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Type 2 immunity participates in the pathogeneses of helminth infection and allergic

diseases. Emerging evidence indicates that the components of type 2 immunity are

also involved in maintaining metabolic hemostasis and facilitating the healing process

after tissue injury. Numerous preclinical studies have suggested regulation of type 2

immunity-related cytokines, such as interleukin-4, -13, and -33, and cell types, such as

M2 macrophages, mast cells, and eosinophils, affects cardiac functions after myocardial

infarction (MI), providing new insights into the importance of immune modulation in the

infarcted heart. This review provides an overview of the functions of these cytokines and

cells in the setting of MI as well as their potential to predict the severity and prognosis

of MI.

Keywords: myocardial infarction, type 2 immunity, interleukin, M2 macrophages, mast cells, eosinophils, immune

modulation

INTRODUCTION

Type 2 immunity is characterized by the production of interleukin (IL)-4, IL-5, IL-9, IL-13,
IL-25, IL-33, and thymic stromal lymphopoietin, as well as specific cell types including mast
cells, eosinophils, basophils, alternatively activated M2 macrophages, type 2 innate lymphoid cells
(ILC2), and T-helper (Th) 2 cells. It has mainly been considered to participate in the pathogeneses
of helminth infection and allergic diseases. However, growing evidence suggests that these cell types
and related cytokines are also involved in maintaining metabolic homeostasis and facilitating the
healing process after tissue injury (1). Studies in experimental models and serum biomarker data
from humans have proven the participation of type 2 immunity in the progression of myocardial
infarction (MI). In this review, we will discuss several pivotal type 2 immunity-associated cytokines
and cell types that modulate cardiac functions, followingMI and their potential value as biomarkers
of MI.

CYTOKINES

Activation of innate immunity and extensive inflammation are the typical pathological features of
MI. Accumulating evidence suggests type 2 cytokines are critical participants in tissue repair and
regeneration owing to their ability to regulate the functions of nearby cells and immunomodulation.
Moreover, they may serve as ideal biomarkers to predict the severity and clinical outcomes of MI.
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IL-4
IL-4 is an important Th2 cytokine with multiple biological
functions, which mainly has an anti-inflammatory effect.
Previous studies have demonstrated an association of elevated
serum IL-4 with a reduced risk of cardiovascular diseases
(2). Furthermore, the IL-4 level is lower in MI patients who
later develop left ventricular dysfunction (3), indicating its
cardioprotective properties.

One of the well-clarified mechanisms of IL-4 is in mediating
myocardial repair via converting macrophages to the M2
phenotype. Administration of a long-acting IL-4 complex at 1 h
after MI increases the proportion of cardiac M2 macrophages in
both the infarct and border myocardium, along with increased
tissue repair-related gene expression in M2 macrophages, and
an improved cardiac structure (more connective tissue in the
infarct zone) and functions. Further experiments suggested that
IL-4 promotes fibrotic tissue formation via M2 macrophages
rather than a direct interaction with cardiac fibroblasts. However,
these effects are not observed when administrated at a late
phase (7 or 28 days after MI), implying that IL-4 affects the
early recruitment and polarization of M2 macrophages in the
acute phase after MI (4). Similarly, injection of IL-4 plasmid
DNA (carried by graphene oxide) around the border zone
after coronary artery ligation largely reduces the number of
inflammatory M1 macrophages, and polarizes macrophages to
the reparative M2 phenotype in the mouse heart, leading to
enhancement of cardiac functions (5).

IL-4 may also affect the functions of cardiac fibroblasts,
thus participating in the profibrotic process directly. In the
Ang II-induced hypertension model, wild-type (WT) mice
exhibit higher cardiac fibrosis compared with IL-4−/− mice,
as indicated by the increase in the interstitial collagen fraction
and mRNA levels of procollagen type-I α1 and procollagen
type-III α1. In vitro experiments have demonstrated that IL-
4 promotes the expression of procollagen type-I α1 and
procollagen type-III α1 in mouse cardiac fibroblasts via binding
to IL-4Rα, and consequently increasing the production of
collagen (6). Treatment of anti-IL-4 neutralizing antibodies
reduces both the number and proliferation of fibroblasts as
well as infiltration of CD68+ macrophages (7). These findings
suggest the sophisticated interaction between IL-4 and various
cell types in the heart, which may lead to opposing outcomes
under different pathological conditions.

IL-13
IL-13 also polarizes macrophages to the M2 phenotype through
binding to IL-4Rα and activating the subsequent signal
transducers and activators of transcription (STAT) 6 signaling
pathway (8). In a mouse model of MI, IL-13 significantly
increases in the myocardium with a peak on day 3. Further
experiments in IL-13−/− mice suggested that IL-13 enhances
cardiac functions by recruiting more monocytes/macrophages
to the infarct and border area and inducing M2 macrophages.
Interestingly, in contrast to the IL-13−/− female mice, IL-13−/−

male mice exhibit a significant higher mortality and increased left
ventricular dilation compared with WT mice after MI (9).

Recently, IL-13 was also found to induce mitosis of isolated
cardiomyocytes when bound to IL-13Rα1. Through activation of
the STAT3/periostin signaling pathway, IL-13 facilitates cardiac
regeneration (10). Intraperitoneal administration of IL-13
significantly reduces the scar area and increases cardiomyocyte
cell cycle activity/mitosis in a cardiomyocyte-specific Gata4
knockout neonatal mouse after cryoinfarction (11). However,
whether the salutary effects of IL-13 on the injured myocardium
in the adult mouse model of MI are also partially related to its
underlying regeneration property needs to be examined further.

IL-33
IL-33, a member of the IL-1 family, has an important role in
adaptive and innate immunities (12). After tissue injury, IL-33
released by the damaged endothelial or epithelial cells promotes
immune cell recruitment and tissue repair (13, 14). In the heart,
IL-33 is mainly released by cardiac fibroblasts responding to
biomechanical stress (15). The cognate receptors of IL-33 have
two isoforms: transmembrane ST2 (ST2L) and soluble ST2 (sST2)
(16). The long form ST2L is expressed on various kinds of
immune cells such as macrophages, mast cells, basophils, Th2
cells, regulatory T cells, and ILC2 (17–22). Gene ablation of IL-33
or ST2 has demonstrated that the IL-33/ST2 signaling pathway
is crucial for reducing cardiac hypertrophy, ventricular chamber
dilation, and cardiac fibrosis under mechanical stress (15, 23).
However, the soluble form sST2, which serves as a decoy receptor,
may impede the cardioprotective effects by neutralizing IL-33
(24). Accumulating evidence suggests that the IL-33/ST2 system
has a profound effect on cardiac functions and potential value to
predict the severity and prognosis of acute coronary syndrome
(ACS).

In rats, IL-33 is elevated significantly within the first 12
weeks after MI. However, the mRNA level of sST2 shows a
similar pattern to inflammatory and fibrosis markers with a peak
at 1 week, suggesting that sST2 impairs the cardioprotective
effects at an early stage post-MI (25). Preclinical studies have
demonstrated that early pharmacological treatment targeting
the IL-33/ST2 system promotes cardiac functions in MI rats.
Through downregulating and upregulating gene expression
of sST2 and IL-33, respectively, mineralocorticoid receptor
antagonists reduce cardiac fibrosis and mitigate inflammation
responses in the infarcted myocardium (26). Furthermore, β-
blocker significantly decreases the infarct size and promote
cardiac functions by reducing the sST2 level (27).

Further experiments showed that IL-33 reduces hypoxia-
induced apoptosis of cardiomyocytes in vitro through
suppressing caspase-3 activity and increasing anti-apoptotic
protein expression (cellular inhibitor of apoptosis protein
1, X-linked inhibitor of apoptosis protein, survivin, B-cell
lymphoma 2, and B-cell lymphoma-extra large). In a rat model
of myocardial ischemia-reperfusion (IR) injury, subcutaneous
injection of IL-33 significantly reduces the infarct size and
myocardial fibrosis. The benefits of IL-33 on cardiac functions
were then abolished by ST2 gene deletion, indicating that IL-33
exerts cardioprotective effects through combination with the ST2
receptor (28). In the diabetic myocardium, a low level of IL-33
is associated with chronic activation of protein kinase (PK) CβII
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that increases the vulnerability of the myocardium to IR injury.
Exogenous IL-33 supplementation reduces the phosphorylation
of PKCβII, cardiomyocyte apoptosis, and infarct size after
cardiac IR injury. In addition, anoxia/reoxygenation-induced
apoptosis of high glucose preconditioned cardiomyocytes and
activation of PKCβII are alleviated by IL-33 in vitro (29).
IL-33 treatment also significantly suppresses proinflammatory
cytokine and chemokine expression, including IL-1β, IL-6, IL-17,
tumor necrosis factor-α (TNF-α), monocyte chemoattractant
protein (MCP)-1, and interferon-γ (IFN-γ)-induced protein 10,
and reduces macrophage infiltration after MI. These effects are
mediated by inhibition of p38 mitogen-activated protein kinase
and nuclear factor kappa-light-chain-enhancer of activated B
cells pathways (30).

Human studies have demonstrated that the circulating levels
of IL-33 and sST2 are associated with the severity of ACS patients,
and may thus serve as potential biomarkers. The serum level of
IL-33 is significantly lower in patients with ACS compared with
stable angina pectoris patients and control individuals (31, 32).
Similarly, another study showed that the circulating level of
IL-33 is significantly lower in ACS patients than in patients
with coronary artery disease (33). In contrast, sST2 is negatively
correlated with the outcomes of MI patients. For MI patients,
serum sST2 immediately elevated on day 1 afterMI and correlates
positively with peak creatine kinase and negatively with the left
ventricular ejection fraction (LVEF) (34). In addition, a higher
sST2 level is observed in patients with a larger infarct size, lower
LVEF, transmural infarction, and microvascular obstruction (35).
These findings indicate that the sST2 level well-reflects the
severity of myocardial injury. Moreover, sST2 can predict both
short term (36–39) and long term (39–43) cardiac adverse events
and mortality in ACS patients.

CELL TYPES

Apart from type 2 cytokines, the recruitment and activation of
M2 macrophages, mast cells, and eosinophils, which are key type
2 immunity-related cell types, affect cardiac functions in the
progression of MI via various mechanisms (Figure 1).

M2 Macrophages
So far, two subsets of macrophages have been identified in the
heart, according to their different origins: (1) resident cardiac
macrophages derived from the yolk sac and fetal liver during
embryonic development and (2) macrophages differentiated
from circulating monocytes when they migrate into hearts (44,
45). Although there are less macrophages in the myocardium
compared with cardiomyocytes, endothelial cells, fibroblasts,
and smooth muscle cells (46), they are indispensable for both
cardiac homeostasis and myocardial repair. Based on surface
markers and gene expression profiles, macrophages are generally
divided into classically activated M1 and alternatively activated
M2 macrophages, although their phenotypes and functions
might be more complex in vivo (47, 48). After MI, the
injuredmyocardium sequentially mobilizes Ly-6Chigh monocytes
and Ly-6Clow monocytes via C-C chemokine receptor type

2 and CX3C chemokine receptor 1, respectively (49). Ly-
6Chigh monocytes differentiate into M1 macrophages, which
dominate in the heart before day 3 post-MI and are responsible
for degradation of the extracellular matrix and clearance of
cellular debris; whereas Ly-6Clow monocytes differentiate into
M2 macrophages that are the prominent subset during day
4–7 post-MI and mainly involved in the healing process
(50). Accumulating evidence suggests that M2 macrophages
participate in the resolution of inflammation and cardiac repair,
which benefits cardiac functions after MI. In the next sections,
we will summarize their subpopulations, biological functions,
modulation methods, and polarization mechanisms.

Subpopulations
In response to different stimuli or pathological stresses, M2
macrophages polarize into distinctive phenotypes, namely M2a,
M2b, and M2c (51, 52). M2a macrophages can be elicited
by IL-4 or IL-13 with increased levels of CD206 (53) and
arginase 1 (54), which support cell growth, collagen formation,
and tissue repair by promoting the biosynthesis of polyamine
and proline (55). Chemokines, such as C-C motif chemokine
ligand (CCL) 2 (56), CCL17 (57), CCL22 (58), and CCL24
(59), are overexpressed in M2a macrophages, contributing to
the recruitment of eosinophils, basophils, and Th2 cells. In
addition, fibronectin, β IG-H3, and factor VIII subunit A
are overexpressed in M2a macrophages, which are associated
with extracellular matrix deposition and tissue remodeling (60,
61). However, the production of proinflammatory cytokines,
including IL-1, IL-6, and TNF-α, is low in M2a macrophages
(62), whereas the level of anti-inflammatory cytokines, including
IL-10 and transforming growth factor-β (TGF-β), is high (63).
M2b macrophages (elicited by immune complexes or Toll-like
receptor ligands) are characterized by a low level of IL-12 and
high level of IL-10. In contrast to elevated anti-inflammatory
cytokines in M2a and M2c macrophages, M2b macrophages
exhibit increased proinflammatory cytokines including IL-1β, IL-
6, and TNF-α (64, 65). Another obvious distinction betweenM2b
and M2a is that M2b cells have higher expression of sphingosine
kinase 1 enzyme (66). They similarly regulate the recruitment of
immune cells (eosinophils, Th2 cells, and regulatory T cells) by
selective production of CCL1 (67). In terms ofM2cmacrophages,
they are induced by IL-10, TGF-β, or glucocorticoid stimulation
and express a high level of the surface marker CD163 (68)
with decreased proinflammatory cytokines (IL-6, IL-12, and
TNF-α) and proinflammatory mediators (inducible nitric oxide
synthase and cyclooxygenase) (69). Previous studies have shown
high quantities of matrix metalloproteinases (MMP)-7, MMP-
8, MMP-9, and tissue inhibitor of metalloproteinase-1 in M2c
macrophages, suggesting their potential to regulate fibrosis after
MI (68, 70, 71). M2c macrophages also express high levels of
chemokines CCL16 and CCL18 that attract naïve T cells and
eosinophils (51).

Biological Functions: Anti-inflammation,

Angiogenesis, and Collagen Deposition
Macrophages are related to the processes of initiation,
maintenance, and resolution of the inflammatory response
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FIGURE 1 | Functions of M2 macrophages, mast cells, and eosinophils in MI.

and myocardial repair after MI (72, 73). Cardiac resident
macrophages begin to apoptose by 2 h and almost vanish within
24 h after MI. In contrast, a considerable number of monocytes
are recruited into the myocardium and then differentiate
into macrophages, which peak at day 6 after MI (74). M2
macrophages, which dominate the infiltration during day 4–7
post-MI, facilitate the recovery of cardiac functions via secretion
of anti-inflammatory cytokines, neovascularization, and collagen
deposition (72) (Figure 2).

Anti-inflammation
Previous studies have demonstrated that an exaggerated
inflammatory response increases ventricular dilatation
and cardiac dysfunction after MI (75), whereas attenuated
inflammation suppresses scar formation (76), and increases
the risk of cardiac rupture (77). Hence, timely resolution of
inflammation is crucial for myocardial repair.

Owing to the ability to secrete pro/anti-inflammatory
cytokines, macrophages are essential modulators of the
inflammatory process after MI. In apoE−/− atherosclerotic
mice, prolonged presence of Ly-6Chigh monocytes and higher
proinflammatory gene expression in the infarcted myocardium
hamper inflammation resolution and infarct healing (78),
indicating the importance of timely infiltration by reparative M2
macrophages. Indeed, M2 macrophages restrict the expansion of
inflammation through the release of anti-inflammatory cytokines
including IL-10 and TGF-β. Further experiments demonstrated
that IL-10 suppresses inflammation by restraining infiltration of
inflammatory cells and the synthesis of inflammatory cytokines

(IL-1β, IL-6, and TNF-α) in vivo (79). Early inhibition of TGF-β
leads to increased infiltration of neutrophils and gene expression
of IL-1β, TNF-α, and MCP-1, along with left ventricular dilation
and decreased cardiac contractility, indicating that TGF-β
protects the myocardium by regulating the inflammatory
process (80).

Angiogenesis
Angiogenesis increases cardiac tissue perfusion, which makes it
critical to salvage an infarcted myocardium. The beneficial effects
of macrophages on cardiac functions are mediated partially by
facilitating angiogenesis. Compared withWTmice, macrophage-
deficient mice exhibit impaired angiogenesis and infarct healing
(72). To further clarify the specific subtypes of macrophages that
induce angiogenesis, circulating macrophages were depleted in
the inflammatory phase (M1 macrophages) and healing phase
(M2 macrophages), respectively. Consequently, there was a
decline in quantity of microvascular α-actin+ smooth muscle
cells and CD31+ endothelial cells in the infarcted myocardium
whenM2macrophages were depleted (49). In addition, increased
infiltration of M2 macrophages into myocardium after fibroblast
growth factor (FGF)-2/hepatocyte growth factor administration
is accompanied by enhanced angiogenesis (81). Simultaneously,
M1, M2a, and M2c macrophages were injected subcutaneously
into mice to determine their specific roles. In accordance
with the above findings, compared with M1 macrophages,
M2 macrophages had a higher angiogenic potential. When
FGF-2 was neutralized in M2a or placental growth factor
(PlGF) was blocked in M2c macrophages, angiogenesis and
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FIGURE 2 | After myocardial ischemic attack, resident cardiac macrophages begin to develop apoptose by 2 h and circulating monocytes infiltrate into the injury site

and differentiate into macrophages. Elicited by IL-4 and IL-13, macrophages polarize toward the M2 phenotype through activation of STAT6. M2 macrophages

facilitate the recovery of cardiac functions via secretion of anti-inflammatory cytokines, promoting angiogenesis and collagen deposition.

tube formation were reduced significantly, indicating that FGF
signaling in M2a macrophages and PlGF signaling in M2c
macrophages might be possible mechanisms of angiogenesis
following MI (82). Apart from the release of angiogenic
cytokines, M2 macrophages may regulate angiogenesis by
transferring miRNAs. Angiogenic early outgrowth cells (EOCs),
which are largely positive for M2 macrophage markers,
were extracted from humans. Intramyocardial transplantation
of EOCs from healthy donors into MI mice improved
neovascularization in the infarct border zone and promoted
cardiac repair. However, EOCs extracted from patients with
chronic heart failure had loss of miRNA-126 and miRNA-130a
and showed impaired cardiac neovascularization. Anti-miRNA-
126 transfection decreased the angiogenic capacity of EOCs
from healthy donors, whereas miRNA-126 mimic transfection
increased the angiogenic capacity of EOCs from patients with
chronic heart failure (83).

Collagen deposition
During the reparative phase after MI, collagen deposition in the
infarcted myocardium stabilizes the damaged tissue and prevents
infarct expansion and ventricular dysfunction. Depletion of
macrophages decreases collagen deposition and wall thickness,
increases left ventricular dilation, and leads to a high mortality
after MI (72, 84). In contrast, injection of activated macrophages
(73) or macrophage colony-stimulating factor (85) facilitates
collagen deposition and myocardial repair.

M2macrophage-depletedTrib1−/− mice were used to identify
the contribution of M2 macrophages to cardiac repair. Trib1−/−

mice exhibit decreased collagen fibril formation and more
frequent cardiac rapture, whereas exogenous administration of
IL-4, which promoted M2 macrophage polarization, increases
the collagen volume in the infarct zone (86). Coculture with M2
macrophages isolated from the infarcted myocardium (86) or
their secretome (87) enhances activation of cardiac fibroblasts in
vitro. These effects might be ascribed to IL-1α and osteopontin,
because gene expression of Il1α and Spp1 is increased in
M2 macrophages at 7 days after MI, and neutralization
of IL-1α or osteopontin significantly reduces the fibroblast-
myofibroblast transition when cocultured with M2 macrophages
(86). Additionally, TGF-β released byM2macrophages promotes
synthesis of collagen type I and III (88, 89) through activation of
Smad3 signaling in cardiac fibroblasts (90).

Modulation Methods and Polarization Mechanisms
Although numerous methods have been applied to promote the
shift from M1 macrophages toward M2 macrophages after MI,
the precise mechanisms of M1/M2 polarization have not been
fully investigated in most studies (Table 1).

STAT proteins play an essential role in the immune
response, inflammation, as well as cell growth and differentiation
(127), and participate in various cardiovascular diseases (128,
129). It has been confirmed that IL-4 and IL-13 mediate
macrophage polarization toward M2a macrophages depending
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TABLE 1 | Modulation methods and mechanisms of macrophage polarization.

Modulation

methods

Approaches Animal

strains

Pathological

status

Polarization

mechanisms

Biological effects References

DRUG TREATMENT

BIO Intraperitoneal SD rats MI Not investigated Cardiac fibrosis↓

Cardiac function↑

(91)

N-propargyl

caffeamide

Intraperitoneal SD rats MI Not investigated Infarct size↓ (92)

DAPT Intravenous SD rats MI Not investigated Arrhythmia↓

Sympathetic hyperinnervation↓

(93)

Pyridostigmine Contained in water Wistar

rats

MI Not investigated Anti-oxidant enzyme activity↓

Cytokine production↓

(94)

Pyridostigmine Contained in water Wistar

rats

MI Not investigated LV diastolic function↑

Parasympathetic modulation↑

Sympathetic modulation↑

(95)

Eplerenone Intracerebroventricular Wistar

rats

MI Not investigated Cardiomyocyte apoptosis↓

LVEF↑

(96)

Atorvastatin Intragastric Wistar

rats

MI Not investigated Arrhythmia↓

Sympathetic hyperinnervation↓

(97)

Dapagliflozin Intragastric Wistar

rats

MI STAT3 signaling

pathway

Cardiac contractility and

relaxation↑

Cardiac fibrosis↓

Oxidative and nitrosative stress↓

(98)

Nicorandil Intragastric Wistar

rats

MI RhoA/Rho-kinase

signaling↓

Cardiac contractility and

relaxation↑

Cardiac fibrosis↓

(99)

HGF and FGF-2

contained

microparticle

Intramyocardial Wistar

rats

MI Not investigated Angiogenesis↑ (81)

Telmisartan Intragastric Zucker

diabetic

fatty rats

IR injury Ubiquitin-proteasome

system↓

Cardiac function↑

Infarct size↓

(100)

Sitagliptin +

G-CSF

Contained in food

and

intraperitoneal,

respectively

C57/BL6

mice

MI Not investigated Cardiomyocyte hypertrophy↓

LV dilatation↓

(101)

Niacin Intragastric C57BL/6

mice

MI PGD2/DP1 axis↑ Cardiac function↑ (102)

Hydrogen sulfide Intraperitoneal C57BL/6

mice

MI Lipolysis↑

fatty acid oxidation↑

Cardiac function↑

Survival↑

(103)

IL-2/Anti-IL-2

immune complex

Intraperitoneal C57BL/6

mice

MI Not investigated Cardiomyocyte apoptosis↓

Infarct size↓

LV function↑

(104)

Long-acting IL-4

complex

Intraperitoneal C57BL/6

mice

MI Not investigated Angiogenesis↑

Cardiomyocyte hypertrophy↓

Connective tissue formation↑

Infarct size↓

(4)

Topiramate Intraperitoneal C57BL/6

mice

MI Not investigated Cardiac rupture↓

Collagen density↑

Infarct size↓

Survival↑

(105)

BAY 60-6583 Intravenous C57BL/6

mice

IR injury PI3K/PKB pathway↑ Infarct size↓

Inflammation↓

(106)

Suppressing IRF5

by siRNA

Intravenous C57BL/6

mice

MI IRF5 Infarct healing↑ (107)

IL-10 Subcutaneous C57BL/6J

mice

MI Not investigated ECM deposition↓

Inflammation↓

LV function↑

(87)

Ω-Alkynyl

arachidonic acid

Intraperitoneal C57BL/6N

mice

MI Regulating cross-talk

between PKM2, HIF-1α

and iNOS

CK-MB↓

Infarct size↓

(108)

(Continued)
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TABLE 1 | Continued

Modulation

methods

Approaches Animal

strains

Pathological

status

Polarization

mechanisms

Biological effects References

CRMP2 siRNA Intravenous ApoE−/−

mice

MI IRF5↓ Cardiac fibrosis↓

Inflammation↓

LVEF↑

Scar size↓

Survival↑

(109)

Graphene

oxide-carried IL-4

plasmid DNA

Intramyocardial Balb/C

mice

MI Not investigated Angiogenesis↑

Cardiac fibrosis↓

Inflammatory cell infiltration↓

LV function↑

Survival↑

(5)

Hemin formulated

in designed

lipid-based

particles

Intravenous Balb/C

mice

MI Not investigated Angiogenesis↑

Infarct-related regional function↑

Scar tissue↓

(110)

Histone

deacetylase

inhibitor

Intraperitoneal CD1

mice

MI Not investigated Angiogenesis↑

LV dilation↓

LVEF↑

(111)

FGF-9 Intramyocardial Db/db

diabetic

mice

MI Not investigated Cardiac function↑

Infarct size↓

Inflammation↓

(112)

Ac-SDKP Intraperitoneal Mice MI Not investigated Cardiac function↑

Collagen deposition↓

(113)

HBSP Subcutaneous

injection

Rabbits MI Not investigated Coronary atherosclerosis↓ (114)

GENE MODIFICATION

Depletion of

Caveolin-1

Gene modification Cav1−/−

mice

MI TGF-β/Smad2↑ Cardiac fibrosis↑

Inflammatory cell infiltration↑

Survival↓

(115)

Depletion of

Lp-PLA2

Gene modification BmLp-

PLA−/−

mice

MI Not investigated Angiogenesis↑

Collagen deposition↑

Infarct size↓

LVEF↑

(116)

Depletion of Wnt Gene modification Cfms-

icre;Wlsfl/fl

mice

MI Not investigated Angiogenesis↑

Infarct-related regional function↑

(117)

Inhibition of

PTP1B

Gene modification PTP1B−/−

mice

MI Not investigated Angiogenesis↑

LV Diastolic function↑

Myocardial perfusion↑

(118)

MIF deficiency Gene modification MIF

deficient

mice

MI Not investigated Cardiac remodeling↓

Cardiac rupture↓

(119)

Urokinase

plasminogen

activator

overexpression

Gene modification SR-uPA

mice

MI Not investigated Cardiac fibrosis↑ (120)

CELL TRANSPLANTATION AND TISSUE ENGINEERING

MSCs Intramyocardial SD rats MI Not investigated Cardiac fibrosis↓

LVEF↑

(121)

MSCs Intramyocardial Macrophage

depletion

mice

MI Not investigated Infarct healing↑ (84)

BM-MSCs Intravenous NOD/SCID

γ null

mice

MI IL-10 mediated Cardiac function↑

Cardiac remodeling↓

(122)

FM-MSCs Cell sheets Lewis

rats

MI Not investigated Angiogensis↑

Cardiac fibrosis↓

Cardiac function↑

(123)

(Continued)

Frontiers in Immunology | www.frontiersin.org 7 January 2019 | Volume 10 | Article 62

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Type 2 Immunity in MI

TABLE 1 | Continued

Modulation

methods

Approaches Animal

strains

Pathological

status

Polarization

mechanisms

Biological effects References

Bone marrow

transplantation

Intravenous C57BL/6

mice

MI Not investigated Cardiac function↑

Cardiac remodeling↓

Survival↑

Wall thickness↑

(124)

Myocardial ECM

patch

Sutured onto

infarct area

Wistar

rats

MI Not investigated Cardiac function↑ (125)

PHB patch Patched on

epicardial

Wistar

rats

MI Not investigated Angiogenesis↑ (126)

BIO, (2’Z,3’E)-6-Bromoindirubin-3’-oxime; DAPT, N-N-(3,5-difluorophenacetylL-alanyl)-S-phenylglycine-t-butyl ester; LV, left ventricular; HGF, hepatocyte growth factor; G-CSF,

granulocyte-colony stimulating factor; PI3K/PKB, phosphatidylinositol 3-kinase/ protein kinase B; ECM, extracellular matrix; PKM2, pyruvate kinase isozymes M2; HIF, hypoxia-inducible

factor; Inos, inducible nitric oxide synthase; CRMP2, collapsin response mediator protein 2; Ac-SDKP, N-acetyl-seryl-aspartyl-lysyl-proline; HBSP, helix B surface peptide; Smad, mothers

against decapentaplegic homolog 2; Lp-PLA2, lipoprotein-associated phospholipase A2; PTP1B, protein tyrosine phosphatase 1B; MIF, macrophage migration inhibitory factor; SR-uPA,

overexpression of urokinase plasminogen activator; MSCs, mesenchymal stem cells; FM-MSCs, fetal membrane-derived mesenchymal stem cells; BM-MSCs, bone marrow-derived

mesenchymal stem cells; PHB, poly(3-hydroxybutyrate).

on STAT6 signaling (130), whereas IFN-γ mediates macrophage
polarization toward M1 macrophages depending on STAT1
signaling (131, 132). There is antagonism between STAT1 in M1
macrophages and STAT6 in M2 macrophages (133). Therefore,
regulation of STAT1 and STAT6 axes is critical for the shift from
M1 to M2 macrophages. Prostaglandin D2 (PGD2) participates
in the resolution of inflammation (134) through binding to
D prostanoid (DP1 and DP2) receptors (135). Macrophages
express high levels of DP1 and DP2 (136), and activation of the
DP1 receptor regulates macrophage infiltration and promotes
inflammation resolution (137). Inmice withmacrophage-specific
genetic deletion of DP1, macrophages are largely polarized to
M1 phenotypes, leading to an extended inflammation period
after MI with decreased myocardial repair. In vitro experiments
showed that a DP1 receptor agonist inhibits Janus kinase
2/STAT1 phosphorylation by facilitating combination of the
separated PKA regulatory IIα subunit and the transmembrane
domain of IFN-γ receptor, which in turn induces STAT6
phosphorylation in macrophages (138). Similarly, another study
confirmed that niacin activates the PGD2/DP1 axis to polarize
macrophages toward the M2 subtype and promotes cardiac
healing post-MI (102). In addition, STAT3 is widely recognized
as the primary transcription factor modulating IL-10 signaling
in macrophages, and activation of the STAT3 pathway is a
potential mechanism for polarization toward M2c macrophages
(139, 140). Dapagliflozin, a selective sodium-dependent glucose

transporter inhibitor, acts as an antioxidant and enhances

STAT3 activity during myocardial ischemia. Simultaneously,

dapagliflozin preferentially activates M2c macrophages by

increasing IL-10 expression and attenuating myofibroblast
infiltration during post-infarction remodeling (98).

Apart from STAT, interferon regulatory factor (IRF) 5 has

been identified as another transcription factor modulating
M1 macrophage polarization (141). In IRF5-silenced mice,

expression of a M1 macrophage marker decreases, and the

resolution of inflammation and infarct healing are augmented
(107). By silencing upstream gene expression of collapsin

response mediator protein-2, the level of IRF-5 decreases, which

is accompanied by an increase of M2 macrophages. Such an
M1/M2 switch is reversed by overexpression of IRF5 (109). These
studies provide novel gene modification strategies to modulate
M2 macrophage polarization.

Overall, targeting STAT and IRF signaling might be effective
approaches to facilitate differentiation of macrophages toward
the M2 phenotype, which is beneficial for cardiac repair after
MI. More studies should be performed to investigate the precise
mechanism of M2 polarization following MI (Figure 3).

Mast Cells
Mast cells arise from hematopoietic pluripotent precursors in
bone marrow and thenmature in response to proper stimuli such
as stem cell factor (c-kit ligand) and IL-3 (142). In contrast to
the various phenotypes of macrophages, mast cells appear to be
simpler and their effects are largely mediated by degranulation.
With regard to their perivascular location and abundant bioactive
granules, such as chymases, tryptases, histamine, renin, and
cathepsins (143), mast cells are assumed to actively participate
in cardiovascular diseases. Cardiac mast cells exist in both the
hearts of humans (144) and animals (145, 146), and are essential
to maintain aminopeptidase activity in the normal heart (147). In
addition, manymast cells accumulate in the subepicardial layer of
the infarct zone after MI (148, 149), indicating their involvement
in the pathological process. Although numerous studies have
been conducted to elucidate the role of mast cells after MI, the

effects of mast cells on the ischemic or infarcted myocardium are
still controversial (Figure 4).

Ischemia-Reperfusion (IR) Injury and Ischemic

Preconditioning (IPC)
Although timely and efficient reperfusion is the most critical
therapy for MI, it may also induce continuing necrosis of
cardiomyocytes and exacerbate inflammation because of IR
injury. IPC is an effective approach to reduce myocardial
IR injury and improve cardiac functions (150). It has been
demonstrated that mast cells contribute to the protective effects
of IPC against IR injury in the small intestines (151) and
cerebrum (152). However, in the setting of myocardial IR injury,
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FIGURE 3 | Mechanisms of macrophage polarization after MI.

FIGURE 4 | In the setting of MI, the diverse biological effects of mast cells are largely mediated by their granules containing renin, chymase, tryptase, and TNF-α.

Degranulation of mast cells induces activation of local RAS, inflammatory cell recruitment, angiogenesis, and regulation of cardiomyocyte contractility and apoptosis.

current evidence indicates that mast cell granules are generally
deleterious and might augment myocardial injury.

Earlier studies did not find any association between mast
cells and IR injury or IPC after MI, because their numbers

and granular content are not affected after IPC (153), and
neither a mast cell stabilizer nor mast cell degranulating
compound 48/80 influence the antiarrhythmic effects of IPC
(154, 155). Nevertheless, mast cell peroxidase, which is a
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marker of mast cell degranulation, exhibits a remarkable increase
in the coronary perfusate after IPC or compound 48/80
pretreatment, indicating the potential involvement of mast cell
degranulation in IPC (156). Further experiments demonstrated
that norepinephrine preconditioning reduces myocardial injury
by promoting degranulation (157, 158), whereas adrenoceptor
blocker (158) or mast cell stabilizer (159) treatments during
IPC largely decrease the degranulation of mast cells, and thus
mitigate the salutary effects of IPC. These findings imply that
IPC facilitates discharge of toxic substances via premature
mast cell degranulation and consequently alleviate detrimental
effects during the following prolonged ischemia. Additionally,
inhibition of mast cell degranulation by an adenosine A2a

receptor agonist (160) or relaxin (161, 162) at the reperfusion
phase reduces the oxidative injury, infarct size, and ventricular
arrhythmia in an IR model.

More recently, mast cells have been reported to be a crucial
source of renin in the myocardium (163) and thus elicit
post-IR arrhythmia by activating the local renin angiotensin
(Ang) system (RAS) (164, 165). After IPC, the level of
adenosine elevates rapidly in the myocardium (166). Ex
vivo experiments showed that adenosine further activates the
PKCε/aldehyde dehydrogenase type 2 (ALDH2) pathway in
cardiac mast cells via combination with adenosine A2b/A3

receptors, in turn, reduces the local secretion of renin and
biosynthesis of Ang II, which induces arrhythmia by modulating
sympathetic nerve endings (167). In accordance with the
above findings, activation of Gi-coupled receptors, such as
histamine-H4 and sphingosine-1-phosphate-S1P1 receptors on
mast cells, also reduce the infarct size and the occurrence
of arrhythmia through triggering the PKCε/ALDH2 pathway.
In contrast, pharmacological inhibition of ALDH2 by glyceryl
trinitrate treatment or gene modification (ALDH2∗2 knock-
in mice) abolishes the cardioprotective effects in IR models
(168–170).

In addition to renin, IR injury can be caused by other
granules in mast cells. Chymases effectively facilitate the
conversion of Ang I (171, 172)/proAng-12 (173) (a proteolytic
product of angiotensinogen) to Ang II, which may contribute
to neutrophil infiltration via CXC chemokines (174) and
cardiac tissue remodeling after IR injury. Interestingly, Ang
II production is blocked by inhibition of chymases, but
not Ang I-converting enzyme, suggesting that local chymase-
induced Ang II production is independent from classic
RAS activation. In fact, inhibition of chymases protects
cardiomyocytes from apoptosis after IR injury by reducing
the level of pro-MMP-9, cleaved MMP-9, and neutrophil
infiltration, and increasing activation of endothelial nitric
oxide synthase (175). Moreover, mouse mast cell protease
4 (a homolog of human chymase) depletion significantly
reduces the late, but not early, infarct area and improves left
ventricular functions by ameliorating insulin-like growth factor-
1 degradation and activating subsequent prosurvival signals
(176). In addition, under oxidative stress, TNF-α, which is
released during mast cell degranulation, is recognized as a
crucial substance that induces cardiomyocyte apoptosis after IR.
TNF-α upregulates transcription of IL-6 in recruited leukocytes

and subsequent induction of intracellular adhesion molecule-
1 in cardiomyocytes, which mediates neutrophil adherence to
cardiomyocytes and neutrophil-mediated cardiomyocyte injury
(177, 178). Mast cell stabilizers (ketotifen and cromoglycate)
inhibit TNF-α secretion (179) and may attenuate myocardial
injury after IR. These findings indicate that inhibition of mast
cell degranulation or the release of specific granules may be a
promising strategy to alleviate IR injury.

Cardiac Fibrosis
Studies have demonstrated the profibrotic properties of mast cells
under various pathological conditions, such as atrial fibrillation
(180), valvular heart disease (181, 182), and heart failure (183,
184). However, in MI, credible evidence is lacking for the
correlation between mast cells and cardiac fibrosis, except for
some indirect observations. Mast cell precursors are recruited
in the area of collagen deposition at 2–3 days after reperfusion,
which is mediated by macrophage-derived stem cell factor (185).
In the chronic phase of MI, in situ hybridization demonstrated
that plasminogen activator inhibitor-1, which induces tissue
fibrosis by inhibiting MMPs, mainly lies in cardiomyocytes and
perivascular mast cells around the infarction border zone (186).
In a rat model of MI, inhibition of chymases significantly reduces
the fibrotic area and mRNA levels of collagen I, collagen III, and
TGF-β, which is important for the growth of fibroblasts (187). In
addition, chymases facilitate the proliferation of fibroblasts in a
dose-dependent manner in vitro (175). Additionally, bradykinin
B2 receptor antagonist (Hoe140) administration reduces the
number ofmyofibroblasts and attenuates interstitial fibrosis post-
MI, in accordance with the reduction in mast cell infiltration
(188). More studies are needed to ascertain the functions of mast
cells in cardiac fibrosis and their underlying mechanisms in MI.

Protective Properties
Despite the long-held view thatmast cells and their degranulation
are detrimental to myocardial repair, studies continue to uncover
their favorable effects. Clinical studies have shown that a
high level of baseline serum immunoglobulin E (>200 IU/ml)
is associated with less cardiac arrest or cardiogenic shock
events in MI patients. It was speculated that immunoglobulin
E facilitates mast cell infiltration and degranulation in the
ischemic myocardium and thus improves the prognosis (189).
Indeed, in a canine model of myocardial IR injury, mast
cells accumulate along the cardiac vasculature for 4 weeks or
longer and exhibit a defect in granular content (tryptases and
chymases). In vitro experiments demonstrated that mast cell
tryptases upregulate the expression of angiogenic cytokines by
endothelial cells, including IL-8 and MCP-1, which might be
mediated by protease-activated receptor 2 (PAR2) activation
(149). In addition, mast cell-deficient rats (c-kit deficiency)
exhibit a decreased coronary microvessel density around the
infarct zone, a larger infarct core, and poorer left ventricular
functions compared with WT rats (190). Hence, the infiltration
of mast cells might promote the angiogenic activity of cardiac
endothelial cells and subsequent healing process in the infarcted
myocardium via tryptase secretion. However, c-kit deficiency
affects the functions of mast cells as well as other immune cells.
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Models of specific depletion of tryptases, such asMcpt6−/− mice
(191), are necessary to verify the effects of tryptases in vivo.
Recently, a more reliable c-kit-independent mast cell-deficient
(Cpa3cre/+) mouse was used to investigate the role of mast
cells. Similarly, a large amount of mast cell progenitors, which
mainly originated from white adipose tissue, were aggregated
in the heart and differentiated into mature mast cells after MI.
Although no differences were found in the capillary density,
collagen deposition and the infarct size between Cpa3cre/+ and
WTmice, it demonstrated that mast cell-derived tryptases inhibit
PKA activation and subsequent troponin I and myosin-binding
protein C phosphorylation by promoting PAR-2 activation
and, in turn, increase the Ca+ sensitivity and contractility of
cardiomyocytes (192).

The underlying cardioprotective abilities of mast cells have
also been illustrated by direct transplantation (mast cells
or their granular components). Mast cell granules (MCGs)
obtained by collecting a cell suspension after compound
48/80 stimulation has been proven to be therapeutic in MI.
Early MCG injection at the infarct site augments myocardial
angiogenesis and reduces cardiomyocyte apoptosis. Treatment
with MCGs enhances endothelial cell migration, tube formation,
and hypoxic resistance of cardiomyocytes in vitro (193). In
addition, intracoronary functional mast cell implantation
promotes cardiac fibroblast-to-myofibroblast conversion
and angiogenesis compared with non-functional mast cells
(KitW/W−V mouse-derived mast cells), thereby preserving
cardiac functions. However, these effects cannot be sustained
long term (194). In addition, mast cells enhance cardiac
functions by supporting the growth of stem cells. Mast cells
or MCGs (extracted by freeze-thaw cycles and filtration)
promote the migration and proliferation, but not myogenic
differentiation, of mesenchymal stem cells (MSCs) via activation
of the platelet-derived growth factor pathway in the early phase
of MI. These effects may retain a sufficient number of MSCs
for further myofibroblast differentiation in the healing phase
(195).

Taken together, mast cell granules are very likely the
main determinants in mediating beneficial effects after MI,
including angiogenesis, cardiomyocyte contractility regulation,
anti-apoptosis, hypoxia resistance, fibroblast-to-myofibroblast
conversion, and the survival of stem cells. However, concerning
the sophisticated composition of MCGs and different extraction
methods, more studies are required to identify the key regulatory
factors in their granules and to address the mechanisms using
specific animal models.

Eosinophils
Eosinophils differentiate from multipotent progenitors in
bone marrow and are then released into peripheral blood.
They contain various kinds of specific granular contents
including eosinophil cationic protein (ECP), eosinophil
peroxidase, major basic protein, eosinophil-derived neurotoxin,
cytokines, growth factors, chemokines, and enzymes (196). As an
indispensable component of type 2 immunity, eosinophils
comprehensively interact with other immune cells and
participate in the process of helminth infection and allergic

diseases through degranulation activity. Recent data suggest
that eosinophils are also involved in the progression of
MI owing to their proinflammatory and prothrombotic
properties.

Biomarkers for ACS
In MI patients, serum ECP elevates significantly during
the initial 2–3 days, whereas the number of eosinophils
in peripheral blood decreases, indicating that eosinophils
probably infiltrate into the infarcted myocardium and participate
in the acute inflammatory process after MI (197). The
activation and degranulation of eosinophils in the infarcted
myocardium may affect the structure of heart and lead to cardiac
rupture (198).

Many studies have investigated the relationship between
eosinophils or ECP and clinical outcomes of MI patients.
Patients with a higher eosinophil-to-leukocyte ratio at 24 h
after admission have significantly higher occurrence of major
adverse cardiovascular events (199). Similarly, baseline ECP
levels before stent implantation are higher in patients who
suffer major adverse cardiac events such as cardiac death,
recurrent MI, and clinically driven target lesion revascularization
(200, 201). However, it was also reported that a high level of
eosinophils (blood samples collected within 72 h after admission)
is associated with a lower 1-year risk of death after multivariate
adjustment (202). In addition, severe ACS patients have lower
blood eosinophils compared with less severe ACS patients
(203, 204). The inconsistent results of the relationship between
eosinophil numbers and clinical outcomes of MI patients may
due to the timing of blood sample collection or different patient
cohorts.

By analyzing thrombus aspiration samples during emergency
coronary angiography, eosinophils were found to be largely
contained in the coronary thrombus of ACS patients and
associated with a larger thrombus area, indicated that eosinophils
caused the occurrence of MI by facilitating thrombus growth
in the coronary artery (204, 205). In accordance with the above
results, eosinophil degranulation, ECP levels, and the thrombus
score were higher in ST-segment elevation MI patients with
major adverse cardiac events at the 1-year follow-up (206).

Potential Mediator of Tissue Repair
Growing evidence has demonstrated that eosinophils also
induce tissue repair. In a mouse model of cardiotoxin-induced
tibialis anterior muscle injury, eosinophils largely aggregate
in the injured site and activate the IL-4/IL-13 signaling
pathway in fibro/adipogenic progenitors via secretion of IL-4.
Consequently, the proliferation of fibro/adipogenic progenitors
facilitate myogenesis. The regeneration ability is impaired in
1dblGATA mice (unique loss of eosinophil lineage) (207).
Similarly, eosinophils are recruited into the liver after hepatic
injury and release IL-4 that directly promotes hepatocyte
proliferation via blinding to IL-4Rα on these cells (208). However,
studies concerning the role of eosinophils in the injured
myocardium are lacking. It will be intriguing to further clarify
the role of eosinophils in MI with regard to their specific abilities.
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CONCLUSION

Type 2 immunity-related cell types and cytokines participate in
various physiological and pathological processes after MI. M2
macrophages inhibit the inflammatory response and promote
angiogenesis and collagen deposition, thereby conferring benefits
to the infarcted myocardium. Modulation of the macrophage
polarization status is critical for myocardial repair. Although
mast cells and their granules have been regarded as detrimental
to myocardial healing, recent studies using more reliable mouse
models have indicated that mast cell-derived tryptases actively
regulate contractility of cardiomyocytes. Additionally, injection
of MCGs preserves cardiac functions after MI by promoting
angiogenesis, fibroblast-to-myofibroblast conversion, migration
and proliferation of MSCs, and reducing cardiomyocyte
apoptosis. In terms of eosinophils, the serum level of eosinophils
and their granules, especially ECP, are closely related to the
severity and clinical outcomes of ACS patients. Interestingly,
two studies have revealed their underlying ability to activate
intrinsic tissue repair of both muscular and hepatic injuries.
However, these properties have not been tested in the setting
of MI. Owing to the comprehensive interactions with immune
and myocardial cells, type 2 cytokines have been proven to

facilitate the recovery of cardiac functions after MI and serve
as potential biomarkers to evaluate the severity and prognosis
of MI. Nevertheless, the roles of basophils, ILC2, Th2 cells,
and other type 2 cytokines in MI remain obscure. More studies
are needed to further clarify the role of type 2 immunity
in MI.
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