so their current
pharmaceutical applications are limited. Regarding cosmetic applications, several macroalgal
compounds could be interesting to develop safe treatments against acne. A β-D-galactosyl O-linked
glycolipid has been identified as the main compound responsible of the inhibitory effects of the ethyl
acetate extract of F. evanescens against C. acnes. This bacterium can colonize the skin and is related with
acne. Finally, the phenolic compound fucofuroeckol-A, isolated from methanolic extract of E. bicyclis
also showed antimicrobial properties against the mentioned microorganism [33]. Nevertheless, most
of antimicrobial studies are in vitro and thus, to ensure the efficacy and safety of these compounds,
further in vivo studies are required.
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Table 4. Macroalgae-based nanoparticles (NPs) with antimicrobial properties.

Macroalgae NPs Size (nm) Antimicrobial Activity Ref.

S. muticum Ag 43–79
Growth inhibition of B.

subtilis, K. pneumoniae and S.
typhi

[211]

G. amansii Ag 27–54

Antifouling activity against
P. aeruginosa,

V. parahaemolyticus, E. coli, A.
hydrophila, B. pumilus and

S. aureus

[212]

G. corneum Ag 20–50
Antimicrobial and

antibiofilm activity against
C. albicans and E. coli

[22]

G. corticata Ag 18–46 Antifungal activity against
Candida spp. [213]

G. birdiae Ag 20–95 Antimicrobial activity
against E. coli [214]

S. wightii Ag 55–70
Maximum growth inhibition

against M. luteus > S.
marcescens

[215]

V. pachynema Ag 30–40
Moderate growth inhibition

against M. luteus > S.
marcescens

[215]

P. hornemannii Ag 70–75

Antimicrobial activity
against the fish pathogens:

V. parahaemolyticus, V.
vulnificus, V. harveyii and V.

anguillarum

[216]

U. faciata Ag 7
Bacterial reduction in textile
fabrics against S. aureus and

E. coli
[217]

P. capillacea Ag 7
Bacterial reduction in textile
fabrics against S. aureus and

E. coli
[217]

J. rubens Ag 12
Bacterial reduction in textile
fabrics against S. aureus and

E. coli
[217]

C. sinusa Ag 20
Bacterial reduction in textile
fabrics against S. aureus and

E. coli
[217]

S. plagiophyllum AgCl 18–42 Growth inhibition of E.a coli [218]

S. marginatum Au 18–94

Growth inhibition of P.
aeruginosa, K. oxytoca, E.
faecalis, K. pneumoniae,
V. parahaemolyticus, V.

cholerae, S. typhi, S. paratyphi,
and P. vulgaris

[219]

S. plagiophyllum Au 65–66
Antibacterial activity against

S. typhi and E. coli by
bacteria membrane lysis

[220]

C. sinuosa Fe3O4 11–34

Excellent antifungal activity
against A. flavus and F.

oxysporum. Antibacterial
activity against E. coli, P.

aeruginosa, S. typhi, V. cholera,
B. subtilis and S. aureus

[221]
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Table 4. Cont.

Macroalgae NPs Size (nm) Antimicrobial Activity Ref.

P. capillacea Fe3O4 16–23

Antibacterial activity against
E. coli, P. aeruginosa, S. typhi,

V. cholera, B. subtilis and
S. aureus

[221]

U. flexuosa Fe3O4 12
Antibacterial activity against
B. subtilis, S. aureus, E. coli, E.

faecalis and S.s epidermidis
[222]

S. wightii ZrO2 4.8
Enhancement of the

antibacterial activity against
B. subtilis, E. coli and S. typhi

[223]

S. wightii MgO 68

Antibacterial activity against
S. pneumonia, MRSA 11,

MRSA 56, E. coli, P.
aeruginosa and A. baumannii

[224]

S. myriocystum ZnO 76–186

Growth inhibition against
Gram (+) bacteria: S. mutans

> M. luteus and Gram (-):
Neisseria gonorrohea > V.
cholera > K. pneumonia.

Antifungal activity against
C. albicans > A. niger

[225]

5.3. Anti-Fouling

Surfaces immersed in the marine environment could be colonized by biofouling organisms, such
as bacteria, protist or invertebrates [226]. Several paints containing toxic compounds like tributyltin,
mercury or arsenic have been designed to eliminate these communities. However, these paints
contribute to marine contamination, affecting the food chain and producing genetic mutations [227].
Therefore, the development of alternative solutions is of great importance. Antimicrobial compounds
from macroalgae could be used for this purpose [33]. Although most of studies have tested different
extracts, some of them have identified the compounds involved in the antifouling properties [226].
Several of these compounds have been identified in green, brown and red macroalgae such as pigments,
polyphenols or fatty acids. For example, polyphenolic compounds from the green algae U. pertusa
showed anti-algal properties against red tide microalgae [228]. Phlorotannins from Sargassum sp. are
allelochemicals, which several studies have demonstrated to be exuded by the macroalgae into the
surrounding water to prevent the settlement of epiphytes in their surface [229]. Finally, some antifouling
compounds have been identified in the red algae L. translucida, mainly fatty acid derivatives [230].
In the following years, an increase in the identification of compounds with antifouling activities is
expected, as well as the development of their biotechnological applications.

Other interesting approach to obtain anti-fouling products is the inhibition of the quorum sensing
of bacteria, defined as a cell-to-cell communication system, based on the production, release of and
perception of molecules by the bacterial cells. These molecules are involved in a great variety of
processes, including biofilm formation [227]. Several extracts and compounds derived from macroalga
with the ability to inhibit quorum sensing have been reported. For example, Carvalho et al. (2017) [231],
reported that C. cervicornis extracts inhibited the growth of C. violaceum, due to the inhibition of
the quorum sensing, since no killing effect was observed. A study conducted with P. gymnospora
demonstrated that the alpha-bisabolol obtained from this alga inhibited significantly the quorum
sensing and biofilm formation of S. marcescens [232]. Recently, several new α-pyridones, derived
from E. prolifera have been identified. The results of the gar diffusion method showed that four of
these compounds significantly inhibited the expression of genes involved in the quorum sensing in
P. aeruginosa [233]. Further research on macroalgal extracts and compounds could be promising to
develop new applications, as a strategy to reduce the use of antimicrobials [232].
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6. New Approaches and Future Perspectives

In the previous sections and throughout the manuscript a series of applications of the antimicrobial
compounds obtained from algae is given. Among all these applications, the most common is the use of
these molecules or extracts as preservatives of natural origin in the food, cosmetic or pharmaceutical
industry. Namely, in the food industry new trends are rapidly being incorporated to the market such
as active packaging or the use of antibiofilm compounds [14,34]. Additionally, research on natural
antimicrobials has also increased due to the current problem related to resistant strains. In this regard,
polyphenols represent molecules widely employed by in vitro studies for their synergistic effect when
acting with other conventional antimicrobials and thus, resulting in a higher efficacy, lower doses
and side-effects reduction [234]. However, to our knowledge, few studies have assessed the in vivo
properties of polyphenols or other enriched extracts obtained from algae.

On the other hand, nanoparticles (NPs) and nanomaterials have recently gained popularity both
in engineering and medical sciences. Algae have been proposed as alternative nanobiofactories for
the synthesis of NPs since physicochemical synthesis is usually difficult and expensive. Algae can
facilitate metal reduction as they can accumulate metal ions and stabilize and remodel them. Likewise,
algae extracts are known for their biological properties and particularly, they have been studied for
their antibacterial and antifungal effects [235]. Their mechanism of action consists basically of the NPs
adhesion to the microorganism surface and their penetration into cells. Once there, different interactions
can occur with the bacterial components: disruption of the enzymatic activity or the production of
reactive oxygen species (ROS) that can result in mitochondrial, protein or DNA damage [236]. The use
of algae in NPs synthesis is quite a new trend and therefore, different authors have performed studies
on characterizing, synthetizing and researching their antimicrobial potential. Table 4 shows a series of
examples of algae-based NPs and their antimicrobial activity. For instance, a study found that silver
NPs based on four different algae (U. faciata, P. capillacae, J. rubens and C. sinusa) could reduce the
bacterial growth of S. aureus and E. coli on textile cotton fabrics. This capacity could be useful for the
design of antiseptic dressings with biomedical applications [217]. In another case, also Ag-based NPs
obtained from the red algae G. amansii, showed potential as antifouling for their antimicrobial activity
against different microorganisms [212]. Among all the examples given on Table 4, the majority of the
studies have been carried out on silver-NPs, however other approaches are being investigated too
and their antimicrobial activity has been proved against plenty of microorganisms. Moreover, other
approaches apart from antimicrobial or antifouling applications have been proposed, such as their
use in bioremediation [237]. On the other hand, the use of algae extracts as prebiotics has also been
studied. Marine algae have been pointed out as a source of oligosaccharides and polysaccharides and
even though these compounds possess several bioactivities, their use as prebiotics is rising because of
their high content of dietary fiber, enhancing the growth of those beneficial bacteria in the intestinal
tract [11,238].

Taken together, all the information given in the different manuscript sections and considering
the favorable consumer perception about these products, there is a huge potential antimicrobials,
extracted from algae, to be incorporated into different applications. Future perspectives should focus
on the development of further in vivo and toxicological studies and in the transformation of the whole
process into a cost-effective and reproducible alternative which goes through the improvement, further
study and optimization of the extraction techniques of the bioactive compounds responsible for the
antimicrobial activity [239,240].

7. Conclusions

The use of bioactive compounds as a constituent in several food–cosmetic- and medical-based
products will soon be the norm. Among different sources, macroalgae biomass as a marine by-product
has been considered as a promising and viable source of a broader range of bioactive compounds.
As evident from this review, algae bio-products include: proteins, peptides, polysaccharides,
polyphenols, fatty acids, pigments, and the highest treasure antimicrobial compounds. To obtain these
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valuable bioactive compounds, several innovative green extraction methodologies have been used to
efficiently recover them from algae biomass. This review also comprises the recent advancements in the
extraction techniques such as supercritical-fluid extraction, accelerated solvent extraction, ultrasound-,
microwave-, and enzymatic-assisted extraction. Most of the literature concerning the antimicrobial
activity of algae is based on classic extraction techniques. Furthermore, new future approaches
should focus on the utilization of natural antimicrobial compounds obtained from algae into the
pharmaceutical industry, due to the current problem related to the resistance of the drugs to pathogenic
microorganisms. Moreover, algae have been also implicated as a possible alternative for nanoparticles
and nanomaterials synthesis, which will raise the possibility to use this by-product in engineering and
medical science.
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Abbreviations

Generic
ATCC American type culture collection
DW Dry weight
FW Fresh weight
HVS Herpes simplex virus
MIC Minimal inhibition concentration
MRSA Methicillin-resistant Staphylococcus aureus
MOI Multiplicity of infection
NPs Nanoparticles
RSM Response surface methodology
RT Room temperature
SARS Severe acute respiratory syndrome
UV Ultraviolet
Extraction techniques
ASE Accelerated solvent extraction
EAE Enzyme-assisted extraction
EUAE Enzymatic ultrasound assisted extraction
HAE Heat-assisted extraction
IPEF Intensity pulsed electric fields
MAE Microwave-assisted extraction
PLE Pressurized liquid extraction
SFE Supercritical fluid extraction
UAE Ultrasound assisted extraction
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Compounds
DEt Diethyl ether
DCM Dichloromethane
DPPH 1,1-diphenyl-2-picryl hydrazyl
EtOAc Ethyl acetate
EtOH Ethanol
H2O Water
Hx Hexane
MeOH Methanol
n-BuOH n- Butanol
n-Hx n-Hexane
PUFAs Poly-unsaturated fatty acids
Bacteria species
Acinetobacter (A.): A. baumannii. Actinobacillus (A.): A. actinomycetemcomitas. Actinomyces (A.): A.
naeslundii, A. odontolyticus. Aeromonas (A.): A. hydrophyla, A. salmonicida. Aspergillus (A.): A. flavus, A.
fumigatus, A. niger. Bacillus (B.): B. cereus, B. mycoides, B. pumilus, B. subtilis. Candida (C.): C. albicans, C.
dublinensis, C. famata, C. glabrata, C. guilliermondi, C. kefyr, C. krusei, C. membranaefaciens, C. parapsilosis.
Campylobacter (C.): C. jejuni. Chromobacterium (C.): C. violaceum. Colletotrichum (C.): C. lindemuthianum.
Cryptococcus (C.): C. neoformans. Cultibacterium (C.): C. acnes. Enterobacter (E.): E. aerogens, E. cloacae.
Enterococcus (E.): E. faecalis, E. faecium. Epidermophyton (E.): E. flocossum. Erwinia (E.): E. amylovora.
Escherichia (E.): E. coli. Fusarium (F.): F. graminearum, F. culmorum, F. oxysporum, F. solani. Fusobacterium (F.):
F. nucleatum. Klebsiella (K.): K. oxytoca, K. pneumonia. Lactobacillus (L.): L. brevis. Listeria (L.): L. innocua, L.
monocytogenes. Leishmania (L.): L. amazonensis. Macrophomina (M.): M. phaseolina. Methicillin-resistant
Staphylococcus aureus (MRSA). Micrococcus (M.): M. luteus. Microsporum (M.): M. canis, M. gypseum.
Penicillium (P.): P. verrucosum. Porphyromonas (P.): P. gingivalis. Pseudoalteromonas (P.): P. bacteriolytica.
Proteus (P.): P. vulgaris. Pseudomonas (P.): P. aeruginosa, P. cepacia, P. fluorescens. Rhizoctonia (R.): R. solani.
Rhodococcus (R.): R. rhodochrous. Saccharomyces (S.): S. cerevisiae. Salmonella (S.): S. abony, S. choleraesuis, S.
gallinarum, S. typhi, S. typhimurium. Septoria (S.): S. glycines. Serratia (S.): S. marcescens. Shigella (S.): S. boydii.
Staphylococcus (S.): S. aureus, S. enterica, S. epidermidis, S. lentus, S. xylosus. Streptococcus (S.): S. agalactiae, S.
epidermis, S. mutans, S. pneumonia, S. pyogenes, S. sobrinus. Streptomyces (S.): S. purpurascens. Syspastospora
(S.): S. parasitica. Trichophyton (T.): T. interdigitale, T. mentagrophytes, T. rubrum, T. tonsurans, Trichosporon (T.):
T. mucoides. Trypanosoma (T.): T. cruzi. Vibrio (V.): V. alginolyticus, V. anguillarum, V. cholerae, V. fluvialis, V.
haryevi, V. ordalii, V. parahaemolyticus, V. salmonicida, V. splendidus, V. tapetis, V. vulnificus. Yersinia (Y.): Y. ruckeri.
Macroalgae species
Chlorophyta: Boodlea (B.): B. coacta. Caulerpa (C.): C. peltata, C. prolifera, C. racemosa, C. scalpelliformis, C.

sertularioides. Cladophora (C.): C. glomerata, C. rivularis, C. rupestris, C. socialis, C. vagabunda. Codium (C.): C.
bursa, C. elongatum, C. fragile, C. iyengarii, C. tomentosum. Enteromorpha (E.): E. linza, E. prolifera. Halimeda
(H.): H. tuna. Monostroma (M.): M. latissimum. Rhizoclonium (R.): R. implexum. Ulva (U.): U. fasciata, U.
flexuosa, U. intestinalis, U. lactuca, U. meridionalis, U. ohnoi, U. pertusa, U. prolifera, U. rigida, U. reticulata.
Valonopsis (V.): V. pachynema.
Rhodophyta: Acanthophora (A.): A. specifera. Actinotrichia (A.): A. fragilis. Ascophyllum (A.): A. nodosum.

Ceramium (C.): C. ciliatum, C. rubrum. Chaetomorpha (C.): C. antemmina, C. linum. Chondrus (C.): C. crispus.
Corallina (C.): C. elongata, C. officinalis. Digenea (D.): D. simplex. Dumontia (D.): D. contorta. Eucheuma (E.): E.
serra. Galaxaura (G.): G. cylindriea, G. marginata. Gelidium (G.): G. amansii, G. corneum. Gigartina (G.): G.
skottsbergii. Gracilaria (G.): G. birdiae, G. changii, G. corticata, G. dura, G. edulis, G. gracilis, G. lemaneiformis, G.
multipartita, G. ornata, G. vermiculophylla. Gracilariopsis (G.): G. longissima. Grateloupia (G.): G. doryphora, G.
lithophilia. Hypnea (H.): H. esperi, H. flagelliformis, H. musciformis. Jania (J.): J. rubens. Kappaphycus (K.):
K. alvarezii. Laurencia (L.): L. aldingensis, L. brandenii, L. catarinensis, L. dendroidea, L. intricata, L. johnstonii, L.
obtusa, L. paniculata, L. papillosa, L. translucida. Mastocarpus (M.): M. stellatus. Melanothamnus (M.): M.
afaqhusainii. Osmundaria (O.): O. obtusiloba. Osmundea (O.): O. pinnatifida. Palmaria (P.): P. palmata.
Polysiphonia (P.): P. elongata. Porphyra (P.): P. dioica, P. haitanensis. Portieria (P.): P. hornemannii. Pterocladia
(P.): P. capillacea. Pterocladiella (P.): P. capillacea. Rissoella (R.): R. verruculosa. Rhodomela (R.): R. confervoides.
Sarcodia (S.): S. ceylonensis.
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Ochrophyta: Bifurcaria (B.): B. bifurcata. Canistrocarpus (C.): C. cervicornis. Cladosiphon (C.): C. okamuranus.

Cladostephus (C.): C. hirsutus. Carpophyllum (C.): C. flexuosum, C. plumosum. Colpomenia (C.): C. sinuosa.
Cutleria (C.): C. multifida. Cystoseira (C.): C. barbata, C. indica, C. mediterranea, C. myrica, C. nodicaulis, C.
sedoides, C. trinodis, C. usneoides. Dictyopteris (D.): D. membranacea. Dictyota (D.): D. dichotoma, D. flabellata, D.
indica. Dilophus (D.): D. fasciola. Ecklonia (E.): E. arborea, E. cava, E. kurome, E. radiata. Eisenia (E.): E. bicyclis.
Feldmannia (F.): F. irregularis. Fucus (F.): F. evanescens, F. serratus, F. spiralis, F. vesiculosus. Gymnogongrus(G.):
G. martinensis. Himanthalia (H.): H. elongata. Hormophysa (H.): H. cuneiformes. Iyengaria (I.): I. stellata.
Jolyna (J.): J. laminarioides. Laminaria (L.): L. digitata, L. hyperborea, L. japonica. Lessonia (L.): L. nigrecens, L.
trabeculata. Nizamuddinia (N.): N. zanardinii. Padina (P.): P. australis, P. concrescens, P. gymnospora. Pelvetia
(P.): P. canaliculata. Porolithon (P.): P. antillarum, P. boergesenii. Saccharina (S.): S. latissima, S. longicruris.
Sargassum (S.): S. angustifolium, S. boveanum, S. cinereum, S. dentifolium, S. hystrix, S. ilicifolium, S. incisifolium, S.
latifolium, S. marginatum, S. muticum, S. myriocystum, S. oligocystum, S. pallidum, S. platycarpum, S. polycystum, S.
portieriatum, S. swartzii, S. tenerrimum, S. thunbergii, S. variegatum, S. vulgare, S. wightii. Scytosiphon (S.): S.
lomentaria. Solieria (S.): S. chordalis, S. filiformis, S. robusta. Spatoglossum (S.): S. asperum. Spyridia (S.): S.
filamentosa. Stoechospermum (S.): S. marginatum. Taonia (T.): T. atomaria. Turbinaria (T.): T. conoides, T.
decurrens, T. ornata, T. triquetra. Undaria (U.): U. pinnafitida.
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