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Abstract

We recently reported the genetic cause of autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) as a
mutation in the STAT1 gene. In the present study we show that STAT1 Arg274Trp mutations in the coiled-coil (CC) domain is
the genetic cause of AD-CMC in three families of patients. Cloning and transfection experiments demonstrate that mutated
STAT1 inhibits IL12R/IL-23R signaling, with hyperphosphorylation of STAT1 as the likely underlying molecular mechanism.
Inhibition of signaling through the receptors for IL-12 and IL-23 leads to strongly diminished Th1/Th17 responses and hence
to increased susceptibility to fungal infections. The challenge for the future is to translate this knowledge into novel
strategies for the treatment of this severe immunodeficiency.
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Introduction

Chronic mucocutaneous candidiasis (CMC) is a hereditary

primary immunodeficiency characterized by severe skin and

mucosal Candida infections, dermatophytosis and onychomycosis

[1]. CMC is a heterogeneous syndrome, the best characterized

clinical entities being the autosomal recessive autoimmune

polyendocrinopathy candidiasis ectodermal dystrophy (APECED)

syndrome and autosomal dominant CMC (AD-CMC) [2].

APECED is due to mutations in the gene autoimmune regulator

(AIRE) [3], and these explain the autoimmune phenomena,

including autoantibodies against the antifungal cytokines interleu-

kin (IL)-17A, IL-17F and IL-22 [4,5]. In contrast, the genetic

cause of AD-CMC has remained unknown until very recently. In a

study performed in 5 families with AD-CMC, we reported that the

disease is caused by mutations in the gene coding for the Signal

Transducer and Activator of Transcription (STAT)1 signaling

molecule [6]. The discovery of STAT1 mutations as cause of AD-

CMC was remarkable, as STAT1 deficiency had been previously

reported to be associated with mycobacterial and viral, but not

fungal, infections [7,8]. The presence of the AD-CMC mutations

in the coiled-coil (CC) domain of STAT1, rather than in the Src

homology 2 (SH2) or DNA-binding domains of the protein as in

patients with mycobacterial/viral infections, is believed to explain

the difference [6]. Nevertheless, the cellular and molecular

mechanisms responsible for the increased susceptibility to fungal

infections in patients with AD-CMC and STAT1 mutations

remain to be deciphered.

In the present study we assessed the presence and function of

STAT1 mutations in the index family published previously [6], and

in two additional previously unreported families with AD-CMC.

We also assessed the immune abnormalities underlying the

increased susceptibility to infections in these patients.

Results and Discussion

In the present study we report that mutations in the CC-domain

of STAT1, the genetic cause of AD-CMC, lead to hyperpho-

sphorylation of STAT1 resulting in increased responsiveness to

IFN-c and impaired IL-12 and IL-23 signaling pathways. We

strengthened our recent observation that STAT1 mutations are

responsible for AD-CMC [6] by showing the Arg274Trp mutation

in the CC-domain of STAT1 in patients from three additional

families with AD-CMC. These data further establish the role of

STAT1-mediated signaling as a crucial mechanism for mucosal

antifungal defense.
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Missense mutation in STAT1
Individual P4 from the Dutch family (#1) (Figure 1A) was

demonstrated to carry the Arg274Trp mutation in exon 10 of

STAT1 similar to his father (P3), aunt (P2) and grandfather (P1)

[6]. The same STAT1 variant (c.820C.T; p.Arg274Trp) was

detected in all three individuals from the British family #2

(Figure 1B), and all three individuals from British family #3

(Figure 1C) (Figure 1D). The discovery of STAT1 mutations as a

cause of AD-CMC was rather surprising, as mutations in the SH2

or DNA-binding domains of the protein had been previously

shown to be associated with mycobacterial and viral, but not

fungal, infections [9,10]. We therefore sought to identify the

molecular mechanism behind this difference.

Lower production of IFN-c and IL-17 in AD-CMC patients
IL-12 induced no IFN-c production in cells obtained from AD-

CMC patients (Figure 2A), and IL-1b and IL-23 induced less IL-

17 production in cells from P3 and P4 from family #1 (Figure 2B).

In contrast, production of TNF-a in response to IFN-c and LPS

was higher in PBMCs from CMC patients compared to healthy

controls (Figure 2C). With these findings we have confirmed our

observations in experiments with cells from other AD-CMC

patients, as reported previously [6].

Arg274Trp STAT1 inhibits signaling via IL-12R and IL-23R
The transcription of several IFN-c-regulated genes was

measured in CD4+ T-cells from healthy controls transfected with

either wild-type STAT1 plasmid or mutant STAT1 plasmid. The

cells were stimulated for 24 hours with either IFN-c (1 mg/mL), or

IL-b (10 ng/mL) and IL-23 (50 ng/mL), or IL-12 (10 ng/ml) and

IL-18 (10 ng/ml). In line with the experiments performed in

primary cells isolated from AD-CMC patients, CD4+ T-cells

transfected with the mutated STAT1 allele, but not with the wild-

type allele, exhibited decreased transcription of STAT4 after

exposure to IL-1b and IL-23 (Figure 2D), and decreased

transcription of MCP1 upon IL-12 and IL-18 stimulation

(Figure 2E). In contrast, CD4+ T-cells transfected with the mutant

STAT1 plasmid showed increased transcription of PD-L1 upon

stimulation with IFN-c (Figure 2F). Cells that were transfected

with STAT1 plasmid exhibited highly increased expression of

STAT1 as compared to untransfected cells. Furthermore, no

difference in STAT1 mRNA expression was observed between

cells either transfected with wild-type or mutant STAT1 plasmid

(Figure S1). These data correct for the possibility that the observed

effects are due to a differential expression of the wild-type

compared to the mutant STAT1 plasmid.

Based on the results of these transfection studies, it can be

concluded that the differences in gene expression observed in AD-

CMC patients as compared to healthy controls can be fully

ascribed to the presence of the Arg274Trp mutation in STAT1.

Increased phosphorylation and activity of STAT1 in
AD-CMC patients

The consistent finding of increased responsiveness to IFN-c in

cells from patients and in cells transfected with the mutated

STAT1 suggested a gain of function of STAT1. We therefore

assessed whether the Arg274Trp mutation affects phosphorylation

of STAT1. PBMCs were incubated with various stimuli and

STAT1 phosphorylation was assessed by Western blotting.

Phosphorylation of STAT1 after IFN-c stimulation was higher

in AD-CMC patients than in healthy controls (Figure 3A). The

lower bands observed on the Western blot of phosphorylated

Figure 1. Pedigrees of three families with AD-CMC. (A) Pedigree of a Dutch family with four patients affected from 3 generations. (B) Pedigree
of a UK sample with 3 patients affected from 3 generations. (C) Pedigree of a UK sample with 3 patients affected from 2 generations. Patients with
candidiasis = closed black symbols; male patients = squares; female patients = circles.
doi:10.1371/journal.pone.0029248.g001
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STAT1 very likely represent breakdown products of the

phosphorylated STAT1 protein. Immunofluorescence microscopy

also demonstrated increased phosphorylation of STAT1 in IFN-c-

stimulated CD4+ cells from AD-CMC patients, but no difference

in total STAT1 (Figure 3B). These data are supported by Begitt et

al, demonstrating that mutations in the CC domain of STAT1

result in hyperphosphorylation and prolonged entrapment of

STAT1 in the nucleus, leading to inhibited nuclear export of

Figure 2. AD-CMC cells or transfection of cells with the mutated STAT1 inhibited IL-12R- and IL-23R-induced genes, but increased
IFN-c signaling. Defective IL-12R (A) and IL-23R (B) pathways in cells isolated from AD-CMC patients. Data represent mean + SEM from 3 healthy
controls and 3 AD-CMC patients (P3 and P4 from family #1 and P3 from family 2). (C) Stimulation of the IFN-c receptor pathway results in increased
production of the proinflammatory cytokine TNFa. Data represent mean + SEM from 3 healthy controls and 3 AD-CMC patients. CD4+ T cells from
healthy controls were transfected with wild-type or mutant STAT1 plasmid. (D) Decreased transcription of STAT4 upon stimulation with IL-1b (10 ng/
mL) and IL-23 (50 ng/mL), (E) and decreased transcription of MCP1 upon IL-12 (10 ng/mL) and IL-18 (10 ng/mL) stimulation. (F) The CD4+ cells
transfected with mutant STAT1 plasmid showed increased transcription of PD-L1 upon stimulation with IFN-c (1 mg/mL). Data represent mean + SEM
from 6 healthy controls from 3 separate experiments.
doi:10.1371/journal.pone.0029248.g002
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Figure 3. Increased STAT1 phosphorylation in cells of AD-CMC patients. (A) PBMC from two healthy controls and two AD-CMC patients
were stimulated for two hours with culture medium, IFN-b (500 U/mL), IFN-c (1 mg/mL), IL-23 (50 ng/mL) or IL-12 (10 ng/mL). Cells were lysed, and
total STAT1, phosphorylated STAT1 and actin were assessed by Western blot. Figure is representative of two separate experiments. (B) Increased
immunofluorescence of pSTAT1 in IFN-c-stimulated CD4+ cells from AD-CMC patients. Figure is representative of three separate experiments. (C)

STAT1 Gain of Function Mutations Underlie AD-CMC
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STAT1 [11]. Also, Lui et al. demonstrated that the Arg274Trp

mutation in STAT1 leads to increased phosphorylation of STAT1

[12].

Upon IFN-c stimulation through the IFN-c receptor in

physiological conditions, the downstream signaling molecules

JAK1, JAK2 and STAT1 are activated [13]. Upon activation,

STAT1 forms homodimers, which translocate to the nucleus, in

order to induce transcription of numerous genes, including ICAM-

1[14] and MCP-1 [15]. We measured the transcription of several

IFN-c regulated genes in AD-CMC patients and in healthy

controls, to determine whether the Arg274Trp mutation in STAT1

affects its function as a transcription factor. When PBMCs were

stimulated for two hours with IFN-c (1 mg/mL), AD-CMC

patients showed increased transcription of ICAM1 and MCP-1

compared to healthy controls (Figure 3C). The transcription of

STAT1, STAT3, IDO and PD-L1 was also increased (data not

shown), supporting a gain of function mechanism for STAT1 in

AD-CMC. Moreover, also unstimulated cells from AD-CMC

patients exhibited elevated expression of these genes compared to

cells from healthy controls.

How do these molecular mechanisms explain the defective

antifungal defense in AD-CMC patients? In the present study we

show that these patients display significant deficiencies in the

capacity to mount Th1 and Th17 responses, due to defective IL-

12R and IL-23R pathways. The contributing role of a defective

IL-12R signaling for CMC is strengthened by the observation that

23% of patients with isolated IL-12R deficiency have a mild form

of CMC [16]. However, STAT1 mutations in the CC domain

additionally lead to a defective response to the cytokines IL-1b and

IL-23. These cytokines play an important role in the development

of Th17 responses, which in turn are crucial in the host defense

against mucosal fungal infections. This notion is derived from the

observation that APECED patients develop neutralizing anti-IL-

17 and anti-IL-22 antibodies during the course of the disease [4],

and that hyper-IgE syndrome patients, who suffer from chronic

onychomycosis and oropharyngeal candidiasis, display defective

Th17 responses due to STAT3 defects [17]. In line with this, we

and others have also reported chronic fungal infections in patients

with defects in the dectin-1/CARD9 pathway, leading to defective

Th17 responses [18,19]. We have also previously reported

decreased IL-17 production and Th-17 cell proliferation in

patients with AD-CMC [20]. Defective Th17 responses, in turn,

are accompanied by decreased production of IL-17 and IL-22

which translates into decreased production of antifungal beta-

defensins as well as impaired influx of neutrophils [21,22].

Therefore, the combined deficiency in IL-12R signaling and

impaired Th17 responses are likely to explain the susceptibility to

fungal infections in patients with AD-CMC.

In conclusion, we strengthen the very recent observations that

STAT1 mutations in the CC-domain are the genetic cause of AD-

CMC. Moreover, we have now deciphered the cellular and

molecular mechanisms leading to this clinical phenotype:

hyperphosphorylation of STAT1, resulting in hyper-responsive-

ness to IFN-c stimulation, but defective IL-12R and IL-23R

pathways. In the end, these defects result in markedly diminished

Th1/Th17 immunity leading to increased susceptibility to fungal

infections. Future studies are warranted to investigate the disease

mechanisms in more detail, especially to elucidate the extent of

which STAT1-STAT3 and STAT1-STAT4 heterodimers are

formed in AD-CMC patients upon stimulation with either IL-12

or IL-23. Furthermore, the challenge for the future will be to assess

the proportion of patients with AD-CMC, but also sporadic CMC,

that harbor STAT1 mutations, but especially to translate this

knowledge into novel strategies for the treatment of this severe

immunodeficiency.

Materials and Methods

Family #1
The clinical characteristics and pedigree of a Dutch Caucasian

non-consanguinous family are represented in Figure 1A and in

Table S1. The patients of the first two generations have been

previously presented [6]. Since then, the son of one of the patients

from the second generation was also diagnosed with the disease.

The patients have severe chronic oropharyngeal candidiasis and

dermatophytosis of the feet.

Family #2
The clinical characteristics and pedigree of a non-consangui-

nous British Caucasian family are presented in Figure 1B and in

Table S1. Three generations are affected with severe persistent

candidiasis of the oropharynx, nails and skin (perineum in the

child), all have iron-deficiency anemia. The grandmother and

daughter have hypothyroidism while the boy has thyroid

(peroxidise) autoantibodies but has still not developed clinical

hypothyroidism.

Family #3
The clinical characteristics and pedigree of a non-consangui-

nous British Caucasian family are presented in Figure 1C and

Table S1. The mother, her son and daughter all suffer with oral

candidiasis and hypothyroidism. The children unusually also suffer

with mouth ulcers and herpetic whitlow.

Ethics approval
The study was approved by the Ethics Committee of Radboud

University Nijmegen Medical Centre, and the Newcastle and

North Tyneside Local Research Ethics Committee. Informed

consent was obtained from all family members and healthy

controls.

Sequencing of STAT1 and AIRE mutations
To assess for the presence of STAT1 mutations in the patients,

conventional PCR and Sanger sequencing were performed. All

coding exons of the CC-domain of STAT1, including exon 10,

were amplified and analyzed. AIRE mutations were excluded by

sequencing the gene as previously described [13].

Cell isolation and stimulation
PBMCs were isolated by density gradient centrifugation of PBS-

diluted blood (1:1) over Ficoll-Paque, as previously described [6].

T cells were positively selected using CD4 microbeads (130-045-

101, Miltenyi Biotec, Utrecht, the Netherlands). Cells (56106/ml)

were stimulated in 96-well plates (Greiner, Nuremberg, Germany),

with combinations of IFN-c (1 mg/mL) (Boehringer Ingelheim,

Alkmaar, the Netherlands) and LPS (1 ng/ml), IL-1b (10 ng/ml)

and IL-23 (10 ng/mL), or IL-12 (1 ng/ml) and IL-18 (10 ng/ml).

After 24 or 48 hours (without serum) or 5 days of incubation (in

the presence of 10% serum), cytokine concentrations were

PBMCs from three controls and two AD-CMC patients were stimulated with culture medium, IFN-b, or IFN-c for two hours. The transcription of ICAM1
and MCP-1 was measured using RT-PCR. Bars represent means + SEM.
doi:10.1371/journal.pone.0029248.g003
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measured using ELISA: TNF-a, IL-17, IL-22 (R&D Systems);

IFN-c (Pelikine).

Western blotting
For immunoblotting, 106106 cells were lysed in 100 ml lysis

buffer (50 mM Tris, 1 mM EDTA, 150 mM NaCL, 1% ND40,

5 mM NaF, 0.05% Sodium Deoxycholate, PhosSTOP and

cOmplete proteinase inhibitor cocktail (Roche, Almere, the

Netherlands)). The homogenate was frozen, thawed then centri-

fuged at 4 uC for 10 min at 14,000 rpm, and the supernatant was

taken for Western blotting. Equal amounts of protein were

subjected to SDS-PAGE using 10% and 15% polyacrylamide gels

at a constant voltage of 100V. After SDS-PAGE, proteins were

transferred to nitrocellulose membrane (0.2 mm). The membrane

was blocked with 5% (w/v) milk powder in PBS for 1 hour at

room temperature followed by incubation overnight at 4uC with a

STAT1 or pSTAT1 (Tyr701) antibody (9172 and 9167 respec-

tively, Cell Signaling, Leiden, the Netherlands) in 5% BSA/TBS/

T (5% bovine serum albumin/Tris-buffered saline/Tween 20).

After overnight incubation the blots were washed three times with

TBS/T and incubated with HRP-conjugated goat anti-rabbit

antibody at a dilution of 1:10,000 in 5% (w/v) milk powder in PBS

for 1 hour at room temperature. After washing the blots three

times with TBS/T, the blots where developed with ECL according

to manufacturer’s instructions (GE Healthcare, Diegem, Belgium).

STAT1 Immunofluorescence
CD4+ cells were stimulated for 10 minutes with IFN-c on cover

slides. Subsequently, the cells were fixed with 10% PFA, and

stained with a-pSTAT1 (Tyr701) or a-STAT1 and goat anti-

rabbit Alexa 488 according to manufacturer instructions. The

coverslides were mounted using Vectashield containing DAPI.

STAT1 cloning and transfection experiments
The Arg274Trp mutation was introduced into a plasmid

containing the human STAT1a gene (pUNO-hSTAT1a, Invivogen,

Toulouse, France), using the QuickChangeTM Site-Directed Muta-

genesis Kit (200518, Stratagene, Eindhoven, the Netherlands). The

following primers were used for the PCR reaction: 59- GAG-AGT-

CTG-CAG-CAA-GTT-TGG-CAG-CAG-CTT-AAA-AAG-39 (for-

ward) and 59- CTT-TTT-AAG-CTG-CTG-CCA-AAC-TTG-

CTG-CAG-ACT-CTC-39 (reverse). Human CD4+ cells were

transfected using HIPerfect reagent (Qiagen, Venlo, the Nether-

lands), according to manufacturer instructions.

Quantitative PCR of IL-12R/IL-23R/IFN-c-responsive genes
One million freshly isolated PBMCs or (transfected) CD4+ cells

were stimulated with IFN-c, IL-b and IL-23 or IL-12 and IL-18.

After two hours, total RNA was extracted in 400 mL TRIzol

reagent (Invitrogen). Isolated RNA was reverse transcribed into

complementary DNA using oligo(dT) primers and MMLV reverse

transcriptase. PCR was performed using a 7300 realtime PCR

system (Applied Biosystems, Lennik, Belgium). Primer sequences

are presented in Supplemental Information. PCR conditions were

as follows: two minutes at 50uC and 10 minutes at 95uC, followed

by 40 cycles of PCR reaction at 95uC for 15 seconds, and 60uC for

one minute. Primer sequences used for RT-PCR assessment were:

STAT4: 59-ACA-ATG-AAA-CCA-TGG-CAA-CGA-39 (forward)

and 59-TGA-AAT-TTT-CCC-TGA-AGG-ACC-TTC-39 (re-

verse); ICAM: 59-TTG-AAC-CCC-ACA-GTC-ACC-TAT-39

(forward) and 59-CCT-CTG-GCT-TCG-TCA-GAA-TC-39 (re-

verse); MCP-1: 59-CCA-GTC-ACC-TGC-TGT-TAT-AAC-39

(forward) and 59-TGG-AAT-CCT-GAA-CCC-ACT-TCT-39 (re-

verse); PD-L1: 59-GCT-GAA-CGC-ATT-TAC-TGT-CAC-G-39

(forward) and 59-AGT-GCA-GCC-AGG-TCT-AAT-TGT-39 (re-

verse). B2M was used as a reference housekeeping gene, for which

the primers were: 59- ATG-AGT-ATG-CCT-GCC-GTG-TG-39

(forward) and 59- CCA-AAT-GCG-GCA-TCT-TCA-AAC-39

(reverse).

Supporting Information

Figure S1 STAT1 expression in transfected CD4+ T-
cells. STAT1 mRNA expression in CD4+ T cells untransfected or

transfected with wild-type or mutant STAT1 plasmid. Cells were

left unstimulated or stimulated with IFN-c for 1 hour.

(DOC)

Table S1 Clinical characteristics of 8 patients with AD-
CMC from 3 families.

(DOC)
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