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There are over 80 million people currently living who have had a stroke. The ischemic
injury in the brain starts a cascade of events that lead to neuronal death, inducing
neurodegeneration which could lead to Alzheimer’s disease (AD). Cerebrovascular
diseases have been suggested to contribute to AD neuropathological changes,
including brain atrophy and accumulation of abnormal proteins such as amyloid beta
(Aβ). In patients older than 60 years, the incidence of dementia a year after stroke was
significantly increased. Nevertheless, the molecular links between stroke and dementia
are not clearly understood but could be related to neuroinflammation. Considering
that activated microglia has a central role, there are brain-resident innate immune
cells and are about 10–15% of glial cells in the adult brain. Their phagocytic activity
is essential for synaptic homeostasis in different areas, such as the hippocampus.
These cells polarize into phenotypes or subtypes: the pro-inflammatory M1 phenotype,
or the immunosuppressive M2 phenotype. Phenotype M1 is induced by classical
activation, where microglia secrete a high level of pro- inflammatory factors which
can cause damage to the surrounding neuronal cells. Otherwise, M2 phenotype is
the major effector cell with the potential to counteract pro-inflammatory reactions and
promote repair genes expression. Moreover, after the classical activation, an anti-
inflammatory and a repair phase are initiated to achieve tissue homeostasis. Recently
it has been described the concepts of homeostatic and reactive microglia and they
had been related to major AD risk, linking to a multifunctional microglial response
to Aβ plaques and pathophysiology markers related, such as intracellular increased
calcium. The upregulation and increased activity of purinergic receptors activated by
ADP/ATP, specially P2X4R, which has a high permeability to calcium and is mainly
expressed in microglial cells, is observed in diseases related to neuroinflammation,
such as neuropathic pain and stroke. Thus, P2X4R is associated with microglial
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activation. P2X4R activation drives microglia motility via the phosphatidylinositol-3-
kinase (PI3K)/Akt pathway. Also, these receptors are involved in inflammatory-mediated
prostaglandin E2 (PGE2) production and induce a secretion and increase the expression
of BDNF and TNF-α which could be a link between pathologies related to aging
and neuroinflammation.

Keywords: P2X4R, microglial activation, ischemia, purinergic receptors, Alzheimer’s disease

INTRODUCTION

Worldwide, there are over 80 million people currently living who
have had a stroke (Lindsay et al., 2019). Over 13.7 million people
have a stroke each year and 5.8 million dies because of it (Phipps
and Cronin, 2020). Also, 116.4 million suffered permanent
disabilities generated by stroke (Hachinski et al., 2019; Lindsay
et al., 2019). It has been reported that 6 months post-stroke,
around 35% of patients display depressive symptoms, 30% are
unable to walk without assistance, and 26% are dependent on
daily life activities (Lui and Nguyen, 2018). Stroke occurs when
blood supply is interrupted, and there are two types: Ischemic
and hemorrhagic (Vijayan et al., 2017). Ischemic strokes account
for 85% of the total cases (Vijayan et al., 2017; Jayaraj et al.,
2019; Lindsay et al., 2019). This type of stroke occurs when
a blood vessel in the brain is occluded, causing a loss of the
blood flow to an area of the brain (Randolph, 2016; Phipps and
Cronin, 2020). The loss of blood flow causes the death of cells
in the core of the injury, where the damage is irreversible, the
surrounding area is called the penumbra and a loss of function
is observed, but the damage is reversible (Phipps and Cronin,
2020). The ischemic injury in the brain starts a cascade of
damaging cells events such as calcium dysregulation, increased
reactive oxygen species (ROS) production, activation of caspases
and calpain signaling to induce apoptosis and neuronal death,
ultimately leading to neurodegeneration (Vijayan et al., 2017;
Zhao et al., 2017; Castillo et al., 2018). The effects observed
in patients depend on the brain region that is affected with
supply oxygen and nutrients depletion (Vijayan et al., 2017).
Due to this harmful process, some patients present neurological
disorders. It has been estimated that stroke brings forward the
onset of dementia by about 10 years (Vijayan et al., 2017; Lui and
Nguyen, 2018). Current data estimates that dementia occurred
in around 25% of people admitted to hospital with a stroke in the
first year after this event (Hachinski et al., 2019). Furthermore,
hazard ratios for dementia among patients who had strokes
compared with the non-stroke population ranged from 2 to 8, in
different studies of severe stroke cases (Sala Frigerio et al., 2019).
Alzheimer’s Disease (AD) is the most common type of dementia,
a neurological disorder characterized by neurodegeneration.
From a biochemical perspective, AD is associated with synapse
loss, synaptic dysfunction, mitochondrial structural and
functional abnormalities, inflammatory responses, intracellular
neurofibrillary tangles, and extracellular plaques (Trejo-
Lopez et al., 2021). Clinically, AD is a multifactorial disease
characterized by memory loss, multiple cognitive impairments,
and progressive impairment of functional capacities. There are
more than 100 pathological conditions that can be a risk factor

for dementia, and stroke is the most common disease that can
lead to this neurodegenerative disease (Vijayan and Reddy, 2016;
Vijayan et al., 2017). AD and stroke have common risk factors,
including hypertension, ROS increased levels, insulin resistance,
type II diabetes, obesity, and hyperlipidemia (Hachinski et al.,
2019; Sala Frigerio et al., 2019). Cerebrovascular diseases have
been suggested to contribute to AD neuropathological changes
including selective brain atrophy and abnormal accumulation of
proteins such as amyloid beta peptide (Aβ), which is described as
the main toxic factor in AD (Hachinski et al., 2019).

Aging Related Diseases: Stroke
Incidence and Alzheimer’s Disease
Research linking stroke and dementia have been focused on
common vascular risk factors, ameliorated by lifestyle activities or
medication, nevertheless one of the most important risk factors is
aging (Vijayan and Reddy, 2016; Vijayan et al., 2017). The risk of
having a first-time stroke increases exponentially from about 30
per 100,000 individuals at 30–39 years of age, to about 2000–3000
per 100,000 at ages above 85. Additionally, AD is mostly related
to elderly patients, especially those over 80 years old (Mijajlović
et al., 2017; Vijayan et al., 2017). Although, dementia due to stroke
is not only aging-related, considering that this association has
been reported in patients younger than 50 years old. Cognitive
impairments occur in up to one-third of elderly patients with
stroke (Lui and Nguyen, 2018). A mixed etiology of dementia and
Vascular Dementia (VD) was thought to become more common
with increasing age, but no clinical criteria for the diagnosis of
dementia associated with stroke are available (Kluge et al., 2018).
Stroke doubles the risk for dementia (post-stroke dementia),
and approximately 30% of stroke patients develop cognitive
dysfunction within 3 years (Kluge et al., 2018; Jayaraj et al., 2019;
Lindsay et al., 2019). As a worrying statistic, stroke was the second
cause of death and represented 9.1% of all deaths in 2017, and
the third most common cause of deaths and disability combined
(Delgado et al., 2010). It has been demonstrated that in patients
older than 60 years, the incidence of dementia at 1 year after the
stroke was 16%, while the prevalence was 22% (Lavados et al.,
2005, 2021). The most frequent type of cognitive impairment
was focal cognitive decline (Hachinski et al., 2019; Lavados et al.,
2021). This study concludes that the risk of dementia after the
first year in patients with severe strokes is very high, as it
has been stated in several other studies (Lavados et al., 2021).
Also, it has been mentioned the role of cerebrovascular disease,
as a primary cause of cognitive impairment and to increase
dementia risk caused by several factors, including AD or other
neurodegenerative pathologies (Iadecola, 2013; Kalaria, 2018).
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During stroke and cerebrovascular diseases occurs hypoperfusion
and blood brain barrer (BBB) disruption leading to oxidative
stress and inducing tissue hypoxia by proteins extravasation.
Hypoxia and oxidative stress activate pro-inflammatory pathways
through kappa-light-chain-enhancer of activated B cells (NFkB)
transcription, increasing cytokines and adhesion molecules in
vascular cells, reactive astrocytes and activated microglia. That’s
promote uncoupling in the neurovascular unit, contributing to
damaged vascular cells (Iadecola, 2013).

Also, from a molecular perspective, a brain ischemia induces
a cascade of pathophysiological processes, which increase
brain ischemia and stimulates the inflammatory process,
free radical production, excitotoxicity, disruption of sodium
and calcium influx, enzymatic changes, endothelin release,
delayed coagulation, activation of platelets and leukocytes, and
endothelial dysfunction. Otherwise, dementia syndromes, such
as AD, established after stroke were typically considered to be
vascular in origin, and poststroke dementia might be the result
of the effects of stroke and degenerative changes (Vijayan et al.,
2017; Hachinski et al., 2019; Goulay et al., 2020). Nevertheless, the
molecular links between stroke and dementia are not completely
understood but are probably related to neuroinflammation
(Kluge et al., 2018; Lui and Nguyen, 2018). Also, there are
reported Longitudinal studies that have investigated the relation
between inflammatory cytokines and post stroke dementia,
suggesting interleukin 6, and interleukin 12 as predictors of post
stroke cognitive impairment (Mijajlović et al., 2017).

Uncontrolled neuroinflammation, a hallmark of neurological
disorders such as AD and stroke, may lead to neural dysfunction
and aggravate disease progression. However, there are many
questions raised in research linking stroke and dementia that are
largely unanswered. Hence, it is important to understand early
events of microglial cells activation, since they are the primary
response involved in the inflammatory events during stroke or
dementia such as AD.

Role of Microglial Activation in
Neuroinflammation
Microglia are brain-resident innate immune cells with myeloid
origin. At the resting state they are constantly sensing the
environment to detect injury (Zhao et al., 2017). They account for
about 10–15% of glial cells in the adult brain and their phagocytic
activity is essential for synaptic homeostasis in different areas,
such as the hippocampus (Zhang et al., 2018; Lloyd et al., 2019).
Microglial function is like peripheral macrophages and there
has been described phenotypic changes against injury detection.
Some authors divide microglia into a classical proinflammatory
state (M1) and an alternative anti-inflammatory state (M2)
(Wang et al., 2018). Microglia cells undergo an inflammatory
polarization phenotype in response to injuries, such as pathogens
or tissue damage. This phenotype is characterized by increased
pro-inflammatory cytokines production, such as interleukin-
1β (IL-1β) or tumor necrosis factor-α (TNF-α) and enhanced
immune responses, including cellular recruitment through
chemotaxis and phagocytosis (Subhramanyam et al., 2019;
Leng and Edison, 2020). As a result, activated immune cells

are recruited to the inflammatory site to remove the injury
(Subhramanyam et al., 2019). However, this process must be
tightly regulated because uncontrolled or excessive inflammation
can lead to tissue damage (Baik et al., 2019). Microglial
cells are the first line of defense, as they can destroy or
eliminate different pathogens by secreting pro-inflammatory
factors/cytotoxic mediators or through their phagocytic function
(Zhang et al., 2018; Akhmetzyanova et al., 2019). Nevertheless,
an extra accumulation of these mediators caused by microglia
chronic activation can also improve neuronal damage and
may increase post stroke symptoms (Wang et al., 2018). This
statement has been confirmed by post-mortem analysis of
brain chronic disorders, such as neurodegenerative diseases
like AD (Forloni and Balducci, 2018; Sierksma et al., 2020).
Microglia are involved in tissue repair, debris removal, and the
maintenance of normal tissue dynamics after infection or injury,
especially in the M2 polarized state. The resident microglia are
M2 polarized during the early stages of stroke; however, they
are transformed into the M1 polarized state in the ischemic
penumbra region (Wang et al., 2018). Preclinical data indicate
that anti-inflammatory therapy may be effective for stroke or
AD, where the strategy is to modulate immune cell function
by proinflammatory cytokine release suppression and enhancing
anti-inflammatory cytokine expression (Sun et al., 2020).

Phenotype M1 or M2 as an Indicator
Based on the injury and stimuli that induces microglial cells
activation, these cells polarize into phenotypes or subtypes: the
pro-inflammatory M1 phenotype, or the anti-inflammatory and
immunosuppressive M2 phenotype (Forloni and Balducci, 2018;
Song and Li, 2018; Lauro and Limatola, 2020). Phenotype M1 is
induced by classical activation, where microglia secrete a high
level of pro-inflammatory factors including Interleukin-1β (IL-
1β), Interleukin-6 (IL- 6) and TNF-α, with high production
of nitric oxide (NO) and ROS, which can cause damage to
the surrounding neuronal cells (Hickman et al., 2018; Zhang,
2019), TNF-α can also induce an increase in the expression
of glutaminase and Connexin-32, which increases the release
of glutamate from microglia and enhances the excitotoxicity
associated with neuronal damage (Takeuchi et al., 2006). Toll-like
receptors (TLRs) have a fundamental role in innate immunity,
and they can be activated by different molecules from pathogens
called pathogen-associated molecular patterns (PAMPs) (Zolezzi
and Inestrosa, 2017; Lauro and Limatola, 2020). This interaction
between TLRs and PAMPs activates resident cells to release
proinflammatory cytokines. TLR4 is highly expressed in
microglia and TLR4-dependent microglial activation has been
described on neurodegenerative diseases like AD or after stroke
(Rojo et al., 2014; Tang and Le, 2015; Subhramanyam et al.,
2019; Kolosowska et al., 2020). Additionally, TLR4 is also
responsible for chronic neuroinflammation leading to brain
damage after stroke, as it induces the production and release of
TNF-α, IL-6, and NO, causing neuronal cell death (Bougarne
et al., 2018; Song and Li, 2018; Lauro and Limatola, 2020).
Otherwise, M2 phenotype is induced by a different mechanism
of microglial activation (Liu et al., 2020). M2 microglia are
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the major effector cells with the potential to counteract pro-
inflammatory reactions and promote repair genes expression.
Moreover, after the classical activation, an anti-inflammatory
and repair phase is initiated to achieve tissue homeostasis (Rojo
et al., 2014). The anti-inflammatory cytokines IL-4, IL-13, IL-
10, and TGF-β are the most secreted molecules by M2 subtype
microglia to balance the pro-inflammatory responses. Thus,
these activated cells secrete several factors for tissue repair and
extracellular matrix remodeling (Zolezzi and Inestrosa, 2017).
M2 polarization induces activation of the transcription factor
(NFκB -p50) that is associated with the inhibition of M1-
activation genes (Tang and Le, 2015). Secretion of IL-4, IL-10,
and TGF-β by M2-activated microglia, promote innate immune
responses, down-regulate M1-mediated reactions, and inhibit
inflammatory functions. IL-10 is characterized as a cytokine that
regulates pro-inflammatory response. Pre-treatments with IL-
10 decrease nuclear translocation of the p50 and p65 subunits
of NF-κB and production of several proinflammatory cytokines
as IL-6 or TNF-α. Furthermore, IL-10 exerts neuroprotective
effects and a diminished IL-10 level is associated with increased
stroke risk (Sun et al., 2020). Nevertheless, the two microglia
activated phenotypes mentioned, could transition into each
other in different contexts that may contribute to pathogenic
forms of neuroinflammation in chronic situations such as
neurodegenerative diseases (Parada et al., 2015; Yang et al.,
2017; Zhang et al., 2018; Castillo et al., 2019; Zhang, 2019;
dos Santos et al., 2021).

In AD, microglia surrounding the plaques to phagocyte Aβ

generally manifest M2 activation phenotype and this phagocytic
activity of microglia is attenuated by pro-inflammatory cytokines
such as IFN-γ, IL-1β, and TNF-α, which are mainly secreted
by M1 microglia (Yang et al., 2017). Furthermore, the M2
phenotype is maintained at old ages of transgenic mice models,
suggesting that activated microglia surrounding Aβ plaques
adopted an alternative phenotype (Tang and Le, 2015). In 18-
month-old mice, microglial activation is detected in hippocampal
areas free of plaques, exhibiting M1 phenotypes that produce
neurotoxic results (Hickman et al., 2018). Otherwise, after stroke,
microglial cells are the first cell type to react, and they are
activated by multiple cytokines and plasma proteins. Microglia
adjacent to necrotic tissue and their peripheral regions at the
beginning of a stroke are M2 type, phagocytizing and removing
cell debris, necrotic tissue, and toxic metabolites (Hickman
et al., 2018; Mancuso et al., 2019a,b). After approximately 24 h,
M2 microglia are superseded by M1 subtypes, which release
additional pro-inflammatory cytokines and exacerbate neuronal
cell damage (Zhou et al., 2020). Finally, they release pro-
inflammatory cytokines, chemokines, and neurotoxic factors,
including IL-1β, IL-6, TNF-α, and NO that induce neurotoxicity
(Wright et al., 2013; Wójtowicz et al., 2020). Related to this
mechanism is the progression of many brain disorders, such
as ischemic stroke and neurodegenerative diseases, where the
microglia are chronically activated, amplifying the death of
neurons. Also, studies have found that the expression of type
M2 polarization receptors and IL-4 secretion decreased with
age (Wang et al., 2018). Hence, suppression of the microglia-
mediated neuroinflammation is a potential therapeutic strategy

to treat these brain disorders or prevent the cognitive impairment
associated with them. Recently the concepts of homeostatic and
reactive microglia have been described and related to major AD
risk factors (such as age and sex), linking to a multifunctional
microglial response to Aβ plaques that evolves a continuous
spectrum of microglial molecular phenotypes (Mancuso et al.,
2019b; Sala Frigerio et al., 2019).

Besides, microglial activation into a pro-inflammatory or
anti- inflammatory phenotype are driven by factors released
from injured cells called damage-associated molecular patterns
(DAMPs) or PAMPs, nonetheless, receptors and intracellular
pathways involved are poorly understood. Several DAMPs are
released in the brain during the inflammatory process such
as misfolding proteins, nucleic acids, or nucleotides, mainly
ATP (Di Virgilio and Sarti, 2018). Furthermore, the increase
of extracellular ATP is recognized as a cell injury signal and
pro-inflammatory stimulus. Microglial cells express receptors
for extracellular ADP/ATP nucleotides denominated purinergic
P2 receptors (P2Rs). There are two types of P2R: metabotropic
P2YRs and ionotropic P2XRs (Suurväli et al., 2017).

Association Between Purinergic
Receptors and Microglial Activation
Purinergic receptors are activated by purines and are divided
into two major families: the P1 or adenosine receptors and P2Y
and P2X receptors activated by ADP/ATP (Burnstock, 2018).
The first two types are G protein-coupled receptors, whereas
P2X are ligand-gated ion channel receptors (Sáez-Orellana et al.,
2015). To date eight P2Y receptors have been described in
humans: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and
P2Y14 (Jacobson et al., 2020). These receptors are subdivided
in two groups according to the primary G protein that they are
associated with, P2Y1-like (P2Y1, 2, 4, 6, and 11) are coupled
mainly with Gq, while P2Y12-like (P2Y12-14) are coupled with
Gi (Jacobson et al., 2020). P2Y receptors are widely expressed in
the CNS in all cell types, where they play an important role in glia-
neuron communication, neurotransmission, and neurogenesis
[for a more detailed review of P2Y in CNS please see: (Agostinho
et al., 2020; Zarrinmayeh and Territo, 2020)].

In mammals, seven P2X subunits are described (P2X 1–
7). The receptors are conformed by homo- or heterotrimers,
with a central pore permeable to Na+, K+ and Ca2+ (Illes
et al., 2021). Each subunit is composed of two transmembrane
domains, intracellular N- and C-termini and a large extracellular
loop. P2X subunits are widely expressed in CNS in all cell
types, but some subunits are expressed only in certain cell
types, such as P2X 1–3 in neurons and P2X 7 in glia
(Illes et al., 2021). Of interest for us, P2X4R is expressed in
neurons and glia, particularly in microglia; and is expressed in
amygdala, basal ganglia, cerebellum, cerebral cortex, hindbrain,
hippocampus, hypothalamus, midbrain, olfactory bulb, and
spinal cord (Duveau et al., 2020). Native and recombinant
P2X4R show a rapid activation and a slow and incomplete
desensitization, and they have a high sensitivity to ATP
(EC50 1-10µM) and permeability to Ca2+ (Kaiser et al.,
2016). A particular characteristic of this purinergic receptor
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is its highly and constitutively internalization due to the
presence of a non-canonic motif YXXG8 which is mediated
by the µ2 subunit of the adaptive protein 2 (AP2) and
clathrin. This intracellular located P2X4R is functional and
plays an important role in the secretion and activation of
pulmonary surfactant (Fois et al., 2018), and in the fusion
and trafficking of lysosomes (Murrell-Lagnado and Frick, 2019).
It has been proposed that the homomeric receptors P2X 2,
4, and 7 dilate their central pore in response to prolonged
stimulation, which could allow the permeation of molecules
of up-to 800 Da, in the case of P2X 7 in microglia this
transition pore would be able to induce cell death and
apoptosis (Bernier et al., 2012). Some authors have argued
that this process is not due to a pore dilation but rather
due to the interaction with associated proteins, especially
Pannexin-1 (Panx-1), considering that the use of inhibitors
for this channel inhibited the permeability to large cations
induced by prolonged ATP exposure (Pelegrin and Surprenant,
2006), however, newer evidence utilizing similar strategies have
showed that even in the absence of Pannexin-1 by silencing
or Knock out there is still permeation of larger molecules
(Qu et al., 2011; Alberto et al., 2013). Some reports propose
that there is an immediate permeation to large cations after
ATP activation, for instance, single channel studies in P2X7R
showed no increase in the amplitud or conductance in the
channel during prolonged exposure to ATP (Raouf et al.,
2007). More recently, it has been demonstrated that the
P2X7R expression in purified lysosome (without any other
cellular components) is sufficient to form channels permeable to
molecules up to ∼900 Da and that lipid membrane constitution
may play an important role in the P2X7R pore diameter
(Karasawa et al., 2017). Therefore, the P2X7R solo expression
seems sufficient to form a pore permeable to large cations
upon immediate ATP exposure, nevertheless other mechanisms
that allow these big molecules passage, such as Panx-1, are
still possible.

The participation of different purinergic receptors in
pathological processes has been described, among them the
P2Y1, P2Y2, P2Y6, P2Y12, P2X4, and P2X7 receptor (Cieślak
and Wojtczak, 2018). For many of these receptors, their
upregulation and increase in their activity have been described.
Interestingly the upregulation of P2X2, P2X4 and P2X7 has been
reported in the brain of AD patients (McLarnon et al., 2006;
Varma et al., 2009; Godoy et al., 2021). In addition, a recent
report has shown P2X4R and P2X7R co-expression in human
neurons from the frontal cortex with no differences between
AD patients and age-matched control group, suggesting that the
increased expression of P2XR in brain observed before, might be
occurring in glial cells (Gaff et al., 2021).

The concomitant increase of P2X4R and P2X7R is interesting,
because they share a high degree of sequence homology (45.3% in
rat, 46.7% in human and 47.3% in mouse), and they are located
in the same chromosome and in close proximity of each other
in this organisms, and it is suggested that P2X7 arose as a gene
duplication of P2X4 and therefore the mechanism of increased
expression could be similar for both receptors (Loera-Valencia
et al., 2015; Hou and Cao, 2016; Suurväli et al., 2017).

Furthermore, in mouse lung epithelial cells the silencing of
P2X4R induces an increased P2X7R expression and, the P2X7R
down-regulation improves P2X4R expression (Weinhold et al.,
2010). In addition, it has been reported P2X4R negative mice with
increased P2X7R expression with passenger mutations altering
the receptor’s function (Er-Lukowiak et al., 2020; Ellegaard et al.,
2021). Similar results were obtained using a transgenic mouse line
that expresses soluble GFP by P2X7R promoter, increasing the
expression of P2X4R (Ramírez-Fernández et al., 2020). However,
has been reported a concomitant decrease in the expression of
P2X4R and 7 in liver and kidney of mice deficient for P2X4R or
7 (Craigie et al., 2013; Besnard et al., 2016). Additionally, both
receptors tend to be expressed in similar cell types suggesting that
these receptors could have complementary functions and may be
overlapped (Suurväli et al., 2017).

In spite of that, several results show an increment of ATP in
the extracellular environment in different diseases such as AD
and stroke (Wilkaniec et al., 2017; Ye et al., 2017; Srivastava et al.,
2020). This extracellular ATP activates P2X receptors, increasing
their activity and triggering toxic effects on neurons and glial
cells. P2X receptor subunits are present in pre- and postsynaptic
sites (Ye et al., 2017). Thus, presynaptic P2X receptors stimulate
glutamate release in sensory neurons, whereby they may control
intracellular calcium homeostasis. Notably, P2X4R is mainly
expressed in microglial cells and is involved in several functions
as pain control, anxiety, and memory (Bertin et al., 2020; Montilla
et al., 2020; Inoue and Tsuda, 2021).

Increased Expression of P2X4 Receptor
on Microglial Cells
The first evidence of Purinergic receptors in ischemia was
obtained in in vitro experiments by the group of Volontè in Italy.
They tested chemically induced ischemia and hypoglycemia,
together with wide-range P2 antagonists in cerebellar cultures,
where they observed neuroprotection and a decrease in cell death
(Cavaliere et al., 2001a,b). Importantly, they also described a
marked increase of P2X4R expression (Cavaliere et al., 2002).
Furthermore, they analyzed organotypic cultures and in vivo
models of ischemia (carotid occlusion in gerbils) and using
histological and biochemical analysis they observed an increase
of P2X4R only in microglia (Cavaliere et al., 2003). Interestingly,
in vitro the application of P2 agonists mimicked the effects of
ischemia, and the use of non-selective antagonists decreased the
cellular damage observed (Cavaliere et al., 2005). The increase of
P2X4R in microglia is also observed in models of neuropathic
pain (Tsuda et al., 2003), where the application of P2X antagonists
and the silencing of P2X4R reduced the observed allodynia.
This increased expression is also observed in other pathological
processes, such as spinal cord injury, inflammatory pain, chronic
migraine, and pre-term hypoxia-ischemia (Wixey et al., 2009;
Toulme et al., 2010; de Rivero Vaccari et al., 2012; Tasca et al.,
2015; Matsumura et al., 2016; Long et al., 2018; Su et al.,
2019; Bertin et al., 2020; Trang et al., 2020). Otherwise, the
overexpression of P2X4R in the hippocampus of a mice model
altered Long Term Potentiation (LTP) and plasticity at CA1
synapses (Bertin et al., 2020). These findings may be related to an
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increased P2X4R expression in the hippocampus of AD patients
with severe cognitive impairment, suggesting that upregulated
P2X4R may contribute to synaptic dysfunction and microglia
phagocytic function (Raouf et al., 2007; Godoy et al., 2019; Han
et al., 2020; Nguyen et al., 2020; Trang et al., 2020).

The increased expression of P2X4R is mediated by sequential
activation of Interferon Regulatory Factor 8 (IRF8), which
is a critical regulator of reactive microglia, that induces the
expression of repair genes including IRF5, that in turn binds to
the promoter region of the P2rx4 gene inducing its expression
(Masuda et al., 2012, 2014). P2X4R up-regulation seems to
be associated with the neuroinflammation process, which is
also related to microglial activation (Raouf et al., 2007; Han
et al., 2020). P2X4R activation drives microglia motility via
the phosphatidylinositol-3-kinase (PI3K)/Akt pathway (Ohsawa
et al., 2007). Also, these receptors are specifically involved in
inflammatory-mediated prostaglandin E2 (PGE2) production,
which contributes to pain-related inflammation (Montilla et al.,
2020). The activation of this pathway by P2X4R increases
the expression and induces the BDNF secretion by microglia
(Ulmann et al., 2008; Trang et al., 2009; Tsuda et al., 2009). BDNF
in response to ATP, induces a shift in the neuronal Chloride
gradient, making GABA and Glycine less hyperpolarizing and in
some cases depolarizing (Coull et al., 2005). This shift is produced
via TrkB activation and a decrease in the expression of K+-Cl−
cotransporter KCC2 (Rivera et al., 2002; Ulmann et al., 2008;
Trang et al., 2009). In AD models it has been observed a similar

pattern, with decreased KCC2 expression, increased BDNF and
TNF-α (Doshina et al., 2017; Zhou et al., 2021), which could link
both pathologies related to aging and neuroinflammation.

Finally, during neuroinflammation, the activated glial cells
secrete inflammatory mediators to modulate inflammatory
responses. It has been described that the upregulation peak of
P2X4R during ischemic injury in the brain occurs 2 days later
and that its inhibition can promote the microglial polarization
into a pro-inflammatory phenotype (Suurväli et al., 2017; Di
Virgilio and Sarti, 2018). This evidence shows us the P2X4R
regulation as a key point to inflammation process prevention.
In addition to neurons and microglia, immunochemical studies
have shown P2X4 receptor expression in astrocytes from
hippocampal regions (Srivastava et al., 2020). More studies to
determine their function and role in pathological processes such
as neuroinflammation, are needed.

DISCUSSION

Considering all this data, including the overexpression of P2X4R
in diseases characterized by chronic neuroinflammation and
activated microglial cells, the role of this purinergic receptor
remains to be elucidated in humans. Some recent work
using general KO mice and myeloid specific mice for P2X4R,
together with a specific antagonist has shown that there is a

FIGURE 1 | Inhibition of P2X4R in the acute phase could mitigate the effects of M1 transition allowing the appearance of the M2 phenotype: We propose this model
considering that in the early stage P2X4 receptors contribute to maintain the M1 phenotype through TNF-α and BDNF signaling. Also, during a final stage, P2X4 may
contribute to maintaining M2 phenotype by NFκB pathway.
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critical time window, during the acute phase, where P2X4R
inhibition is beneficial for the treatment of stroke, whereas a
chronic inhibition could lead to an aggravated depressive state
due to the lack of secretion of BDNF (Verma et al., 2017;
Srivastava et al., 2020). Therefore, we propose an association
between this receptor and the neuroinflammation progress
observed in stroke and dementia. We postulate the modulation
of P2X4R to regulate a specific change on M1/M2 phenotype
of activated microglia observed in neuroinflammation associated
with neurodegenerative diseases or stroke. Inhibition of P2X4R
in the acute phase could mitigate the effects of M1 transition
allowing the appearance of the M2 phenotype (Figure 1).
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