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We have previously reported on the discovery of a mitochondrial specific unfolded protein response (mtUPR) in mammalian
cells, in which the accumulation of unfolded protein within the mitochondrial matrix results in the transcriptional activation of
nuclear genes encoding mitochondrial stress proteins such as chaperonin 60, chaperonin 10, mtDnaJ, and ClpP, but not those
encoding stress proteins of the endoplasmic reticulum (ER) or the cytosol. Analysis of the chaperonin 60/10 bidirectional
promoter showed that the CHOP element was required for the mtUPR and that the transcription of the chop gene is activated
by mtUPR. In order to investigate the role of CHOP in the mtUPR, we carried out a deletion analysis of the chop promoter. This
revealed that the transcriptional activation of the chop gene by mtUPR is through an AP-1 (activator protein-1) element. This
site lies alongside an ERSE element through which chop transcription is activated in response to the ER stress response (erUPR).
Thus CHOP can be induced separately in response to 2 different stress response pathways. We also discuss the potential signal
pathway between mitochondria and the nucleus for the mtUPR.
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INTRODUCTION
Mitochondria serve critical functions in the maintenance of

cellular energy supplies, thermoregulation, synthesis of essential

molecules such as phospholipids and haem, and in apoptosis.

Since mitochondrial proteins are encoded by nuclear genes (at last

estimate, about 1500 [1]) as well as mitochondrial genes (encoding

just 13 polypeptides in mammalian species [2]), the normal

functions of mitochondria require the coordination of two

genomes and a system of communication between two organelles

[3–5]. In addition, mitochondria need to respond to changes in the

physiological milieu of the cell to repair damage caused by

mutations in mtDNA which produces modified proteins which are

unable to fold and become prone to aggregation.

Metabolic cues and other changes which occur within

mitochondria can culminate in wide-ranging changes in nuclear

gene expression via retrograde mitochondrial to nuclear signaling.

These responses are broadly referred to as mitochondrial stress

responses [6,7] and are generally defined as a response to altered

mitochondrial membrane potential or uncoupling of oxidative

phosphorylation. This leads to the elevation of cytosolic Ca2+ and

activation of CaMK and calcineurin responsive genes [4] which

include genes involved in Ca2+ transport and storage [6] as well as

a large collection of transcription factors [8]. The net effect of

activation of this gene network is to facilitate recovery of the

physiological functions of the mitochondrion.

A unique type of mitochondrial stress is the mitochondrial

unfolded protein response (mtUPR, which we have previously

called ‘the mitochondrial stress response’ [9]) where the accumu-

lation of unfolded proteins in the mitochondrial matrix leads to an

increase in nuclear encoded mitochondrial chaperones and

protease, which facilitate the recovery of function by refolding or

by removal of unfolded proteins [9–11]. Indeed, the changes in

levels of these quality control proteins in the mitochondrion

exactly overlap with the changes in level of protein aggregates in

the organelle [9].

We have previously shown that mtUPR responsive genes are

activated through a CHOP element and transcriptional activation

requires the hetero-dimerisation of the C/EBP homology protein

CHOP and C/EBPb (CAAT enhancer-binding protein) [9].

However, the gene encoding CHOP is itself activated by the

mtUPR suggesting that the chop promoter contains a mtUPR

response element. Similarly, the erUPR also results in the

transcriptional activation of the chop gene and it has recently been

shown that elevation of CHOP in erUPR culminates in the

elevation of the pro-apoptotic factor BIM and apoptosis [12].

In this paper, we describe the identification of an mtUPR

response element and components of a signaling pathway that

leads to the transcriptional activation of the chop gene in response

to the accumulation of unfolded protein in the mitochondrial

matrix of mammalian cells. In an accompanying paper [13], we

describe features of the promoters of mtUPR responsive genes that

are activated by CHOP and C/EBPb in response to the

accumulation of unfolded proteins in mitochondria.

RESULTS

Transcriptional activation of chop
We have previously developed an experimental model for

production of a mtUPR and have shown that a mutant of the

mitochondrial matrix protein containing a small deletion of one of
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the substrate binding sites in ornithine transcarbamylase (OTCD)

was imported into the mitochondrial matrix normally in COS-7

cells, but upon cleavage of the mitochondrial pre-sequence formed

aggregates and induced genes encoding the mitochondrial

chaperonins, chaperonin 60 (Cpn60) and chaperonin 10 (Cpn10)

as well as the matrix protease ClpP [9]. Moreover, we showed that

OTCD induces transcription of cpn60 and chop, but not the ER

isoform of Hsp70 (Bip), in COS-7 cells. Creation of an erUPR by

the addition of either tunicamycin or thapsigargin to COS-7 cells

in contrast, strongly induces the ER isoform of Hsp70 and CHOP,

but had only a minor effect on transcriptional activation of the

cpn60 gene [9]. Thus, the accumulation of unfolded proteins leads

to a specific response in each organelle, despite the fact that both

UPRs induce transcription of the chop gene. Since Northern

analysis measures steady-state concentration of mRNA, the

experiments were repeated using chop promoter constructs. As

shown in Figure 1A, expression of OTCD lead to an activation of

a chop-gfp promoter construct of approximately 2.3 fold whereas

a quantitative assay using luciferase as the reporter enzyme shows

that OTCD activates transcription approximately 2.5 fold over the

constitutive transcriptional activity obtained from cells transfected

with vector without the OTCD insert (Figure 1B).

The specificity of induction of CHOP by organelle specific

UPRs suggests that the chop promoter contains separate elements

for activation in response to erUPR and mtUPR.

Identification of an mtUPR element in the chop

promoter
A deletion analysis of the chop promoter between bases 21015 and

+17 (zero being the transcriptional start site) was carried out by

assaying promoter activity using the luciferase reporter enzyme.

MtUPR activity was measured by comparing the activity obtained

from cells transfected with OTCD compared with empty vector

and erUPR activity was measured by adding tunicamycin to cells

transfected with the promoter-LUC construct. Deletions between

21015 and 2325 had no effect on chop transcriptional activity

(Fig 1C), whereas a further deletion of 103bp essentially ablated

mtUPR inducible chop promoter activity. With respect to erUPR

inducibility of chop, the critical element appears to lie between

2105 and +1 bp (Fig 1C and Fig 2). A sequence comparison of

chop promoters from human, bovine, mouse, and rat shows that

this region between 2278 and 2222 contains an AP-1 site

(Figure 2A), whereas the previously identified ERSE [14,15] lies

between 2105 bp and +1 bp (data not shown). The ERSE

element consists of two transcription factor binding sites, ATF-6

[15] and NF-Y [16,17]. We deleted the AP-1, ATF-6, and NF-Y

sites to determine if any of these sites were required for the

regulation of CHOP expression in response to mtUPR. The

deletion of the AP-1 site ablated the mtUPR responsiveness

(Fig 1C). In contrast, the deletion of either ATF-6 or NF-Y

elements, although substantially reducing the erUPR responsive-

ness (Fig 1C), did not remove the mtUPR responsiveness.

Conversely the deletion of the AP-1 site had no effect on the

erUPR responsiveness of the chop promoter, although the deletion

of the NF-Y site did reduce the overall activity of the chop

promoter.

As shown in Figure 2A, the promoter region flanking the AP-1

site is highly conserved in other mammalian chop promoters. These

flanking regions may contain additional information for the

activation of the chop gene by mtUPR. One of these regions

contains a sequence homologous to a putative element, N30,

previously identified in a homology search of promoter regions in

a range of animal species [18] (Fig 2A, boxed sequence). Deletion

of this element had a partial effect on the mtUPR responsiveness of

the chop promoter (Fig 1C).

Since we previously showed that CHOP induces transcription of

mtUPR responsive genes in combination with C/EBPb [9], it was

of interest to note that the promoter of c/ebpb gene also contains

an AP-1 site with highly conserved nucleotides (CCCA) in the

region flanking the AP-1 site (Fig 2B). This site in the c/ebpb gene

is also highly conserved between human, mouse, and rat promoter

(Fig 2B) and therefore, we should expect both chop and c/ebpb
transcription to be elevated by mtUPR. This was confirmed by

Western blot analysis (Fig 2C). It has recently been shown that

CHOP combines with C/EBPa or b to activate BIM transcription

and apoptosis in response to erUPR [12]. However, the c/ebpa
promoter does not contain an AP-1 site (data not shown). This

raises the question whether mtUPR also induces apoptosis.

Involvement of JNK2 in mtUPR signaling
Since it is well-known that c-Jun, which is activated by JNK (c-Jun

N-terminal kinase), binds to the AP-1 site [19] and it has been

reported that the activation of JNK-dependent ATF2 (activated

transcription factor 2) is important for the signaling from

mitochondria to nucleus during the both genetic and metabolic

stresses of mitochondria [3,20], we therefore investigated the effect

of mtUPR on the phosphorylation of JNK1 and JNK2 (Fig 3A).

The expression of OTCD in COS-7 cells had a substantial effect

on the phosphorylation of JNK1 and 2 (Fig 3A). To further test the

Figure 1. Identification of mtUPR response element in chop
promoter. (A) and (B): Chop is transcriptionally activated by mtUPR.
COS-7 cells co-transfected with empty vector or OTCD were assayed for
GFP (A) or luciferase (B) 32 h after transfection. (C): identification of an
mtUPR element in the chop promoter was determined by a deletion
analysis as shown. Deletions are shown as distance (bp) from the chop
transcription start site. The fold activation of the promoter constructs in
cells transfected with OTCD (slash bars) are compared with vector
controls (open bars) as relative luciferase (RLU) activity. RLU activity of
the promoter constructs in cells treated with or without 2 mg/ml
tunicamycin (TM), to produce erUPR is shown as a control. Data
represents the mean6SEM from experiments performed in triplicate.
doi:10.1371/journal.pone.0000835.g001
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potential role of JNK1 and JNK2 in mtUPR signaling, we

determined the effect of the MEK inhibitor PD98059 [21,22] on

JNK phosphorylation in response to expression of OTCD. As

shown in Figure 3A, the inhibitor completely blocked mtUPR

dependent phosphorylation of JNK2, but had only a small effect

on JNK1 phosphorylation. These experiments were followed up

by measuring the effects of PD98059 on OTCD dependent

activation of the mtUPR responsive promoters yme1l1[13]

(Figure 3B) and mppb [13](Fig 3C). As shown in Figure 3B and

C, 10 mM MEK inhibitor inhibited the OTCD inducible

activation of the promoter-luciferase reporter constructs in

transfected COS-7 cells. This suggests that mtUPR signaling

utilizes the MEK/JNK2 pathway.

DISCUSSION
The evolution of the eukaryotic cell facilitated the development of

increased metabolic and functional complexity by dividing cells

into distinct, membrane enclosed compartments. However, these

organelles/compartments are extremely crowded, both in terms of

small solutes and macromolecules. Thus, it has been estimated that

the cytosol has a protein concentration of around 350 mg/ml [23]

and the concentration inside the mitochondrial matrix may

approach 500 mg/ml [24]. Not surprisingly then, the cell has

evolved stress response mechanisms which come into play under

conditions where unfolded proteins accumulate, such as the heat

shock response [25]. Equally, the cell has evolved mechanisms to

respond to the accumulation of unfolded proteins in organelle

compartments such as the ER, which has become known as the

UPR [14,15,26,27]. This response, which was initially discovered

in baker’s yeast [28] has been extensively investigated and is

characterized by the transcriptional regulation of a large group of

genes and post transcriptional regulation of proteins involved in

quality control of the secretory pathway [14,15,26,27].

We discovered an equivalent stress response pathway in

mitochondria of mammalian cells [9,10] and originally called it

the Mitochondrial Stress Response. More recently, Ron and

colleagues discovered the response in c.elegans [11] and more

appropriately called the response the mtUPR, distinguishing it

from the erUPR, as we have done in this paper. Surprisingly, the

mtUPR has not been found in fungi and appears to be an

organelle specific stress response found only in multi-cellular

organisms.

We originally found that in the mammalian mtUPR responsive

gene cpn60/10, the CHOP and C/EBPb transcription factors were

involved in transcription regulation [9]. However, since mtUPR

also led to the transcriptional regulation of chop, this suggested that

the induction of the chop gene is an early event in mtUPR. We

were also intrigued by the finding that although there appears to

be little overlap in the mtUPR and erUPR, both responses led to

the induction of chop transcription. In this paper we describe the

identification of an mtUPR response element in the promoters of

both chop and c/ebpb genes. This element is an AP-1 site,

suggesting that mitochondrial to nuclear signaling of the

accumulation of unfolded proteins in the mitochondrial matrix is

through a JNK pathway. We show, using a specific MEK

inhibitor, that this signaling is through JNK2 and that an

inhibition in the phosphorylation of JNK2 also inhibits mtUPR.

We suggest that the cell can discriminate between organelle

Figure 2. Chop and c/ebpb promoters contain AP-1 sites and are inducible by mtUPR. (A) Nucleotide sequence alignment of the mammalian chop
promoters (2278 to 2222) from human, bovine, mouse and rat. Bold letters show the highly conserved bases of the AP-1 site and the asterisks show
the highly conserved sequence surrounding the AP-1 site in chop promoters. The position of the putative novel element of N 30 [18] is shown in the
box. (B): Nucleotide sequences of mammalian c/ebpb promoter region around AP-1 site (Human, Mouse, and Rat) is compared with the chop
promoter sequence (2278 to 2233). The numbers refer to the distance from transcription initiation site of human chop or human, mouse, and Rat c/
ebpb. The asterisks indicate the conserved nucleotides around the AP-1 site. (C): C/EBPb expression in response to mtUPR. Extracts from cells
transfected with vector or OTCD were subjected to western blotting and probed with antibodies against C/EBPb and tubulin as control and show
that C/EBPb, like CHOP is induced by expression of OTCD.
doi:10.1371/journal.pone.0000835.g002
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specific unfolded protein responses through different pathways to

activate genes that harbor different stress elements within their

promoters. Recently, it has been reported that JNK2 is a positive

regulator of the cJun transcription factor [29], and can regulate

both mitochondrial and lysosomal death pathways in mouse

embryonic fibroblasts [30]. This, taken together with the data

presented here, suggests that the JNK2 pathway may play

a significant role for the communication from mitochondria to

the nucleus in response to mtUPR. Since both mtUPR and erUPR

activate transcription of a distinct set of genes, yet both induce

CHOP, it is apparent that additional factors besides CHOP and

C/EBPb account for the specificity of the mtUPR. This specificity

is provided for the erUPR by the transcription factors ATF6 and

NFY [14.15]. The question of the specificity of mtUPR is further

explored in the accompanying paper [13].

Recently, Benedetti et al. [31] have carried out a search for

genes involved in signaling of mtUPR in c.elegans and discovered

the involvement of the ubl-5 gene, encoding the ubiquitin-like

protein 5. Whether this pathway exists in mammalian cells, or

whether this pathway in c.elegans intersects with the pathway we

describe here is currently unknown, as is the question whether the

CHOP based response described in this paper operates in c.elegans.

MATERIALS AND METHODS

Materials
Tunicamycin was purchased from Sigma Chemical (St Louis,

USA). MEK inhibitor, PD98059, anti-C/EBPb, and anti-pJNK

were purchased from Santa Cruz Biotechnology (Santa Cruz,

USA). All reagents were of reagent grade quality.

Plasmid construction, transfection and promoter

analysis
Mammalian expression vectors of wild-type OTC and deletion

mutant OTCD were constructed as described previously [9].

Transfection efficiencies were between 72 and 85% as determined

by transfections with a GFP construct. Based on the human

genome sequence information of NCBI, the promoter region of

CHOP (from 21015 to +17) was amplified by PCR [32] from

human genomic DNA (Promega, Madison, USA) using 59-

CTTTTGGGAGATCTACGGGGCTAGAACAGGAGACCA

CCC-39 and 59-GATACGCTCAGAAGCTTAGACTTAAGT

CTCTGACCTCGG-39 as the upper and lower primers,

respectively (mutated nucleotides to introduce BglII and Hind

III are underlined), and cloned into BglII-Hind III sites of the

Figure 3. MtUPR increases phosphorylation of JNK and a MEK specific inhibitor blocks mtUPR. (A): mtUPR increases phosphorylation of JNK 1&2.
Extracts from cells transfected with vector or OTCD, and treated with or without 10 mM of MEK specific inhibitor PD98059, were subjected to Western
transfers probed with antibody against p-JNK. (B) and (C): mtUPR induction of the yme1l1(B) and mppb(C) promoter is inhibited by the MEK specific
inhibitor, PD98059. COS-7 cells co-transfected with vector or OTCD and yme1l1and mppb promoter-reporter constructs, with or without 10 mM of
PD98059 were used for luciferase assay 32 h after transfection. The fold activation of the promoter constructs in cells expressing OTCD compared
with those expressing vector alone, with or without of PD98059, is shown as relative luciferase (RLU) activity. Data represent the mean6SEM from
experiments performed in triplicate.
doi:10.1371/journal.pone.0000835.g003

Regulation of CHOP by mtUPR
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pGL3-Basic vector (Promega, Madison, USA), which contains

the firefly luciferase coding sequence but lacks eukaryotic

promoter or enhancer elements. For the GFP assay of promoter

constructs, luciferase was replaced by GFP cDNA using Nco I –

Xba I sites in the pGL3-Basic vector. Deletion mutants of the

CHOP promoter were constructed by PCR using 59-

GGGGCCAAGAGATCTGGGAGTCCCTTATAG-39(2555),

59-GACACCGGTTGCCAGATCTTGCATCATCCCCGCC-

39(2325), 59-CCGTGAAGCCTCGAGATCTAAAGCCACTT

CCGGG-39(2222), and 59-GGCGGATGCGAAGATCTGG

GCGGGGCCAATGCC-39(2105) as upper primers, respec-

tively, and 59-GGTGGCTTTACCAACAGTACCGGAATG

CC-39 as lower primer (mutated nucleotides are underlined)

for wild type CHOP promoter introduced into PGL3-Basic

vector. For disruption of ATF-6, NF-Y, and AP-1 transcription

factors [14,18] or point mutation, site-directed mutagenesis was

carried out by PCR [32] using 59-GCCGGCGGGCCA

CTTTCTGATTGGTAGG-39 and 59-CCTACCAATCAGAA

AGTGGCCCGCCG-39 for DATF-6, 59-GCCGGCGTGCCA

CTTTCTGATGGGTAGG-39 and 59-CCTACCCATCAGAA

AGTGGCACGCCG-39 for DNF-Y, 59-GCGCGCGCATGA

AACACCCACCTCCTCCGTG-39 and 59-GAGGCTTCACG-

GAGGAGGTGGGTGTTTCATGCG-39 for DAP-1, and 59-

CACTCCCCTCCGCAAACGCACATGACTCACCCACCT

CCTCC-39 and 59- GGAGGAGGTGGGTGAGTCATGTGC

GTTTGCGGAGGGGAGTG-39 for DN30 [33] as the upper

and lower primers, respectively (mutated nucleotides are under-

lined).

COS-7 cells were cultured in DME/5 % fetal calf serum and

transfected at 90 % confluence using Lipofectamine 2000

(Invitrogen, California, USA). Promoter analysis using luciferase

assay was carried out as described previously [9]. To induce

erUPR, cells were treated with 2 mg/ml tunicamycin for 10h.

Western blot analysis was carried out as described previously [9].
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