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Newly identified HMO-2011-type phages reveal genomic
diversity and biogeographic distributions of this marine
viral group
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Viruses play critical roles in influencing biogeochemical cycles and adjusting host mortality, population structure, physiology, and
evolution in the ocean. Marine viral communities are composed of numerous genetically distinct subfamily/genus-level viral
groups. Among currently identified viral groups, the HMO-2011-type group is known to be dominant and broadly distributed.
However, only four HMO-2011-type cultivated representatives that infect marine SAR116 and Roseobacter strains have been
reported to date, and the genetic diversity, potential hosts, and ecology of this group remain poorly elucidated. Here, we present
the genomes of seven HMO-2011-type phages that were isolated using four Roseobacter strains and one SAR11 strain, as well as
additional 207 HMO-2011-type metagenomic viral genomes (MVGs) identified from various marine viromes. Phylogenomic and
shared-gene analyses revealed that the HMO-2011-type group is a subfamily-level group comprising at least 10 discernible genus-
level subgroups. Moreover, >2000 HMO-2011-type DNA polymerase sequences were identified, and the DNA polymerase
phylogeny also revealed that the HMO-2011-type group contains diverse subgroups and is globally distributed. Metagenomic read-
mapping results further showed that most HMO-2011-type phages are prevalent in global oceans and display distinct geographic
distributions, with the distribution of most HMO-2011-type phages being associated with temperature. Lastly, we found that
members in subgroup IX, represented by pelagiphage HTVC033P, were among the most abundant HMO-2011-type phages, which
implies that SAR11 bacteria are crucial hosts for this viral group. In summary, our findings substantially expand current knowledge
regarding the phylogenetic diversity, evolution, and distribution of HMO-2011-type phages, highlighting HMO-2011-type phages as
major ecological agents that can infect certain key bacterial groups.
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INTRODUCTION
Viruses in the marine environment are extremely abundant and
diverse, and play critical roles in nutrient cycling and microbial
community function and structure [1–5]. Viruses contribute substan-
tially to the mortality of marine microorganisms, and thus play a key
role in shaping the structure and function of microbial communities,
and this, in turn, affects marine biogeochemical cycles [1–4].
Moreover, viruses can drive microbial evolution and diversification
by serving as a selective pressure and mediating lateral gene transfer
[1–5]. Although the vital functions of viruses in marine ecosystems are
now widely recognized, we have just begun to explore their genetic
diversity and ecological functions and the tremendous biodiversity of
marine viral communities are not well understood yet. Over the past
decade, culture-independent metagenomic and single-cell genomic
technologies have been increasingly used to characterize marine viral
communities [6–15], and with the development of sequencing and
assembly method, the number of metagenome-assembled viral
genomes has increased dramatically [7, 9, 12, 14–17]. Furthermore,
third-generation sequencing have been applied to generate long-
read data in some viral metagenomic studies [18, 19]. Metagenomic

datasets also represent valuable resources for investigating viral
biogeography in marine environments [20–27]. Although these
advances have substantially expanded our understanding of the
genetic composition of marine viruses, most of the sequences in
marine viromes show no homology to known phages and remain
uncharacterized; thus metagenomic research currently is limited in
enabling experimental identification of phage-host identity and
answering questions regarding virus–host interactions in natural viral
populations. Therefore, elucidation of the ecological, physiological,
and evolutionary role of marine bacteriophages is challenging and
requires studies on laboratory virus–host systems.
As compared to the rapid advance in metagenomic studies,

advances in phage isolation efforts have been slower and fewer
isolated phages are available due to the challenge encountered in
the culturing of many bacteria and their phages in the laboratory.
Although culture-dependent studies have lagged behind culture-
independent metagenomic investigations, several recent phage
cultivation studies have enabled the discovery of many important
phages that infect ecologically important marine bacteria, with the
most notable cases including SAR11 phages (pelagiphages),
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Roseobacter RCA phages, and SAR116 phage [20–22, 26–28]. The
bacteria within the SAR11, SAR116 and certain Roseobacter
lineages are abundant and widespread groups of heterotrophic
bacteria that dominate the ocean surface [29–33]. Phages isolated
from members of these bacterial groups have been shown to be
diverse and abundant in marine environments [20–22, 27].
Moreover, some of the phage isolates were found to match some
abundant viral groups identified using metagenomic analysis [27].
In this regard, phage isolates are critical for interpreting
metagenomic data and identifying the potential hosts for the
metagenomic sequences. Therefore, both culture-dependent and
-independent methods are indispensable for investigating marine
viruses.
Among the identified viral groups, the HMO-2011-type group is

considered one of the most abundant and widespread viral
groups [20, 22]. Short-tailed HMO-2011-type phages are members
of the Caudovirales order, with a double-stranded DNA genome.
HMO-2011-type group has four cultivated representatives so far
[20, 22]. Puniceispirillum phage HMO-2011, which infects marine
SAR116 strain IMCC1322, was the first cultivated phage in this
group. Metagenomic reads related to HMO-2011 were found to be
abundant in several marine viromes [20, 34]. More recently, three
additional HMO-2011-type phages (CRP-1, CRP-2, and CRP-3) that
infect Roseobacter RCA strains were isolated and characterized,
and this led to the speculation that RCA phages contribute to the
dominance of the HMO-2011-type group [22]. Genomic analyses
have revealed that HMO-2011-type phages possess a novel DNA
polymerase gene with unique domain architecture [20, 22].
Despite the recent discoveries related to this viral group, the
genomic diversity and ecology of this group are poorly under-
stood and whether HMO-2011-type phages can infect a more
diverse range of hosts remains to be investigated.
Our main aim in this study was to investigate the genomic

diversity and global prevalence of HMO-2011-type phages. We
report seven newly isolated HMO-2011-type phages, which were
isolated using four Roseobacter strains and one SAR11 strain as the
hosts. Moreover, we performed metagenomic mining to identify
HMO-2011-type metagenomic viral genomes (MVGs). Our geno-
mic and phylogenetic analyses revealed that HMO-2011-type viral
group is composed of diverse subgroups, and the results of the
metagenomic analysis showed that these HMO-2011-type phages
are widely distributed in the world’s oceans and exhibit distinct
global distribution patterns.

MATERIALS AND METHODS
Host strains and growth conditions
Roseobacter strains FZCC0040, FZCC0042, FZCC0012, and FZCC0089 were
isolated on May 13, 2017, from the coastal waters of Pingtan Island in
China (25°26′N, 119°47′E) by using the dilution-to-extinction method. All
Roseobacter strains were cultured in natural seawater-based medium
supplemented with 1 mM NH4Cl, 100 μM KH2PO4, 1 μM FeCl3 and mixed
carbon sources [35], and cultured at 23 °C. The SAR11 strain Pelagibacter sp.
HTCC1062 was kindly provided by Prof. Stephen Giovannoni, Oregon State
University. HTCC1062 was cultured in artificial seawater-based ASM1
medium [36] supplemented with 1mM NH4Cl, 100 μM KH2PO4, 1 μM FeCl3,
100 μM pyruvate, 50 μM glycine, and 50 μM methionine. HTCC1062 were
grown in the dark without shaking at 17 °C. The concentration of bacterial
cells was determined using a Guava EasyCyte flow cytometer (Millipore,
Guava Technologies) after staining with SYBR Green I (Invitrogen).

Phage isolation and purification
The seawater samples used for isolating the bacteriophages were collected
from three oceanic sampling stations (Table 1). Samples were filtered using
0.1 μm-pore-size sterile syringe filters and stored in the dark at 4 °C until
use. The procedures for phage isolation and purification have been
described in detail previously [21, 22, 28]. Briefly, filtered seawater samples
were added into the host cultures and cell growth was monitored using a
Guava EasyCyte cell counter. When a decrease in cell density was detected, Ta
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the presence of phage particles was confirmed using epifluorescence
microscopy. The phages were purified using the dilution-to-extinction
method [21, 22, 37], with the purification procedures being repeated three
times to ensure that a single pure line of each phage was obtained. The
purity of the isolated phages was verified using whole-genome
sequencing.

Phage DNA extraction, genome sequencing, and assembly
Phage particles were concentrated from 200mL of cell lysates as
previously described [22]. Briefly, each phage lysate was filtered through
0.1 μm filters and concentrated to 300 μL by using Amicon Ultra
Centrifugal Filters (30 kDa, Millipore) and Nanosep centrifugal devices
(30 kDa, PALL). Phage genomic DNA was extracted using the formamide
treatment, phenol-chloroform extraction method [38] and sequenced on
an HiSeq 2500 platform (Illumina) with a paired-end read length of 150 bp.
Quality-filtering, trimming and de novo assembly were performed by using
CLC Genomic Workbench v11.0.1 (Qiagen, Hilden, Germany) with default
settings. The remaining gaps were closed through Sanger sequencing of
PCR products covering the gap areas.

Metagenomic retrieval of HMO-2011-type MVGs
For our analyses, MVGs reconstructed from Global Ocean Viromes (GOV
and GOV 2.0) [12, 14], the MedDCM fosmid library [7], Station ALOHA
assembly-free virus genomes [19], and the ALOHA 2.0 viromic database
[15] were downloaded for analyses. Open reading frames (ORFs) of MVGs
were predicted using prodigal [39]. Here, we used three HMO-2011-type
hallmark genes, including the DNA polymerase (DNAP), capsid and
terminase large subunit (TerL) genes, as baits to retrieve the HMO-2011-
type phage genomes. Profile hidden Markov models (HMM) were
constructed using DNAP, capsid and TerL protein sequences of HMO-
2011-type isolates using hmmbuild with default parameters [40]. The HMM
profiles were used to query the downloaded MVGs using hmmsearch
program (e-value ≤10−3 and score ≥50). Only matches with ≥25% identity
and ≥80% alignment length were considered. MVGs that contain all three
gene homologs were retained for further analysis. For HMO-2011-type
DNAP homologs, the DnaJ domains and two CXXCXGXG motifs were
identified by manually checking the sequences [20], and only the MVGs
whose DNAP sequences contain a partial DNAJ domain and two
CXXCXGXG motifs were considered as HMO-2011-type phages. CheckV
was used for completeness and quality estimation of these HMO-2011-
type MVGs [41]. MVGs with a genome completeness ≥50% were used for
further phylogenomic and comparative genomic analyses.

Genome annotation and comparative genomic analysis
The GeneMark online server [42] and Prodigal [39] were used to predict
ORFs from all HMO-2011-type genomes. Translated ORFs were analyzed
and annotated by BLASTP and PSI-BLAST against the NCBI nonredundant
and NCBI Refseq databases (e-value ≤10−3; ≥25% amino acid identity;
≥50% alignment length). ORFs were searched against the Pfam database
with HMMER web server [43, 44] for recognizable conserved PFAM
domains. For structure and function prediction, we also used the
Conserved Domain Search Service of NCBI [45] and HHpred server [46].
ORFs were assigned putative biological functions according to the function
of proteins encoded by homologous genes. tRNAscan-SE was used to
identify tRNA genes [47]. OrthoFinder v2.5.2 [48] was used to identify
groups of orthologous genes from different HMO-2011-type genomes
based on sequence similarity (BLASTP option: e-value ≤10−3; ≥25%
identity; ≥50% alignment length). Representative HMO-2011-type gen-
omes were compared and visualized using Easyfig v2.2.2 [49].

Phylogenomic analyses
We conducted phylogenomic analyses to evaluate the evolutionary
relationship of HMO-2011-type phages. Five core genes were selected
for phylogenomic analysis (genes encoding DNA helicase, DNAP, capsid,
portal and TerL). The core genes were aligned using MUSCLE [50] and
edited using Gblocks [51]. The alignments were concatenated and a
phylogenetic tree was constructed using IQ-TREE v1.6.12 [52] with 1000
bootstrap replicates. The whole-genome phylogenetic tree based on
amino acid sequences was also constructed using GL-UVAB workflow [53]
with the Dice coefficient under default settings. The taxonomic classifica-
tion of HMO-2011-type phages at the genus level was performed
according to the recommended minimum node depth of 0.0189 and

number of representatives equal or above 3. The phylogenetic trees were
visualized and annotated using Interactive Tree Of Life (iTOL) v.5 [54].

Host prediction
The potential hosts of HMO-2011-MVGs were predicted using RaFAH tool
with default settings [55]. The training and validating random forest model
for RaFAH was built with 4269 host-known phages, including 11 HMO-
2011-type phages and 4258 bacteriophage genomes downloaded from
the NCBI RefSeq (v208).

Identification and phylogenetic analysis of HMO-2011-type
DNAP sequences
A hidden Markov profile (HMM) made from an alignment of DNAP gene
sequences was used to query the downloaded MVGs using hmmsearch
program (e-value ≤10−3 and score ≥50). The DnaJ domains and two
CXXCXGXG motifs were identified by manually checking the sequences.
DNAP sequences with ≥80% coverage length and size larger than 540 aa
were used for the phylogenetic analysis. GOV 2.0 viral populations were
searched using hmmsearch [40] to identify DNAP family A (PF00476)
sequences.
The amino acid sequences of all HMO-2011-type DNAP were aligned

using MUSCLE [50] and edited using Gblocks [51] for phylogenetic analysis.
A maximum-likelihood phylogenetic tree was constructed by using IQ-
TREE v1.6.12 [52] with 1000 bootstrap replicates.

Recruitment of metagenomic reads and statistical analysis
The relative abundance of HMO-2011-type phages in marine viromes was
estimated through a viromic read-mapping analysis. Global Oceans
Viromes (GOV 2.0) were downloaded for accessing the relative abundance
[14]. HMO-2011-type genomes were compared using NUCmer [56].
Genomes sharing ≥95% nucleotide identity across ≥80% of the genome
were classified into a single species, and only the longest MVGs within a
species were retained for recruitment analysis. Viromic reads were mapped
against the nonredundant set of HMO-2011-type genomes by using
BLASTN (≥95% nucleotide identity over ≥90% read coverage). The relative
abundances of HMO-2011-type phages were normalized by the total
recruited nucleotides (kb) per kilobase of genome per gigabase of
metagenome (KPKG). HMO-2011-type genomes for which <40% of the
genomes were covered by recruited viromic reads in a given viromic
dataset were regarded as absent and were assigned a KPKG value of 0 [26].
Heatmap was plotted using R package pheatmap. Linear-regression
analysis generated by R was used to test the relationship between
environmental parameters and relative abundance of HMO-2011-type
phages. Box plots of the pelagiphages KPKG were plotted using R package
ggplot2.

RESULTS AND DISCUSSION
General characterization of seven newly isolated HMO-2011-
type phages
In this study, we used four Roseobacter strains (FZCC0040,
FZCC0042, FZCC0012, and FZCC0089) and one SAR11 strain
(HTCC1062) to isolate phages. FZCC0040 and FZCC0042 belong to
the Roseobacter RCA lineage [22], FZCC0012 shares 99.8% 16S
rRNA gene identity with Roseobacter strain HIMB11 [57], and
FZCC0089 belongs to a newly identified Roseobacter lineage
located close to HIMB11 and SAG-019 lineages (Supplementary
Fig. 1).
A total of seven phages were newly isolated and analyzed in

this study (Table 1). The complete phage genomes range in size
from 52.7 to 54.9 kb, harbor 62 to 84 open reading frames (ORFs),
and feature a G+ C content ranging from 33.8 to 48.6%.
Compared to other HMO-2011-type phages, pelagiphage
HTVC033P has a relatively lower G+ C content of 33.8%, similar
to the G+ C content of its host HTCC1062 (29.0%) and of other
described pelagiphages [21, 26–28]. The G+ C content of other six
roseophages ranges from 42.2 to 48.6%, which is also similar to
the G+ C content of the hosts they infect (44.8 to 54.1%).
Despite their distinct host origins, these phage genomes show

considerable similarity in terms of gene content and genome
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Fig. 1 Alignment and comparison of genomes of HMO-2011-type isolates and representative HMO-2011-type MVGs from major
subgroups. HMO-2011-type phage isolates are shown in red. Phages isolated in this study are indicated with red asterisks. Predicted open
reading frames (ORFs) are represented by arrows, with the left or right arrow points indicating the direction of their transcription. The
numbers inside the arrows indicate ORF numbers. ORFs annotated with known functions are marked using distinct colors according to their
functions. HMO-2011-type core genes are indicated with blue asterisks. The color of the shading connecting homologous genes indicates the
level of amino acid identity between the genes. To clearly present the genomic comparison, several MVGs were rearranged to start from the
same gene as in the HMO-2011-type phages. DNAP DNA polymerase, Endo endonuclease, RNR ribonucleoside-triphosphate reductase, PhoH
phosphate starvation-inducible protein, MazG MazG nucleotide pyrophosphohydrolase domain protein, ThyX thymidylate synthase, GRX
glutaredoxin, TerS terminase small subunit, TerL terminase large subunit.
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architecture (Fig. 1). They all display clear similarity with the
previously reported SAR116 phage HMO-2011 [20] and HMO-
2011-type RCA phages [22]. Overall, these phages share 19.2 to
79.1% of their genes with previously reported HMO-2011-type
phages and all contain homologues of HMO-2011-type DNA
replication and metabolism genes, structural genes, and DNA
packaging genes. Moreover, their overall genome structure is
conserved with that of HMO-2011-type phages. Considering these
observations, we tentatively classified these seven phages into the
HMO-2011-type group. Of the 11 currently known HMO-2011-type
isolates, one infects the SAR116 strain IMCC1322, one infects the
SAR11 strain HTCC1062, and the remaining nine all infect
Roseobacter strains; this suggest that HMO-2011-type phages
infect diverse bacterial hosts. HTVC033P is the first pelagiphage
identified to belong to the HMO-2011-type viral group. Our study
has also increased the number of known types of pelagiphages. To
date, pelagiphages belonging to a total of nine distinct viral
groups have been isolated and analyzed [21, 26–28].

Identification and sequence analyses of HMO-2011-type MVGs
To identify HMO-2011-type MVGs, we performed a metagenomic
mining and retrieved a total of 207 HMO-2011-type MVGs (≥50%
genome completeness) from viromes in the worldwide ocean,
from tropical to polar oceans (Supplementary Table 1). These
MVGs range in size from 29.2 to 67.9 kb and their G+ C content
range from 31.3 to 52.4%. In addition, 45 HMO-2011-type MVGs
were also identified from some non-marine habitats, suggesting
that HMO-2011-type phages are widely distributed worldwide
(Supplementary Table 1).
Genomic analysis confirmed that all HMO-2011-type MVGs exhibit

genomic synteny with HMO-2011-type phages (Fig. 1). Although
some of these HMO-2011-type MVGs are highly similar to their
cultivated relatives, most MVGs appear to have more genomic
variations. To resolve the evolutionary relationship among the HMO-
2011-type phages, a phylogenetic tree was constructed based on the
concatenated sequences of five core genes. We found that HMO-
2011-type phages are evolutionarily diverse and can be separated
into at least 10 well-supported subgroups (>2 members), with 140
MVGs clustering into previously identified HMO-2011-type groups
(subgroups I and III in Fig. 2A) [22], and the remaining 67 MVGs
forming new subgroups (Fig. 2A). Among these HMO-2011-type
subgroups, three contain cultivated representatives (subgroups I, III,
and IX). Subgroup I contains the greatest number of phages,
including six cultivated representatives and 123 MVGs (Fig. 2A). The
cultivated representatives in subgroup I include a phage that infect
SAR116 strain and five phages that infect Roseobacter strains.
Subgroup III contains four cultivated representatives that infect two
Roseobacter strains, and 17 MVGs. Pelagiphage HTVC033P and nine
MVGs form subgroup IX. Other subgroups have no cultivated
representatives yet. The results of phylogenomic analysis showed
that subgroups I to VI are closely related, whereas subgroups VII to X
are located on a separate branch and are more distinct from the
subgroups I to VI, which suggests that these subgroups are more
evolutionarily distant. A phylogenomic-based approach with GL-
UVAB workflow [53] was also performed to cluster these HMO-2011-
type genomes, which showed similar grouping results (Supplemen-
tary Fig. 2).
A previous study suggested the use of the percentage of shared

proteins as a means of defining phage taxonomic ranks and
proposed that phages with ≥20 and ≥40% orthologous proteins in
common can be grouped at the taxonomic ranks of subfamily and
genus, respectively [58]. Overall, most of the calculated percen-
tages between HMO-2011-type genomes fall within the 20 to
100% range and most of the percentages between genomes
within the same subgroup fall within the 40 to 100% range
(Fig. 2B). Therefore, our results suggest that the HMO-2011-type is
roughly a subfamily-level phage taxonomic group containing at
least ten genus-level subgroups in the Podoviridae family.

Conserved genomic structure and variation in HMO-2011-type
phages
Of the 1235 orthologous protein groups (≥2 members) identified
in HMO-2011-type genomes, only 254 proteins groups could be
assigned putative biological functions (Supplementary Table 2).
Comparative genomic analysis clearly revealed the conserved
functional module structure of all HMO-2011-type genomes. All
HMO-2011-type phage genomes can be roughly divided into the
DNA metabolism and replication module, structural module and
DNA packaging module (Fig. 1). Most of the homologous genes
are scattered in similar loci of the HMO-2011-type genomes. Core
genome analysis based on complete HMO-2011-type genomes
revealed that HMO-2011-type genomes share a common set of
ten core genes (Fig. 1). These core genes are mostly genes related
to essential function in phage replication and development,
including genes encoding DNA helicase, DNA primase, DNA
polymerase (DNAP), portal protein, capsid protein, and terminase
small and large subunits (TerL and TerS) as well as several genes
with no known function, suggesting that phages in this group
employ similar overall infection and propagation processes
(Fig. 1).
Most members in subgroups I and III and one member in

subgroup II possess a tyrosine integrase gene (int) located
upstream of the DNA replication and metabolism module,
whereas all subgroup IV to X genomes contain no identifiable
lysogeny-related genes. This result suggests that members of
subgroups IV to X might be obligate lytic phages. Integrase genes
typically occur in the genomes of temperate phages and are
responsible for site-specific recombination between phage and
host bacterial genomes [59, 60]. In subgroup III, RCA phage CRP-3
has been experimentally demonstrated to be capable of integrat-
ing into the host genome [22]. Thus, certain int-containing HMO-
2011-type phages are also likely to be temperate phages.
In the DNA metabolism and replication modules, genes

encoding DNA primase, DNA helicase, DNAP, ribonucleotide
reductase (RNR), and endonuclease can be identified; and DNA
helicase, DNA primase, and DNAP are core to all HMO-2011-type
phages. All reported HMO-2011-type phages contain an atypical
DNAP, in which a partial DnaJ central domain is located between
the exonuclease domain and the DNA polymerase domain
[20, 22]. The Escherichia coli DnaJ protein, a co-chaperone [61],
has been shown to be involved in diverse functions [62] and to be
critical for the replication of phage Lambda [63–65]. The sequence
analysis revealed that DNAP sequences of these seven new HMO-
2011-type phages and 207 MVGs also present this unusual domain
structure and contain two repeats of the CXXCXGXG motifs
involved in zinc binding [66] in the partial DnaJ domain
(Supplementary Fig. 3). RNR gene is frequently detected in
subgroups I, II, III, IV, V, and X genomes but not in the other
subgroup genomes. RNRs, which are widely distributed in diverse
phage genomes, are involved in catalyzing the reduction of
ribonucleotides to deoxyribonucleotides, and thus play a crucial
role in providing deoxyribonucleoside triphosphates for phage
DNA biosynthesis and repair [67–69]. RNR genes clustered with
the RNR gene in phage HMO-2011 were previously reported to
dominate the class II viral RNRs in examined marine viromes [69].
In the remaining two modules, genes involved in phage structure
(e.g., genes encoding capsid and portal proteins), packaging of
DNA (TerL and TerS genes), and cell lysis were detected. The
proteins encoded by these genes play key roles in phage
morphogenesis and virion release.
Examination of the distribution of the orthologous groups

among the subgroups revealed clear pan-genome differences in
various subgroups (Fig. 3). Most subgroups harbor subgroup-
specific genes not identified in other subgroups, although no
function has yet been assigned to most of these genes. Notably,
the phages in subgroups VII, VIII, and IX possess genomic features
that differentiate them from phages in other subgroups,
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Fig. 2 Phylogenomic and shared-gene analyses of HMO-2011-type phages. A A maximum-likelihood tree was constructed using
concatenated sequences of five hallmark genes. HMO-2011-type phages were grouped into 10 subgroups based on the phylogeny. Shading is
used to indicate the subgroups. HMO-2011-type phage isolates are shown in red. Genomes containing an integrase gene are indicated by red
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site. B Heatmap showing the percentage of shared genes between HMO-2011-type genomes. Phages in the same subgroup are boxed.
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specifically with regard to the G+ C content and gene content.
The members of these three subgroups are closely related to each
other in the phylogenetic tree and harbor several subgroup-
specific genes. The G+ C content of the phage genomes in these
subgroups ranges from 31.9 to 35.4%, significantly smaller than
other subgroups but similar to the G+ C content of SAR11
bacteria and other known pelagiphages. HTVC033P is the only
cultivated representative of subgroup IX. The aforementioned
results suggest that the phages in subgroup VII, VIII, and IX might
have related bacterial hosts and are highly likely to be
pelagiphages. The host prediction using RaFAH tool also assigned
Pelagibacter as their potential hosts (Supplementary Table 1).
Subgroup X is located near these three subgroups in the
phylogenetic tree, and the G+ C content of the phages in this
subgroup ranges from 34.4 to 39.0%. The host prediction assigned
Roseobacter as their potential hosts. The hosts of this subgroup
still remain to be experimentally investigated.

Metabolic capabilities of HMO-2011-type phages
All HMO-2011-type phage genomes harbor several host-derived
auxiliary metabolic genes (AMGs) potentially involved in diverse
metabolic processes. Some AMGs in HMO-2011-type phages have
been discussed previously [20, 22].
Subgroups VII, VIII, IX, and X possess distinct AMGs as compared

with the other subgroups. For example, the genes encoding FAD-
dependent thymidylate synthase (ThyX, PF02511) and MazG
pyrophosphohydrolase domains are absent in all subgroups VII,
VIII, IX, and X genomes but frequently detected in other subgroup
genomes. ThyX protein is essential for the conversion of dUMP to
dTMP mediated by an FAD coenzyme and is therefore a key
enzyme involved in DNA synthesis [70, 71]. The thyX gene is
commonly found in microbial genomes and phage genomes.
Phage-encoded ThyX has been suggested to compensate for the
loss of host-encoded ThyA and thus play crucial roles in phage
nucleic acid synthesis and metabolism during infection [72].
Except in the case of subgroups VII, VIII, IX, and X genomes, the
mazG gene, which encodes a nucleoside triphosphate pyropho-
sphohydrolase is sporadically distributed in HMO-2011-type
genomes. MazG protein is predicted to be a regulator of nutrient

stress and programmed cell death [73] and has been hypothe-
sized to promote phage survival by keeping the host alive during
phage propagation [74]. The Escherichia coli MazG can interfere
with the function of the MazEF toxin–antitoxin system by
decreasing the cellular level of (p)ppGpp [73]. However, a recent
study showed that a cyanophage MazG has no binding or
hydrolysis activity against alarmone (p)ppGpp but has high
hydrolytic activity toward dGTP and dCTP, and it was speculated
to play a role in hydrolyzing high G+ C host genome for phage
replication [75]. Whether the MazG proteins encoded by HMO-
2011-type phages play a similar role in phage propagation
remained to be investigated.
Five MVGs in subgroup I contain a gene encoding a DraG-like

family ADP-ribosyl hydrolase (ARH). In cellular ADP-ribosylation
systems, ARH catalyzes the cleavage of the ADP-ribose moiety,
and thereby counteract the effects of ADP-ribosyl transferases
[76]. It has been reported that ARH in Rhodospirillum rubrum
regulates the nitrogen fixation [77]. However, the function of this
phage-encoded ARH in the phage propagation process remains
unclear.
We also observed that several MVGs possess genes involved in

iron–sulfur (Fe–S) cluster biosynthesis, including an Fe–S cluster
assembly scaffold gene (iscU) that involved in Fe–S cluster
assembly and transfer [78] and an Fe–S cluster insertion protein
gene (erpA). Fe–S cluster participates in a wide variety of cellular
biological processes [79]. The discovery of these genes suggests
that these phages may play important roles in Fe–S cluster
biogenesis and function.
The gene encoding sodium-dependent phosphate transport

protein (PF02690) has been identified in eight subgroup I
genomes. The Na/Pi cotransporter family protein is responsible
for high-affinity, sodium-dependent Pi uptake, and thus the
protein plays a critical role in maintaining phosphate homeostasis
[80]. This gene might function in the transport of phosphate into
cells during phage infection. The presence of Na/Pi cotransporter
genes suggests that some HMO-2011-type phages may have the
potential to regulate host phosphate uptake in phosphate-limited
ocean environments in order to benefit phage replication and
propagation.
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X
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VIII

Fig. 3 Distribution and functional classification of orthologous protein groups across HMO-2011-type genomes. Only orthogroups
containing >10 members or showing subgroup-specific features are shown. Subgroup-specific genes are boxed in red. Genes that are absent
in a specific subgroup are boxed in orange.
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Identification and phylogenetic analysis of HMO-2011-type
DNAPs
The genetic diversity and geographically distribution of HMO-
2011-type phages in marine environments was further inferred
from DNAP gene analyses. A total of 2433 HMO-2011-type DNAP
sequences with sequence sizes ranging from 540 to 779 amino
acids were identified and subjected to phylogenetic analysis
(Supplementary Table 3).
Among the identified HMO-2011-type DNAPs, 2030 sequences

were retrieved from the GOV 2.0 Tara expedition upper-ocean
viral populations (0–1000m), from tropical to polar regions. HMO-
2011-type DNAP genes were identified from all analyzed upper-
ocean viromes, suggesting the global prevalence of HMO-2011-
type phages in upper oceans.

A previous study revealed that marine viromes contain various
types of tailed phage genomes that encode a family A DNAP gene
[81]. To estimate the importance of HMO-2011-type phages, we
calculated the proportion of HMO-2011-type DNAPs based on the
number of HMO-2011-type DNAP sequences and the total number
of family A DNAP sequences (>470 aa) in each GOV 2.0 viral
population dataset. This analysis revealed that HMO-2011-type
DNAPs accounted for up to 19.7% of all family A DNAPs in each
GOV 2.0 dataset (Supplementary Table 4). We found that the HMO-
2011-type DNAP sequences appear to be more dominant in
epipelagic viromes than in mesopelagic viromes (p< 0.001,
Mann–Whitney U tests) (Fig. 4A), and that the proportion of HMO-
2011-type DNAPs positively correlated with temperature (p< 0.01;
R2= 0.11). These results further demonstrate that the HMO-2011-
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type group is numerically abundant and widespread across the
world’s oceans.
The phylogenetic tree established using all the identified HMO-

2011-type DNAPs shows a largely consistent topology with the
phylogenetic tree constructed using concatenated five core genes of
all HMO-2011-type phages, except that subgroups VII, VIII, and IX do
not show clear separation (Fig. 4B). A recent study identified two
MVGs that contain the HMO-2011-type DNAP and Cobavirus-type
structural and packing genes [82]. We found the DNAPs closely
related the DNAPs of these two MVGs are located on different
branches that are distinct from these identified subgroups. In the
DNAP tree, 67.6% of the DNAP sequences are classified into subgroup
I with geographically diverse origins, indicating that subgroup I is the
largest subgroup and is geographically widespread in the ocean. Most
of the DNAP sequences in this subgroup were originated from
epipelagic zones in distinct ocean regions, from tropical to polar
stations. Certain subgroups show distribution pattern related to
temperature. For example, subgroup II, IV, and V were dominated by
DNAP sequences from tropical to subtropical stations, where
temperatures were normally >20 °C. By contrast, subgroup III mostly
comprised of DNAP sequences from temperate to polar stations,
where temperature were normally <20 °C. Subgroups VII–IX contain
12.8% of all the identified DNAP sequences, and the DNAPs in these
subgroups were also widespread. Taken together, this DNAP survey
further revealed that highly diverse and abundant HMO-2011-type
DNAP sequences were prevalent in marine environments.

Global distribution of HMO-2011-type phages
The HMO-2011-type phage group has been demonstrated to be
among the most abundant known phage groups in most

marine viromes [20, 22]; however, the relative abundance of
each HMO-2011-type genome and the distribution patterns of
distinct HMO-2011-type subgroups remain poorly elucidated.
Therefore, we performed metagenomic read recruitment at the
species-level (≥95% nucleotide identity) by mapping reads to
each HMO-2011-type genome (Fig. 5). Viromic reads mapped to
these HMO-2011-type genomes were present in all epipelagic
and mesopelagic viromes (0–1000 m) with varying relative
abundance, and attributed up to 0.9% of the total reads
(Supplementary Table 5). By contrast, neither genome was
detected in deep ocean viromes (>1000 m). This observation
was as expected because all HMO-2011-type phages were
isolated from the upper ocean, and all HMO-2011-type MVGs
were identified from upper-ocean viromes.
Among all identified HMO-2011-type phages, many phages

were prevalent and more abundant in the higher temperature
tropical and temperate regions. Linear-regression analysis showed
that there was a positive correlation with temperature (p < 0.01;
R2= 0.03–0.46) (Supplementary Table 6). However, this pattern is
strongly contrasted in the case of certain HMO-2011-type phages
originated from polar viromes (Fig. 5). These phages occupied
Arctic and Antarctic systems and showed a negative correlation
with temperature (p < 0.01; R2= 0.07–0.31) (Supplementary
Table 6). Moreover, some of the HMO-2011-type phages were
detected prevalent in both cold and warm stations and showed
no significant correlation with temperature, which suggests that
they may infect host that have broader distribution or can infect
both cold- and warm-type hosts. We also noticed that the
abundance of some MVGs display significant correlations with
various parameters (Supplementary Table 6).
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We observed that phages within the same subgroup can
present distinct distribution pattern. At the subgroup level,
subgroup I contains most members. Subgroup I members were
mostly detected in the epipelagic zone of tropical and temperate
regions (0–200 m) and were also detected in polar stations (Fig. 5).
The reads assigned to the current identified subgroup I members
account for 56.8% of the total reads assigned to the entire HMO-
2011-type group. However, it should be noticed that this analysis
only includes identified HMO-2011-type phages; additional HMO-
2011-type phages that are more abundant potentially remain to

be discovered. Although most members in subgroup I were widely
distributed and have relatively higher KPKG values, all cultivated
representatives in this subgroup were found to be either absent or
only detected in limited stations and have very low KPKG values
(Fig. 5), suggesting that the most abundant members in this
subgroup have not yet been isolated. Subgroup III, represented by
RCA phage CRP-3 and two other roseophages, is one of the least
abundant subgroups. Subgroup III members were present mostly
in polar stations, where the temperatures were low, and this
agrees with the distribution pattern of subgroup III DNAPs.
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Subgroup II, IV, V, and IX were frequently detected in tropical and
temperate regions but were absent in all polar stations,
suggesting that the hosts infected by these phages displayed a
limited distribution and might not be able to adapted to the cold-
water environments. Subgroup IX members were frequently
detected with relatively higher KPKG values and displayed similar
patterns. HTVC033P was overall the most abundant known HMO-
2011-type phage, followed by several MVGs in subgroup IX (Fig. 5).
The highest KPKG values of HTVC033P occurred at the stations
located in the Mediterranean Sea, from which it was originally
isolated. Subgroups VII and VIII phages, which are closely related
to subgroup IX were detected in both warm and cold regions.
Some phages in subgroup VII and VIII were prevalent in polar
stations, suggesting that their hosts can adapt to cold-water
environments.
In comparison with other previously reported pelagiphage

isolates, we found that HTVC033P is among the most abundant
pelagiphage isolates. HTVC033P was found to be generally less
abundant than HTVC010P, but more abundant than other
pelagiphages in both epipelagic and mesopelagic viromes
(Fig. 6A). In terms of distinct oceanic regions, our findings indicate
that HTVC033P is the most abundant pelagiphage in the Red sea,
Indian Ocean and South Atlantic, and the second or third most
abundant pelagiphage in the Pacific Ocean (Fig. 6B). These results
suggests that HMO-2011-type pelagiphages are a biologically and
ecologically important type of pelagiphages.

CONCLUSIONS
The discovery of HMO-2011-type phages in the world’s oceans raised
several questions regarding to their diversity, ecology, and roles in
microbial communities. Here, we performed a culture-based and
metagenomics-based analysis of the genomic diversity and distribu-
tion of the HMO-2011-type phage group. The obtained HMO-2011-
type genomes help reveal the genuine extent of the genetic diversity
of HMO-2011-type phages within natural populations of marine
viruses. Our findings show that the HMO-2011-type group contains
diverse subgroups that might infect distinct bacterial groups, which
highlights the critical roles of HMO-2011-type phages in the world’s
oceans. Furthermore, metagenomic mapping of the HMO-2011-type
phages has revealed several distinct distribution patterns related to
water temperature. These novel insights into the diversity and
ecology of HMO-2011-type phages further expanded current under-
standing of these important phages. Lastly, further investigation
using our newly constructed virus–host models will provide
additional valuable insights into the influence of viruses on the
function and diversity of ocean microbial communities, and carbon
biogeochemistry.

DATA AVAILABILITY
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numbers MZ892987 to MZ892993.
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