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Bacteriophages are bacterial-specific viruses and the most abundant biological form
on Earth. Each bacterial species possesses one or multiple bacteriophages and
the specificity of infection makes them a promising alternative for bacterial control
and environmental safety, as a biotechnological tool against pathogenic bacteria,
including those resistant to antibiotics. This application can be either directly into foods
and food-related environments as biocontrol agents of biofilm formation. In addition,
bacteriophages are used for microbial source-tracking and as fecal indicators. The
present review will focus on the uses of bacteriophages like bacterial control tools,
environmental safety indicators as well as on their contribution to bacterial control in
human, animal, and environmental health.
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INTRODUCTION

Bacteriophages, also known as phages, are prokaryotes viruses, being the most abundant life
form, present in all environments and the predominant entities in the sea (Boehme, 1993;
Suttle, 2005). Several studies have demonstrated a 1:5 relative abundance between bacteria and
bacteriophage (Fuhrman, 1999; Balter, 2000; Rohwer, 2003). They were discovered independently
by Twort (1915), who isolated them from Staphylococcus spp., and from patients with dysentery.
D’Herelle (1926) described bacteriophage as a virus that has the capability to parasitize bacteria
(Twort, 1915; Delbruck, 1942). Bacteriophages vary greatly in morphology and replicative
characteristics, containing either RNA or DNA, being these parameters currently used by
the International Committee on Taxonomy of Viruses (ICTV) for bacteriophage classification
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(King et al., 2012; Table 1). However, the identification
of bacteriophages is difficult since there are no universally
conserved markers, unlike e.g., the bacterial 16S rRNA gene (Paul
et al., 2002), with only minor parts of bacteriophage genomes
being used to determine family specific makers, such as the viral
capsid g20 of T4 (Fuller et al., 1998; Marston and Sallee, 2003;
Sullivan et al., 2008).

Bacteriophages can present different life cycles: lytic,
lysogenic, and chronic (Figure 1A). Lytic bactériophages, such
as T4 and MS2, insert their genetic material inside the bacteria,
forcing the cell to produce a large amount of bacteriophage
copies. After replication the membrane is then ruptured,
releasing the new bacteriophages. Lysogenic bacteriophages
(such as T1) possesses an alternative sub-cycle, in which the
virus may integrate its DNA in the bacterial genome, becoming
non-infectious and replicating together with the bacterial
chromosome; the bacteriophage then becomes a prophage,
producing new bacteriophage particles under appropriate
conditions. Finally, chronic bacteriophages (such as M13)
preserve their genome in the bacterial cell, in which the release
from the host occurs gradually with less damage to the cell,
preserving it longer (Clokie et al., 2011; Cann, 2016; Janczuk
et al., 2016). There is an intimate relation between bacteriophages
and bacterial cell functions acquisition (Forterre, 1999; Filée
et al., 2002, 2003). Bacteriophages can serve as points for
genomic rearrangements due to their mosaic nature, with
lysogenic bacteriophages even protecting bacteria from lytic
infection in certain conditions (Brüssow et al., 2004; Tree et al.,
2014; Penadés et al., 2015). While bacterial hosts can benefit from
the presence of bacteriophages (as they can express important
regulators for adaptation to specific niches by the addition of
bacteriophage genes in the cell’s genome) bacteriophages can be
involved in the transfer of virulence genes, producing proteins
participating in invasion, immune evasion, and toxins related to
toxin-mediated diseases (Brüssow et al., 2004; Boyd, 2012; Tree
et al., 2014; Penadés et al., 2015).

The specificity of bacteriophage infection allows their
application in several areas such as biotechnology, ecology,
health and environment (bacterial control), and as environmental
monitoring agents (Armon and Kott, 1996; Leclerc et al.,
2000; Arredondo-Hernandez et al., 2017; McMinn et al., 2017;
Friedman and Lai, 2018; Vandamme and Mortelmans, 2019).

In this review, a vast amount of scientific literature has
been reviewed on the application of phage-based products,
discussing the benefits and limitations of the use of
bacteriophages as bacterial control tools in the health, food,
and environmental fields.

BACTERIOPHAGES APPLICATION

Fighting Bacterial Infections
Bacterial infections are a major public health concern worldwide,
representing an enormous economical and medical burden with
a fatal outcome in a significant proportion of those affected.
Dysentery caused by Shigella spp., Salmonella spp., Proteus
spp. Staphylococcus, Escherichia coli, and Pseudomonas, usually

associated with contamination of food and water, is a serious
health problem affecting millions of people annually in the world,
with shigellosis, a disease caused by Shigella spp., resulting in
approximately 600,000 deaths each year (Walker et al., 1990;
World Health Organization [WHO], 2017).

Lytic bacteriophages are the main tools for phage therapy, for
their capacity to invade the bacterial cell and kill it. Lysogenic
bacteriophages could also have an application, the transduction
mechanisms could allow the use of bacteriophages as genetic
tools to increase bacterial susceptibility to antibiotics; however,
this approach has not been widely studied (Lu and Collins,
2009; Edgar et al., 2012). The use of a bacteriophage cocktail for
the treatment and prophylaxis of intestinal infections caused by
Shigella resulted in the patient recovery in 9 days, while antibiotic
chemotherapy revealed only a clinical improvement after 29 days
(Kutateladze and Adamia, 2008). Similarly, many other bacterial
infections can be alternatively treated with bacteriophages,
including chronic otitis, chronic infections of wounds, cystic
fibrosis-associated pulmonary infections, osteomyelitis, mastitis,
chronic infections of the urinary tract, gastrointestinal infections,
dental caries, and endodontic infections (Harada et al., 2018;
Abedon, 2019).

There is evidence that bacteriophages can be effectively used
against bacterial infections, including those that have proved
to be resistant to treatments with antibiotics (Abedon, 2019).
Staphylococcus aureus, for example, is reported to be resistant
to methicillin (MRSA), vancomycin (VRSA), and vancomycin-
intermediate sensitivity (VISA) (Fadlallah et al., 2015). Some
studies have shown that bacteriophage therapy for the treatment
of infections caused by such bacteria has been successful.
Fadlallah et al. (2015) reported the treatment of corneal abscess
caused by VISA using the bacteriophage S. aureus SATA-8505
(ATCC PTA-9476).

Although treatment with bacteriophages seems a promising
advantage compared to conventional antibiotics and
disinfectants, a major drawback of this approach is the
need for identification of the specificity range against the
pathogenic bacteria prior to starting the bacteriophage treatment
and the lack of protocols for testing bacterial susceptibility
in vitro (Kutateladze and Adamia, 2010). As with antibiotics,
if incomplete bacterial elimination by bacteriophages occurs,
this could result in the pathogen reemergence (Carlton et al.,
2005; Bigwood et al., 2008). A probable explanation could be
that bacteria might show a temporal resistance, or that the
bacteriophage infection results in high levels of reduction but not
a complete elimination of bacteria (Hoskisson and Smith, 2007;
Tokman et al., 2016; Moye et al., 2018).

However, contrasting findings of the bacteriophages cocktails
effectiveness (compared to “conventional” treatments such as
antibodies) were also achieved, with limitations and advantages
in the use of cocktails to treat bacterial infections being
extensively reviewed (Altamirano and Barr, 2019; Furfaro et al.,
2018; Principi et al., 2019). In study conducted by Jault et al.
(2019), a cocktail contend 12 bacteriophages was compared
to antibody treatment in patients with skin infections, in
a randomized control trial. At the end of the study, the
conventional treatment with a 1% sulfadiazine silver emulsion
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TABLE 1 | Taxonomy, morphological, and molecular characteristics of bacteriophage groups.

Family Genus Nucleic acid Morphology Main host

Leviviridae Levivirus ssRNA Icosahedral E. coli

Cystoviridae Cystovirus dsRNA Icosahedral Pseudomonas spp.

Microviridae Phix174microvirus ssDNA Icosahedral E. coli

Inoviridae Fibrovirus ssDNA Filamentous or rod Vibrio spp.

Podoviridae P22virus dsDNA Tailed S. typhimurium

Plasmaviridae Plasmavirus dsDNA Spherical to pleomorphic Mycoplasma spp.

cream was still more effective than the cocktail. However, more
randomized, placebo-controlled trials must be done in order to
have some consensus in dealing with the use of bacteriophages to
treat infections.

There are some limitations in the use of bacteriophages
for treating human infections. Due to the ability of certain
bacteriophages to integrate their genome into the host’s genome,
care must be taken when selecting isolated bacteriophages. Some
bacteriophages have potential for gene transfer; for instance,
the bacterial acquisition of antibiotic resistance genes (ARGs)
occurs by transduction, with bacteriophages acting as mobile
genetic elements (MGE). Consequently, bacteriophages have
been studied as possible vehicles of ARGs, not only as a
source, but also as propagators in the environment (Gunathilaka
et al., 2017). Bacteriophages containing ARGs are present in
a wide range of environments; however, some environmental
niches have a greater abundance, such as freshwater or marine
environments (Lekunberri et al., 2017a,b; Calero-Cáceres and
Luis, 2019). Bacteriophages can be also found in hospital
wastewater, yet human-associated viromes rarely charge ARGs
(Figure 1B; Enault et al., 2017; Lekunberri et al., 2017a,b).

Control Tools for Food and
Environmental Bacterial Contamination
Foodborne pathogens are a major food safety threat, in
2010 an estimated 2 billion individuals contracted foodborne
illnesses, resulting in 1 million deaths around the world
(Kirk et al., 2015). Food safety is regarded by the World
Health Organization [WHO] (2015) as a major obstacle in
human development, especially in developing countries that
lack infrastructure and proper environmental health practices
to counter the issue. The application of bacteriophages has
been proposed as an alternative tool to disinfect food and
food-related environments (Pang et al., 2017). The advantage
of this method is that bacteriophages kill their bacterial hosts
without changing food organoleptic properties (Loc-Carrillo and
Abedon, 2011; Perera et al., 2015). Also, bacteriophage low-
cost large scale production, self-replicating nature, and low
toxicity provide a cheap and safe disinfecting agent for low-
income communities, being employed in the former Soviet Union
for over 100 years (Skurnik et al., 2007; Abedon et al., 2011;
Wójcik et al., 2020).

The United States Department of Agriculture (USDA)
approved some products based on bacteriophages as food
sanitizers, such as ListShieldTM, Listex P-100TM, SalmoFreshTM,

and SalmonelexTM (Hagens and Loessner, 2010). The use of
a bacteriophage cocktail to inactivate foodborne bacteria like
S. enteritidis and S. typhimurium on the chicken breast has also
been proposed (Duc et al., 2018). These bacteriophages have
been isolated from environmental sources such as wastewater,
sewage, water or food (Pereira et al., 2016). Bacteriophages
may also be applied for biofilm control on the food industry,
such structures form on surfaces that have been improperly
sanitized (Jessen and Lammert, 2003). Outbreaks of bacterial
pathogens associated to biofilms in food chain have been related
to the presence of Listeria monocytogenes, Yersinia enterocolitica,
Campylobacter jejuni, Salmonella spp., Staphylococcus spp. and
E. coli O157:H7 (Aarnisalo et al., 2007). In this context,
bacteriophages have been suggested as a green strategy for biofilm
control, as they may provide a natural, highly specific, non-
toxic, feasible approach for biofilm formation control (Grant
et al., 2017). Biofilm control using bacteriophages has also
been used to prevent dental caries, where the bacteriophages
were first isolated from saliva samples and also in biofilm-
mediated illness like endodontic disease, which is caused by
dental pulp infection (Stevens et al., 2009; Dalmasso et al.,
2015). However, it is important to highlight that each bacterial
serovar could show different degrees of susceptibility to
different bacteriophages (Grant et al., 2017). In addition, it is
important to highlight that biofilm control by bacteriophages is
mediated by the chemical composition, environmental factors,
growth stage and bacteriophage concentration. Additionally,
bacteriophage-biofilm interactions depend on the susceptibility
of the biofilm cells and availability of receptor sites, where
bacteriophage production of polysaccharide-degrading enzymes
combined with effective cell lysis may rapidly destroy the biofilm
(Simões et al., 2010).

Bacteriophages also show significant potential in the animal
production chain such as fish, poultry, shrimps, oysters, sheep,
pork and also as additives in food products such as poultry
meat and eggs (Moye et al., 2018). They can prevent foodborne
pathogens such as Campylobacter spp., E. coli, L. monocytogenes,
Salmonella enterica, and Shigella spp., that are the top five
foodborne public health threatening pathogens (Figueiredo and
Almeida, 2017; Harada et al., 2018; Kim et al., 2020).

Bacteriophages have shown very effective to control
L. monocytogenes by the commercial product based on
bacteriophages LISTEXPTM100 reported a better efficacy
against L. monocytogenes than nisin and sodium lactate in
ready-to-eat (RTE) sliced pork ham (Figueiredo and Almeida,
2017). Chibeu et al. (2013) used a Listeria-specific bacteriophage
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FIGURE 1 | (A) Bacteriophage life cycle. Bacteriophages can replicate by lytic, lysogenic or remain in a chronic state. In the lytic cycle of replication the viruses are
released from the host after completing their replication. Lysogenic cycle involves the inclusion of genetic material into the genome of host cells, this way phages can
contribute to the transferring of tetracycline resistance plasmids to bacterial cells (Pratama and Van Elsas, 2017). This is evidenced considering bacteriophages
genomes, which can represent up to 13 and 5% of the Escherichia coli O157:H7 and Salmonella Newport genomes, respectively (Bobay et al., 2013). (B) Phage’s
journey through different cell lines in different environments: (1) Bacteriophage adhering to the resistant bacterial host. (2) Insertion of the phage genetic material. (3)
New phages carrying resistance genes derived from the infected bacteria, being released into the environment. (4) Adhesion of the new phage on non-resistant
bacteria. (5) Passage of resistance genes inserted into the phages genome to the bacteria. (6) After the genes insertion, the bacteria can enjoy the resistance genes
acquired while new bacteriophages can be released keeping the journey of resistance genes on the environment.

on the surface of deli meats; a single bacteriophage strain
was effective in reducing the numbers of Listeria cells (ATCC
19115). The evaluation of LISTEXTMP100 as a bacteria controller
measured the bacteriophage inactivation using black tea extract
and ferrous sulfate and isolation of regrowth bacteria and their
control. The result was the reduction of 1.5–2.1 log10 CFU/cm2

on RTE meat samples by application of 100 µl LISTEXPTM100
covering 10 cm2 area during 28 days, resulting on 107 PFU/cm2

final concentration. A cocktail of bacteriophages can be a more

effective approach against a unique species of bacteria, ensuring
that resistant bacteria are not selected. The application of the
cocktail ListShieldTM including six L. monocytogenes specific
bacteriophages efficiently reduces this pathogen in cheese,
smoked salmon, apple slices, and frozen entrees (reduction
of 91, 82, 90, and 99%, respectively), without changing the
food organoleptic properties (Perera et al., 2015). Similarly,
reductions of up to 5 logs of L. monocytogenes were observed
in various solid foods, such as smoked salmon, iceberg lettuce
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leaves, sliced cabbage, hot dogs, mixed seafood, turkey meat,
and mozzarella cheese brine (Guenther et al., 2009). In fact, the
use of a lytic bacteriophage on soft cheese was able to reduce
2 logs of the Listeria contamination while maintaining the
natural microbial community of the cheese, reinforcing the host
specificity of bacteriophages, and in this case the bacteriophage
A511 (Guenther and Loessner, 2011).

The number of commercial solutions containing
bacteriophages is increasing worldwide, being an emerging
industry and field of research (Sulakvelidze, 2013; Vikram
et al., 2020). Different examples of bacteriophage applications
on food industry are already available: a three-bacteriophage
cocktail (containing EC6, EC9, and EC11) was able to reduce
E. coli contamination; E. coli ATCC 25922 and E. coli O127:H6
in Ultra High Temperature (UHT) milk at 25◦C and under
refrigeration temperatures (5–9◦C) (McLean et al., 2013). The
cocktail EcoShieldTM was able to reduce 2 logs of E. coli O157:H7,
30 min after administration on leafy greens under packaging
storage (Boyacioglu et al., 2013). Magnone et al. (2013) verified
the disinfection of E. coli, Salmonella and Shigella from broccoli,
cantaloupe and strawberries, with the use of commercial
bacteriophage cocktails (EcoShieldTM, SalmoFreshTM, and
ShigActiveTM) being as effective or even more than chlorine
wash. Salmonella is a major threat for the food industry and
the most common zoonotic foodborne pathogen isolated from
livestock (Jajere, 2019). The bacteriophage FO1-E2 was able
to reduce the levels of Salmonella contamination on milk and
mixed seafood for 24 h, remaining undetectable at 8 and 15◦C
(Guenther et al., 2012). Similarly, bacteriophage wksl3 was also
able to decrease by 3 logs Salmonella contaminations on chicken
skin (Kang et al., 2013). Likewise, some bacteriophage cocktails
for Salmonella control are also available. The commercial
formulation SalmoFreshTM was able to reduce 2–3 logs of
Salmonella on lettuce and sprouts, showing greater reduction
(2.7–3.8 logs) when associated with chlorinated water (Zhang
et al., 2013). An outstanding biocontrol activity was seen with
the use of a bacteriophage cocktail composed by LPSTLL,
LPST94, and LPST153, being able to reduce >5.23 log viable
Salmonella counts on biofilm grow in microtiter plates and
steel chips, for 72 h. The same bacteriophages combination
was also able to completely reduce the Salmonella inoculum
on chicken breast and milk (Islam et al., 2019). Table 2
summarizes the bacteriophages commercially available and the
conditions for its applicability on treatment against different
bacterial agents.

Indicators of the Presence of Foodborne
Pathogens
Bacteriophages have been suggested as an alarm system in food
and environmental microbiology and epidemiology since they
generally fit the indicator criteria of pollution. Bacteriophages
can be used as fecal indicators or microbial water quality
bioindicators as an early warning of contamination by sewage,
and as an efficiency marker of water or wastewater treatment
(Yahya et al., 2015). This can be attributed to the bacteriophage
response to the presence of pollutants, they are characteristic to

adsorb to solid particles in the environment, and also due to
some limitations of traditional indicators for public health such
as fecal coliforms, E. coli and enterococci (Armon and Kott, 1993;
Ashbolt et al., 2001; Jofre et al., 2016; McMinn et al., 2017).

Somatic coliphages are more persistent than traditional
indicators, being also more resistant to sludge treatments,
particularly when adsorbed to surfaces (Martín-Díaz et al.,
2020). Many authors highlight the use of bacteriophages as
indicators not only for enteric pathogenic bacteria, but also for
enteric viruses such as human noroviruses, adenoviruses, and
rotaviruses (Guelin, 1948; Dutka, 1990; Cornax et al., 1991; Kott,
1992; Armon and Kott, 1996; Leclerc et al., 2000; Arredondo-
Hernandez et al., 2017; McMinn et al., 2017). This characteristic
is due to the wide stability of phages in waste, water, soils and
residues, with F-specific phages and somatic coliphages being the
most used for monitoring water quality (Grabow, 2001; Sinton
et al., 2002).

One of the challenges with bacteriophage application is related
to bacteriophage-host interaction, which could vary depending
on exposition temperature, where greater bacterial reductions are
associated with higher temperatures (Tomat et al., 2013). The
use of bacteriophages on wastewater treatment systems is based
on their lytic capacity, which is a useful tool for the removal
of human and animal pathogenic bacteria from wastewater or
applied as an indicator for the presence of bacteria in wastewater
treatment systems (Stefanakis et al., 2019). MS2 bacteriophages
have been proposed to be suitable as operational monitoring
indicators as established by guidelines of Australia, due to
resistance to variation of pH and temperature (Amarasiri et al.,
2017). Other applications of bacteriophages in the improvement
of environmental quality are based on their survival in the
environment, and soil percolation to control pathogenic bacteria
in underground water (Ye et al., 2019). However, there are still
some challenges for the use of bacteriophages in wastewater
treatment: a high bacteriophage dosing must be used for a
successful application and the use of polyvalent bacteriophages
with a wider host variety could result in the reduction of
beneficial bacteria. The bacterial analysis of the system is a
basic requirement for bacteriophage application, as the bacterial
population can change in the wastewater treatment plant
(Jassim et al., 2016).

CHALLENGES, CONCERNS AND
TRENDS IN THE USE OF
BACTERIOPHAGES FOR
ENVIRONMENTAL HEALTH PURPOSES

Although a worldwide acceptance of bacteriophages as
environmental agents is not yet achieved, bacteriophage-based
technologies in the environmental field are still being developed.
Besides being employed as monitoring agents, or by directly
controlling pathogens, bacteriophages have demonstrated
promising results in agricultural microbiome modulation,
increasing crop production by infecting crop detrimental
bacteria in leaves and soil (Jones et al., 2012; Ye et al., 2019).
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TABLE 2 | Current commercial products containing bacteriophages and conditions for use.

Host Bacteriophage Dose Treatment time Matrix Reduction log References

Listeria
monocytogenes

LISTEXTM P100 107 PFU/cm2 30 min, 1, 2, 3, 7,
10, 14, 20, and

28 days

Roast beef and cooked
turkey

2 log10 CFU/cm2 Chibeu et al. (2013)

FWLLm1 2.5 × 107 PFU/cm2 24 h Ready-to-eat chicken
breast roll

2.5 log10 CFU/cm2 Bigot et al. (2011)

P100/A511 3 × 108 PFU/g 6 days Hot dogs (sausages),
cooked and sliced turkey
breast meat (cold cuts),
smoked salmon, mixed
seafood (cooked and
chilled cocktail of shrimp,
mussels, and calamari),
chocolate milk (pasteurized,
3.5% fat), mozzarella
cheese brine (unsalted
pasteurized whey from
plastic bag containers
containing fresh mozzarella
cheese), iceberg lettuce
(leaves), and cabbage
(sliced fresh leaves)

1–3 log10 CFU/cm2 Guenther et al.
(2009)

ListShieldTM 109 PFU/mL 0, 2, 5, and 7 days Fresh-cut melons and
apples

3.5 log10 CFU/cm2 Leverentz et al.
(2001)

Salmonella
nteritidis

SJ2 108 PFU/mL 24 h Raw and pasteurized milk
cheeses

1–2 log10 CFU/cm2 Modi et al. (2001)

PHL 4 1010 PFU/mL 24 h Poultry carcass 3 log10 CFU/mL Higgins et al. (2005)

Salmonella
typhimurium

Felix-O1 5.25 × 106 PFU 24 h Chicken frankfurters 2 log10 CFU/g Whichard et al.
(2003)

SalmoFresh 108 PFU/mL 5 h Ready-to-eat chicken
products

2 log10 CFU/mL

S. enteritidis
and
S. typhimurium

wksl3 2.2 × 108 PFU/mL 1, 2, 3, 5, and
7 days

Chicken skin 3 log10 CFU/mL Kang et al. (2013)

SalmoFREE 108 PFU/mL 36 days In vivo–chicken production 3 log10 CFU Clavijo et al. (2019)

SalmonelexTM 109 PFU/mL 24 h Ground beef and ground
pork

1.1 and 0.9
log10 CFU/g

Yeh et al. (2017)

Plant-soil microbiome modulation by bacteriophages was even
related to an increase in ammonium concentration, likely
through lysis of certain bacteria and overall community shifting
(Braga et al., 2020). The use of bacteriophages on plant soil was
referred to as a safer and more reliable antibacterial agent than
antibiotics, in which the exaggerated use of these chemicals
was related to the development of ARGs and inhibition of soil
phosphatase activity (Liu et al., 2009; Zhang et al., 2017; Sun
et al., 2019).

Similar to soil applications, bacteriophages appears to
have a low environmental impact in fish farming plants
compared to “traditional” methods such as antibodies, as it is
necessary a continuous application since seawater is considered
a reservoir of antibiotic resistance bacteria (Almeida et al.,
2009; Alves et al., 2014; Hatosy and Martyiny, 2015). Even
though bacteriophages can be considered as highly flexible
and cheap tools, some drawbacks concerning the safety and
overall effectiveness of the phage product may hinder their
implementation as a widely accepted technology (Payne and
Jansen, 2003). Bacteriophages can increase bacteria pathogenicity

and fitness by transferring toxin and environmental resistance
encoding genes to nearby bacteria, essentially creating genetic
hazards in the area of application (Colomer-Lluch et al., 2011;
Feiner et al., 2015). Besides bacteriophage-induced resistance,
the bacteria may also become resistant to the virus activity
through spontaneous mutations or through adaptive immunity
via the CRISPR system (Labrie et al., 2010). Another possible
major drawback in bacteriophage application is the potential
disruption of the local microbiome, consequently favoring the
development of harmful bacteria or health problems associated
to a microbiome disbalance. Bacteriophage application has
been tied to microbiome dysbiosis in humans, and can be
related to the subsequent development of intestinal and mental
diseases (Norman et al., 2015; Tetz et al., 2018). Microbiome
disruption was also related to the development of diseases in
both livestock and plants, therefore an improper bacteriophage-
based product (i.e., bacteriophages that may infect healthy
microbiome) may also potentially harm animal and plant farming
production (Meaden and Koskella, 2013; Zeineldin et al., 2018;
Lei, 2020).
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In sight that bacteriophages may persist in food production
plants due the virus high stability, potentially creating a
genetic hazard in such facilities, the adoption of strategies
for the use and manipulation of bacteriophages are required
to counter bacteria resistance and achieve successful pathogen
control (Hungaro et al., 2013; Chaturongakul and Ounjai,
2014; Fister et al., 2016, 2019). In this regard, practices that
reduce the probability of bacteriophage resistance occurrence
must be preferred, such as a two-stage self-cycling or a
cellstat process (García et al., 2019). Bacteriophage cocktails
have been also been employed as a way to counter bacterial
bacteriophage resistance, in this strategy the bacteria would
be unable to adapt (or have their viability greatly reduced)
to the different infective dynamics of each virus, however,
knowledge about the cocktail pharmacodynamic is required to
achieve a multi-targeting system against the same bacterial strain
(Abedon et al., 2021).

Aside from ARGs screening and mapped host targeting,
the phage product must be suitable to the external factors
present in the area of application, being resistant to the
pH, temperature, UV radiation, salinity and ionic profile of
the environment (Jończyk et al., 2011; Zaczek-Moczydłowska
et al., 2020). In addition, the criteria for bacteriophage use
in food and the environment, such as minimum exposure
time, minimum effective dosage and characterization of animal
local application must be established to achieve the expected
therapy result while avoiding potentials drawbacks such as the
presence of inhibitory compounds like antibodies, whey proteins
or bacteriocins (Abedon, 2012; Vongkamjan et al., 2013; Ly-
Chatain, 2014).

Special regards covering the bacteriophage properties are
also advisable for an optimal and highly scalable confection of
the final viral product, being of special relevance in extensive
environmental applications. Bacteriophage production is directly
related to the characteristics of the bacterial host (e.g., metabolic
activity, growth rate, stage in cell life cycle, and abundance of
bacteriophage receptors on cell surface), and the bacteriophage
attributes (e.g., lysis time, burst size, and adsorption rate)
(Agboluaje and Sauvageau, 2018). In addition, the initial
multiplicity of infection (MOI), pH, aeration rate, presence of
ions or cofactors, agitation and medium composition may also
influence the outcome of infections, thus affecting bacteriophage
production (Agboluaje and Sauvageau, 2018). Therefore, a full

characterization of the virus and host synergy is highly advisable
for easy escalation of the phage product (García et al., 2019).

With advances in molecular biology the engineering of
bacteriophage particles allows a selected virus (favorited due
desirable characteristics to the target therapy, such as host range
and replicative potential) to be further enhanced through genetic
modifications, removing undesirable viral properties that could
hinder the application of the bacteriophage product as a safe
and reliable object (Górski et al., 2018). Genetic engineering of
phage products was able to remove toxin encoding genes and
increment the virus stability in low pH environments, enhancing
the functionality and removing safety hazards of the final viral
product without requiring the selection of new bacteriophage
strains (Nobrega et al., 2016; Park et al., 2017).

Although bacteriophages present certain safety drawbacks,
largely due to negligence of mapping the product properties,
bacteriophages are still considered safer than chemical treatments
in environmental and food processing plants treatments
applications (Meaden and Koskella, 2013; Zaczek et al., 2014).
Bacteriophages stand as cheap and highly flexible structures,
being able to be selected and edited for different approaches
(Farr et al., 2014; Sunderland et al., 2017). Most of the research
on bacteriophages has highlighted the potential for in vitro
applications, and the number of scientific publications has
increased in the last decades due to the potential use of
bacteriophages in a broad spectrum of applications. In health
sciences, bacteriophages are a promising approach in the fight
against antibiotic-resistant bacteria, and, in the food chain, they
could be a safe alternative for the control of foodborne pathogens.
However, to guarantee effectiveness, a detailed understanding of
the interaction between bacteriophages and the hosts is needed,
considering restrictive criteria for their use to minimize their
negative impact on food and food-related environments.
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