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Abstract——Our previous International Union of
Basic and Clinical Pharmacology report on the
nomenclature and classification of adenosine recep-
tors (2011) contained a number of emerging develop-
ments with respect to this G protein-coupled receptor
subfamily, including protein structure, protein oligo-
merization, protein diversity, and allosteric modula-
tion by small molecules. Since then, a wealth of new
data and results has been added, allowing us to
explore novel concepts such as target binding kinetics
and biased signaling of adenosine receptors, to exam-
ine a multitude of receptor structures and novel
ligands, to gauge new pharmacology, and to evaluate
clinical trials with adenosine receptor ligands. This

review should therefore be considered a further
update of our previous reports from 2001 and 2011.

Significance Statement——Adenosine receptors (ARs)
are of continuing interest for future treatment of
chronic and acute disease conditions, including inflam-
matory diseases, neurodegenerative afflictions, and can-
cer. The design of AR agonists (“biased” or not) and
antagonists is largely structure based now, thanks to the
tremendous progress in AR structural biology. The A2A-
and A2BAR appear to modulate the immune response in
tumor biology. Many clinical trials for this indication
are ongoing, whereas an A2AAR antagonist (istradefyl-
line) has been approved as an anti-Parkinson agent.

I. Introduction

A decade has passed since our last International
Union of Basic and Clinical Pharmacology report
on the nomenclature and classification of adenosine
receptors appeared (Fredholm et al., 2011), after the
first one in 2001 (Fredholm et al., 2001). The field has
matured to the extent that the recommendations on
the nomenclature stand firmly and require neither
changes nor refinements. Substantial developments,
however, took place (Fredholm et al., 2021), and these
alone warrant a further update already. The adeno-
sine A2A receptor (A2AAR) has become a test case for
G protein-coupled receptor (GPCR) structure elucida-
tion, whereas structures of the adenosine A1 receptor
(A1AR) have also become available. The structures have
been obtained through either X-ray crystallography or
a more recent development, cryo-electron microscopy
(EM). These together constitute a huge variety, most of
which were determined with different antagonist
ligands, a few with agonistic ligands with or without
(parts of the) G protein present, and one with a partial
agonist. Secondly, the increasing awareness that the

study of target binding kinetics reveals more details on
the interaction between ligand and receptor has had
its effect on the further and more detailed kinetic char-
acterization of adenosine receptor ligands, both ago-
nists and antagonists. Moreover, there is ample
attention again for novel ligands interacting with
adenosine receptors. Some of these newer and older
ligands possess a preference for biased signaling (i.e.,
the preferred coupling to particular signaling path-
ways), most notably through different G proteins or
b-arrestin. Furthermore, there is an in-depth analysis
of the (patho)pharmacological aspects of adenosine
receptors and their ligands, both in the periphery and
the central nervous system (CNS), leading to an evalu-
ation of the receptors’ relevance in diverse disease
states including COVID-19 infection and in aging. The
report is concluded with a (nonexhaustive) overview of
the clinical trials with adenosine receptor ligands in
the last ten years. Disappointing were the outcomes
for A1AR partial agonists, with lack of efficacy in heart
failure noted in advanced phase 2b clinical studies. On
the other hand, an A2AAR antagonist was approved in
the United States as a new anti-Parkinsonian drug,

ABBREVIATIONS: ADA, adenosine deaminase; AdoK, adenosine kinase; AR, adenosine receptor; CCPA, 2-chloro-N6-cyclopentyladeno-
sine; CNS, central nervous system; EM, electron microscopy; GFR, glomerular filtration rate; GPCR, G protein-coupled receptor; h, human;
KD, equilibrium dissociation constant; MECA, methylcarboxamidoadenosine; NASH, nonalcoholic steatohepatitis; NECA, 50-N-ethylcarbox-
amidoadenosine; PAM, positive allosteric modulator; PD, Parkinson’s disease; PDB, Protein Data Bank; RT, residence time; TM, trans-
membrane domain; WT, wild-type.
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and the role of adenosine receptors in immunology
has led to a surge of ongoing studies in immuno-
oncology, particularly with A2AAR, A2BAR, or dual
A2AAR/A2BAR antagonists.

II. Receptor Ligands (for Structures, See Figs.
1, 2, 3, and 5)

Adenosine receptors (ARs) have become established
drug targets. Adenosine (1, Fig. 1) itself is used as an
injectable diagnostic for cardiac imaging to dilate the
coronary arteries via A2AAR activation of patients who
cannot exercise on a treadmill (Singh and McKintosh,
2020). The short half-life of under 10 seconds prevents
severe side effects of concomitant A1AR activation,
such as cardiac block. Moreover, adenosine is applied
in supraventricular tachycardia due to its antiarrhyth-
mic effects (Singh and McKintosh, 2020). The A2A

AR-selective agonist regadenoson (2, Table 1), used
for the same purpose, displays a longer half-life of
2–3 minutes and is of benefit for patients who deve-
lop bronchospasms upon treatment with adenosine
(Thomas et al., 2017; Patel and Alzahrani, 2020). The
natural products caffeine (3) and theophylline (4), xan-
thine alkaloids present in plants (e.g., Coffea arabica
and Camellia sinensis), are moderately potent, nonse-
lective AR antagonists (see Table 2 for receptor affini-
ties) that have been used for thousands of years (Daly,
2007; M€uller and Jacobson, 2011b; van Dam et al.,
2020). There is epidemiologic evidence linking coffee
and tea consumption with different health benefits
(Grosso et al., 2016; Poole et al., 2017; van Dam et al.,
2020). Caffeine, probably the most widely applied psy-
choactive drug in the world and broadly used for recre-
ational purposes, is therapeutically applied as a
central nervous system (CNS) stimulant, for preterm
infants to support breathing function, and in combina-
tion therapeutics with analgesics to treat pain and
colds (Abo-Salem et al., 2004; Lipton et al., 2017;
Alhersh et al., 2020; Evans et al., 2020; van Dam
et al., 2020). Several ongoing clinical trials (see also
Chapter VII) are evaluating caffeine for various indica-
tions including cognition, pain, obesity, cataract pre-
vention, and others. Theophylline, which is less brain-
permeant than caffeine, is used for the treatment of
asthma, but due to its narrow therapeutic window and
the availability of safer and more potent alternative
therapeutics, it has lost its importance and nowadays
serves as a third-line treatment of add-on therapy only
(Barnes, 2003; Tilley, 2011; Journey and Bentley,
2020). Both caffeine and theophylline also interact
with other targets (e.g., they inhibit phosphodiester-
ases), but many of these effects are only observed at
high, nonphysiologic concentrations. Most of the
desired effects of caffeine and theophylline can in fact
be explained by a blockade of ARs. It has to be noted
that both xanthine derivatives are about equally

potent at all four human AR subtypes, but they are
inactive at rodent A3ARs (see Table 2). The A2AAR-
selective antagonist istradefylline (5), a xanthine deriv-
ative that is structurally derived from caffeine, has
been approved for the treatment of Parkinson’s disease
(PD) in combination with levodopa, initially only in
Japan (in 2013) but now also in the United States (in
2019), whereas the approval process in Europe is in
progress (Takahashi et al., 2018; Chen and Cunha,
2020; Jenner et al., 2021). Due to intensive research
for several decades aimed at developing AR ligands, a
large number of subtype-selective agonists and antago-
nists has been developed (for reviews, see M€uller and
Jacobson, 2011a; Jacobson and M€uller, 2016; Jacobson
et al., 2019; Jacobson et al., 2021). The rather modest
success in drug approvals despite a large number of
clinical trials discouraged scientists and pharmaceuti-
cal companies. However, the recent approval of the
A2AAR antagonist istradefylline in the United States
and, in particular, the ‘gold rush fever’ in immuno-
oncology centered around adenosine as an immunosup-
pressant (Boison and Yegutkin, 2019; Borah et al.,
2019; Allard et al., 2020; Willingham et al., 2020;
Thompson and Powell, 2021) have newly energized
and fueled the field.
This chapter will provide guidance in selecting tool

compounds for research on ARs. Rather than present-
ing a comprehensive collection of AR ligands for
which the reader be referred to previous review
articles selected (Fredholm et al., 2011; M€uller and
Jacobson, 2011a; Jacobson and M€uller, 2016; Jacobson
et al., 2021), preferably well characterized ligands
will be discussed that are recommended as tool com-
pounds. Whenever possible, not only data for human
ARs but also those for rat and mouse orthologs will be
listed since considerable species differences have been
observed in some cases, which are most pronounced
for the A3AR subtype (Alnouri et al., 2015; Du et al.,
2018). For most receptor subtypes, at least two differ-
ent agonists and antagonists will be included. In addi-
tion, useful physicochemical and pharmacokinetic
data have been collected if available.

A. Adenosine Receptor Agonists
The physiologic agonist adenosine (1) is more

potent at A1-, A2A- and A3ARs than at A2BARs in
most settings (see Table 1). However, reliable radioli-
gand binding data cannot be obtained since adenosine
is present in tissues, cells, and even cell membrane
preparations and is constantly produced (e.g., from
released ATP by ectonucleotidases) (Zimmermann,
2021). Therefore, it usually has to be removed, which
is achieved by preincubation or addition of adenosine
deaminase (ADA). Thus, ADA and its reaction prod-
uct inosine are typically present during incubation
with radioligand and test compound. ADA itself can
allosterically modulate ARs (Gracia et al., 2013). In
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contrast to radioligand binding data, potencies deter-
mined in functional, G protein-dependent assays such
as cAMP accumulation studies depend on receptor

expression levels and receptor reserve, and concentra-
tion-effect curves are shifted to the left with increased
receptor expression levels (Fujioka and Omori, 2012).
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Therefore, EC50 values of agonists obtained in different
cellular systems are not comparable. As mentioned
before, adenosine has a short half-life being metabolized
by ADA or adenosine kinase (AdoK) after removal by
cellular uptake through nucleoside transporters, which
can additionally influence results. For that reason, met-
abolically (more) stable adenosine analogs have been

developed. Nevertheless, it becomes increasingly clear
that synthetic ligands do not necessarily induce the
same effects at a certain receptor as the cognate agonist
(e.g., regarding the activation of intracellular signaling
pathways) (see also Chapter V). Therefore, if possible,
adenosine should always be included in pharmacologi-
cal studies besides more stable and selective synthetic
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agonists. The closely related adenosine analog 50-N-eth-
ylcarboxamidoadenosine (NECA, 6) cannot be metabo-
lized by ADA or AdoK. Similar to adenosine, NECA is
significantly more potent at A1-, A2A-, and A3ARs than
at A2BARs. There is a lack of potent, selective, and fully

efficacious A2BAR agonists; NECA is still one of the more
potent full agonists at the A2BAR and represents a useful
tool to study A2BARs in combination with selective antag-
onists for the other AR subtypes (Verzijl and IJzerman,
2011; M€uller et al., 2018; Franco et al., 2021b).

Fig. 3. Ligands in 3D receptor structures and ligands in biased signaling studies. (Note: In 67 and 68, the X-ray structure of “LUAA47070” was not
obtained with the prodrug LUAA47070 but with the A2AAR antagonist that is released from the prodrug upon hydrolysis.)
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Potent, truly selective A1AR agonists have been devel-
oped by N6-substitution of adenosine (see Table 1 and
Fig. 2). 2-chloro-N6-cyclopentyladenosine (CCPA, 7) is
suitable for rat and mouse studies, where it shows >
100-fold selectivity versus the other AR subtypes,
whereas it is less selective in humans versus the A3AR
subtype (46-fold). For studies at the human A1AR, its 2

0-
methyl-substituted derivative 20-MeCCPA (8) can be
used, which is more selective (>300-fold) in humans
(Franchetti et al., 2009). Data at rat and mouse ARs are
not available for this compound. Another potent and
selective A1AR agonist is (S)-ENBA (9), possessing a
bulky bicyclo[2.2.1]hept-2-yl moiety at the N6-position
that confers A1AR selectivity.
A2AAR-selective agonists have been obtained by intro-

ducing large, bulky substituents into the 2-position of
adenosine or NECA, in some cases in combination with
an additional bulky N6-substituent. Most of the devel-
oped compounds are only moderately selective in
humans versus the A1- or A3AR subtypes. CGS21680
(10) is a potent and A2AAR-selective agonist in rat and
mouse but shows only moderate selectivity in humans
(vs. A1- and A3ARs; see Table 1). However, in some stud-
ies on mouse brain, 10 has been observed to additionally
bind to A1ARs (Lopes et al., 2004). The reason for this
observation is still unclear; one explanation could be the
formation of heteromeric receptor complexes showing a
different pharmacology. The 2,N6-disubstituted NECA
derivative 11 (UK-432,097; Table 1) is potent at the
human A2AAR and was reported to also be selective.
Compound 11 is a relatively large and lipophilic mole-
cule that is less water-soluble than other adenosine

derivatives and analogs. It showed a long receptor resi-
dence time of 250 minutes at 5�C (see Table 3), which
probably contributed to its successful cocrystallization
with the human A2AAR (Xu et al., 2011). PSB-0777 (12),
bearing a phenylsulfonate group, is well soluble in water
and has been useful for injection or for local application
in the gut since it is not perorally absorbed due to its
negative charge. It shows high selectivity in rats but not
in humans and is thus useful for studies in rodents.
Regadenoson (2) is only moderately potent but selective
in humans and is clinically used as a diagnostic (see
above). Importantly, in tissues with higher A1AR versus
A2AAR density such as the brain, (moderately selective)
A2AAR agonists often bind to and activate A1AR rather
than A2AAR (Zhang et al., 1994; Cunha et al., 1996;
Halldner et al., 2004; Pli�assova et al., 2020). Thus,
potent and really selective A2AAR agonists to target cen-
tral A2AARs are still required.
So far, potent and selective full agonists for the A2BAR

are not available. BAY 60-6583 (13), a non-nucleoside ami-
nopyridine derivative, behaves as a partial A2BAR agonist
(Hinz et al., 2014) but was shown to act as an antagonist
at other AR subtypes (Alnouri et al., 2015). In the pres-
ence of high adenosine concentrations, it can even inhibit
A2BAR activation (Hinz et al., 2014; Alnouri et al., 2015).
Data obtained with 13 are therefore difficult to interpret.
BAY 60-6583 may induce a different A2BAR conformation
than adenosine or NECA; for example, it has been shown
that BAY 60-6583 does not induce calcium mobilization
via A2BAR-mediated Gq protein activation in human
embryonic kidney (HEK) cells with low endogenous
A2BAR expression in contrast to adenosine or NECA

Fig. 4. Overview of the A2AAR binding site, showing the first frame of two movies: (A) antagonist (Supplemental Video 1) and (B) agonist
(Supplemental Video 2). All residues within 2Å of a given ligand in an A2AAR structure were considered as the binding pocket, and this selection was
maintained in all frames. The residues are labeled according to the wild-type (WT) sequence, and modifications made to the receptor (e.g., the thermo-
stabilizing mutant S2777.42A) are not taken into account; note that no labeling is used in the supplemental movie files. The Ballesteros-Weinstein num-
bering is given in superscript. Ligands are shown in orange, with a volumetric occupancy surface-colored on the atom type. Water atoms in the binding
site are shown as red dots, and the sodium ion (when present) as a purple sphere. If alternate coordinates were given in the extracted PDB file, the ‘A’
coordinates were maintained, except in the case of caffeine, in which case we generated two separate frames (referred to as 5mzpa and 5mzpb) to show
the two binding modes in the crystal structure. Only distinctly different binding modes of ZM241385 (as present in 4EIY and 3PWH) are included in
the movie.
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(Hinz et al., 2014; Gao et al., 2018b). Thus, a potent, selec-
tive, efficacious, and unbiased A2BAR agonist is urgently
needed. Instead of the partial agonist BAY 60-6583, the
full, nonselective agonist NECA (6) may be used in the
presence of antagonists for the other AR subtypes.
For the A3AR, potent and selective agonists are

available. Cl-IB-MECA (14, CF102, namodenoson), a
2-chloro-N6-iodobenzyl-substituted methylcarboxamidoa-
denosine (MECA) derivative, is being evaluated in clinical
trials for the treatment of hepatocellular carcinoma and
nonalcoholic steatohepatitis (NASH). For pharmacological
studies, especially in mice, the doses of 14 have to be care-
fully chosen in order not to activate the A1AR as well (see
Table 1). HEMADO (15) is similarly potent and selective
in humans. A potent and at the same time selective A3AR
agonist, in human as well as in mouse, is MRS5698 (16).

B. Adenosine Receptor Antagonists

Many potent A1AR-selective antagonists have been
developed based on caffeine and theophylline as lead
structures, such as DPCPX (17, CPX) and PSB-36 (18)
(M€uller and Jacobson, 2011b). Whereas DPCPX shows
only moderate selectivity in humans, PSB-36 is highly
selective in all three species: human, rat, and mouse

(Alnouri et al., 2015). SLV320 (19) is an A1AR antago-
nist with a 7-deaza-adenine core structure bearing a
cyclohexyl moiety at the exocyclic amino function
(Kalk et al., 2007). The compound is potent and selec-
tive in humans and displays similar potency in rat,
but complete data in rat and mouse are not available.
The xanthine derivative istradefylline (5) was the

first A2AAR antagonist to be approved as a drug
(Shimada et al., 1992; Takahashi et al., 2018). Its
potency and selectivity for the A2AAR is similar in
human, rat, and mouse. Although it is highly selective
versus the A2B- and A3AR subtypes, selectivity versus
the A1AR is somewhat lower (50- to 70-fold) (see Table
2). Like many other A2AAR antagonists, it is moder-
ately water-soluble. In addition, the double bond of its
styryl residue can undergo light-induced E/Z-isomeri-
zation in dilute solution and is prone to light-induced
dimerization in the solid state; therefore, it needs to be
protected from light (Nonaka et al.,1993; Hockemeyer
et al., 2004). The same is true for MSX-3 (20), a phos-
phate prodrug of MSX-2, which is, however, well solu-
ble in water (Sauer et al., 2000; Faivre et al., 2018).
The A2AAR selectivity of MSX-2 is higher than that of
istradefylline (see Table 2). The nonxanthine A2AAR
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antagonist preladenant (21, SCH-420814) is one of the
most potent and selective A2AAR antagonists. It has
been evaluated in clinical trials for PD and was found
to be well tolerated but did not show significant benefi-
cial effects (Stocchi et al., 2017; LeWitt et al., 2020). As
observed with istradefylline, the study design is most
critical for these types of clinical PD studies and may
have contributed to the negative outcome in the case
of preladenant (Hauser et al., 2015). AZD4635 (22,
imaradenant) is a potent A2AAR antagonist with mod-
erate selectivity versus the A2B- and A3ARs subtypes.
Despite its relatively low molecular weight (315.7 g/
mol) the compound is not readily soluble in water.
In recent years many A2BAR-selective antagonists

have been developed (M€uller et al., 2018). The xanthine
derivative MRS1754 (23) is a potent and selective
A2BAR antagonist in humans but not in rats and mice,
where it additionally blocks the A1AR (Kim et al., 2000;
Alnouri et al., 2015). One of the most potent and selec-
tive A2BAR antagonists in all three species is
the 8-sulfophenylxanthine derivative PSB-603 (24)
(Borrmann et al., 2009; Alnouri et al., 2015). The

compound is metabolically highly stable in human, rat,
and mouse. Its main drawback, however, is its low
water solubility. The related A2BAR antagonist PSB-
0788 (25) (Borrmann et al., 2009; Alnouri et al., 2015)
is better soluble, especially under weakly acidic condi-
tions since it bears a basic nitrogen atom that can be
protonated. However, it is less metabolically stable and
therefore less suitable for in vivo studies. PSB-0788 is
moderately selective for A2B- versus A1ARs in mouse
(only about 60-fold) but highly A2BAR-selective in
human and rat. PSB-1115 (26) was developed as an
A2BAR antagonist with high water solubility due to its
sulfonate group (Hayallah et al., 2002). Although the
compound is potent and selective in human, it is not
selective in rat and mouse and additionally blocks
rodent A1ARs (see Table 2) (Alnouri et al., 2015). The
xanthine derivative GS6201 (27, CVT6883) which
shows good potency and selectivity for human A2BARs
(Elzein et al., 2008), was evaluated in a phase 1 clinical
trial for pulmonary diseases, but further development
has not been reported (Kalla and Zablocki, 2009). The
compound displayed a half-life of 4 hours and a peroral

TABLE 1
Affinities of selected adenosine receptor agonists

Ki or EC50 (nM)a

A1 A2A A2B
b A3

Nonselective Agonists

1 Adenosinec ca. 100 (h)
73 (r)

310 (h)
150 (r)

15,000 (h)
5,100 (r)

290 (h)
6,500 (r)

6 NECA 14 (h)
5.1 (r)

2.49 (m)

20 (h)
9.7 (r)
43.4 (m)

1,890 (h)
1,110 (r)
656 (m)

25 (h)
113 (r)
13.2 (m)

A1AR-Selective Agonists

7 CCPA 0.83 (h)
1.3 (r)

0.269 (m)

2270 (h)
950 (r)
988 (m)

18,800 (h)
6,160 (r)

25.300 (m)

38 (h)
237 (r)
15.6 (m)

8 20-MeCCPA 3.3 (h) 9,580 (h) 37.600 (h) 1.150 (h)
9 (S)-ENBA n.d. (h)

0.34 (r)
n.d. (h)
477 (r)

n.d. 282 (h)
915 (r)

A2AAR-Selective Agonists

10 CGS21680 289 (h)
1800 (r)
961 (m)

27 (h)
19 (r)

13.7 (m)

>10,000 (h)
>10,000 (r)
>10,000 (m)

67 (h)
584 (r)
93.0 (m)

11 UK-432,097 n.d. 4 n.d. n.d.
12 PSB-0777 541 (h)

$10,000 (r)
360 (h)
44.4 (r)

>10,000 (h) >10,000 (h)

2 Regadenoson >10,000 (h) 290 (h) >10,000 (h) >10,000 (h)
A2BAR-Selective (Partial) Agonist

13 BAY 60-6583 387 (h)
514 (r)
351 (m)

>10,000 (h)
>10,000 (r)
>10,000 (m)

3–10 (h, EC50)
114 (h)
100 (r)
136 (m)

223 (h)
2,750 (r)
3,920 (m)

A3AR-Selective Agonists

14 Cl-IB-MECA
(CF102, Namodenoson)

220 (h)
280 (r)
35 (m)

5360 (h)
470 (r)
290 (m)

>10,000 (h)
1,210 (r)

44,300 (m)

1.4 (h)
0.33 (r)
0.18 (m)

15 HEMADO 330 (h) 1200 (h) >30,000 (h) 1.10 (h)
16 MRS5698 >10,000 (h)

>10,000 (m)
>10,000 (h)
>10,000 (m)

assumed to be inactive 3.49 (h)
3.08 (m)

h, human; Ki, inhibition constant; m, mouse; n.d., no data; r, rat.
adata (if available from Ki values from radioligand binding assays) are taken from the literature cited in the text.
bmost A2BAR data are from functional studies (cAMP accumulation).
cadenosine data are from functional studies (cAMP accumulation).
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bioavailability of 35% in rat (Elzein et al., 2008);
potency and selectivity in rodents have not been
reported. BAY-545 (28) is a recently published A2BAR
antagonist with a new scaffold identified by high-
throughput screening, although its thienopyrimidine-
dione structure resembles the xanthine scaffold (H€arter

et al., 2019). The compound shows moderate affinity
compared with other developed A2BAR antagonists and
is more potent at human than at rat and mouse
A2BARs. It is more than 10-fold selective in human but
is nonselective in mouse and rat (H€arter et al., 2019).
Another novel scaffold, a pyrimido[1,2-a]benzimidazole,

TABLE 2
Affinities of selected, useful adenosine receptor antagonists

Ki (nM)a

A1 A2A A2B A3

Nonselective Antagonists

3 Caffeine 44,900 (h)
41,000 (r)
50,700 (m)

23,400 (h)
43,000 (r)
11,100 (m)

33,800 (h)
30,000 (r)
23,000 (m)

13,300 (h)
>100,000 (r)
>100,000 (m)

4 Theophylline 6,770 (h)
14,000 (r)

6,700 (h)
22,000 (r)

9,070 (h)
15,100 (r)
5,630 (m)

22,300 (h)
>100,000 (r)

A1AR-Selective Antagonists

17 DPCPX (CPX) 3.0 (h)
0.50 (r)

0.413 (m)

129 (h)
157 (r)
263 (m)

51 (h)
186 (r)
86.2 (m)

243 (h)
>10,000 (r)
>10,000 (m)

18 PSB-36 0.7 (h)
0.124 (r)
1.58 (m)

980 (h)
552 (r)
697 (m)

187 (h)
350 (r)
704 (m)

2,300 (h)
6,500 (r)

>10,000 (m)
19 SLV320 1.00 (h)

2.51 (r)
398 (h) 3,981 (h)

501 (r)
200 (h)

A2AAR-Selective Antagonists

5 Istradefylline (KW6002) 841 (h)
230 (r)
438 (m)

12 (h)
4.46 (r)
6.83 (m)

>10,000 (h)
5,940 (r)
3,590 (m)

4,470 (h)
>10,000 (r)
>10,000 (m)

20 MSX-3 / MSX-2
(Data are for MSX-2)

2,500 (h)
900 (r)

5.38 (h)
8.04 (r)

>10,000 (h) >10,000 (h)

21 Preladenant (SCH-420814) >1,000 (h)
>1,000 (h)

462 (m)

0.9 (h)
0.986 (r)
0.241 (m)

>1,000 (h)
>1,000 (m)
>1,000 (r)

>1,000 (h)
>1,000 (m)
>1,000 (r)

22 Imaradenant (AZD4635) 160 (h) 1.7 (h) 64 (h) >10,000 (h)

A2BAR-Selective Antagonists

23 MRS1754 403 (h)
16.8 (r)
1.45 (m)

503 (h)
612 (r)

>10,000 (m)

1.97 (h)
12.8 (r)
3.12 (m)

570 (h)
>1,000 (m)
>1,000 (r)

24 PSB-603 >10,000 (h)
>10,000 (r)

42.4 (m)

>10,000 (h)
>10,000 (r)
>10,000 (m)

0.553 (h)
0.355 (r)
0.265 (m)

>10,000 (h)
>10,000 (r)
>10,000 (m)

25 PSB-0788 2,240 (h)
386 (r)
118 (m)

333 (h)
1,730 (r)
235 (m)

0.393 (h)
2.12 (r)
1.90 (m)

>1,000 (h)
>10,000 (r)
>10,000 (m)

26 PSB-1115 >10,000 (h)
2,200 (r)
591 (m)

3790 (h)
24,000 (r)

>10,000 (m)

53.4 (h)
3,140 (r)
1,940 (m)

>10,000 (h)
>10,000 (r)
>10,000 (m)

27 GS 6201 (CVT-6883) 1,940 (h) 3,280 (h) 22 (h) 1,070 (h)
28 BAY-545 >1,000; 1,300 (h)

n.d. (r)
>6,700 (m)

>1,000; 820 (h)
750 (r)
470 (m)

59–97 (h)
280 (r)
400 (m)

>10,000 (h)
n.d. (r)

>6,700 (m)
29 ISAM-140 >1,000 (h) >1,000 (h) 3.49 (h) >1,000 (h)

A3AR-Selective Antagonists

30 MRS1523 >10,000 (h)
15,600 (r)

>10,000 (m)

3660 (h)
2050 (r)

>10,000 (m)

>10,000 (h)
>10,000 (r)
>10,000 (m)

18.9 (h)
113 (r)
731 (m)

31 MRE3008-F20 1200 (h) 141 (h) 2100 (h) 0.82 (h)
32 PSB-10 1,700 (h)

805 (r)
2,700 (h)
6,040 (r)

30,000 (h) 0.441 (h)
17,000 (r)

33 VUF5574 $10,000 (r) $10,000 (r) n.d. 4.03 (h)
34 MRS7591b >10,000 (h)

590 (m)
>10,000 (h)

n.d.
n.d.
n.d.

10.9 (h)
17.8 (m)

h, human; Ki, inhibition constant; m, mouse; n.d., no data; r, rat.
adata are taken from the literature cited in the text.
bpartial agonistic activity if receptor is highly expressed.
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is represented by ISAM-140 (29), an A2BAR antagonist
that shows high potency and selectivity in human.
Unfortunately, data from other species are not avail-
able (El Maatougui et al., 2016). Subsequently, related
dihydropyrimidine derivatives have been developed
that are similarly potent and selective (Majellaro et al.,
2021).
The A3AR typically shows large species differences

for antagonists (M€uller, 2003; Jacobson and M€uller,
2016). Most published antagonists that are very
potent at human A3ARs are inactive at the rodent
(rat and mouse) orthologs. One of the best A3AR
antagonists for rodent studies is MRS1523 (30). The
compound is only moderately potent but very selec-
tive in human (>100-fold) and at least somewhat
selective in rat (18-fold vs. A2A, >100-fold vs. the
other AR subtypes) and mouse (at least 14-fold vs. the
other subtypes) (van Rhee et al., 1996; Li et al., 1998;
M€uller and Jacobson, 2011a; Alnouri et al., 2015;
Jacobson and M€uller, 2016). Further potent A3AR
antagonists, including MRE3008-F20 (31) (Baraldi
et al., 2012; Borea et al., 2015), PSB-10 (32) (Ozola
et al., 2003; Alnouri et al., 2015), and VUF5574 (33)
(van Muijlwijk-Koezen et al., 2000) are highly potent
and selective in human but virtually inactive at
rodent A3ARs (see Table 2). As species differences are
more pronounced for A3AR antagonists than for ago-
nists, most of which are derivatives or analogs of
adenosine, compounds with a truncated, furanyl, or
carbocyclic moiety in place of the ribose ring of adeno-
sine were investigated and optimized (Jeong et al.,
2007; Lee et al., 2010; Nayak et al., 2014; An et al.,
2020). Such adenosine analogs show reduced intrinsic
activity or even block the receptors. Appropriate sub-
stitution on the adenine ring led to MRS7591 (34)
showing high affinity for both human and mouse
A3ARs and good selectivity in human (>1000-fold)
(Tosh et al., 2020). Selectivity in mouse has only been
assessed against the A1AR (33-fold). It has to be kept
in mind that compound 50 behaved as a (weakly effica-
cious) partial agonist (Tosh et al., 2020).

C. Allosteric Modulators of Adenosine Receptors

The development of allosteric modulators for GPCRs
in general is an emerging field of research (M€uller
et al., 2012; Gao and Jacobson, 2013; Wootten et al.,
2013). Positive allosteric modulators (PAMs) increasing
the potency or efficacy of agonists, and negative alloste-
ric modulators (NAMs) acting as noncompetitive antag-
onists, have been reported for various AR subtypes,
especially for the A1AR. The AR-PAMs that have been
developed so far display only moderate potency or selec-
tivity, and their usefulness is still unclear (Fredholm
et al., 2011; G€obly€os and IJzerman, 2011; Jacobson
et al., 2011; M€uller et al., 2012; Nguyen et al., 2016;
Barresi et al., 2021). Interestingly, in a recent cryo-EM
structure of the A1AR, a PAM (MIPS521) was found to

be localized in an extrahelical domain (Draper-Joyce
et al., 2021). MIPS521’s analgesic properties were eval-
uated in the same paper, reminiscent of earlier
attempts to profile another PAM as a potential pain-
killer (Kiesman et al., 2009).

D. Inosine and Guanosine

Adenosine is metabolized to inosine by adenosine
deaminases (ADA-1 and -2). Inosine has been
reported by several groups to interact with ARs (e.g.,
with A2AAR and A3AR) but only at very high, nonphy-
siologic concentrations (>100 lM) (Welihinda et al.,
2016). On the other hand, inosine (Lov�aszi et al.,
2021) as well as the nucleoside guanosine (Di Liberto
et al., 2016) clearly show pharmacological effects, at
least some of which seemed to be exerted by interac-
tion with GPCRs. However, it is unlikely that these
effects are mediated by direct activation of ARs. As an
example, the hypothermic effects of inosine disappear
completely in mice lacking either all four ARs or the
A3AR (Xiao et al., 2019). Alternatively, they may be
due to inhibition of adenosine uptake through the
equilibrative nucleoside transporter 1 (ENT1). Indi-
rect effects are also conceivable (e.g., through alloste-
ric modulation). Further research on inosine and
guanosine as extracellular signaling molecules in
their own right is warranted.

III. Receptor Binding Kinetics

It has been recognized in recent years that the
study of target binding kinetics is crucial to reduce
attrition rates in drug discovery (Copeland, 2016).
Over the decades medicinal chemists have success-
fully synthesized lead compounds displaying high,
often (sub)nanomolar affinity for a given target,
including ARs. However, kinetic aspects of the ligand-
receptor interaction have been studied in lesser
detail. Although these can be very informative, the
extra effort to obtain values for association (kon) and
dissociation (koff) rate constants was and is substan-
tial. This is because kinetic assays tend to be labori-
ous although more efficient approaches (Guo et al.,
2013) and methods are being developed, including
scintillation proximity assays (Xia et al., 2016) and
bioluminescence resonance energy transfer (BRET)-
based ligand binding studies (Bouzo-Lorenzo et al.,
2019; White et al., 2019). On the other hand, system-
atically evaluating the binding kinetics of a series of
lead compounds that are otherwise chemically or bio-
logically similar provides additional parameters for
triage and advancement of molecules in the drug dis-
covery process (Guo et al., 2016a; 2017). For instance,
assessment of the lifetime of a ligand-receptor com-
plex, coined residence time (RT = 1/koff) (Copeland
et al., 2006), has been shown predictive for drug effi-
cacy and selectivity, including on ARs (Swinney,
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2006a,b; Guo et al., 2014a; Zhang, 2015; Tonge, 2018).
Drugs with long target RT are likely to produce a lon-
ger duration of action by more gradually reducing the
decline of target occupancy than those with short RT
(Dahl and Akerud, 2013; de Witte et al., 2016). Fur-
thermore, a direct correlation between receptor RT
and functional efficacy has been observed in some
cases (Sykes et al., 2009; Guo et al., 2012). A thorough
review of the kinetic characteristics of AR ligands,
both orthosteric ligands and allosteric modulators,
has recently appeared (Guo et al., 2017); hence, we
will only provide a concise summary and update here.

A. Orthosteric Ligands and Adenosine Receptor
Binding Kinetics

In Table 3, kinetic data [association and dissociation
rate constants, kinetic equilibrium dissociation con-
stants (KD), and residence times] for (orthosteric) ago-
nists and antagonists of the human adenosine receptors
(hARs) are summarized. Their chemical structures, if
not listed in Fig. 1, are assembled in Fig. 2. Most
experiments were radioligand binding assays performed
on membrane preparations, whereas lower than physio-
logic temperatures were employed in most cases due to
practical limitations of the (radio)labeled probe used,
such as a (too) fast dissociation at higher temperatures.

There have been a few attempts to use surface plasmon
resonance instrumentation for kinetic assays on hA2AR,
but these have not become routinely available since
solubilized and purified receptor material is needed
(Bocquet et al., 2015; Errey et al., 2015).
It is often thought that association rate constants for

bimolecular encounters readily reach high values that
are diffusion-limited only (1010 �1011 M�1·min�1) (Smo-
luchowski, 1918; Alberty and Hammes, 1958). However,
this is only true for reactant molecules that have isotro-
pic reactivity, whereas the interaction between ligand
and receptor, including ARs, is of a more constrained
nature (e.g., due to the stereospecificity of recognition).
This is obvious from Table 3, in which association rate
constants vary from 5.0 � 105 (11, UK432,097) to 6.4 �
108 (41, SCH58261) M�1·min�1, an over 1000-fold dif-
ference but still far from diffusion control. The latter
compound is another selective A2AAR antagonist that
has been extensively characterized in rodents. Associa-
tion rate constants appear correlated with the onset of
clinical action, in vivo target occupancy, and target
rebinding (Vauquelin, 2018). However, this has not
been demonstrated for AR ligands yet.
The dissociation rate constants or, for convenience,

residence times also vary significantly, up to >5000-
fold. There are ligands with ultra-short residence

TABLE 3
Association and dissociation rate constants of selected AR ligands

Compound
Target

(h, human; r, rat) Temp (�C) kon (M21·min21) koff (min21) RT (min) Kinetic KD (nM)a Reference

7 CCPA hA1AR 25 9.6 � 106 1.2 0.9 131 (Guo et al., 2014b)
6 NECA hA1AR 25 9.0 � 105 0.47 2.1 522 (Guo et al., 2014b)
35 LUF5834 hA1AR 25 2.0 � 108 0.92 1.1 4.6 (Guo et al., 2014b)
36 Capadenoson hA1AR 25 2.4 � 107 0.036 28 1.5 (Louvel et al., 2015)
37 LUF6976 hA1AR 25 3.9 � 108 0.87 1.1 2.2 (Louvel et al., 2014)
38 LUF6941 hA1AR 25 2.6 � 106 0.0076 132 2.9 (Louvel et al., 2015)
39 ABA-X-BY630 hA1AR

b 37 2.6 � 107 2.0 0.5 77 (May et al., 2010)
17 DPCPX hA1AR 25 1.4 � 108 0.21 4.8 1.5 (Guo et al., 2013)
17 DPCPX rA1R 25 9.6 � 107 0.045 22.2 0.50 (Guo et al., 2017)
10 CGS21680 hA2AAR 25 5.0 � 104 0.02 50.0 380 (Guo et al., 2017)
10 CGS21680 rA2AAR 23 2.1 � 107 0.033 30.3 1.6 (Guo et al., 2017)
40 LUF6057 hA1AR 25 4.8 � 108 3.0 0.3 6.3 (Guo et al., 2013)
6 NECA hA2AAR 4 1.9 � 106 0.053 19 28 (Guo et al., 2015)
11 UK432,097 hA2AAR 5 5.0 � 105 0.004 250 8.0 (Guo et al., 2012)
41 SCH58261 hA2AAR 25 6.4 � 108 1.5 0.67 2.3 (Dionisotti et al., 1997)
42 ZM241385 hA2AAR 4 1.3 � 108 0.014 71 0.11 (Guo et al., 2014c)
43 LUF6632 hA2AAR 4 3.4 � 107 0.0031 323 0.091 (Guo et al., 2014c)
20a MSX-2 rA2AAR (brain

striatal membranes)
23 14.5 � 107 0.2839 3.52 1.95 (M€uller et al., 2000)

6 NECA hA2BAR 4 n.d. 2.201 0.45 n.d. (Hinz et al., 2018)
23 MRS1754 hA2BAR 25 2.2 � 107 0.027 37 1.2 (Ji et al., 2001)
44 MRE2029-F20 hA2BAR 4 1.7 � 107 0.031 32 1.8 (Baraldi et al., 2004)
45 OSIP339391 hA2BAR 22 9.5 � 107 0.039 26 0.41 (Stewart et al., 2004)
24 PSB-603 hA2BAR 21 11.4 � 107 0.02279 44 0.652 (Borrmann et al., 2009)
46 PSB-298 hA2BAR 25 3.76 � 107 0.9533 1.05 25 (Bertarelli et al., 2006)
47 I-AB-MECA hA3AR 37 6.1 � 107 0.042 24 0.69 (Gao et al., 2001)
48 IB-MECA hA3AR 10 3.5 � 107 0.011 95 0.30 (Xia et al., 2018)
14 2-Cl-IB-MECA hA3AR 10 2.4 � 107 0.0043 231 0.18 (Xia et al., 2018)
49 MRS5127 hA3AR 25 2.4 � 108 0.51 2.0 2.1 (Auchampach et al., 2010)
16 MRS5698 hA3AR 10 7.8 � 106 5.1 � 10�4 1961 0.068 (Xia et al., 2018)
31 MRE3008-F20 hA3AR 4 7.6 � 107 0.042 24 0.55 (Varani et al., 2000)
50 LUF7531 (cmpd 2) hA3AR 10 1.7 � 108 0.0036 315 0.021 (Xia et al., 2017)
51 PSB-11 hA3AR 25 2.35 � 108 0.2082 4.80 0.46 (M€uller et al., 2002)

n.d., no data.
a(kinetic) KD = koff/kon.
bwhole cells.
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times [e.g., only seconds for antagonists LUF6057 (40,
A1AR) and SCH58261 (41, A2AAR)], whereas agonists
UK432,097 (11, A2AAR), Cl-IB-MECA (14, A3AR), and
MRS5698 (16, A3AR) as well as antagonists LUF6632
(43, A2AAR) and LUF7531 (50, A3AR) engage with the
receptor for hours. In a recent study, Hothersall and
coworkers (2017) identified UK432,097 analogs that
displayed even longer target occupancy on hA2AAR.
Differences in RT for a number of A2AAR antagonists
have been linked to their differential modulation of
the salt bridge strength between amino acids Glu169

and His264 in the egress pathway at the extracellular
side of the receptor (Guo et al., 2016b; Segala et al.,
2016).

B. Orthosteric Ligands Binding Covalently to
Adenosine Receptors

Ligands that react covalently with ARs can be
regarded as having infinite RT as long as the chemi-
cal bond between ligand and receptor “survives.” Over
the decades, such ligands have been developed as
probes mostly (e.g., to identify the molecular weight
of AR molecules, block the physiologic function of ARs
or, more recently, help in AR structure elucidation). It
remains to be investigated whether such ligands
might have relevant therapeutic value.
Thus, both chemoreactive and photoaffinity ago-

nists and antagonists were synthesized in early
A1AR studies and evaluated for their binding irre-
versibility using various assays and degrees of
sophistication (Choca et al., 1985; Klotz et al., 1985;
Earl et al., 1988; Patel et al., 1988; Stiles and Jacob-
son, 1988; Jacobson et al., 1989a; Boring et al., 1991;
Scammells et al., 1994; Srinivas et al., 1996; Beau-
glehole et al., 2000; van Muijlwijk-Koezen et al.,
2001; Jorg et al., 2016). Of these, FSCPX (52) has
been most widely used, and a close derivative of it,
DU172 (72) (Beauglehole et al., 2000), appeared cru-
cial for the crystallographic structure elucidation of
hA1AR (Glukhova et al., 2017) (Chapter IV). DU172,
through its fluorosulfonyl moiety, forms a covalent
bond with amino acid Y2717.36 at the extracellular
end of the seventh transmembrane domain (TM7) of
the receptor.
Likewise, similar efforts have been performed on

A2AAR for agonists (Jacobson et al., 1989b; Barring-
ton et al., 1990; Jacobson et al., 1992; Niiya et al.,
1993; Luthin et al., 1995; Moss et al., 2014) and
antagonists (Ji et al., 1993; Muranaka et al., 2017;
Yang et al., 2017). One of the covalent antagonists,
LUF7445 (53), was equipped with a click handle to
act as a chemical probe (54, LUF7487) for A2AAR
(Yang et al., 2018). This chemical biology approach
allowed, among others, receptor visualization in
hA2AAR-expressing cell membranes.
The A2BAR has not been subjected to covalent label-

ing yet, whereas the A3AR has been the target for

such studies, sampling both irreversibly binding ago-
nist (Ji et al., 1994) and antagonist ligands (Li et al.,
1999; Baraldi et al., 2001; Yang et al., 2019).

C. Allosteric Ligands and Adenosine Receptor
Binding Kinetics

Ligands binding to an allosteric site distinct from
the AR orthosteric binding pocket (see also Chapter II)
may influence the binding kinetics of orthosteric
ligands. Indeed, on many occasions it has been shown
that positive allosteric modulators (PAMs) for the
A1AR retard the dissociation rate of orthosteric A1AR
agonists, as summarized in a number of reviews
(G€obly€os and IJzerman, 2011; Kimatrai-Salvador et al.,
2013; Guo et al., 2017). For instance, one of the more
potent A1AR PAMs, BC-1/compound 8j (55) (Romagnoli
et al., 2008), increased the residence time of CCPA up
to 200-fold from 0.9 minutes (Table 2) to 172 minutes
(Guo et al., 2014b). Unfortunately, the often modest,
micromolar potency of PAMs and other allosteric
ligands for ARs has so far precluded the assessment of
the binding kinetics of these ligands per se.

D. Adenosine Receptor Target Binding Kinetics –
Conclusions

Kinetic parameters are an additional factor in
assessing the quality and nature of new chemical
entities. Nearly all compounds in Table 3 have high
affinity, but their kinetics can be very different. A
striking example is the pair of LUF6976 (37, KD = 2.2
nM for A1AR, RT = 1.1 minutes) and LUF6941 (38,
KD = 2.9 nM for A1AR, RT = 132 minutes), showing
identical affinity but a more than 100-fold difference
in residence time. Thus, many compounds are consid-
ered equivalent on the basis of affinity alone, whereas
a further differentiation or even triage may be possi-
ble depending on their kinetic characteristics. For
instance, A2AAR antagonists are currently in clinical
trials as potential adjuvants in cancer immunother-
apy (see Chapter VII) to block adenosine’s unwanted
anti-inflammatory and immunosuppressive effects
(Hatfield and Sitkovsky, 2016). The local adenosine
concentration in the tumor may be so high that
short-RT antagonists cannot productively compete,
whereas a long-RT antagonist may lead to sufficient
target engagement even in the presence of elevated
adenosine concentrations. Likewise, A2AAR antago-
nists have been developed for the treatment of PD
in combination with levodopa/dopaminergic agonists,
although clinical success has been limited so far
(Morelli et al., 2009; Hickey and Stacy, 2012). In that
setting, a compound with a long receptor RT could
have some advantages, as it might yield a reduction
in the “wear-off” effect (e.g., of levodopa in between
doses) (Hickey and Stacy, 2012). Thus, information
obtained from a kinetic perspective may provide addi-
tional rationales for the design of new AR ligands. At
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the same time, one needs to realize that pharmacoki-
netic aspects are also governing in vivo effects and
that an integration of aspects of target binding kinet-
ics and of pharmacokinetics is required (Daryaee and
Tonge, 2019).

IV. Receptor Structures

Over the last decade, the elucidation of receptor
architecture has been one of the hallmarks in GPCR
research (Venkatakrishnan et al., 2013). The A2AAR
was one of the first structures solved, through X-ray
crystallography (Jaakola et al., 2008), and since
then many adenosine receptor structures have been
reported (see Table 4 and references therein). Typical
characteristics of GPCRs such as their thermolability
and fragility have dictated the use of highly engi-
neered proteins and protein constructs for structure
elucidation as well as of highly sophisticated technolo-
gies (Grisshammer, 2017). At least three approaches
have been used widely. First, thermostabilization of
GPCRs (Magnani et al., 2016), including the A2AAR,
has yielded material sufficient for crystallization by
combining amino acid mutations to raise the protein
melting temperature. Secondly, fusion of the A2AAR
with proteins that crystallize “easily,” such as T4 lyso-
zyme (T4L) (Jaakola et al., 2008) or apocytochrome
b562RIL (bRIL) (Liu et al., 2012), has been instrumen-
tal to generate crystalline material. Thirdly, complex-
ation of the A2AAR with antibodies raised against
epitopes of the receptor provided sufficient stability to
render X-ray crystallography feasible (Hino et al.,
2012). In recent years, cryogenic electron microscopy
(EM), particularly single-particle cryo-EM (Cheng,
2018; Ceska et al., 2019), has been employed to study
membrane protein structures as well, including ago-
nist-bound structures of the A1AR (Draper-Joyce
et al., 2018; 2021) and A2AAR (Garcia-Nafria et al.,
2018) in complex with G protein variants.

A. Resolution

The overall resolution of the AR crystal structures
varies between 1.7 Å and 3.6 Å (see Table 4). A high res-
olution (lower Å values) provides more structural details,
particularly the presence or absence of explicit water
molecules. It has been shown that a minimum resolution
of �3.0 Å is required to see any water molecules in a
protein crystal structure, whereas on average one water
molecule per amino acid residue can be detected at 2.0 Å
(Carugo and Bordo, 1999). This means that most adeno-
sine receptor crystal structures lack information on the
role that water molecules play in ligand binding. How-
ever, >60 explicit water molecules are observed in the
1.8 Å resolution A2AAR-ZM241385 (42) complex (4EIY,
Table 4), showing a wide distribution throughout the
protein, including the ligand binding site, in which
water molecules hydrogen-bond to both ligand and

amino acid residues (Liu et al., 2012). In fact, the recep-
tor structure is suggestive of a water-filled pore or chan-
nel. The channel has two bottlenecks around Trp2466.48

and Tyr2887.53, slightly less in size than the diameter of
one water molecule. These amino acids are part of two
general motifs related to GPCR activation, the “rotamer/
toggle switch” and the NPxxY sequence, respectively.
Interestingly, recent developments show that molecular
dynamics and other calculations can make up for the
absence of water molecules in a low-resolution protein
structure (Matter and Gussregen, 2018). Due to its high
resolution, the same 4EIY structure was the first to
show the presence of an allosterically binding sodium
ion, interacting in a cavity containing a strongly con-
served aspartic acid (Asp522.50). As this domain is
generic among most class A GPCRs, it is expected that
other GPCRs bind sodium ions at this site as well (e.g.,
as was demonstrated for the human d-opioid receptor)
(Fenalti et al., 2014).

B. Ligand Binding Site

The ARs’ orthosteric binding site (i.e., the binding
site for endogenous agonist adenosine) accommodates
a range of ligands with diverse scaffolds and different
sizes (see Table 4; Fig. 4). In fact, the A2AAR is the
GPCR with the most structures available in the Pro-
tein Data Bank (PDB) (Vass et al., 2018), allowing an
unprecedented view on the conformational flexibility
of the ligand binding site.
In total >15 different antagonists have been cocrystal-

lized with hA2AAR so far (Table 4), compared with just
one structure with ZM241385 (PDB: 3EML) in the pre-
vious update. The receptor binding site appears flexible
as these antagonists take slightly different positions
therein (see Supplemental Video 1). The four agonists
cocrystallized with hA2AAR until now (Table 4) all have
a ribose moiety, pointing deeper into the ligand binding
pocket and displacing explicit water molecules present
in the antagonist-occupied receptor structures (see
Supplemental Video 2). The agonist-bound structures
crystallized in the absence of G protein are now
regarded as representing intermediate states in the pro-
cess of receptor activation. The presence of an engi-
neered G protein makes the cytoplasmic end of TM6
move away considerably from the receptor core by �14
Å compared with the other agonist-bound structures,
with little impact on the extracellular side of the recep-
tor and the ligand binding pocket (Carpenter et al.,
2016; Garcia-Nafria et al., 2018). This is most pro-
nounced for the NECA (6)-bound cryo-EM struc-
ture with engineered G protein and nanobody Nb35
(Garcia-Nafria et al., 2018). The thermodynamic contri-
butions of a single, conserved water molecule bridging
the 20-hydroxyl and 3-aza groups of adenosine were ana-
lyzed, which led to the design of a modified, potent ago-
nist containing a mimic of this water (Matricon et al.,
2020). Recently, the first X-ray structure of A2AAR with
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TABLE 4
Reported structures of adenosine receptor subtypes

PDB Engineering Ligand Resolution (Å) Technique Remarks Reference

A2AAR Antagonist Structures

3PWH TS ZM241385 (42) 3.3 X-ray (Dore et al., 2011)
3REY TS XAC (57) 3.3 X-ray (Dore et al., 2011)
3RFM TS Caffeine (3) 3.6 X-ray (Dore et al., 2011)
3UZA TS T4G (58) 3.3 X-ray T4G: 6-(2,6-dimethylpyridin-4-

yl)-5-phenyl-1,2,4-triazin-3-
amine

(Congreve et al., 2012)

3UZC TS T4E (59) 3.3 X-ray T4E: 4-(3-amino-5-phenyl-1,2,4-
triazin-6-yl)-2-chlorophenol

(Congreve et al., 2012)

3EML FP (T4L) ZM241385 2.6 X-ray (Jaakola et al., 2008)
4EIY FP (bRIL) ZM241385 1.8 X-ray (Liu et al., 2012)
5UIG FP (bRIL) 8D1 (60) 3.5 X-ray 8D1: 5-amino-N-[(2-

methoxyphenyl)methyl]-2-(3-
methylphenyl)-2H-1,2,3-
triazole-4-carboximidamide

(Sun et al., 2017)

5K2A FP (bRIL) ZM241385 2.5 X-ray/SFX/XFEL,
sulfur SAD
phasing

SFX: serial femtosecond
crystallography; XFEL: X-ray
free-electron laser; SAD:
single-wavelength anomalous
diffraction

(Batyuk et al., 2016)

5K2B FP (bRIL) ZM241385 2.5 X-ray/SFX/XFEL,
MR phasing

MR: molecular replacement (Batyuk et al., 2016)

5K2C FP (bRIL) ZM241385 1.9 X-ray/SFX/XFEL,
sulfur SAD
phasing and
phase extension

(Batyuk et al., 2016)

5K2D FP (bRIL) ZM241385 1.9 X-ray/SFX/XFEL,
MR phasing

(Batyuk et al., 2016)

5VRA FP (bRIL) ZM241385 2.4 X-ray in situ in situ: film sandwich plates at
room temperature

(Broecker et al., 2018)

5JTB FP (bRIL) ZM241385 2.8 X-ray/I-SAD I-SAD: iodide-single-wavelength
anomalous diffraction

(Melnikov et al., 2017)

5UVI FP (bRIL) ZM241385 3.2 X-ray millisec millisec: serial millisecond
crystallography using
synchrotron radiation

(Martin-Garcia et al.,
2017)

6AQF FP (bRIL) ZM241385 2.5 X-ray (Eddy et al., 2018b)
7RM5 FP (bRIL) ZM241385 2.8 Microcrystal

electron
diffraction

(Martynowycz et al.,
2021)

5NM2 TS-FP (bRIL) ZM241385 2.0 X-ray millisec
(cryo)

(Weinert et al., 2017)

5NLX TS-FP (bRIL) ZM241385 2.1 X-ray millisec
(room temp)

(Weinert et al., 2017)

5NM4 TS-FP (bRIL) ZM241385 1.7 X-ray femtosec
(room temp)

Serial femtosecond
crystallography using XFEL

(Weinert et al., 2017)

5MZJ TS-FP (bRIL) Theophylline
(4)

2.0 X-ray (Cheng et al., 2017)

5MZP TS-FP (bRIL) Caffeine (3) 2.1 X-ray (Cheng et al., 2017)
5N2R TS-FP (bRIL) PSB-36 (18) 2.8 X-ray (Cheng et al., 2017)
5IU4 TS-FP (bRIL) ZM241385 1.7 X-ray (Segala et al., 2016)
5IU7 TS-FP (bRIL) 12c (61,

LUF6805)
1.9 X-ray 12c: 2-(furan-2-yl)-N5-(2-(4-

phenylpiperidin-1-
yl)ethyl)[1,2,4]triazolo[1,5-
a][1,3,5]triazine-5,7-diamine

(Segala et al., 2016)

5IU8 TS-FP (bRIL) 12f (62,
LUF6806)

2.0 X-ray 12f: 2-(furan-2-yl)-N5-(2-(4-
methylpiperazin-1-
yl)ethyl)[1,2,4]triazolo[1,5-
a][1,3,5]triazine-5,7-diamine

(Segala et al., 2016)

5IUA TS-FP (bRIL) 12b (63,
LUF6732)

2.2 X-ray 12b: 2-(furan-2-yl)-N5-(3-(4-
phenylpiperazin-1-
yl)propyl)[1,2,4]triazolo[1,5-
a][1,3,5]triazine-5,7-diamine

(Segala et al., 2016)

5IUB TS-FP (bRIL) 12x (64,
LUF6632)

2.1 X-ray 12x: N5-(2-(4-(2,4-
difluorophenyl)piperazin-1-
yl)ethyl)-2-(furan2-yl)-
[1,2,4]triazolo[1,5-
a][1,3,5]triazine-5,7-diamine

(Segala et al., 2016)

5OLG TS-FP (bRIL) ZM241385 1.9 X-ray, soaking soaking of ligand to displace
theophylline in the crystals

(Rucktooa et al., 2018)

5OLH TS-FP (bRIL) Vipadenant (65) 2.6 X-ray, soaking for
24 hr

(Rucktooa et al., 2018)

5OLO TS-FP (bRIL) Tozadenant (66) 3.1 X-ray, soaking for
24 hr

(Rucktooa et al., 2018)

5OLV TS-FP (bRIL) LUAA47070
(analog) (67/68)

2.0 X-ray, soaking for
24 hr

(Rucktooa et al., 2018)

(continued)
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a nonriboside, 3,5-dicyanopyridine partial agonist (56,
LUF5833) was reported (Amelia et al., 2021).
The structure elucidation of the hA1AR is another

achievement. Two crystal structures of antagonist-
bound receptor are available (Cheng et al., 2017;
Glukhova et al., 2017), whereas one cryo-EM structure
with an agonist (adenosine, 1) bound has been rep-
orted, the latter in the presence of an engineered Gi

protein (Draper-Joyce et al., 2018). The latter struc-
ture was later complemented with a positive allosteric
modulator, MIPS521 (73), as well, the binding site of
which appeared to be extrahelically located involving
TM domains 1, 6, and 7 (Draper-Joyce et al., 2021). In
the antagonist structures, it was noted that there are
differences in the extracellular loop regions, particu-
larly the second one, relative to the hA2AAR structure.
The ligand binding cavity is relatively wide, again in
comparison with hA2AAR. Differences in pocket shape
between the two receptors may determine selectivity

more than the (very similar) amino acids lining the
pockets. There is a tightening of the orthosteric bind-
ing site induced by an �4 Å inward movement of the
extracellular ends of TMs 1 and 2 in the adenosine-
bound, active structure compared with the antagonist-
bound, inactive hA1AR. At the intracellular surface,
the engineered G protein present causes a 10.5 Å out-
ward movement of TM6 in the hA1AR, quite compara-
ble to the similar large shift in active hA2AAR.
All agonists and antagonists are anchored by two

amino acids in particular in both receptors [i.e.,
Asn2536.55 (numbering as in hA2AAR) and Phe168 in
EL2]. A further summary of relevant amino acids for
ligand binding, also focusing on selectivity issues between
ARs, has been provided recently (Jespers et al., 2018).

C. NMR Studies

Although X-ray crystallography and cryo-EM methods
provide important information on AR architecture, NMR

TABLE 4—Continued
PDB Engineering Ligand Resolution (Å) Technique Remarks Reference

5OLZ TS-FP (bRIL) 4e (69) 1.9 X-ray 4e: 4-(3-amino-5-phenyl-1,2,4-
triazin-6-yl)-2-chlorophenol

(Rucktooa et al., 2018)

5OM1 TS-FP (bRIL) 4e 2.1 X-ray, soaking for
1 hr

(Rucktooa et al., 2018)

5OM4 TS-FP (bRIL) 4e 2.0 X-ray, soaking for
24 hr

(Rucktooa et al., 2018)

6LPJ/K/L FP (bRIL) ZM241385 1.8–2.0 Serial femtosecond
crystallography
using XFEL

EROCOC1714 as crystallization
matrix

(Ihara et al., 2020)

6ZDR TS-FP (bRIL) Chromone 4d
(70)

1.9 X-ray (Jespers et al., 2020)

6ZDV TS-FP (bRIL) Chromone 5d
(71)

2.1 X-ray (Jespers et al., 2020)

6GT3 TS-FP (bRIL) AZD4635 (22) 2.0 X-ray (Borodovsky et al.,
2020)

6S0Q TS-FP (bRIL) ZM241385 2.7 Native SAD SAD: single-wavelength
anomalous diffraction

(Nass et al., 2020)

3VG9 antibody-stab ZM241385 2.7 X-ray (Hino et al., 2012)
3VGA antibody-stab ZM241385 3.1 X-ray (Hino et al., 2012)

A2AAR Agonist Structures

2YDO TS Adenosine (1) 3.0 X-ray (Lebon et al., 2011)
2YDV TS NECA (6) 2.6 X-ray (Lebon et al., 2011)
4UG2 TS CGS21680 (10) 2.6 X-ray (Lebon et al., 2015)
4UHR TS CGS21680 2.6 X-ray (Lebon et al., 2015)
3QAK FP (T4L) UK432097 (11) 2.7 X-ray WT receptor (Xu et al., 2011)
5WF5 FP (bRIL) UK432097 2.6 X-ray D52N mutant (White et al., 2018)
5WF6 FP (bRIL) UK432097 2.9 X-ray S91A mutant (White et al., 2018)
5G53 truncated and

tagged WT
NECA (6) 3.4 X-ray with engineered G protein (mini-

Gs)
(Carpenter et al., 2016)

6GDG FP
(thioredoxin)

NECA 4.1 cryo-EM with engineered G protein (mini-
Gs-b1c2); also includes
nanobody Nb35

(Garcia-Nafria et al., 2018)

7ARO TS-FP (bRIL) LUF5833 (56) 3.1 X-ray LUF5833 is a partial agonist (Amelia et al., 2021)

A1AR Antagonist Structures

5N2S TS PSB-36 (18) 3.3 X-ray (Cheng et al., 2017)
5UEN FP (bRIL) DU172 (72) 3.2 X-ray (Glukhova et al., 2017)

A1AR Agonist Structures

6D9H tagged WT
receptor

Adenosine (1) 3.6 cryo-EM with engineered Gi2 protein (Draper-Joyce et al.,
2018)

7LD3/4 tagged WT
receptor

Adenosine (1)
1/� MIPS521

(73)

3.3–3.4 cryo-EM with engineered Gi2 protein (Draper-Joyce et al.,
2021)

FP, fusion protein; PDB, Protein Data Bank four-digit entry number; TS, thermostabilization.
Chemical structures of ligands are depicted in Fig. 3, if not already in Figs. 1 and 2.
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spectroscopy has the potential to reveal additional struc-
tural dynamics data. Two main approaches have been
used so far: 1) indole 15N-1H chemical shifts are moni-
tored after introducing extrinsic (15N-labeled) tryptophan
residues at relevant sites, or 2) by incorporating 19F
reporter tags onto cysteine residues in the protein, 19F-1H
resonances are assessed. In both cases, distinct conforma-
tional A2AAR states were observed upon interaction with
G protein (Prosser et al., 2017; Huang et al., 2021),
cations (Ye et al., 2018), full and partial agonists (Eddy
et al., 2018a; 2021; Su�sac et al., 2018), and allosteric
modulators/sites (Eddy et al., 2018b). The next challenge
will be to begin and address other aspects of AR dynam-
ics and functioning, such as the impact of the lipid
membrane environment (Guix�a-Gonz�alez et al., 2017).

V. Cellular Pharmacology – Biased Signaling of
Adenosine Receptors

Each GPCR potentially couples to multiple G pro-
teins, as was demonstrated for the endogenous A2AAR
(Cunha et al., 1999) and A2BAR (Gao et al., 2018b),
and to non-G protein dependent pathways, such as
b-arrestins (Michel and Charlton, 2018; Vecchio et al.,
2018). In some cases, the net effect of each of these
signaling cascades induced by the same endogenously
expressed AR in different cells may be opposite, such
as with the A2BAR (Gao et al., 2018b). In theory, the
ability of a GPCR agonist to consistently distinguish
among multiple intracellular signaling pathways pro-
vides advantages when used in a therapeutic mode if
the preferred pathway is associated with the benefi-
cial action at the receptor. Such an agonist is termed
biased, which implies a nonequivalence in the potency
or efficacy across the signaling pathways. In princi-
ple, side effects that are associated with the nonpre-
ferred pathways would be avoided. Signaling bias
might also affect the kinetics of GPCR trafficking,
as internalized receptors can also signal, or gene
transcription.
Biased signaling depends on multiple active GPCR

conformations, each of which would couple to its own
spectrum of second messenger pathways. Thus,
biased agonists, also at ARs, achieve signaling selec-
tivity by interacting with or stabilizing a subset of the
possible active receptor conformations, and this sub-
set has characteristic pharmacology distinct from
other conformations of the same receptor (Verzijl and
IJzerman, 2011). Biased agonism has been reported
at adenosine A1-, A2B-, and A3ARs for both nucleoside
agonists and two classes of non-nucleoside AR ago-
nists, the 3,5-dicyanopyridines and 5-cyanopyrimi-
dines (Langemeijer et al., 2013). Tissue-dependent
A2AAR signaling was observed in neurons of different
brain areas through engineered optogenetic signaling
(Li et al., 2015). Inhibitors of GPCR signaling could
be biased as well, for example, as shown for the A1AR

using a suramin derivative (Kudlacek et al., 2002).
Allosteric GPCR modulators, such as A1AR enhancers
(PAMs) in the 2-amino-3-benzoylthiophene family or
A3AR PAMs in the imidazoquinolinamine family, can
show biased effects on agonist-induced signaling (Gao
et al., 2011).
A1AR: In a broad screen of AR agonists, nucleoside

agonist LUF5589 (74, 2-chloro-50-O-ethyl-N6-(3-iodo-
benzyl)adenosine) tended toward a signaling bias for
the Gi protein-dependent pathway in comparison with
the b-arrestin pathway (Langemeijer et al., 2013).
Biased agonism at the A1AR was also explored by
Baltos and coworkers (2016). PAM VCP520 (75)
potentiated A1AR agonist-induced Ca21 mobilization
more effectively than extracellular signal-regulated
kinase 1/2 activation (Valant et al., 2010). Identifica-
tion of biased agonism (i.e., cardioprotective efficacy
without hemodynamic side effect) associated with an
A1AR PAM conjugated to an agonist, VCP746 (76),
suggested that this bitopic ligand might be bridging
orthosteric and allosteric sites on the receptor (Valant
et al., 2014). A recent structure determined for A1AR
(Glukhova et al., 2017) shows that it possesses at
least one allosteric site, potentially the site that has
been exploited to promote biased agonism (Valant
et al., 2014).
A2AAR: The biased signaling of A2AAR is rather

peculiar among ARs since it seems to be a property of
the environment of the A2AAR, probably related to
the numerous G protein-interacting proteins that are
associated with A2AAR. In fact, at least six G protein-
interacting proteins (actinin, calmodulin, NECAB2,
translin-associated protein X, ARNO/cytohesin-2, and
ubiquitin-specific protease-4) have been reported to
interact with the long A2AAR C terminus (Keuerleber
et al., 2011). The exploitation of constructs with an
altered C-terminal tail revealed a biased A2AAR-medi-
ated signaling with PSB-0777 (12) and LUF5834 (35)
(Navarro et al., 2020). Also, inosine has been proposed
to activate A2AAR in a biased manner in CHO-K1
cells heterologously expressing hA2AAR (Welihinda
et al., 2016). Still, A2AAR agonists with biased proper-
ties have been scarcely explored, although they would
be of clear interest to potentially optimize immuno-
modulatory functions without cytotoxic or vascular
effects.
A2BAR: Nucleoside agonists distinguish among dif-

ferent G protein-dependent signaling pathways of the
A2BAR (Gao et al., 2014). Extracellular signal-regu-
lated kinase 1/2 activation may result from b-arrestin
mobilization or from Gq- or Gs-protein coupling. In
fact, entirely different signaling pathways are acti-
vated depending on whether the receptor is endoge-
nously occurring or introduced by transfection (Gao
et al., 2018b). A2BAR activation in muscle and brown
fat had a beneficial effect on energy expenditure and
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increased muscle mass, suggesting the application of
selective A2BAR agonists that principally activate
cAMP for treating obesity (Gnad et al., 2020). A2BAR
activation also reduces cardiac fibrosis via the PKCd
to p38-MAPK pathway and protects the ischemic
heart by stabilizing HIF-1a (Campos-Martins et al.,
2021). Thus, translational opportunities are conceiv-
able if selective and biased A2BAR agonists could be
developed for these signaling pathways.
A3AR: Storme and coworkers (2018), using an engi-

neered arrestin-reporter cell line, compared the Gi-
dependent and b-arrestin2-dependent signaling of 19
nucleoside agonists at the A3AR to show a tendency
toward weak bias for the G protein pathway in a few
analogs. Similar conclusions were reported in an ear-
lier study comparing known A3AR agonists (Gao and
Jacobson, 2008), which noted differences in the kinet-
ics of receptor activation.

VI. Pharmacology – Novel Developments

This chapter addresses select aspects of AR phar-
macology. In this update, we focus on the therapeutic
targeting of ARs and elaborate on their relevance in
disease states. In the previous update, dimerization/
oligomerization of ARs was particularly emphasized
(Fredholm et al., 2011). This potentially critical vari-
able to selectively modulate AR activity has been
detailed in a number of recent reviews (Vecchio et al.,
2018; Ferr�e and Ciruela, 2019; Franco et al., 2021a).

A. Therapeutic Targeting of Adenosine Receptors

Adenosine receptors have been targeted in the
treatment of a number of (peripheral and CNS) dis-
eases including PD, cardiac arrhythmias, asthma,
and infant apnea (Kreutzer and Bassler, 2014). Aden-
osine receptors are also targeted for diagnostic stud-
ies of coronary circulation in individuals unable to
manage a treadmill. Over the years, targeting adeno-
sine receptors has been tested in animal models
of diabetes, inflammatory diseases, wound healing,
sickle cell disease, congestive heart failure, Alz-
heimer’s disease, depression, and grand mal epilep-
sies, as well as in human trials. Other potential
disease targets for agents targeted to adenosine
receptors have recently been identified. Below we
identify some of the most promising applications for
adenosine receptor agents described over the past 10
years (Borea et al., 2018). It should be kept in mind,
however, that a knowledge gap exists between
advanced animal studies, which are many, and the
limited number of reports on native human cells and
tissues. From a translational perspective toward suc-
cessful clinical studies, it seems essential to close this
gap.

B. Therapeutic Targeting of Peripheral Adenosine
Receptors

1. Adenosine A1 Receptors and Congestive Heart Fail-
ure. Adenosine, generated within the kidney and
acting at A1AR, induces vasoconstriction of afferent
arterioles reducing renal blood flow and glomerular
filtration rate (GFR), further stimulating renin rel-
ease. Moreover, activation of A1AR increases proximal
tubular reabsorption of sodium ions (Vallon et al.,
2006). In congestive heart failure A1AR activation
was postulated to play a role in the reduced GFR and
sodium retention that characterize congestive heart
failure, and it was suggested that blockade of A1AR
could alleviate the symptoms of congestive heart fail-
ure by increasing GFR and promoting sodium elimi-
nation (Vallon et al., 2008). When tested in the clinic,
however, short courses of rolofylline, a selective A1AR
antagonist, provided no benefit in the treatment of
congestive heart failure, and a number of patients
suffered seizures, a known potential adverse effect of
A1AR antagonists (Massie et al., 2010). Subsequently,
it was noted that A1AR stimulation could enhance
cardiac myocyte function by improving mitochon-
drial function and the function of the Ca21-ATPase
(SERCA2a), and the use of a partial agonist could
potentially avoid the cardiac dysrhythmias induced
by A1AR (full) agonists (Voors et al., 2018). Unfor-
tunately, the partial A1AR agonist neladenoson
(BAY1067197) did not improve exercise tolerance
(see also Chapter VII) in patients with heart failure
(Shah et al., 2019).

2. Adenosine A2A Receptors and Cancer. Severe
impairment of the cellular immune system was first
associated with deficiency of adenosine deaminase in
1972 (Giblett et al., 1972). Whereas adenosine deami-
nase deficiency is toxic to T cells, in many subsequent
studies the immunosuppressive effects of adenosine at
concentrations that are not toxic to T cells have been
further confirmed. Moreover, the A2AAR has been impli-
cated as the mediator by which adaptive immunity is
suppressed (Huang et al., 1997), the T cell subtypes
affected have been identified, and the intracellular sig-
naling mechanisms have been investigated (Cronstein
and Sitkovsky, 2017). The impact of A2AAR in cancer
development is best heralded by the pioneering report
in which melanoma and lymphoma cell lines were
completely rejected in A2AAR knockout mice (Ohta
et al., 2006) through a mechanism involving the control
of the antitumor effects of CD8 T cells. Although it had
previously been established that high concentrations of
adenosine were present in the extracellular fluid of
solid tumors (Blay et al., 1997), the significance of that
finding was not fully appreciated until the report by
Ohta and colleagues. Moreover, a number of more
recent studies suggest that A2AAR antagonists interact
with anti-PD1 and anti-CTLA4 therapy to further
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enhance tumor immunity and promote tumor regres-
sion (Iannone et al., 2014; Beavis et al., 2015; Gessi
et al., 2017). Indeed, A2AAR antagonists bolster cyto-
kine release by CAR-T cells increasing their antitumor
efficiency (Beavis et al., 2017). Currently, a number of
A2AAR, A2BAR, and dual antagonists are at various
stages of clinical development (see Chapter VII) (Yu
et al., 2020). In addition, other therapeutic approaches
targeting adenosine production from adenine nucleoti-
des by ecto-50nucleotidase (CD73) are making their way
to the clinic as well (Congreve et al., 2018).

3. Adenosine Receptors and Autoimmune and Inflam-
matory Diseases. The potential anti-inflammatory
effects of adenosine, acting at A2AAR, have been
known since 1983 (Cronstein et al., 1983). Subse-
quently adenosine, acting at both A2AAR and A3AR,
was shown to mediate many of the anti-inflammatory
and immunosuppressive effects of low-dose metho-
trexate therapy, the gold standard in the therapy of
rheumatoid arthritis and psoriasis (Cronstein and Sit-
kovsky, 2017). Administration of A2AAR agonists,
although potentially useful for treatment of inflam-
matory diseases, would likely have too many side
effects to be tolerated, mainly due to their strong
hypotensive action, so other approaches have been
taken. Thus, one approach has been to develop a pro-
drug of an A2AAR agonist that is liberated by the
action of ecto-50-nucleotidase (CD73). Such an agent
was shown to suppress inflammatory arthritis in
animal models (Fl€ogel et al., 2012) and suggests a
promising approach to development of new anti-
inflammatory agents.
In contrast, A3AR agonists do not appear to have the

same potential for systemic toxicity, as receptor expres-
sion is not as widespread as for the A2AAR. Thus, rela-
tively selective A3AR agonists have been tested in both
animal models and the clinic for their anti-inflamma-
tory effects. Potential clinical utility with minimal tox-
icity has been reported for A3AR agonists in the
treatment of rheumatoid arthritis, psoriasis, and liver
conditions, and thus agents remain in development for
the treatment of these autoimmune disorders (reviewed
in Jacobson et al., 2018).

4. Adenosine Receptors and Infectious Diseases. The
anti-inflammatory and immunosuppressive effects of
adenosine, acting at A2AAR, have not gone unnoticed
by microorganisms. Thus, adenosine has been identi-
fied as a virulence factor in Candida albicans (Smail
et al., 1992; Rodrigues et al., 2016), Staphylococcus
aureus, (Thammavongsa et al., 2009), and Streptococ-
cus suis (Liu et al., 2014) that mitigates the effects of
the host immune and inflammatory response on these
microorganisms. Leishmania amazonensis also
exploits the adenosine system to elude detection
by dendritic cells, in this case through A2BAR (Figuei-
redo et al., 2021). To date, A2AAR or A2BAR have not

been targeted as a means to enhance host responses
to microorganisms for the treatment of infectious dis-
eases for resistant organisms.
In contrast, it is increasingly clear that much of the

injury associated with infections comes as a result of
the active host response to the infection with tissue
damage in affected tissues, much like the tissue injury
triggered by inflammatory and autoimmune diseases.
First postulated as a potential therapy for COVID-19
pneumonia (Abouelkhair, 2020; Falcone et al., 2020),
Correale and colleagues (2020) reported on the benefi-
cial effects of administration of aerosolized adenosine
in patients with COVID-19 pneumonia. They treated
14 patients with COVID-19 interstitial pneumonitis
with aerosolized adenosine and observed improved
oxygenation in 13 of 14 patients (compared with 7 of
52 control patients) and improved imaging studies,
although the RNA load of SARS-CoV-2 increased in 13
of 14 patients. There was one death in the adenosine-
treated patients compared with 11 of 52 patients in the
historic control group. Bronchospasm was observed in
one of the treated patients. The authors concluded
that aerosolized adenosine might be a useful adjunct
to other therapies for the treatment of SARS-CoV-2
pneumonia and might be similarly effective in other
types of viral pneumonia. Although it is likely that the
actions of adenosine in viral pneumonitis are mediated
by the actions of an adenosine receptor, it is unclear
which receptor(s) that might be, although the actions
of A2AAR, A2BAR, and A3AR could account for the
anti-inflammatory effects observed, as noted above.

5. Adenosine A2A Receptors and Retinal Disease. The
retinopathy of prematurity is the most common cause
of childhood blindness. A2AAR stimulation in the ret-
ina promotes retinal vascular overgrowth, and results
of recent studies indicate that A2AARs play a signifi-
cant role in the development of oxygen toxicity-
induced retinal angiogenesis (Taomoto et al., 2000;
Liu et al., 2010; 2017). Caffeine, which is commonly
used to treat apnea in neonates, was recently shown
to prevent oxygen toxicity-induced retinal angiogene-
sis in animal models and has been suggested as a
therapeutic approach to prevent retinopathy of pre-
maturity (Zhang et al., 2017), an effect mimicked by
the selective antagonism of A2AARs (Zhou et al.,
2018). The antagonism of A2AARs also emerges as a
novel promising strategy to dampen the local inflam-
matory processes involved in the degeneration of gan-
glion neurons in ischemic eye diseases and glaucoma
that are a prevalent cause of blindness in the elderly
(Liu et al., 2016; Madeira et al., 2016; Boia et al.,
2017). A1AR agonists, which prevent neuronal dam-
age from pressure and ischemia in animal models,
have been tested in the treatment of glaucoma but
failed in phase 3 trials to reduce intraocular pressure
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better than placebo (ClinicalTrials.gov Identifier:
NCT02565173).

6. Adenosine Receptors and Bone. Adenosine A1-,
A2A-, and A2B-ARs play a role in regulating bone biol-
ogy by modulating osteoclast differentiation and bone
remodeling as well as osteoblast differentiation and
production of new bone (Strazzulla and Cronstein,
2016). A1AR stimulation is required for osteoclast dif-
ferentiation, and A1AR knockout mice have mild
osteopetrosis (Kara et al., 2010a,b). In contrast,
A2AAR and A2BAR stimulation diminish osteoclast
differentiation and stimulate new bone formation by
osteoblasts (Mediero et al., 2012b; 2013; 2015b; Cor-
ciulo et al., 2016). More importantly, an A1AR antago-
nist, an A2AAR agonist, or dipyridamole, which blocks
adenosine uptake via the equilibrative nucleoside
transport protein ENT1 (SLC29A1) and thereby
increases extracellular adenosine levels, stimulate
bone regeneration in critical bone defects, whether
applied topically or as a coating for 3D-printed b-tri-
calcium phosphate scaffolds (Mediero et al., 2015b;
Ishack et al., 2017). Currently, dipyridamole-coated
scaffolds are undergoing preclinical testing for resto-
ration of bone.
Despite the remarkable success of joint replacement

therapy, approximately 25% of implanted hip and
knee prostheses will require revision due to erosion of
the bone surrounding the prosthesis (Bozic et al.,
2010). Application of A2AAR agonists markedly 1)
diminishes the inflammation due to prosthesis wear
particles, the most common cause of bone destruction
leading to prosthetic joint replacement, and 2) by
inhibiting osteoclast differentiation, diminishes wear
particle-induced bone destruction in a murine model
(Mediero et al., 2012a). Moreover, weekly low doses of
methotrexate, a commonly used anti-inflammatory
drug that inhibits inflammation by increasing local
adenosine concentrations, similarly alleviates wear
particle-induced bone destruction in mice (Mediero
et al., 2015a) by an A2AAR-dependent mechanism.

7. Adenosine Receptors and Cartilage. In recent
studies in both mice (Corciulo et al., 2017) and
humans (St Hilaire et al., 2011), premature develop-
ment of osteoarthritis has been described, and in
mice, loss of A2AARs leads to spontaneous develop-
ment of osteoarthritis (Corciulo et al., 2017), indicat-
ing that endogenous adenosine production acts in an
autocrine fashion to maintain chondrocyte homeosta-
sis. Moreover, treatment of rats with post-traumatic
osteoarthritis with intra-articular injections of liposo-
mal adenosine preparations prevents progression of
osteoarthritis (Corciulo et al., 2017). Similarly, loss of
A3ARs leads to the development of osteoarthritis in
mice (Shkhyan et al., 2018), and treatment of chemi-
cally induced osteoarthritis with an A3AR agonist
inhibits development of osteoarthritis (Bar-Yehuda

et al., 2009). These events suggest that targeting
A2ARs or A3ARs in the joint may be useful approaches
to the treatment of osteoarthritis, a disabling condition
affecting as many as 150 million people worldwide.

8. Adenosine Receptors and Fibrosis. Fibrosis is a
common condition in a number of organs, and recent
studies indicate that blockade of A2AARs can diminish
excessive fibrosis in the skin, liver, and other organs
in response to injury, ionizing radiation, or exposure
to toxins (Shaikh and Cronstein, 2016). Indeed, in
recent studies, topical application of an A2AAR antag-
onist prevents both scarring and radiation fibrosis in
the skin (Perez-Aso et al., 2012; 2016). In some
organs, A2BAR blockade can also diminish fibrosis
(Shaikh and Cronstein, 2016), but recent studies sug-
gest that in Peyronie’s disease, which involves fibrosis
of the shaft of the penis, A2BAR stimulation prevents
myofibroblast production of collagen (Mateus et al.,
2018), suggesting that an A2BAR agonist could pre-
vent the development of Peyronie’s disease.

9. Adenosine A2A Receptors and Sickle Cell Dis-
ease. Patients with sickle cell disease suffer from
focal areas of vascular obstruction leading to localized
regions of poor perfusion and resulting ischemia. In
these hypoxic foci, invariant natural killer T cells can
induce further tissue injury, and A2AAR stimulation
inhibits invariant natural killer T cell function and
tissue injury. Studies in humanized mice with sickle
cell disease demonstrated that infusion of an A2AAR
agonist, regadenoson, reduced the tissue injury asso-
ciated with sickle cell disease (Nathan et al., 2012).
Although preclinical studies showed promise in these
patients, the results of a clinical trial of regadenoson
infusions for sickle cell disease did not show any evi-
dence of shortened hospital stay or reduction in respi-
ratory symptoms or opioid use (ClinicalTrials.gov
Identifier: NCT01788631).

10. Summary. ARs are expressed ubiquitously in
the periphery and play a variety of roles. ARs remain
targets for clinical development despite recent fail-
ures in treatment of congestive heart failure and
sickle cell disease. Immunostimulatory blockade of
A2AAR for the treatment of cancer shows real promise
in early clinical trials, and development of other aden-
osine receptor targets is moving out of the laboratory
into the clinic.

C. Therapeutic Targeting of Central Nervous System
Adenosine Receptors

Although ARs are present throughout the human
body, their density is far greater in the brain. Accord-
ingly, manipulating ARs upon moderate intake of caf-
feine (Fredholm et al., 1999) mainly results in brain-
associated effects, typified by increased arousal and
attention with faster reaction time, decreased fatigue,
more efficient working memory and memory recall,
and better mood (Smith et al., 2005; McLellan et al.,
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2016). These effects of caffeine are mostly mediated
by brain ARs, namely A1ARs and A2AARs (Fredholm
et al., 2005), as heralded by the elimination of the
effects of caffeine on synaptic transmission and plas-
ticity upon blockade of A1AR and A2AAR (Lopes et al.,
2019). Although also present in glia cells, A1AR and
A2AAR are mostly colocated in excitatory synapses
where they cooperate to encode information salience
in neuronal circuits through a combined A1AR-medi-
ated inhibition of synaptic transmission (decreasing
noise) and an A2AAR-mediated facilitation of synaptic
plasticity (increasing encoding) (Cunha, 2016).

1. Acute Brain Dysfunction – Ischemia and Epi-
lepsy. Apart from their physiologic role, ARs also have
an impact on brain dysfunction and damage, in accor-
dance with the universal utilization of ATP (Rodrigues
et al., 2015) and adenosine (Cunha, 2001) to signal
stress or increased cellular workload in the brain. Thus,
in conditions of metabolic stress such as upon ischemic
stroke, both the acute A1AR activation and A2AAR block-
ade afford a robust neuroprotection but through differ-
ent mechanisms. A1AR activation increases the hurdle
for onset of brain dysfunction by hyperpolarizing neu-
rons. In contrast, A2AAR blockade restrains neurodegen-
eration, probably as a result of the combined inhibition
of glutamate release and decreased activation of N-
methyl-D-aspartate (NMDA) receptors (Cunha, 2016),
together with an attenuation of neuroinflammation
(Rebola et al., 2011) and decreased neuronal apoptosis
(Silva et al., 2007). A similar dual and opposite control
by A1ARs and A2AARs occurs upon abnormal increased
workload typified by epileptic conditions (Tescarollo
et al., 2020). Acute A1AR activation attenuates the onset
of seizures and, conversely, acute A1AR inhibition
decreases seizures threshold, whereas A2AARs control
seizure-induced neurodegeneration (Canas et al., 2018).
This dual control of the onset and evolution of brain
damage by A1ARs and A2AARs prompts the suggestion
that a combined activation of A1ARs and blockade of
A2AARs might have a superior efficacy to limit acute
brain damage (Cunha, 2005). However, timing of inter-
vention might be of key importance since A1ARs desen-
sitize and their function decreases in the injured brain,
which may result in paradoxical effects (Jacobson et al.,
1996). In contrast, central A2AARs are upregulated in
noxious brain condition (Cunha, 2016), justifying the
interest in A2AAR antagonists to control brain damage.

2. Neurodegenerative Diseases – Parkinson’s and
Motor Diseases. The particularly high density of
A2AARs in the basal ganglia and their tight antago-
nistic interaction with dopamine D2 receptors typified
by the formation of A2AAR-D2 receptor heteromers
(Ferr�e and Ciruela, 2019) prompted targeting A2AARs
to alleviate dopaminergic depletion characteristic of
PD. Indeed, A2AAR antagonists dampen PD features
in animal models, and the regular consumption of

moderate doses of caffeine attenuates PD features in
humans (Schwarzschild et al., 2006). As mentioned
above, this preclinical evidence, together with the
safety profile of A2AAR antagonists, supported the US
Food and Drug Administration’s recent approval of
istradefylline as an add-on therapy to manage PD
patients (Chen and Cunha, 2020). This offers novel
possibilities of carrying out phase 4 trials to directly
test the role of A2AARs in the control of nonmotor PD
symptoms, such as cognitive deficits and mood dys-
function. It should be mentioned that the clinical tra-
jectory of istradefylline has been long and windy.
After its introduction in Japan in 2013, market access
to the United States has only recently (in 2019) been
granted after an earlier rejection and is limited to
treating “off” episodes with levodopa only. Other
A2AAR antagonists such as preladenant have failed to
obtain market authorization from the Food and Drug
Administration, as clinical efficacy was not convinc-
ingly demonstrated. This might be due to our insuffi-
cient knowledge of the role that different A2AR
populations have in the control of altered motor func-
tion and to lack of patient stratification in the clinical
studies.
Selective A2AAR antagonists also attenuate other

motor conditions, such as catalepsy and tremor (Sala-
mone et al., 2008), akathisia (Varty et al., 2008), dys-
tonia (Maltese et al., 2017), cocaine or MK801-
induced psychomotor activity (Shen et al., 2008; Yu
et al., 2008), cerebrospinal type 3 ataxia or Machado-
Joseph’s disease (Gonçalves et al., 2013; Gonçalves
et al., 2017), or amyotrophic lateral sclerosis (Ng
et al., 2015). Their impact on Huntington’s disease is
less clear and might depend on the phase of the dis-
ease (Popoli et al., 2008). This broader ability of
A2AAR antagonists to control different motor disor-
ders that might not directly result from dopaminergic
depletion prompts the involvement of a control of glu-
tamate excitotoxicity rather than only the control of
dopamine D2 receptors (Schiffmann et al., 2007;
Cunha, 2016).

3. Neurodegenerative Diseases – Alzheimer’s Disease
and Cognitive Dysfunction. The pharmacological or
the genetic blockade of A2AARs prevents memory defi-
cits in different animal models of Alzheimer’s disease
(Canas et al., 2009; Laurent et al., 2016; Viana da
Silva et al., 2016). A2AAR antagonism also prevents
memory dysfunction associated with other conditions,
such as convulsions (Cognato et al., 2010), diabetes
(Duarte et al., 2012), hypoxia (Chen et al., 2018),
traumatic brain injury (Zhao et al., 2017), demyelin-
ation conditions (Akbari et al., 2018), repeated stress
or depression (Batalha et al., 2013; Kaster et al.,
2015; Machado et al., 2017), PD (Hu et al., 2016;
Carmo et al., 2019), or cannabis exposure (Mouro
et al., 2019). A2AARs are not only necessary but
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actually sufficient to impair memory since their
increased activity driven by genetic (Temido-Ferreira
et al., 2020), optogenetic (Li et al., 2015), or pharma-
cological strategies (Pagnussat et al., 2015) impairs
memory in normal animals. This converges with sev-
eral findings in humans, namely: 1) Caffeine intake
prevents cognitive deterioration upon aging (Ritchie
et al., 2007; Dong et al., 2020) and is inversely associ-
ated with the onset (Eskelinen et al., 2009; Sugiyama
et al., 2016) or neuropathological hallmarks of demen-
tia (Gelber et al., 2011); 2) A2AARs are upregulated in
the brains of demented patients (Temido-Ferreira
et al., 2020); and 3) A2AAR polymorphisms are associ-
ated with memory phenotypes (Beste et al., 2012;
Horgusluoglu-Moloch et al., 2017). However, it is still
unknown if A2AAR antagonists ameliorate memory
deficits in dementia patients.

4. Neuropsychiatric Diseases – Major Depression and
Suicide. Caffeine, A2AAR antagonists, and the
genetic deletion of A2AARs selectively in forebrain
neurons abrogate the onset of depressive-like symp-
toms and can also reverse these symptoms in mice
subject to chronic unpredictable stress (Kaster et al.,
2015). Accordingly, coffee intake is inversely corre-
lated with the incidence of depression (Grosso et al.,
2016; Lucas et al., 2011) and its major consequence
suicide (Lucas et al., 2014), and the incidence of major
depression is associated with A2AAR haplotypes (Oli-
veira et al., 2019). In parallel, the upregulation of
A1ARs bolsters the resilience toward depressive-like
behavior and, conversely, knocking out A1ARs increased
depressive-like behavior and eliminated the antidepres-
sant effects of sleep deprivation (Serchov et al., 2015).
Furthermore, A1ARs in the amygdala are also involved
in neuroimmune-driven depression (Fan et al., 2019).

5. Other Neuropsychiatric Diseases. The elegant
work of Chen and colleagues revealed a temporal abil-
ity of A2AARs to modulate instrumental behavior, for-
matting the sensitivity to goal-directed valuation (Li
et al., 2016; 2018). Thus, A2AAR-mediated overactiva-
tion of striatopallidal neurons disrupts the homeostatic
control of goal-directed behavior, with impaired deci-
sion-making and behavioral disinhibition with loss of
flexibility, which are at the core of psychiatric symp-
toms (Li et al., 2016; 2020; He et al., 2020). Indeed,
A2AARs control addiction (Ferr�e, 2016; Borroto-Escuela
et al., 2018) and preservative and obsessive-compulsive
behaviors (Bleickardt et al., 2014; Asaoka et al., 2019)
that are transversal to most neuropsychiatric diseases.
Accordingly, A2AAR polymorphisms are associated with
anxiety (Alsene et al., 2003; Fraporti et al., 2019),
depression (Oliveira et al., 2019), phobia (Deckert et al.,
1998; Hamilton et al., 2004), preservative/obsessive
disorders (Freitag et al., 2010; Janik et al., 2015), or
addictive profiles (Kobayashi et al., 2010). This A2AAR-
mediated control of behavioral inhibition may be

associated with their ability to modulate arousal (Laza-
rus et al., 2012) and enhanced motivation (He et al.,
2020), which are founding behaviors of decision-making
and cognitive performance.

6. Brain Aging. Aging is by far the major risk fac-
tor for most prevalent chronic brain diseases, namely
depressive, cerebrovascular, and neurodegenerative
diseases. The adenosine modulation system in the
forebrain is modified upon aging with a decreased
density and functional efficiency of A1ARs (Sperlagh
et al., 1997; Sebasti~ao et al., 2000; Costenla et al.,
2011) and an increased density and efficiency of
A2AARs (Rebola et al., 2003; Canas et al., 2009; Cost-
enla et al., 2011). These alterations posit a contribu-
tion of the adenosine modulation system to the
deterioration of brain function since hyperactivity of
A2AARs is sufficient to trigger brain dysfunction (Li
et al., 2015; Carvalho et al., 2019; Temido-Ferreira
et al., 2020) and a hypofunction of A1ARs increases
excitability (noise) of brain networks and bolsters the
spreading of excitotoxicity (Tescarollo et al., 2020).
Indeed, the intake of caffeinated coffee is inversely
associated with memory deterioration upon aging
(Hameleers et al., 2000; Ritchie et al., 2007; van
Gelder et al., 2007; Arab et al, 2011; Dong et al.,
2020), which was shown in animal models to be
reverted by caffeine and by selective A2AAR antago-
nists (Prediger et al., 2005). This stresses the particu-
lar association between increased A2AAR activity with
the deterioration of brain function upon aging, which
might underlie the increased susceptibility for the
emergence of age-associated brain diseases.
Hyperactivity of A2AARs in the aged brain is fur-

ther reinforced by the parallel increase of the path-
way responsible for the formation of the pool of
adenosine selectively associated with the activation of
A2AARs, namely ecto-50-nucleotidase (CD73)-mediated
formation of ATP-derived extracellular adenosine
(Augusto et al., 2013; Carmo et al., 2019; Gonçalves
et al., 2019). In fact, different studies reported a
robust increase of the activity of CD73 in the aged
brain (Fuchs, 1991; Cunha et al., 2001; Mackiewicz
et al., 2006), as best heralded by the inverse associa-
tion of CD73 activity with the probability of reaching
centenarian ages (Crooke et al., 2017). In parallel, the
activity of AdoK is decreased in the aged brain (Mack-
iewicz et al., 2006). This bolsters the availability of
the extracellular adenosine (Cunha et al., 2001;
Murillo-Rodriguez et al., 2004), possibly to compen-
sate the decreased density of A1ARs. Indeed, the
alteration of purinergic metabolism seems to be a
prominent characteristic—a metabolic fingerprint of
the aging process in different organisms (Furman
et al., 2017; Gao et al., 2018a). Precocious modifica-
tions of adenosine metabolism occur in the brain of
aged rodents (Ivanisevic et al., 2016) and in an
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animal model of accelerated aging (Sanchez-Melgar
et al., 2020).

VII. Current and Recent Clinical Trials

Both AR agonists and antagonists have been in
clinical trials dating back to the late 1960s for a wide
range of conditions (Borah et al., 2019; Jacobson
et al., 2019). Although most of these clinical trials
were unsuccessful, the therapeutic focus of AR-based
therapeutics has shifted since the early days, and
new trials are underway for more recently identified
indications (Table 5; Fig. 5). There is reason for opti-
mism that this situation can be remedied in future
clinical trials based on current pharmaceutical tech-
nology. Firstly, the availability of high-resolution
experimental structures of two of the adenosine
receptors allows the discovery and optimization of
compounds of extremely high selectivity for each of
the four receptors. Furthermore, the lack of efficacy
in clinical trials often results from inadequate phar-
macokinetics, which has been greatly improved in the
recent generation of adenosine receptor ligands,
which are also much more structurally diverse than
in the past. Additionally, the expanded range of allo-
steric modulators of the adenosine receptors and indi-
rect adenosine modulators (e.g., enzyme and transport
inhibitors) promises to provide clinical candidate mole-
cules that are more temporally and spatially selective
than orthosteric agonists. More specifically, further
research may lead to new therapeutics, including: A2A-
and A2BAR antagonists for treating cancer and neuro-
degenerative conditions such as Parkinson’s disease
and Alzheimer’s disease; A2B- and A3AR agonists for
treating chronic conditions such as obesity and NASH,
respectively; A1- and A3AR agonists for treating chronic
pain; A3AR antagonists for treating glaucoma; and A2A-
and A2BAR agonists for treating musculoskeletal condi-
tions such as osteoporosis. These are potential thera-
peutic approaches that have matured scientifically in
recent years.

A. Clinical Trials of Adenosine Receptor Agonists

AR agonists and partial agonists have been considered
for pharmaceutical development in the treatment of:
pain, seizures, arrhythmias, atrial fibrillation, diabetes,
chronic heart failure, glaucoma (A1AR); hypertension
(and diagnosis), inflammation, atrial fibrillation, ischemic
conditions, sickle cell disease (A2AAR); neurodegenera-
tion, inflammation, hepatocellular carcinoma, ischemic
conditions, NASH, and chronic neuropathic pain (A3AR).
There are no clinical trials of A2BAR agonists, but their
use as antidiabetic agents or in cardioprotection, lung
injury, diabetes, pulmonary hypertension, and other vas-
cular conditions has been suggested (Eckle et al., 2007;
Koscso et al., 2013; Merighi et al., 2015; Bessa-Gonçalves
et al., 2018).

The antiarrhythmic effects of adenosine acting at
the A1AR led to its approval for treating supraventric-
ular tachycardia (Jacobson et al., 2019). More selec-
tive nucleoside-based A1AR agonists were also
considered for this application, but their clinical trials
failed. A partial A1AR agonist, CVT-3619, was pre-
dicted to display fewer side effects as an antiarrhyth-
mic agent, but the clinical trial was discontinued
(Jacobson et al., 2019). A clinical trial of A1AR agonist
selodenoson (78, DTI-0009) for atrial fibrillation was
discontinued. Non-nucleosides have also been devel-
oped as A1AR agonists. 3,5-Dicyanopyridine deriva-
tive capadenoson was in a clinical trial for heart
failure, but it was later supplanted by an ongoing
trial of neladenoson (77, BAY1067197), a newer, more
selective prodrug derivative of the same structural
class (Shah et al., 2019). However, the compound
failed to meet the clinical endpoint. A phase 3 trial of
A1AR agonist trabodenoson (79) also failed to demon-
strate efficacy (Jacobson and Civan, 2016). A1AR ago-
nists, including selective agonist GW493838 and
intrathecally administered adenosine, and a PAM (T-
62) were also studied for their application in pain, but
three clinical trials failed to demonstrate efficacy
(Miao et al., 2018; Jacobson et al., 2019).
The vasodilatory effects of A2AAR agonists have

resulted in the approval of adenosine (1) itself and
regadenoson (2, CVT-3146) for coronary stress imag-
ing in patients not suitable for exercise-induced vaso-
dilation. However, clinical trials for chronic obstructive
pulmonary disease, asthma, and sickle cell disease,
based on the anti-inflammatory effects of A2AAR ago-
nists, were unsuccessful (Jacobson et al., 2019).
A3AR activation has been the subject of many clini-

cal trials, and several are ongoing (Jacobson et al.,
2019). Two prototypical A3AR agonists, IB-MECA (48,
CF101, piclodenoson) and Cl-IB-MECA (14, CF102,
namodenoson) have progressed to clinical phases 3
and 2 for autoimmune inflammatory diseases and
liver diseases, respectively. A3AR agonists also have
protective effects in models of chronic pain. Piclodeno-
son is in phase 3 trials for rheumatoid arthritis/
psoriasis. Namodenoson is in phase 2 trials for hepa-
tocellular carcinoma and nonalcoholic steatohepatitis
(NASH).

B. Clinical Trials of Adenosine Receptor Antagonists

AR antagonists have been considered for pharma-
ceutical development in the treatment of: asthma,
renal dysfunction (A1AR); neurodegeneration, cancer
(A2AAR); cancer, asthma, diabetes (A2BAR); glaucoma,
psoriasis, NASH, and ulcerative colitis (A3AR). There
are not yet therapeutic antibodies proposed for use in
blocking ARs.
Various clinical trials of A1AR antagonists for treat-

ment of heart failure were eventually disconti-
nued. These A1AR antagonists include rolofylline (82,
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TABLE 5
Representative adenosine receptor modulators in clinical trials, currently and previously, according to clinicaltrials.gov

Compound Action Activity Phase, National Clinical Trial Number

Agonists
Adenosine (1) Nonselective agonist headache/migraine

ADCY5-related dyskinesia
-, 04577443

-, 04469283
Neladenoson bialanate

(77, BAY1067197)
A1AR agonist heart failure 2, 02040233, PARSiFAL

2, 02992288, PANTHEON
2, 03098979, PANACHE

Selodenoson (78, DTI-0009,
RG14202)

A1AR agonist atrial fibrillation 2, 00040001

Trabodenoson (79, INO-8875; PJ-875) A1AR agonist glaucoma 3, 02565173
Regadenoson (2, CVT 3146) A2AAR agonist sickle cell anemia

COVID-19
pulmonary hypertension
glioma (disrupting BBB)

2, 01788631
1/2, 0460609
-, 02220634
1, 03971734

Tecadenoson (80, CVT-510) A2AAR agonist atrial fibrillation 2, 00713401
Spongosine (81, BVT.115959) A2AAR agonist diabetic nerve pain 2, 00452777
UK-432,097 (11) A2AAR agonist chronic obstructive pulmonary

disease
2, 00430300

Piclodenoson (48, IB-MECA, CF-101) A3AR agonist rheumatoid arthritis
psoriasis
COVID-19

3, 02647762
3, 03168256
2, 04333472

Namodenoson
(14, Cl-IB-MECA, CF-102)

A3AR agonist hepatocellular carcinoma
NASH (non-alcoholic
steatohepatitis)

2, 02128958
2, 02927314

Antagonists
Caffeine (3) Nonselective antagonist hypoxic-ischemic encephalopathy

ADCY5-related dyskinesia
Alzheimer’s disease
radiation-induced fibrosis
glaucoma

1, 03913221
-, 04469283
3, 04570085
2, 03768492
-, 03675412

Theophylline (4) Nonselective antagonist acute kidney injury
smell in COVID-19
depression
anaesthesia recovery

3, 03897335
2, 04789499
1, 04309877
1, 04151381

Rolofylline (82, KW-3902) A1AR antagonist congestive heart failure 3, 00328692 (PROTECT-1)
3, 00354458 (PROTECT-2)

SLV320 (19) A1AR antagonist heart failure and
renal dysfunction
combined with furosemide

2, 00744341
2, 00160134
-, 00568009a

PBF-680 A1AR antagonist asthma 2, 03774290, ADENOASMA
Istradefylline (5, KW-6002) A2AAR antagonist Parkinson’s disease (alone) 2, 00250393

Parkinson’s disease (with L-dopa) 3, 00955526, 6002-009
3, 01968031

Preladenant
(21, MK-3814, SCH 420814)

A2AAR antagonist Parkinson’s disease 3, 01155479, PARADYSE
antipsychotic drug side effects 2, 00686699, P04628
advanced solid tumors (alone and

in combination with
pembrolizumab)

1, 0309916

BIIB014 (65) A2AAR antagonist Parkinson’s disease 2, NCT00438607
Tozadenant (66) A2AAR antagonist Parkinson’s disease 3, NCT03051607
Taminadenant (83, NIR178, PBF-

509)
A2AAR antagonist Parkinson’s disease, non-small cell

lung cancer (with PDR001b)
1, 02111330

1/2, 02403193, AdenONCO
various cancersc (with PDR001) 3, 03207867

Ciforadenant (84, CPI-444, V81444) A2AAR antagonist advanced cancers (in combination
with CD73 blocker, CPI-0006)

1, 03454451

(in combination with PD-L1/PD-1b) 1/2, 03337698
Imaradenant (22, AZD4635,

HTL1071)
A2AAR antagonist cancer, alone 1, 03980821

(in combination with CD73
blocker, MEDI9447d)

1/2, 03381274

(in combination with anticancer
drugs)

1, 02740985
2, 04089553

Inupadenant (85, EOS100850) A2AAR antagonist solid tumors 1, 03873883
Etrumadenant (86, AB928) A2A/A2B antagonist various cancers (with AB122b)

(in combination with anticancer
drugs)

1, 03629756
1/2, 04381832

PBF-1129 A2BAR antagonist non-small cell lung cancer 1, 03274479
PBF-677 A3AR antagonist glaucoma

ulcerative colitis
1, 02639975

2, 03773952, ADENOIBD
PBF-1650 A3AR antagonist psoriasis, NASH 1, 03798236, ADENOIMMUNE
FM101 (87) A3AR antag/part agonist glaucoma

NASH
1/2, 04585100

2, 04710524

Note that this list is not all-inclusive (e.g., dipyridamole has been omitted). Other compounds are reviewed elsewhere (Borah et al., 2019; Jacobson et al., 2019). Struc-
tures, when disclosed, are shown in Figs. 1, 2, 3, and 5.

aterminated additional enrollment criteria made patient recruitment unfeasible.
bcheckpoint inhibitor.
ctriple negative breast cancer, pancreatic ductal adenocarcinoma, non-small cell lung cancer, renal cell cancer, urothelial cancer, head and neck cancer, diffused large

B cell lymphoma, microsatellite stable colon cancer, non-Hodgkin lymphoma.
doleclumab.
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KW-3902) for congestive heart failure and SLV320
(19) for renal dysfunction/heart failure.
Initially, when A2AAR antagonists were first reported

in the early 1990s, the principal target was PD. Several
selective antagonists were in clinical trials, some of
which indicated a relatively modest effect, whereas
others did not reach statistical significance. Antagonists
in this group were tozadenant (66), preladenant (21),
and istradefylline (5). A phase 3 trial of tozadenant was
discontinued after five fatalities from agranulocytosis
had occurred. The caffeine-like antagonist istradefylline
was first approved in Japan for use as a cotherapy in
treating PD to reduce off-time. Additional clinical evi-
dence of a beneficial effect of istradefylline has accrued,
leading to its recent approval in the United States, as
mentioned before (Chen and Cunha, 2020).
Currently, the most excitement surrounds the use

of A2AAR antagonists as adjuvants in cancer immuno-
therapy. Adenosine forms an immunosuppressive
“cloud” in the tumor microenvironment for both solid
malignancies and hematologic cancer (Sek et al.,
2018). The adenosine acts through both A2AAR and
A2BAR to induce an anti-inflammatory phenotype in
T cells, macrophages, and other cells; and antagonists
have a beneficial effect when combined with immuno-
therapy (Congreve et al., 2018). Ongoing clinical trials
include: NIR178 (83, PBF-509, now taminadenant) for
PD, NSCLC, and various other cancers in combination
with a checkpoint inhibitor; CPI-444 (84, formerly
V81444, now ciforadenant) for advanced cancers in
combination with a checkpoint inhibitor; phase 1/1b
study of inupadenant (85, EOS100850) for solid tumors
(NCT03873883) (Houthuys et al., 2018); PBF-1129 for
non-small cell lung cancer (NSCLC, structure not dis-
closed); and mixed A2AAR/A2BAR antagonist AB928
(86, now etrumadenant) for various cancers in combi-
nation with checkpoint inhibitor AB122. A2AAR antag-
onist preladenant (21) has been repurposed from a
failed phase 3 trial in PD to treating advanced solid
tumors (also in combination with pembrolizumab) but
the data did not support study endpoints. A2AAR
antagonist AZD4635 (22, formerly HTL1071, now
imaradenant) was developed by rational drug design
based on A2AAR X-ray structures. Its envisioned appli-
cation was attention deficit hyperactivity disorder
(ADHD), but it is currently being applied to cancer
immunotherapy (Borodovsky et al., 2020).

VIII. Concluding Remarks

The number of scientific publications with “adenosine
receptor” as a topic in the Web of Science database has
remained relatively stable over the years. With close to
4500 articles in each of the two decades covered by this
and the previous report, one captures the field as rela-
tively mature and significant. This number is quite
comparable to other GPCRs (e.g., �4000 in the last

decade for serotonin/5-HT and �6000 for dopamine),
more than for histamine receptors (�1000) but fewer
than for chemokine receptors (close to 13,000 publica-
tions in the last decade). Even a relatively comprehen-
sive report like this one can only pinpoint to some of
these many references, however, with a focus on partic-
ular topics that have gained traction over the years.
We invite readers to draw our attention to other focal
points for future inclusion. Such focal points in this
report not or hardly covered before are target binding
kinetics, receptor structure, and biased signaling. It
turns out that high-affinity ligands, be it agonists or
antagonists, may have very divergent kinetic profiles.
Some have relatively short residence times (defined as
1/koff) at one or more of the four AR subtypes, whereas
others show long residence times, up to several hours.
It should be mentioned that many of these studies
have been performed at lower than physiologic temper-
ature, which impedes a reliable estimation of in vivo
residence times and target engagement. The ultimate
in this respect is covalent binding, a feature that is
now well established in clinically approved kinase
inhibitors but that has not found much application yet
in clinical studies of GPCRs. With only one receptor
structure discussed in the previous report, remarkable
progress has been made, particularly with respect to
the A2AAR. By combinations of fusion proteins and
thermostabilizing receptor mutations, this receptor has
become one of the more easily accessed GPCRs for
structure elucidation. Today it has become possible, as
with cytosolic proteins, to soak/exchange receptor crys-
tals to enable multiple crystal structures at the same
time. On the other hand, the A2BAR and A3AR have
not been successfully subjected to structure elucidation.
Biased signaling has been a hot topic and heavily stud-
ied aspect of GPCR signaling in the last decade, but
less so for ARs. Compared with the opioid receptor
field, for example, most AR agonists appear to display
less outspoken preferences, also with a less obvious
separation between desired and side effects. Still, the
potential of developing adenosine receptor agonists
that are biased for particular signaling pathways asso-
ciated with treatment modalities promises to alleviate
the problem of side effects of adenosine agonists, as
noted in multiple clinical trials. However, in most
cases, the precise G protein-dependent or independent
pathways involved in the salutary effects of adenosine
agonists are unexplored. Recently, an A1AR agonist
that was reported to selectively activate Gob versus the
other five Gai/o subtypes and without b-arrestin recruit-
ment was discovered (Wall et al., 2020). It appears to
act as a potent analgesic without sedation or cardiore-
spiratory depression. This can serve as a model for
applying biased signaling to other adenosine receptor
subtypes. Finally, clinical development takes a long
time, and this is also true for AR ligands. Istradefylline
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was only recently allowed access to the United States
(Food and Drug Administration) and is in the approval
process for the European market (European Medicines
Agency) for the treatment of motor effects in PD long
after its introduction in Japan. It had been reviewed as
an early clinical candidate in our 2001 report, whereas
in the 2011 update it was again mentioned as a clinical
candidate, then in large phase 3 trials. This suggests
that there will be room for a fourth update a decade
from now.
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Gonçalves FQ, Lopes JP, Silva HB, Lemos C, Silva AC, Gonçalves N, Tom�e AR,
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