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Simple Summary: The treatments for patients with oligometastatic colorectal carcinoma are rapidly
evolving. The present review focuses on the role of minimally invasive techniques since they can
now be used as an alternative to surgical management in selected cases in association with systemic
therapies according to ESMO and NCCN guidelines. In recent years, biomarkers (both at molecular
and imaging level) have emerged as a relevant and potential criteria for treatment strategy decision
and will be crucial in the future for patients selection. Tumor molecular profile impacts on local
outcome of image guide ablation as well as metabolic imaging which predicts the outcome of
both percutaneous and trans-arterial treatments. Oncologists should be aware of advantages and
disadvantages of those treatments options as well as the potential role of molecular profile for a
better patient selection.

Abstract: Colorectal cancer (CRC) is the third most common cancer worldwide and has a high rate of
metastatic disease which is the main cause of CRC-related death. Oligometastatic disease is a clinical
condition recently included in ESMO guidelines that can benefit from a more aggressive locoregional
approach. This review focuses the attention on colorectal liver metastases (CRLM) and highlights
recommendations and therapeutic locoregional strategies drawn from the current literature and
consensus conferences. The different percutaneous therapies (radiofrequency ablation, microwave
ablation, irreversible electroporation) as well as trans-arterial approaches (chemoembolization and
radioembolization) are discussed. Ablation margins, the choice of the imaging guidance as well as
characteristics of the different ablation techniques and other technical aspects are analyzed. A specific
attention is then paid to the increasing role of biomarkers (in particular molecular profiling) and
their role in the selection of the proper treatment for the right patient. In conclusion, in this review
an up-to-date state of the art of the application of locoregional treatments on CRLM is provided,
highlighting both technical aspects and the role of biomarkers, two sides of the same coin.
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1. Introduction

Colorectal cancer (CRC) is one of the most common malignant diseases, representing
the second most frequent cause of cancer-related death in USA and in Europe [1].

Approximately 50% of CRC patients will present metastatic disease during their
lifetime, half of them at diagnosis; liver being the most commonly involved site [2,3].

Currently, the management of metastatic disease is a major challenge and a multidis-
ciplinary approach is necessary to optimize results by taking into consideration clinical
characteristics and molecular classifications, thereafter tailoring treatment.

In contrast to diffuse metastatic disease, the concept of oligometastatic disease (OMD)
was introduced by Hellman and Weichselbaum in 1995 as a transitional state between
localized and diffuse metastatic burden; in recent years, this concept has gained wide
consensus in CRC management [4].

In the OMD setting, optimal local control is essential to improve outcome [5,6].
When feasible, surgery (R0 resection) seems to be the best option with the greatest

likelihood of cure for patients with CRC with limited liver metastases, with 5-year survival
up to 40–50% [7–14].

Unfortunately, the majority (70–80%) of patients are unsuitable candidates for resection
due to clinical and/or surgical technical factors such as tumor size, location, multifocality,
or inadequate hepatic reserve.

In this scenario, the role of interventional radiology is becoming increasingly impor-
tant: complete ablation of all visible sites may affect local cure and may allow possible
discontinuation of systemic therapy, thus inducing disease-free interval and quality of
life improvement [15,16]. The European Society of Medical Oncology (ESMO) classified
both surgical resection and thermal ablation as local ablative treatments (LATs) included in
the treatment algorithm for OMD [6], underlining the importance of a multidisciplinary
discussion when dealing with OMD patients.

For these reasons, patients with OMD should be carefully selected in order to optimize
the results of the most modern technologies available even by means of specific biomarker
investigation.

An extensive study is going on to biologically characterize oligometastatic CRC to
provide a framework for its integrated classification and treatment [17].

The aim of our review is to report and highlight the key points of the application
and the limitations of LATs performed by interventional radiologists in the setting of
oligometastatic CRC treatment with special regard to the potentiality of biomarkers as
predictors of LAT outcomes.

2. Interventional Treatment Options for OMD CRC

Interventional radiologists can provide different therapeutic strategies in the treatment
of patients with oligometastatic CRC. From the technical perspective, interventional treat-
ments can be divided in percutaneous ablative treatments and trans-arterial treatments.

2.1. Image Guided Ablation Techniques

Image-guided ablation techniques have been used mainly in the treatment of primary
liver cancer [18], but in the last decade they have been more and more used in the treatment
of oligometastatic CRC. With the application of different thermal or non-thermal energies
under image guidance, it is possible to achieve the destruction of the desired amount of
tissue through a percutaneously inserted applicator. Radiofrequency ablation (RFA) is by
far the most often used technique for thermal ablation of the liver, given that it has been
available for a longer time. More recent techniques such as microwave ablation (MWA),
cryoablation, laser or irreversible electroporation (IRE) have been reported to be beneficial
in this setting, showing promising results.

LATs can be performed both under general anesthesia as well as under conscious se-
dation, which consist of a drug-induced analgesia and depression of consciousness, during
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which patients respond purposefully to verbal commands, with adequate spontaneous
ventilation and maintained cardiovascular function [19].

Some evidence suggest that general anesthesia should be favored over conscious
sedation in order to reduce periprocedural perception of pain and increase local tumor
progression-free survival [20] and expert consensus statements [21] highly recommend
the diffusion of general anesthesia for the standardization of LATs. However, conscious
sedation is still the most diffused approach in many western and eastern countries [22].

Table 1 shows pros and cons of the described techniques.

Table 1. Mechanism of actions and pros and cons of all different ablations techniques.

Ablation Technique Action Pros Cons

RFA

High frequency
alternating current
determining ion
friction, heat
generation and
coagulative necrosis

Low-price *
Effective ablation of
lesions <3 cm
Equivalent to wedge
resection in small
metastases

Difficult ablation of
lesions >5 cm
Heat-sink effect **
Injury to nearby
organs

MWA

Microwaves
determining heat
generation and
coagulative necrosis

No heat-sink effect **
Larger zones of
ablation
Preferable for lesions
>3 cm
Reduced ablation and
anesthesia time

Expensive *
Injury to nearby
organs

Cryoablation
Ice crystal formation
leading cell death and
tumor ischemia

Visualization of
ice-ball during
procedure

Expensive *
Cryoshock secondary
to cytokine release

IRE

Electrical pulses
determining cell
membranepores and
apoptosis

No heat-sink effect **
Effective for lesions
<5 cm
Indication for central,
perihilar lesions
Limited injury to
nearby vessels and
organs

Expensive *
Difficult ablation of
lesions >5 cm
Placement of at least
two applicators
needed
ECG-gating necessary
General anesthesia
necessary and
operating room
required

Laser Ablation
Conversion of
absorbed light into
heat

Smaller needle (21G)
Precise ablation area
Preferable for
multiple small and
variably sized lesions

Expensive *
Limited size per
single insertion of
ablation areas

* If compared to other technologies; ** Heat-sink effect is heat loss via nearby blood vessels and injury to nearby
organs caused by heat propagation. RFA: radiofrequency ablation; IRE: irreversible electroporation; MWA:
microwave ablation.

2.1.1. Radiofrequency Ablation

Ionic friction and heat generation, associated with protein denaturation and subse-
quent coagulative necrosis, are the main mechanisms behind RFA [23–27]. A high frequency
alternating current is delivered from the tip of an electrode into the surrounding target
tissue [28,29]. The alternating current determines movements in the ions within the tissue
resulting in frictional heating. As the temperature rises above 60 ◦C, cellular necrosis is
seen [30]. The device usually consists of a 14–17 Gauge needle, up to 15 to 25 cm long; it
may contain hook-shaped electrode arms or tines used to obtain larger and more spherically
shaped ablation volumes. Even if the interventional radiologists prefer the percutaneous
approach, there is no consensus as to which is the best approach of needle insertion into
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the tumor, whether percutaneous or laparoscopic. RFA can be performed under ultrasound
(US), computed tomography (CT), or magnetic resonance imaging (MRI) guidance, as
well as using fusion imaging [31] depending on lesion visibility and operator experience.
To control pain and minimize patient movement the procedure is usually performed under
conscious sedation or general anesthesia [16,32]. Once the needle is in the right position
within the target lesion and tines have been extended or deployed into the tumor, the
electrode is connected to a generator and the ablation process is performed. RFA can
reproduce a defined and predictable ablation area depending on the length of the exposed
tip and the presence or absence of the hook-shaped electrode arms. Tumors which measure
<3 cm in maximal diameter can be easily ablated by placing the needle electrode in the
center of the tumor [33]. Tumors measuring >3 cm may require more than one needle
electrode insertion, creating an overlapping ablation zone. To effectively destroy lesions
that measure ≥5 cm in maximal diameter with currently available RFA devices can be
challenging. Furthermore, similarly to surgery [34], the achievement of at least 5 mm
(ideally 10 mm) margins in all planes [34] is highly desirable in order to minimize residual
disease and risk of local recurrence. Additionally, for this reason, some authors suggest a
combined approach using both arterial embolization and percutaneous thermal ablation
for large tumors [35].

Limitations of RFA include heat loss via nearby blood vessels (“heat-sink effect”)
and injury to nearby organs caused by heat propagation [36]. RFA could be potentially
dangerous when treating lesions situated in challenging locations such as the hilum; more-
over, despite the coagulation effect of RFA, bleeding represents a risk in percutaneous RFA
(similarly to all the other percutaneous procedures). Protective techniques such as hydro-
dissection and bowel insufflation [24] can avoid such problems. Centrally located, perihilar
metastases represent a poor indication for RFA; indeed their ablation could lead to biliary
complications as well as lower efficacy of treatment due to surrounding large blood vessels.
Nevertheless, the rate of major complications is low [37]. The adequate visualization of
the target tumor seems to clearly impact the results of ablation [38]. Experimental results
suggest that temperature mapping is a potential useful tool for RFA monitoring, allowing
to estimate the achieved ablation zone and recognize an eventual heat sink effect [39]. Post
ablation imaging (CT or MRI) is always required to assess results and monitor the ablated
tissue over time. Relevantly, local efficacy of RFA has been reported by Elias et al. [40] to be
equivalent to wedge resection in small metastases. The association of RFA with systemic
treatment has significantly improved overall survival (OS) when compared with systemic
treatment alone [16].

2.1.2. Cryoablation

The main principle of cryoablation is to determine cellular damage by rapid freezing
of the tissue. The cooling and subsequent thawing of the needle leads to the freezing of the
surrounding tissue by convection and conduction. The early cooling effect determines the
formation of intracellular ice crystals causing cell membrane damage and death. The for-
mation of ice crystals in the capillaries feeding the tumor mass leads to ischemia [41,42].
Percutaneous cryoablation can be performed under CT, MRI or US guidance [43]. Currently,
cryoablation is still considered a more expensive tool compared to RFA and other ablation
techniques, thus making it less popular among interventional radiologists. Ice ball forma-
tion within the vessels or biliary ducts can lead to injury and subsequent bleeding. A rare
but possible complication is cryoshock, secondary to cytokine release by necrotic tissue,
resulting in a systemic syndrome characterized by fever, tachycardia, and tachypnea.

To date, data regarding the use of cryoablation for metastatic CRC are limited when
compared to RFA, since it is a relatively new technique and fewer centers use cryoabla-
tion for treating liver lesions. Ng KM et al. [44] reported the results of cryoablation in
293 patients with unresectable colorectal metastases. Survival rates of 1, 3, 5 and 10 years
were 87%, 41.8%, 24.2% and 13.3%, respectively. These results are less encouraging when
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compared to RFA results. Further studies are needed to consolidate cryoablation as a
treatment option of OMD CRC.

2.1.3. Microwave Ablation

In MWA, coagulative necrosis is induced by microwaves applied directly to the target
tissue through a percutaneously placed antenna producing rapid temperature elevation [45–47].
In comparison to other ablative techniques, microwaves (between 300 MHz and 300 GHz in
the electromagnetic spectrum) propagate well through all tissues including water vapor and
charred desiccated tissue induced by the ablative process. As a result, microwaves provide
more efficient heating than other ablation techniques, making them preferable in tissues with
high blood supply or nearby vascular heat sinks [48]. Thanks to technological improvements,
including applicator cooling device and power control of the microwave, this technique is very
promising for the future [27,46,49,50] and is gaining popularity among interventionalists [22].
Ablation often takes less than 10 min, typically averaging 3–7 min, improving overall efficiency
and reducing anesthesia time. The major complication rate of MWA was reported as 4.6%
when compared to 4.1% for RFA [51]. The most common complications include hemorrhage,
portal vein thrombosis, bile leak/biloma, liver abscess, pleural effusion and tumor seeding.
Nowadays, MWA is probably considered the most promising technology in the interventional
management OMD CRC. Indeed, many prospective registries are open (such as CIEMAR,
NCT03775980) and ongoing trials (such as the COLLISION, NCT03088150, [52]) are enrolling
patients in order to establish the non-inferiority of this technique compared to surgery.

2.1.4. Electroporation

Electroporation is based on the use of electrical pulses created by monopolar elec-
trodes (up to six) linked to an electrical generator, delivering a maximum of 50 A and 100 V.
This creates pores in cell membranes and consequent apoptoptic cell death due to increased
permeability. The magnitude of the electrical field decreases from the center outwards.
Electroporation can be reversible or irreversible, the latter causing cell death [53,54]. Out-
lined advantages of IRE include: no “heat sink effect” and limited or no injury to the vessels
and organs in close proximity to the tumor. IRE is optimal for managing tumors smaller
than 5 cm [55], indeed an important limitation is the incapability to completely ablate
lesions larger than 5 cm without repeated attempts or repositioning of the electrodes [56].
A recent phase II study supports the potentiality of this technology in the CLM setting [57].
Due to the limitations of RFA and MWA on hilar tumors [58], despite a non-neglectable
complication rate of IRE itself in this hard-to-reach CLM 57], the most likely future potential
application of this technique will be as a niche indication in this setting.

2.1.5. Laser Ablation

In the last decade, lasers have been successfully used in the treatment of cancer and
other diseases. Laser-induced interstitial thermotherapy (LITT) represents an effective
and minimally invasive surgical technique in the treatment of various cancers such as
liver, colorectal, lung, head and neck, brain, prostate and pancreas [59–64]. Near-infrared
light from Nd:YAG laser or diode laser is applied given its ability to be readily and easily
absorbed by human tissues [65]. Temperature distribution and dimension of the laser-
induced damage are determined by thermal and optical properties of the treated tissue
and by the features of the specific device [66]. One of the main advantages of LITT is the
possibility to use a very small needle (21G) to reach the target lesion, thus also providing a
very precise ablation area [67,68]. This makes LITT particularly valuable for lesions located
in challenging positions, therefore reducing the procedure-related risks [69,70]. However,
the literature is mostly focused on HCC management rather than OMD [71,72]. In the
oligometastatic CRC setting, laser ablation has been applied even in the treatment of lung
metastases [73]; in this context, when comparing the three different ablation methods, there
were no significant differences in the time of tumor progression or in survival rates [74].
In conclusion, LITT diffusion for oligometastatic CRC treatment may be halted by the
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limited size of the ablation areas per single insertion, despite its potentiality for treating
lesions in challenging sites.

2.2. Transarterial Procedures
2.2.1. Transarterial Chemoembolization

In transarterial chemoembolization (TACE), cytotoxic agents are injected directly into
the tumour. In general, TACE consists of the injection of different types of chemotherapic
agents mixed with microspheres or embolic particles such as lipiodol oil, collagen parti-
cles, trisacryl gelatin microspheres or polyvinyl alcohol particles, which shut down the
tumoral blood flow as well as stimulate the release of high doses of the drug [75–79]. It is
proved that ischemia increases vascular permeability and thereby promotes penetration
of chemotherapeutic agents into the tumor with the advantage of maximizing local cyto-
toxic/ischemic damage as well as minimizing systemic side effects [80,81]. Drug-eluting
beads transarterial chemoembolization (DEB-TACE) is a relatively new option for the
treatment of CRC metastases. Its principle is based on the intra-arterial administration of
drug-loaded beads to release chemotherapeutic agent into the tumour arterial network,
whilst the embolization effect limits drug washout. DEB-TACE is generally used in patients
with liver only or liver-dominant metastatic disease as well as in first-line, second-line,
and salvage settings, without current consensus regarding the optimal treatment option.
There are limited available data on this technique from single-arm studies. Two published
randomized clinical trials (RCTs) evaluated different patient cohorts: the first RCT using
DEB-TACE in combination with systemic FOLFOX (5-fluorouracil + leucovorin + oxali-
platin) as first-line therapy [82], with the second comparing DEB-TACE with systemic
FOLFIRI (5-fluorouracil + leucovorin + irinotecan) in the third-line setting [79]. Overall
progression-free survival was not significantly different between these groups. Mauri
et al. [83] demonstrated that TACE with small-size particles loaded with irinotecan (DEB-
IRI) in patients with CRLM is a safe procedure and the promising results reported in terms
of liver-specific progression-free survival and OS deserve further confirmation in larger
prospective trials. Similarly to the hepatocellular carcinoma setting, some Authors [84–86]
support the evidence that it is possible to obtain similar results with less toxicity using only
drug-eluting polyvinyl alcohol microspheres (“beads”), without chemotherapy: in this
way only, the ischaemic effect is used to treat the metastasis. However, data are still limited
in the CRC setting requiring more robust evidence in the future.

2.2.2. Hepatic Arterial Infusion of Chemotherapy

Hepatic arterial infusion (HAI) consists of delivering antineoplastic drugs directly
into liver metastases achieving a high drug concentration in the metastatic tissue, since
early-stage lesions are mainly supplied by hepatic arteries [87].

Port-catheters can be surgically or percutaneously implanted. In patients treated with
surgical resection, the catheter is inserted during laparotomy. For radiological percutaneous
placements, the femoral artery is the preferred approach, reaching the hepatic artery via
the gastroduodenal artery. The catheter is deployed near the hepatic artery root and
subsequently connected to a subcutaneous port [88]. Retrospective studies show higher
efficiency and lower local complication rates in the radiological approach when compared
with the surgical one [89,90]. Complications include catheter migration, arterial obstruction,
catheter thrombosis and catheter rupture with an overall rate of 30% [91].

The high extraction ratios and the local drug concentrations of chemotherapeutic drugs
achieved with HAI are the main features determining procedure rationale. The currently
used drugs are oxaliplatin [92–95] in combination with floxuridine (FUDR) or 5-fluorouracil
(5-FU). Regarding arterial infusion toxicity, Ducreux et al. demonstrated that oxaliplatin
HAI has the same toxicity profile as intravenous infusion [95]. The use of intra-arterial and
systemic chemotherapy combination demonstrates an improved outcome, indeed a tumor
response rate up to 80% has been reported in patients treated with HAI-FUDR together
with IV drugs (irinotecan/5-FU/oxaliplatin or oxaliplatin/irinotecan) [96,97].



Cancers 2021, 13, 2617 7 of 17

In addition, in patients with high risk of recurrence, HAI-FUDR combined with
systemic 5-FU seems to double disease-free survival when compared with treatment with
systemic chemotherapy alone [98], even though this result does not imply an improved
OS [99,100]. HAI can be considered a valid treatment option in patients with liver-limited
disease in whom surgery or ablation techniques are not indicated. HAI can be considered
as a second-line treatment if there is a poor response to first-line treatment and as salvage
therapy or adjuvant therapy in unresectable liver metastases [101].

2.2.3. Radioembolization

The principle of selective internal radiation therapy (SIRT), also known as transarterial
radioembolization (TARE), is the selective delivery of radioactively labelled particles to
the target liver lesions via the hepatic artery, since tumors receive most of their blood
supply from the hepatic artery rather than from the portal vein [102,103]. Resin or glass
microspheres loaded with the b-emitting isotope yttrium-90 (90Y) are injected into the
hepatic artery reaching the tumor vessels that have an average radius of 2.5 mm. The tumor
receives a dose higher than 120 Gy [104,105]. Healthy liver tissue involvement is limited,
since it is highly sensitive to radiation (around 35 Gy) [106]. In general, radioembolization is
performed as a monotherapy after systemic therapy failure [107]. Generally, SIRT procedure
is well tolerated by patients, with only mild abdominal pain, fever, nausea and hepatic
indices alteration occurring during the first week after treatment. Severe side effects are
linked to deposition of the 90Y microspheres outside of the liver and consequent irradiation
of normal tissue leading to radiation gastritis or ulceration (10%), radiation pancreatitis
(<1%), and radiation cholecystitis (<1%), potentially avoided with a careful work-up [108].
Current research, however, has begun to focus on the use of SIRT in combination with
chemotherapy as first-line treatment for CRC metastases [109–111]: more studies are
required to further develop TARE and improve patients selection; in particular, research
on personalised dosimetry [112] may overcome the limitations of recently published trials
that do not seem to demonstrate a clear impact on OS [113].

3. Biomarkers

In general, despite biomarkers having gained an increasing role in the development
of drugs and medical devices [114], there is still significant confusion about their definition
and use in clinical practice [115].

In 2016, a joint task force of the U.S. Food and Drug Administration (FDA) and the
National Institutes of Health (NIH) forged common definitions of biomarkers and made
them available to the public via a continuously updated online document – the “Biomarkers,
Endpoints and other Tools” (BEST) resource.

Biomarker can define a “characteristic that is measured as an indicator of normal
biological processes, pathogenic processes, or biological responses to an exposure or
intervention, including therapeutic interventions. Molecular, histologic, radiographic,
or physiologic characteristics are types of biomarkers”. [116].

3.1. Molecular Biomarkers

In the era of targeted therapies, molecular biomarkers have emerged as important
prognostic and predictive factors in CRC management to tailor systemic therapy and more
recently also surgical and loco-regional treatments.

Tumours harboring mutations in the RAS family (KRAS, NRAS, HRAS) result in
constitutive activation of the MAPK signalling pathway, and are unlikely to benefit from
treatment with epidermal growth factor receptor (EGFR) antibodies [117].

RAS testing should be carried out on all patients at the time of diagnosis of CRC and
is mandatory before treatment with the EGFR-targeted monoclonal antibodies (i.e., panitu-
mumab and cetuximab) [6]. Either primary CRC or liver metastatic tissue can be used for
RAS mutation testing, which have over 90% concordance in RAS mutational status [6,118].
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Only if primary tumor or liver metastases samples are not available may other metastatic
sites (lymph node or lung metastases) be used [6].

Rat sarcoma (RAS) viral oncogene mutations are found in up to 40% of patients with
CRC and have been associated with reduced survival after resection of primary CRC and
CRLMs [119].

Positive RAS mutation status is associated with increased positive or narrower resec-
tion margins after CRLM surgical treatment [120]. Furthermore, RAS mutation has been
linked with higher incidence of disease recurrence and shorter OS in patients undergoing
liver resection for CRLM [121].

Moreover, RAS mutation is associated with unsalvageable recurrence and with re-
duced survival after recurrence at any location after resection for CRLM [122].

Local tumor progression-free survival following percutaneous ablation of CRLMs was
worse in patients with mutant RAS than in patients with wild-type RAS [123].

These findings support the hypothesis of a more infiltrative behavior of mutant RAS
CRLM, therefore knowledge of RAS mutations can guide surgical and interventional
radiology procedures.

Briefly, while minimal ablation margins >10 mm should be always the procedural
goal, this becomes crucial for mutant RAS CRLM [124]. Mutant RAS patients should be
considered candidates for ablation only if adequate ablation margins can be planned and
obtained [125].

Other important molecular biomarkers used to guide patient selection, treatment deci-
sion, risk stratification and prognostication are BRAF mutations, microsatellite instability
(MSI) and co-occurring mutations in RAS/TP53 and APC/PIK3CA [126].

BRAF is a protein kinase in the MAPK signalling pathway. In metastatic CRC, the most
common BRAF mutation results in a change at residue 600 that substitutes glutamine for
valine (V600E). Of patients with metastatic CRC, 5–8% carry BRAF V600E mutations [127].
Among these patients metastases are rarely limited to the liver, and those who undergo
hepatectomy often develop disease recurrence at multiple sites, including peritoneum and
lung [128,129]. Conversely, non-V600 BRAF mutations (harbored in 2% of metastatic CRC)
correlate with significantly improved median OS compared with patients with wild-type
BRAF and are excellent candidates for CRLM resection [130]. RAS and BRAF mutational
status should be assessed simultaneously for prognostic purposes [6].

Microsatellite instability (MSI) and subsequent deficient DNA mismatch repair (dMMR)
are found both in sporadic and familial CRCs. dMMR in sporadic CRC is caused by an
epigenetic inactivation of MLH1 gene, correlating with the presence of BRAF V600E muta-
tions [131]. Lynch syndrome is an autosomal dominant genetic disorder associated with
germline mutation in dMMR genes. Although dMMR appears to be a favourable prognos-
tic marker, BRAF V600E mutations were observed in 45% of patients with deficient dMMR
tumors conferring a worse prognosis [132].

The TP53 gene encodes a transcription factor which starts cell cycle arrest, DNA repair,
apoptosis and angiogenesis in response to multiple cellular [133]. Loss of function of TP53
is present in 50–70% of patients with primary CRC [134].

Concomitant KRAS and TP53 mutations promote resistance to preoperative chemo-
radiation in locally advanced rectal cancer [135] and are associated with decreased OS after
CRLM surgical treatment [136].

Adenomatous polyposis coli (APC) gene mutation lead to activation of the Wnt sig-
nalling pathway and is one of the earliest genetic events in CRC tumorigenesis; somatic
APC mutations are observed in approximately 70% of sporadic CRCs. PIK3CA is a proto-
oncogene encoding for a catalytic subunit of PI3K, involved in the PI3K/Akt/mTOR
signalling pathway. PIK3CA mutations occur in 10–20% of CRC. Double mutation of APC
and PIK3CA predicts poor response to preoperative chemotherapy and reduced OS in
patients with CRLM resection [137]. Furthermore, preliminary data suggest that PI3K path-
way mutation alone may predict longer time to local progression after CLM of SIRT [138].
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Although mutational status is an important factor to consider in treatment planning, a
different approach for improving patient survival is in developing biomarkers for early
detection of primary and recurrent disease, at a point when traditional clinical indicators,
such as radiographic signs, still are negative.

Liquid biopsy, including circulating tumor cells (CTCs), cell-free DNA (cfDNA), micro-
RNA (miRNA), and exosomes, provides clinically or biologically relevant information
about malignancies. Although still in development, potential applications of liquid biopsy
include diagnosis, treatment response over time and minimal residual disease, in order to
facilitate tailored therapy [139,140].

Despite levels of CTCs correlating with prognosis in patients with CRC [141], the clin-
ical utility of CTC measurement is yet to be defined [6]. Conversely, cfDNA assessment is
emerging as a new tool for molecular profiling with greater possible clinical implications
than CTCs [6,142,143]. cfDNA seems to be more sensitive in identifying the presence of
multiple clinically relevant resistance mechanisms in comparison to single-lesion tumor
biopsy, due to the multiple resistance alterations in an individual patient [144].

A summary of the more important molecular biomarkers and their implication in
interventional treatments is provided in Table 2.

Table 2. Principal molecular biomarkers with their implications in interventional treatments.

Biomarkers % in Metastatic
CRC Action

Clinical and
Prognostic

Implications

Interventional
Therapeutic
Implications

K-RAS 15–50%

Constitutive
activation of the
MAPK signalling
pathway

Higher recurrence
rate after liver or
lung CRC
metastases
ablation
Reduced OS

• Larger ablation
margins are strictly
required for RAS
mutant metastases

BRAF 1–8%
Constitutive
activation of the
MAPK signalling
pathway

V600E mutation
Recurrence after
resection in
multiple site
(peritoneum and
lung)

Non-V600 mutation
Significantly
improved OS
compared with
wild-type BRAF

• Excellent
candidates for
CRLM local
therapies

MSI 2–3% Deficient DNA
mismatch repair

TP53 50–70%
Cell proliferation
and cell death
dysregulation

Concomitant TP53
and KRAS
mutation
associated with
decreased OS after
CRLM resection

APC 42–70%
Constitutive
activation of Wnt
signalling pathway

Concomitant APC
and PIK3CA
mutation
associated with
poor prognosis
after CRLM
resection

• PI3K pathway
mutation predicts
longer time to local
progression after
radioembolization
of CRLM

PIK3CA 6–28%

Constitutive
activation of
PI3K/Akt/mTOR
signalling pathway

3.2. Imaging Biomarkers

The need for defining and assessing surrogate imaging biomarkers in the setting
of CRLM treated by image-guided therapies is a priority of the NIH and the Society of
Interventional Radiology (SIR) [145].
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Disease persistence and recurrence are major downsides of locoregional therapies
such as ablation [146]. Consequently it is crucial to speed up the identification of patients
at increased risk for ablation treatment failure by developing specific prognostic markers.

These markers can influence clinical decision-making both regarding further abla-
tions within the same treatment session and early administration of adjuvant therapies.
Snoeren et al. [147] carried pathologic evaluation of the needles after local ablation and
demonstrated that adherence of proliferating tumor cells to the radiofrequency electrodes
was an independent risk factor for shorter LTP-free survival. Biopsy samples from the
core and the margins of the ablation zone and rapid tissue analysis using fluorescent
stains could be proposed as intra-procedural indicators of complete tumor ablation [148].
Cornelis et al. [149] evaluated the potential advantage of pairing biopsy with immedi-
ately post-ablation PET/CT as on-site predictors of local tumor progression after ablation.
PET/CT scan independently detects partial ablation without evidence of residual viable
tumor by biopsy [149].

Likewise, it is necessary to assess imaging biomarkers of response and subsequent pre-
dictors of liver progression-free survival after radioembolization of CRLM. The Response
Evaluation Criteria in Solid Tumors (RECIST) guideline, originally developed to assess
response to cytotoxic chemotherapeutic agents, may not be sufficient to characterize early
CRLM response treated with radioembolization in the salvage setting [150,151].

EORTC PET criteria, Choi criteria, and tumor attenuation criteria appear to be equally
reliable surrogate imaging biomarkers of liver progression-free survival after radioem-
bolization in patients with CRLM [150]. Shady et al. [152] demonstrated that PET/CT-
derived metabolic volume metrics (i.e., metabolic tumor volume, MTV, and total lesion
glycolysis, TLG) are significant predictors of OS post-SIRT of CRLM and seem to be more
valuable than SUVmax and SUVpeak in this setting. Further investigations are required in
this setting, since in other studies, diffusion-weighted MRI performed better than PET/CT
in the prediction of response to therapy and OS [151] after SIRT of hepatic metastases.
Furthermore, DWI can be used as a biomarker for monitoring response of CRLMs even to
TACE, showing an increase in ADC values between pre- and post-treatment measurements
in responding lesions [153].

4. Conclusions and Future Perspectives

CRC is one of the most common cancers worldwide and the treatment of OMD is
challenging. Interventional radiology treatments are becoming increasingly popular both
in curative and palliative management of these patients. Nevertheless, further studies are
required to make these techniques fully standardized. Correct stratification and selection of
patients for the right treatment at the right time during the course of the disease will be the
real challenge for clinicians and researchers in the next years. Identifying and validating
adequate molecular and imaging biomarkers will be the cornerstone for implementing
interventional procedures in oligometastatic CRC.
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