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Abstract Although lifespan in mammals varies over 100-fold, the precise evolutionary

mechanisms underlying variation in longevity remain unknown. Species-specific genetic changes

have been observed in long-lived species including the naked mole-rat, bats, and the bowhead

whale, but these adaptations do not generalize to other mammals. We present a novel method to

identify associations between rates of protein evolution and continuous phenotypes across the

entire mammalian phylogeny. Unlike previous analyses that focused on individual species, we treat

absolute and relative longevity as quantitative traits and demonstrate that these lifespan traits

affect the evolutionary constraint on hundreds of genes. Specifically, we find that genes related to

cell cycle, DNA repair, cell death, the IGF1 pathway, and immunity are under increased

evolutionary constraint in large and long-lived mammals. For mammals exceptionally long-lived for

their body size, we find increased constraint in inflammation, DNA repair, and NFKB-related

pathways. Strikingly, these pathways have considerable overlap with those that have been

previously reported to have potentially adaptive changes in single-species studies, and thus would

be expected to show decreased constraint in our analysis. This unexpected finding of increased

constraint in many longevity-associated pathways underscores the power of our quantitative

approach to detect patterns that generalize across the mammalian phylogeny.

Introduction
Humans age in the sense that an individual’s probability of dying increases as a function of time

lived. Interestingly, this trend is not true of all species but is true of mammals generally (Jones et al.,

2014). Numerous hypotheses of mammal-specific aging exist, including the antagonistic pleiotropy

hypothesis (Williams, 1957) and the mutation accumulation hypothesis (Medawar, 1952), both of

which refer to changes within an individual throughout its lifetime that result in aging. The antagonis-

tic pleiotropy hypothesis postulates that genes that are beneficial to early life become detrimental

later in life. Such genes are retained because they increase early-life reproductive output and thus

increase fitness. The mutation accumulation hypothesis predicts that a gradual accumulation of

errors in DNA sequence as a result of repeated replication during a lifetime’s worth of cell divisions

will lead to a gradual breakdown of functionality. Support for both hypotheses has been found in

individual species. Recent work has identified disease-related SNPs in age-related genes that are

beneficial in early life and detrimental in later life in humans, thus indicating selective pressures asso-

ciated with gene evolution related to aging and supporting the antagonistic pleiotropy hypothesis

(Rodrı́guez et al., 2017). A study of SNVs in the human brain found that number of mutations was

positively correlated with age and that mutations were at loci associated with age-related disease,
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thus supporting the mutation accumulation hypothesis (Lodato et al., 2018). However, in human

populations, variability in the aging phenotype is limited and many confounding biological changes

are correlated with aging, making it difficult to pinpoint specific biological processes that are causal

and thus amenable to manipulation.

On the other hand, lifespan varies dramatically (>100 fold) across mammals (Nowak, 1999), mak-

ing comparative genomics a fruitful avenue for aging research. Numerous studies have investigated

the genomic features of mammals with extreme lifespan such as bats (Foley et al., 2018;

Seim et al., 2013), naked mole-rats (Kim et al., 2011), whales (Keane et al., 2015), and elephants

(Sulak et al., 2016) to identify potential causative genetic changes. In Myotis, the longest-lived bat

genus, species show lack of telomere shortening and corresponding expression changes in telomere

maintenance and DNA repair genes (Foley et al., 2018). Comparative genomics studies have also

suggested that changes in the insulin growth factor one pathway may enable increased lifespan and

cancer resistance in Myotis brandtii (Brandt’s bat) (Seim et al., 2013). Similarly, naked mole-rats

show differential regulation of genes associated with macromolecule degradation, mitochondrial

function, and TERT, a gene associated with telomere maintenance, as well as changes to genes

related to tumor suppression (Kim et al., 2011). In primates, genes associated with cardiovascular

function, coagulation, and healing have been demonstrated to show evolutionary correlations with

lifespan (Muntané et al., 2018). Sequencing of the bowhead whale genome revealed species-spe-

cific changes in DNA repair, cell cycle, and aging genes (Keane et al., 2015). In elephants, a striking

increase in TP53 copy number has been linked to increased cancer resistance enabling longer life-

span (Sulak et al., 2016). Despite compelling results, these single- and limited-species studies have

limitations. The species studied differ from their nearest sequenced relatives in multiple physiological

traits as well as millions of nucleotides. Thus, while single-species studies have yielded some credible

candidates for genes associated with increased lifespan, it is difficult to know to what extent these

represent insights into the universal mechanisms of lifespan regulation rather than species-specific

adaptation or coincidental neutral changes. In this study, we develop new methodology to evaluate

the relationship between the evolutionary constraint of genes and pathways and quantitative life-

span traits in an unbiased, genome-wide, pan-mammalian analysis.

The wide range of lifespans across the mammalian phylogeny (Figure 1A) provides the ideal

dataset to investigate lifespan from a comparative genomics perspective. Because independent

changes in lifespan occurred repeatedly in the mammalian species tree, lifespan can be viewed as a

convergent trait. Molecular features that correlate with convergent changes in lifespan therefore

may also occur repeatedly across a variety of organisms. In our study we use protein evolutionary

rates quantified as the number of amino acid substitutions on a phylogenetic branch to infer conver-

gent rate shifts associated with lifespan traits across the mammalian phylogeny.

Evolutionary rates are useful for linking phenotypes to genes because they reflect evolutionary

constraint experienced by a genetic element (Zhang and Yang, 2015). In the absence of diversifying

selection, genetic elements that support a specific trait are expected to be more constrained in spe-

cies where the trait has a larger contribution to fitness. In agreement with this expectation, multiple

studies have shown that a genetic element providing a function less important for a given species is

under less constraint and hence exhibits a faster evolutionary rate (Clark et al., 2013; Janiak et al.,

2018; Roscito et al., 2018; Wertheim et al., 2015). Reciprocally, when an element becomes rela-

tively more important, its rate is expected to slow. Thus, in cases of phenotypic convergence, rates

can be exploited to reveal important genes associated with the phenotype, such as changes to mus-

cle and skin genes associated with the mammalian transition to a marine environment

(Chikina et al., 2016) and loss of constraint of vision-related genetic elements in subterranean mam-

mals (Partha et al., 2017; Prudent et al., 2016). Rate shifts can thus provide an evolutionary per-

spective on the contribution of genes, non-coding elements, or pathways to phenotypes of interest

(Hiller et al., 2012). Here we report the genome-wide, pan-mammalian correlations between evolu-

tionary rates of genes and lifespan phenotypes.

Results
In mammals, lifespan is strongly positively correlated with adult body size such that the largest mam-

mals (whales) are longest-lived and the smallest mammals (small rodents) are shortest lived

(Figure 1B). However, if lifespan is corrected for body size, species including bats, the naked mole-
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Figure 1. Many genes have evolutionary rates correlated with longevity phenotypes as demonstrated by analysis

with RERconverge. (A) A subset of species used for this analysis alongside their maximum longevity values.

Lifespan varies widely across mammals independent of phylogeny. (B) Mammal body size and maximum lifespan

values for 61 species. Lines represent the 3L phenotype and the ELL phenotype (also see Figure 1—figure

supplement 1). (C) RERconverge pipeline to find correlation between relative evolutionary rates of genes and

change in lifespan phenotypes. (D and E) Distribution of p-values from correlations between evolutionary rates of

genes and change in the 3L and ELL phenotypes indicate an enrichment of significant correlations (also see

Figure 1—figure supplement 11).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. 3L phenotype values (A) and ELL phenotype values (B) for 61 mammal species alongside

mammalian phylogenetic tree.

Figure supplement 2. Correlation statistics for genes and enrichment statistics for canonical pathways plotted

with statistics calculated from data with bat and naked mole-rat removed (A, B, C, and D) and with marine species

removed (E, F, G, and H).

Figure supplement 3. Each panel demonstrates the correlation between results using all species and results with

ten to eighty percent of species removed.

Figure supplement 4. Scatterplots for both 3L and ELL phenotype trait change versus relative evolutionary rate.

Figure supplement 5. Diagram of a toy example of permulation calculations.

Figure supplement 6. Quantile-quantile plots demonstrating that permulation p-values are more conservative

than permutation p-values for both 3L and ELL phenotypes (A and B) and permulation p-values are equally as

conservative as simulation p-values for both 3L and ELL phenotypes (C and D).

Figure supplement 7. Phylogenetic tree with all 61 mammal species used for RERconverge analysis.

Figure supplement 8. Phylogenetic tree with 34 placental mammal species used for branch-site tests for positive

selection.

Figure supplement 9. Alternative tree topologies used to test for robustness to phylogeny topology errors and

incomplete lineage sorting.

Figure supplement 10. Correlations between gene correlation and pathway enrichment statistics between

alternative tree topologies and the Meredith+ tree topology used for all other analyses.

Figure supplement 11. Q-Q plots demonstrating the relationship between null gene permulation p-values and a

standard uniform distribution and theoretical gene p-values and a standard uniform distribution for both 3L and

ELL phenotypes.
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rat, and some primates are clearly exceptionally long-lived given their body sizes. The term ‘longev-

ity’ is applied to both phenotypes and previous studies have focused on small numbers of species at

both phenotypic extremes to find genetic and physiological explanations for the extended pheno-

types (Foley et al., 2018; Keane et al., 2015; Kim et al., 2011; Seim et al., 2013; Sulak et al.,

2016). In our study we explicitly distinguish two different extended longevity traits: the ‘long-lived

large-bodied’ trait (3L) and the ‘exceptionally long-lived given body size’ trait (ELL). Using maximum

lifespan and body size data (Tacutu et al., 2018) we define the 3L and ELL phenotypes

(Supplementary file 1) to be the first and second principal components of body size and maximum

lifespan (Figure 1B, Figure 1—figure supplement 1). The resulting trait values are orthogonal with

respect to each other, ensuring that they can be analyzed independently.

Having defined the 3L and ELL phenotypes, we compute the association between these pheno-

types and protein-specific relative evolutionary rates (RERs) using the RERconverge method

(Kowalczyk et al., 2018; Partha et al., 2018) (Figure 1C and Materials and methods). Relative evo-

lutionary rates quantify the deviation in evolutionary rate of a protein along a specific phylogenetic

branch from proteome-wide expectations. Negative RERs indicate fewer substitutions than expected

due to increased constraint. Positive RERs correspond to more substitutions than expected, which

could arise due to relaxation of constraint or positive selection.

After computing correlations between all protein relative evolutionary rates and the 3L and ELL

phenotypes, we find an excess of low p-values (Figure 1D and Figure 1E). In order to evaluate how

much of the signal is due to true association with the phenotypes, we used a phylogenetically

restricted permutation strategy (termed ‘permulations’, see Materials and methods) to generate null

correlation statistics. We find that the real and permuted p-value distributions are indeed different,

indicating that a large fraction of genes are correlated with lifespan phenotypes. We quantify the

fraction of non-null genes using the p1 method (Storey, 2003). Using our permulation p-values as

the null distribution, the fraction of true positives was inferred to be ~15% (p1 = 0.153) for the 3L

phenotype and ~7.5% (p1 = 0.075) for the ELL phenotype. Using the theoretical uniform null

Figure 2. During selective pressure shifts that drive phenotypic changes, the genetic evolutionary rate landscape

shifts for many genes. Imagine a simplified case where Gene 1 and Gene 2 start at the same evolutionary rate

(solid red and blue lines, respectively). Trait-driving genes like Gene 1 enter a transient state of increased

evolutionary rates to drive trait change. Complementary genes that support the trait like Gene 2 experience

increased purifying selection to allow the trait to persist as it is established. True rates (solid red and blue lines) are

not measurable because they represent rates at inaccessible ancestral evolutionary timepoints – only accessible

extant sequences can be used to access average rates over time (dashed red and blue lines, which represent

positive and negative RERs). Therefore, transient periods of positive selection are less readily able to be captured

by RERconverge than sustained purifying selection due to the greater magnitude of their captured rate shifts.
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distribution, the corresponding values are p1=0.108 and p1 = 0.021, respectively. Regardless of the

null distribution choice, our analysis clearly demonstrates a significant molecular signal for gene evo-

lutionary rates correlated with lifespan phenotypes, with a considerably higher number of associa-

tions for the 3L phenotype.

Our analysis investigates both positive and negative correlations between evolutionary rates of

genes and changes in lifespan phenotypes. Positive correlations represent genes with faster evolu-

tionary rates in species with high 3L and ELL phenotype values relative to species with low pheno-

type values. Conversely, negative correlations represent genes with slower evolutionary rates in

species with high 3L and ELL phenotype values relative to species with low phenotype values. Note

that correlation directionality is relative – faster evolution in low phenotype values corresponds to

slower evolution in high phenotype values and vice versa. However, the choice has important conse-

quences for biological interpretation and necessitates an in-depth discussion.

RERs reflect the amount of constraint on the genetic element. A decrease in RER implies greater

evolutionary constraint and a greater contribution of that gene to fitness. An increase in RER, on the

other hand, has two nearly opposite interpretations. An increased RER could arise because of a

relaxation of evolutionary constraint driven by a reduced contribution to fitness. Alternatively, an

increased RER could arise due to positive (also termed directional) selection, which implies that that

the gene is actively undergoing directed evolution and thus could be contributing to trait-related

innovation. However, since there is no default evolutionary rate for protein coding sequence, genes

evolving slower in long-lived species could just as easily be interpreted as evolving faster in short-

lived species. In our study, we have chosen to interpret the rate changes with reference to the effect

in long-lived species (Figure 2). The ancestral mammal is believed to have been small and short-

lived, and thus large values of 3L and ELL are derived traits. Consequently, our interpretation

reduces to assuming that change in phenotype and shifts in evolutionary rate coincide.

With this interpretation, negative correlations imply that a gene is more important in species with

large values of 3L and ELL, while positive correlations imply either a relaxation of constraint or posi-

tive selection in species with large values of 3L and ELL. While such positively correlated genes

would be of great interest if they indeed represent molecular innovations underlying evolution of

extended lifespan, we find relatively fewer such genes, no evidence of positive selection among

them (see Supplementary file 6), and no enriched pathways associated with them.

We thus focus our analysis on the negatively correlated genes, which we interpret as being under

increased purifying selection in species with high longevity (3L or ELL) values. It is theoretically possi-

ble for negative correlations to be caused by accelerated evolution in small and short-lived species

because of directional selection associated with development of low longevity values. However, this

possibility can be rules out via branch-site models for positive selection using the low longevity spe-

cies as foreground, as these show little evidence for positive selection (see Supplementary file 6).

Together, these analyses support a single interpretation of the main rate convergence signal as a

decrease in evolutionary rate, and thus an increase in purifying selection, experienced by species

with large 3L and ELL values. It is important to emphasize that these genes are unlikely to have con-

tributed to molecular innovation that lead to the establishment of 3L and ELL traits, but rather these

represent existing biological systems that become especially important after the traits are estab-

lished (see Discussion).

While we observe a clear excess of genes at low p-values, we focus on pathway enrichment

analysis which both demonstrates a stronger signal and facilitates interpreting our results in the con-

text of existing knowledge. We investigate enriched pathways for both 3L and ELL phenotypes using

a rank-based method (Supplementary file 2). After performing standard multiple-hypothesis testing

corrections on the empirical p-values from permulations, there remains considerable pathway-level

signal underlying the 3L and ELL traits. Both the gene-level and pathway-level results were highly

robust to species removal, which indicates the biological pathways revealed here are important for

longevity across mammals and are not restricted to specific species (see Materials and methods, Fig-

ure 1—figure supplement 2, Supplementary file 4, and Supplementary file 5).

Among pathways under increased constraint in 3L species, we find a striking abundance of path-

ways related to cancer control. Those pathways can be organized into the broad categories of ‘cell

cycle control’, ‘cell death’, and ‘innate and adaptive immunity’, and they also include other cancer-

related pathways such as p53 regulation and telomere maintenance (Figure 3A). We likewise see a

significant enrichment in cancer-related genes more broadly. We compared correlation statistics
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between known cancer genes from Bailey et al. (2018) and found that tumor suppressor genes had

significantly lower correlation statistics (rho) than all genes (Wilcoxon rank-sum p-value=4.114e-8)

while oncogenes had no significant difference in correlation statistics compared to all genes (Wil-

coxon rank-sum p-value=0.3745) (Figure 3—figure supplement 1). This may indicate preferential

purifying selection on tumor suppressor genes in large, long-lived species for lower cancer inci-

dence. Considering that these findings, our 3L results can be naturally interpreted in the context of

Peto’s Paradox (Peto, 2016). The paradox reasons as follows: if all cells have a similar probability of

undergoing a malignant transformation, organisms with more cells should have a greater risk of

developing cancer. However, empirical cancer rates do not vary with body size (Peto, 2016), which

implies that larger animals harbor mechanisms to suppress cancer rates. Top 3L constrained path-

ways are associated with multiple cancer control mechanisms, including DNA repair, cell cycle con-

trol, cell death, and immune function (Figure 3B and Figure 3C). A normal cell’s transformation to

malignancy involves failure of all these processes, and our analysis suggests that 3L animals are

invested in the maintenance of each of their associated pathways through increased purifying selec-

tion. Based on enrichment and permulation results, we can infer that cell cycle fidelity, an early step

in cancer development, is most important over evolutionary time scales for 3L species. Further, there

is no evidence for enrichment of pathways associated with metastasis and angiogenesis, later steps

in cancer development. This finding suggests that large, long-lived species have experienced

increased selective pressure to protect pathways involved in early cancer stages but not later stages,

perhaps because the most severely negative fitness impacts of cancer are felt earlier in its develop-

ment. Species-specific cancer control mechanisms have been identified in individual species, such as

increased TP53 copy number in elephants (Sulak et al., 2016), but we show here that investment is

cancer control is key to longevity across the entire mammalian phylogeny because top enriched

pathways for the 3L phenotype do not depend on a handful of species (Figure 1—figure supple-

ment 3 and Figure 1—figure supplement 2).

An additional pathway that shows a strong signal of increased constraint with the 3L phenotype is

the insulin-like growth factor (IGF1) signaling pathway (Figure 4), which deserves special consider-

ation. Perturbations of IGF1 signaling result in changes in lifespan and body size in diverse organisms

(Johnson et al., 2013; Kimura et al., 1997; Stout et al., 2013), which suggests that the IGF1
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The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Correlation statistics (Rho) for gene evolutionary rate with PC1 3L phenotype.
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pathway may be a source of innovation underlying the evolution of the 3L trait. However, we find

that IGF1 pathway genes in fact evolve more slowly and are thus under increased purifying selection

in large, long-lived species. The magnitude of this signal is quite striking; IGF1 and IGF1R are ranked

1014 and 94 respectively for increased constraint and several other pathway members are near the

top (see Figure 3A). A possible explanation is that the IGF1 pathway plays an important role in can-

cer control (Larsson et al., 2005), and this cancer-related signal of constraint dominates any adap-

tive signal related to lifespan. There are also further reasons to believe that the IGF1 pathway is not

the main source of the 3L trait. Across the mammalian phylogeny, lifespan is strongly correlated with

body size, but genetic perturbations in the IGF pathway result in longer-lived individuals that are of

smaller size (Holzenberger et al., 2003; Sutter et al., 2007) thus decoupling the two traits. This

strongly suggests that changes in the IGF1 pathway are unlikely to drive the natural evolution of the

large, long-lived phenotype, which is established through a different, yet-unknown mechanism.

For the ELL phenotype, we find a smaller, more focused set of enriched genes and pathways. Of

those significantly enriched constrained pathways for ELL, we see some overlap with functional

groups represented in results from the 3L phenotype, notably immune-related and DNA repair path-

ways (Figure 5A). However, although the functional groups are the same, the pathways contained

within them differ between the two phenotypes (File S2, File S3). In particular, the only significantly

constrained DNA repair pathways for the 3L phenotype involve Fanconi’s anemia, while the ELL phe-

notype shows significantly constrained DNA repair pathways for a variety of repair functions (Fig-

ure 5). Such pathways stand out not only because of the connection between DNA repair and

cancer control, but also because of the observed relationship between DNA repair and aging inde-

pendent of cancer incidence. This relationship can be demonstrated experimentally by creating dou-

ble-stranded DNA breaks in laboratory mice to induce an aging phenotype (White et al., 2015).

In
te

g
ri
n

HRAS

IG
F
1
R

IGF1

RPS6KB1

RAC1

SRC

PIP2
PIP3

GNB2L1 PTK2

PTPN1

PXN

Cell Growth

IRS1IRS2

PIK3CA

PIK3R1

PRKD1PDPK1

Cell Migration

PTPN11

AKT1

BAD
YWHAE

YWHAZ

PRKCZ

Cell Survival

CRKL

CRK

SOS1 SHC1

GRB2

NCK2

GRB10

RAF1

MEK

ERK

RSK

EMT
Proliferation,

Growth, Survival

Apoptosis

Ras-MAPK

Pathway

PI3-k/Akt

Pathway
-3 -2.5 -2 -1.5 -1 -.5 0 .5 1 1.5

A

B

C

0.5

1.0

1.5

2.0

2.5

0 5000 10000 15000 20000

Gene Rank

F
o

ld
 E

n
ri

c
h
m

e
n
t

PID IGF1 Pathway

PRKCD

BCAR1

Gene Rho p-val q-val

PTPN11

IGF1R

PRKCZ

IGF1

SHC1

CRK

SOS1

GRB2

-0.437

-0.313

-0.292

-0.216

-0.201

-0.282

-0.225

-0.481

0.001

0.003

0.010

0.054

0.061

0.070

0.076

0.082

0.222

0.266

0.363

0.509

0.522

0.535

0.545

0.550
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There is also evidence that DNA damage causes dysregulation of the cellular chromatin state and

thus can contribute to aging even in post-mitotic cells (Oberdoerffer et al., 2008; Shi and Ober-

doerffer, 2012).

In addition to DNA repair-related pathways, we also noted pathways related to NFKB signaling

for which overexpression in downstream targets has been associated with aging. Experimental evi-

dence suggests a connection between NFKB signaling and DNA repair through sirtuins, a chromatin

regulator family that has already been implicated in lifespan control (Howitz et al., 2003;

Mao et al., 2012). Sirtuins mediate DNA damage-induced dysregulation and are also responsible

for silencing NFKB-regulated genes, thus connecting the two processes (Salminen et al., 2008).

Overall, our analysis strongly suggests that fidelity in DNA repair and NFKB signaling contributes to

the fitness of ELL species, indicating that these pathways may be a fruitful avenue for aging research

and intervention.

Discussion
We employed an evolutionary rates-based method as an unbiased, genome-wide, pan-mammalian

scan to identify genes and pathways that evolve significantly slower in long-lived large-bodied spe-

cies (3L) and species that are exceptionally long-lived given their body size (ELL). Pathways related

to cancer control, including cell cycle, DNA repair, cell death, and immunity, evolve significantly

slower in 3L species, which suggests that cancer resistance is an important functionality the enable

to evolution of large and long-lived species. Alternatively, a broader set of DNA repair genes and a

more focused set of immune genes related to NFKB signaling evolve significantly slower in ELL spe-

cies, both of which may be linked to effective DNA repair in order to preserve chromatin state.

Our analysis differs from previous efforts in both methodology and results. Firstly, we do not con-

sider individual amino acid changes within a protein as the unit of convergence, but rather we calcu-

late the overall evolutionary rate of a protein on each branch of a phylogeny and consider these

Figure 5. DNA repair pathways are under increased evolutionary constraint in mammals that are exceptionally

long-lived given their body size. (A) Significantly enriched pathways under increased constraint in species with

larger values of the ELL phenotype. Bar height indicates the negative log permulation p-value for each pathway,

and the color of bars indicates the pathway enrichment statistic. (B) DNA repair pathways are more significantly

enriched for increased evolutionary constraint in species with large values of the ELL phenotype than species with

large values of the 3L phenotype. The barcodes indicate ranks of genes in the pathways within the list of all

pathway-annotated genes. The worms indicate enrichment as calculated by a tricube moving average, a type of

moving average in which values near the end of the sliding window are down weighted to reduce the effect of

extreme values in any given window. The dashed horizontal lines mark the null value indicating no enrichment.
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evolutionary rates as the unit of convergence. Secondly, unlike previous studies that focused on line-

age- or species-specific changes, we look for correlations between evolutionary rates and quantita-

tive life history traits across the entire phylogeny. This pan-mammalian approach allows us to

generalize our findings to describe evolutionary trends throughout all mammals. We also draw a

careful distinction between absolute lifespan and relative lifespan, which allows us to make district

conclusions about the 3L and the ELL phenotypes.

The most important distinction between our work and previous work is that prior studies began

with the assumption that some genes must be under positive selection in association with evolution

of extended lifespan. From our unbiased analysis, we find that in fact the strongest signal of evolu-

tionary convergence is that of increased constraint on certain genes and gene families in long-lived

species (see Figure 3—figure supplement 1). While some of the pathways have been reported pre-

viously (such as cell cycle control, DNA repair, telomerase repair, and IGF1 signaling) our finding is

actually the opposite of (though not necessarily contradictory to) the positive selection signal that

has been emphasized in previous work, which from the perspective of evolutionary rate is decreased

constraint. In fact, we find comparatively few genes and no significant pathway enrichments for the

opposite trend – faster relative rates in longer lived species – which would correspond to genes

potentially under positive selection in longer-lived species. We therefore focus our discussion on

genes and pathways evolving slower in species with large values for the 3L and ELL traits. We con-

sidered these genetic elements to be important to the evolution of the 3L and ELL traits because

they have been protected from accumulating deleterious mutations and therefore evolve slower.

Despite considerable previous work on genes under positive selection in species with extreme

lifespan traits, our analysis did not recover any positively selected pathways in the pan-mammalian

analysis. However, for any new trait to arise, some corresponding genetic changes must occur. It is

possible that many of the molecular innovations that lead to increased lifespan are species-specific

and thus would not be detected by our method. However, it is also true that our relative evolution-

ary rates method is much more suited to detecting the kind of long-term convergent increases in

purifying selection that we observe. Figure 2 represents a simple schematic history of the evolution

of a trait and corresponding rate changes. During the establishment of a new trait, some genes

experience a brief period of positive selection which generates the molecular innovation to create

the new trait, after which the derived sequence will again be subject to purifying selection. Using

extant species as a genomic reference for evolutionary history, we can only infer the average rate

over the entire history and the brief period of positive selection results in a small, potentially unde-

tectable signal. On the other hand, we can hypothesize another class of genes which become more

important as a trait is established and thus experience continuously increased purifying selection

after the trait exists. These are the trait ‘enabling’ as opposed to the trait ‘establishing’ genes.

Because the rate change in the case of trait-enabling genes is permanent, it has a greater impact on

the inferred average rate observable from extant data. Our analyses strongly support that in the

case of extended longevity, such ‘enabling’ genes not only exist but are also convergent across inde-

pendent trait change events.

We have interpreted the rate correlation from the prospective of species with large phenotype-

values, thereby assuming phenotype changes and rate changes coincide. The implicit choice of

default rate does not affect the final gene ranking on which our analysis is based, but it does have

one important consequence. While decreases in rate are easily interpretable as increased constraint,

rate increase can be due to relaxation of constraint or positive selection. We address this asymmetry

simply by testing both possibilities. We test the relative accelerated genes for positive selection in

the long-lived species and the relatively decelerated genes for positive selection in the short-lived

species. We find no evidence of systematic positive selection in either direction.

We interpret our strongest pathway enrichment signals as indicating that cancer control is impor-

tant for enabling evolution of the 3L phenotype, which is in agreement with previous work that has

found similar changes in expression levels of cell cycle and immune function genes in both cancerous

and aging cells (Chatsirisupachai et al., 2019). However, there may be alternative explanations.

Specifically, differential pathogen pressure is expected to affect some of the same pathways. The

connection to immune pathways is clear, and viruses are known to co-opt the cell cycle. TP53 and

cell death are likewise important mechanisms by which cells control viral infection. All of these path-

ways may thus be under increased constraint in species more likely to experience viral infections.

However, we believe these explanations are unlikely for several reasons. Firstly, we do not see an
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enrichment of genes that are specialized for virus control, such as MX1, OAS1, DHX58, and genes

activated by type I interferon. Secondly, the interaction between pathogen pressure and evolution-

ary rates has been studied extensively and it is found that it typically drives adaptive changes in

pathogen interacting protein as pathogens are often unique to a species (Kosiol et al., 2008;

Sackton et al., 2007; Shultz and Sackton, 2019). This is at odds with the increased constraint of

immune genes that we observe. Finally, the probability of cancer increases with age and there is the-

oretical and empirical evidence that importance of cancer resistance increases with body-size and

lifespan. On the other hand, for humans the probability of dying from many infections decreases

sharply in early life (though increases again at post-reproductive ages) (Palmer et al., 2018) suggest-

ing that infection resistance should not be preferentially selected for in long-lived species.

Overall, the genes and pathways we identified whose constraint is negatively correlated with the

3L and ELL traits encompass functionalities important for the evolution of extended lifespan, and

they therefore represent candidate genes and pathways for further experimental exploration. Impor-

tantly, such genes were uncovered using an unbiased, genome-wide pan-mammalian scan. As such,

these results point to keys to exceptional longevity that are not specific to one or a handful of spe-

cies, but that are universal across mammals.

Materials and methods
RERconverge measures relationships between relative evolutionary rates of orthologous genes and

phenotype values based on a set of gene trees whose branch lengths represent protein evolutionary

rates and a set of phenotype values, either binary or continuous. The RERconverge package is

freely-available for use at https://github.com/nclark-lab/RERconverge along with walkthroughs for

beginner users (Kowalczyk et al., 2018). The original RERconverge method was successfully used to

find genes undergoing convergent evolutionary rate shifts in marine mammals (Chikina et al., 2016)

and subterranean mammals (Partha et al., 2017), and recent statistical improvements have made

RERconverge more robust and have given it more power to detect such rate shifts (Partha et al.,

2018). Here, the RERconverge methods were extended to use on continuous traits.

To perform the RERconverge analysis, we first used PAML (Yang, 2007) to create maximum likeli-

hood gene trees whose branch lengths represent evolutionary rates by means of number of amino

acid substitutions. Gene trees were generated for 19,149 amino acid alignments of orthologous

genes from the 62 mammal species from the UCSC 100-way alignment (Blanchette et al., 2004;

Harris, 2007; Kent et al., 2002) using the hg19 genome, all of which are available at http://

genome.ucsc.edu/. Trees were read into R using the readTrees() function from RERconverge. This

step also estimated a master tree with branch lengths that represented the average branch lengths

across many gene trees. For all further steps, only 61 species were used as listed in

Supplementary file 1; the cape golden mole was excluded because longevity data were not avail-

able for it. Relative evolutionary rates corrected for genome-wide evolutionary rates for each species

as well as corrected for branch length heteroskedasticity using a weighted regression approach

(Partha et al., 2018) were calculated using getAllResiduals() with weight = T, scale = T, cut-

off = 0.001, and useSpecies = species names for the 61 mammals species.

Relative evolutionary rates (RERs) quantify the deviation in evolutionary rate of a protein along a

specific phylogenetic branch from proteome-wide expectations. Negative RERs indicate fewer sub-

stitutions than expected due to increased constraint. Positive RERs correspond to more substitutions

than expected, which could arise due to relaxation of constraint or positive selection. To correlate

RERs with lifespan phenotypes, we use phenotypic change along phylogenetic branches computed

from maximum likelihood ancestral state reconstruction (Revell, 2012). This transformation is equiva-

lent to phylogenetically independent contrasts (Felsenstein, 1985) and thus removes phylogenetic

dependence from the phenotype values.

We used the char2Paths() function on each phenotype with trees read in using readTrees() to cre-

ate a phenotype vector that represented the predicted difference in phenotype values between

each species and its ancestor. The char2Paths() function first uses maximum likelihood estimation

through the fastAnc() function from phytools (Revell, 2012) and then subtracts the values between

connected pairs of species to calculate a phylogenetically-independent measure of the change in

the phenotype over evolutionary time. Finally, the getAllCor() function was run with each phenotype

and the RER matrix with method = ‘p’, min.pos = 0, and winsorizeRER = 3 to perform Pearson

Kowalczyk et al. eLife 2020;9:e51089. DOI: https://doi.org/10.7554/eLife.51089 10 of 18

Research article Computational and Systems Biology Genetics and Genomics

https://github.com/nclark-lab/RERconverge
http://genome.ucsc.edu/
http://genome.ucsc.edu/
https://doi.org/10.7554/eLife.51089


correlations with RERs winsorized such that the two most extreme RER values are set to the value of

the third most extreme RER. See Figure 1—figure supplement 4 for evolutionary rate-phenotype

scatterplots with high correlation values.

The gene lists produced from the RERconverge correlation analyses were used to calculate path-

way enrichments for all canonical pathways from mSigDB (Liberzon et al., 2011) and Mouse

Genome Informatics (MGI) functional annotations (Blake et al., 2003; Eppig et al., 2015). For each

pathway, a Wilcoxon Rank-Sum statistic was calculated to compare the sign of Rho times the nega-

tive log p-value for correlations of genes in the pathway to the same measure for all genes included

in a pathway annotation using getStat() from RERconverge to calculate the sign of Rho times the

negative log p-value for correlations for each gene and fastwilcoxGMTall() to quickly calculate an

approximation of the Wilcoxon Rank-Sum statistic.

Permulation analysis (Phylogenetically-Restricted Permutations)
In addition to calculating theoretical enrichment statistics, we developed a novel phylogenetically-

restricted permutation strategy dubbed ‘permulations’ to calculate empirical p-values for each path-

way enrichment statistic. Permulations are a combination of permutations and simulations in refer-

ence to the strategy for generating null phenotype values to use to generate null statistics. To

perform permulations, first phenotype values (3L and ELL) were simulated for each species using

phylogenetic simulations, and then original phenotype values were reassigned to the species based

on the rank of the simulated values (see Figure 1—figure supplement 5). Simulations were per-

formed using the geiger library in R using a Brownian motion approach and the average evolutionary

rate tree created by RERconverge (Harmon et al., 2008). After creating new phenotype values,

RERconverge analyses were performed to calculate correlations between evolutionary rates of genes

and phenotype values, and enrichment statistics were calculated using these gene results. The pro-

cess of creating new phenotype values and calculating enrichment statistics was repeated 1000

times for each phenotype and the empirical p-value for pathway enrichment was calculated as the

proportion of times the permulation enrichment statistic was greater than the enrichment statistic

calculated using real phenotype values.

Permulations are an attractive option to calculate empirical p-values because they use fabricated

phenotypes that are independent of RERs but respect the underlying phylogenetic relationships

between species (due to use of phylogenetic simulations) while maintaining the original range of the

data (due to rank-based assignment of true phenotype values). These types of analyses are a com-

mon tool in genomics because they allow for control of the dependence across tests caused by inter-

correlations among genes. Permulations are highly analogous to permutations commonly performed

in differential expression analysis, and we use them for the same purpose, namely to calculate empir-

ical pathway-level statistics (Subramanian et al., 2005). This step is critical for evaluating pathway

enrichment results because many pathways have elevated RER correlations even when conditioned

on the phenotype of interest. A pathway with high RER correlation among its genes is more likely to

show up as enriched when using a test that assumes gene independence, such as the Wilcoxon

Rank-Sum test. Permulations allow us to generate an empirical null distribution for pathway enrich-

ment statistics to correct for interdependence among gene ranks. Indeed, we find multiple pathways

that show significant enrichment using a Wilcoxon Rank-Sum test but insignificant empirical p-values

using permulations. We also show that permulation p-values, which take phylogeny into account, are

more conservative than permutation p-values, which ignore phylogenetic dependence, and equally

as conservative as the phylogenetic simulation p-values (see Figure 1—figure supplement 6).

Positive selection tests
In genes significantly correlated with the 3L and the ELL phenotypes, we investigated evidence for

relaxation of constraint and positive selection on trait-defining foreground branches using phyloge-

netic models of codon evolution. We did so using a representative subset of the full mammalian phy-

logeny (see Figure 1—figure supplement 7). Trait-defining foreground branches were specified

independently for the two phenotypes along both axes of trait values – positive and negative. In

total we have four sets of trait-defining foreground branches, namely positive 3L, negative 3L, posi-

tive ELL, and negative ELL. Figure 1—figure supplement 8 shows the phylogeny of species used

for this analysis and the four sets of trait-defining foreground branches. Species were selected for
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the representative subset based on three criteria: 1) all species were placental mammals (the mono-

treme and marsupials were excluded), 2) species with highest and lowest 3L and ELL phenotype val-

ues were included and used as foreground species in their respective tests, and 3) closely-related

non-foreground species were included. Only placental mammals were used because the inference of

positive selection can be confounded in the non-placental clade due to the long divergence time

between the clades and hence saturation of synonymous sites for many genes. Foreground species

were selected based on 3L and ELL values. A subset of non-foreground species was selected to cor-

rect for over- and under-sampling in particular clades while maintaining valid ‘outgroups’ for fore-

ground species. This subset also eliminated species that were essentially duplicates in terms of tests

for positive selection. For example, the primate clade is sampled much more than other clades,

that is more primate genomes are available. Additionally, because most of these species are non-

foreground species, their presence has little impact on positive selection tests. To correct for the

oversampling, we used five out of twelve primates in our subtree, three of which were foreground

species (human, marmoset, and squirrel monkey) and two of which were outgroups (rhesus as an

outgroup to human and bushbaby as an outgroup to the whole clade). We used similar logic to

select outgroup species throughout the rest of the phylogeny.

We inferred the significance of relaxation of constraint on each foreground branch set using likeli-

hood ratio tests (LRT) between Branch-site Neutral (BS Neutral) and its nested null model M1 (sites

neutral model) in PAML (Yang, 2007). Similarly, we performed LRTs between branch-site selection

model (BS Alt Mod) and its null BS Neutral were used to infer positive selection on the foreground

branches. Probabilities for each of these two LRTs were estimated using the chi-square distribution

with 1 degree of freedom. We additionally inferred significance of mammal-wide relaxation of con-

straint and positive selection using the LRTs between M8A (Neutral model) vs M0 (null model) and

M8 (positive selection model) vs M8A respectively. Prior to performing the mammal-wide tests in

genes corresponding to each of the four foreground branch sets, we removed the corresponding

foreground branches, allowing us to obtain unbiased estimates for significance of relaxation of con-

straint and positive selection from only the background mammalian branches.

Species robustness through subtree analysis
We were interested in assessing the sensitivity of our results to the choice of mammalian species

used in our analyses. The mammalian genomes available represent a subset of not only all extant

mammals, but all mammal species that have ever existed. Therefore, the genomes used in this analy-

sis represent an incomplete, and perhaps even a biased representation of mammal species. Since

we would like to extend our conclusions to pertain to mammals in general, we sought to quantify

the effects of our incomplete data on our gene and pathway results.

To do this, we created subsets of our data that contained fewer species. These subsets had 10,

20, 30, 40, 50, 60, 70, and 80 percent of species randomly removed (6, 12, 18, 24, 30, 36, 42, and 48

species removed out of 61 total, respectively) with ten random subsets created for each species

removal level. We then ran the standard RERconverge analysis on these subsets to acquire correla-

tion statistics representing the relationship between evolutionary rate of each gene across species

and longevity phenotypes in those species. We also ran enrichment analyses on the subset gene

results to acquire pathway enrichment statistics. After performing these analyses, we calculated cor-

relations between results from our full dataset and results from the subsets, where results were

quantified as the negative log p-value times the sign of the statistic.

We further tested the sensitivity of our results to specific species presence/absence by perform-

ing targeted species removal of species groups with which we expected to have other phenotypes

confounded with body size, namely marine mammals, and species that may have non-convergent

genetic mechanisms for lifespan extension, namely bats and the naked mole rat. We created two

new data subsets that only contained non-marine species (dolphin, manatee, killer whale, walrus,

and Weddell seal were removed) and only non-bat and non-naked-mole-rat species (megabat, black

flying-fox, microbat, David’s myotis bat, big brown bat, and naked mole-rat were removed). We

then performed the standard RERconverge analysis to find correlations between the evolutionary

rates of genes across species and longevity phenotypes in those species. We also performed path-

way enrichment analyses on the gene results.

We found good correlation of both enrichment and correlation statistics between subset results

and full dataset results based on negative log p-values times the sign of the statistic (Figure 1—
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figure supplement 3). For data subsets in which a proportion of species were randomly eliminated,

there was upwards of a median 60% correlation between results even with half all species removed

from our analyses, which indicates that randomly removing species did not significantly change our

results. These findings are quantified numerically as an among-subtree variance in

Supplementary file 4 and Supplementary file 5. We also compared full dataset results to results

from targeted data subsets without marine mammals and without bats and the naked mole-rat by

quantifying correlations between their negative log p-values times the sign of the statistic for gene

correlations and pathway enrichment statistics (Figure 1—figure supplement 8). From these com-

parisons, we found a strong relationship between full dataset results and targeted subset results,

which indicates that presence or absence of potentially problematic species such as marine mam-

mals, bats, and the naked mole-rat is not strongly impacting our results. Quantitative representations

of these findings are available in Supplementary file 4 and Supplementary file 5 Together, these

findings indicate that our results are not species, clade, or species subgroup-specific, but instead

represent trends across all mammals.

Alternate tree topology analysis
In addition to determining whether individual or groups of species were disproportionately driving

our conclusions, we were also interested in verifying that the fixed tree topology used for analyses

was not affecting results. To do so, we reran analyses using alternate plausible topologies represent-

ing different ancestral relationships among species (trees shown in Figure 1—figure supplement 9).

Differences in the alternate tree topologies represent points of potential incomplete lineage sorting

that lead to uncertainty, they and are thus reasonable alternatives compared to the original tree

used for analyses.

RERconverge was run using gene trees generated using the alternate topologies and results were

compared to results using the original tree. As shown in Figure 1—figure supplement 10, there is a

strong correlation between all sets of results, which indicates that uncertainties in tree topology do

not strongly affect results. This is true for very similar topologies (Robinson-Foulds distance 6) and

fairly different topologies (Robinson-Foulds distance 22).

Phylogenetic trees
Full Tree (61 mammals):

((((((((((((Human:0.005957477577,Chimp:0.006721826689):0.001382639829,

Gorilla:0.007765177171):0.005572327638,Orangutan:0.0164503644):0.002187630666,Gib-

bon:0.01770384793):0.007043113559,(Green_monkey:0.007693724903,((Crab-eating_maca-

que:0.001292320552,Rhesus:0.00713015786):0.002951690224,

Baboon:0.005199240711):0.002049749893):0.01566263562):0.0135408115,(Marmo-

set:0.02474184521,Squirrel_monkey:0.02096868307):0.02784675729):0.04299750653,Bush-

baby:0.108738222):0.01379370868,((((((Guinea_pig:0.09048639907,(Chinchilla:0.05332953299,Brush-

tailed_rat:0.08476954109):0.01287861561):0.02118937782,Naked_mole-

rat:0.08588673524):0.07432515556,Squirrel:0.08896424642):0.006291577528,((((Chinese_ham-

ster:0.04084640027,Golden_hamster:0.04456203524):0.02314125062,Prairie_-

vole:0.06932402649):0.01947113467,(Mouse:0.05273642272,

Rat:0.05576007402):0.04435347588):0.08380065137,Lesser_Egyptian_jer-

boa:0.1438649666):0.04270536633):0.01663675397,(Pika:0.1256544445,Rab-

bit:0.07131655591):0.06535533418):0.009050428462,Chinese_tree_-

shrew:0.1191189141):0.003894252213):0.01425600689,(((((Panda:0.03854019703,((Weddell_-

seal:0.02002160645,Pacific_walrus:0.02064385875):0.01734764946,Fer-

ret:0.04613997497):0.002879093616):0.009005888384,Dog:0.05339127565):0.01185166857,

Cat:0.05020331605):0.03285617057,((((((Cow:0.02168740723,((Domestic_goat:0.01157093136,

Sheep:0.01246322594):0.0049716126,Tibetan_ante-

lope:0.01522587482):0.01465511149):0.0662523666,(Killer_whale:0.006371664911,Dol-

phin:0.01086552617):0.06014682602):0.01216198069,Pig:0.0796745271):0.006785823323,(Bac-

trian_camel:0.01240650215,Alpaca:0.01096629635):0.06374554586):0.02551888691,(White_rhino-

ceros:0.04977357056,Horse:0.061454379):0.02510111297):0.00331214686,((Big_brown_-

bat:0.03248546656,(Davids_Myotis_bat:0.02344332842,
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Microbat:0.01567729315):0.02193849809):0.09455328094,(Black_flying-fox:0.005833353548,Mega-

bat:0.01611220178):0.07567400302):0.02385546003):0.002057771224):0.004845253848,(Star-nose-

d_mole:0.1239823369,(Hedgehog:0.1696142244,

Shrew:0.1934205791):0.02079474546):0.0235875333):0.01477733374):0.01316436193,(((((Cape_gol-

den_mole:0.1017903453,Tenrec:0.1749615473):0.01592632003,Cape_elephant_-

shrew:0.1516860647):0.006610995228,Aardvark:0.08326528894):0.008243787904,(Ele-

phant:0.06812658238,Manatee:0.06198982615):0.0224994529):0.03384011363,Arma-

dillo:0.1342602666):0.005989703247):0.2206952867,((Wallaby:0.1270943532,Tasmanian_de-

vil:0.09944141622):0.02717055443,Opossum:0.1181200712):0.1802966572):0,

Platypus:0.4322118716);

Branch Site Tree (34 placental mammals):

((((((Human:0.02214318927,Rhesus:0.0277942336):0.0135408115,(Marmoset:0.02474184521,

Squirrel_monkey:0.02096868307):0.02784675729):0.04299750653,Bush-

baby:0.108738222):0.01379370868,(((Chinchilla:0.08739752642,Naked_mole-

rat:0.08588673524):0.07432515556,Squirrel:0.08896424642):0.006291577528,((((Chinese_ham-

ster:0.04084640027,Golden_hamster:0.04456203524):0.02314125062,Prairie_-

vole:0.06932402649):0.01947113467,(Mouse:0.05273642272,

Rat:0.05576007402):0.04435347588):0.08380065137,Lesser_Egyptian_jer-

boa:0.1438649666):0.04270536633):0.02958143464):0.01425600689,((((Weddell_-

seal:0.02002160645,Pacific_walrus:0.02064385875):0.04108430003,

Cat:0.05020331605):0.03285617057,(((((Cow:0.02168740723,(Sheep:0.01743483854,Tibetan_ante-

lope:0.01522587482):0.01465511149):0.0662523666,Killer_whale:0.06651849094):0.01216198069,

Pig:0.0796745271):0.03230471024,Horse:0.08655549197):0.00331214686,((Big_brown_-

bat:0.03248546656,(Davids_Myotis_bat:0.02344332842,Micro-

bat:0.01567729315):0.02193849809):0.09455328094,Black_flying-

fox:0.08150735657):0.02385546003):0.002057771224):0.004845253848,(Star-nose-

d_mole:0.1239823369,(Hedgehog:0.1696142244,

Shrew:0.1934205791):0.02079474546):0.0235875333):0.01477733374):0.01316436193,((Cape_ele-

phant_shrew:0.1665408478,(Elephant:0.06812658238,Mana-

tee:0.06198982615):0.0224994529):0.03384011363,Armadillo:0.1342602666):0.005989703247);

Data and materials availability
All data and code are publicly available, provided in the main text or supplementary materials, or

available through the RERconverge package on GitHub at https://github.com/nclark-lab/

RERconverge. (Kowalczyk et al., 2019; copy archived at https://github.com/elifesciences-publica-

tions/RERconverge).
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