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Abstract

Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural
practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here, we
examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance
to insecticides. Using whole-genome resequencing and transcriptomic data focused on its ancestral and pest range in
North America, we assess evidence for three, nonmutually exclusive models of rapid evolution: pervasive selection on
novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic
analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest
populations exhibit similar levels of nucleotide diversity, relative to nonpest populations, and show evidence of recent
expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong
evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that
constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves
insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes,
demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation.
Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection
on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of
polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of
novel control techniques.

Key words: population genomics, insecticide resistance, rapid evolution, genetic adaptation, regulatory evolution,
insect pest, polygenic trait.

Introduction
Herbivorous pests cause an estimated 18–20% damage to
crops and cost nearly $470 billion annually on a global scale
(Sharma et al. 2017). The ability of insect pests to evolve
resistance to insecticides threatens food security and the de-
velopment of sustainable agricultural practices, especially
when their rate of evolution outstrips the development of
novel control strategies (Lewis et al. 1997; Chen and Schoville
2018; Gould et al. 2018). This is the case with insect “super-
pests,” which repeatedly evolve insecticide resistance even as
they are faced with completely novel insecticides, thus per-
petuating the arms race that defines the pesticide treadmill
(McCaffery and Nauen 2006). Curiously, particular super-pest
species or even select populations are more likely to adapt to

new compounds, suggesting that there is a genetic basis in
the propensity to evolve resistance (Brevik et al. 2018). Yet,
despite more than 60 years of research on the evolution of
resistance (Crow 1957), the relative importance of alternative
mechanisms that underlie the evolutionary potential for pes-
ticide resistance evolution are still unclear (ffrench-Constant
and Bass 2017; P�elissi�e et al. 2018). Although a considerable
effort has been placed on understanding the proximal mo-
lecular control of resistance (ffrench-Constant 2013), broader
questions about the genetic complexity of resistance, mode of
selection, and geographical extent of adaptation have rarely
been studied (Daborn et al. 2002; Labb�e et al. 2007; Kamdem
et al. 2017). Although population genetic models of resistance
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management have been highly effective in certain manage-
ment scenarios (Tabashnik et al. 2013), observed patterns of
insecticide resistance evolution defy many of the assumptions
of our evolutionary models (Hoy 1998). Recent genomic rese-
quencing data sets suggest that resistance evolution is some-
times geographically and genetically complex (Cheng et al.
2017; Anderson et al. 2018; Lucas et al. 2019; Calla et al. 2020).

A key goal should be to understand the evolutionary pro-
cesses that allow species to become pests, particularly the
mechanisms underlying phenotypic shifts that result in eco-
nomically damaging pest outbreaks (Fritz et al. 2018; P�elissi�e
et al. 2018). A prevalent view is that pests, including invasive
species, often retain substantial genetic diversity that facili-
tates evolution in agroecosystems (Lee 2002; Guillemaud et al.
2011; Kirk et al. 2013). However, there is increasing recogni-
tion that evolution can be rapid irrespective of levels of stand-
ing genetic diversity (Hawkins et al. 2019). Although not all
pests exhibit rapid rates of adaptation to insecticides (Brevik
et al. 2018), insect super-pests often demonstrate repeated
rapid evolution of similar resistance phenotypes (Georghiou
and Taylor 1986; May and Dobson 1986).

Rapid evolution is defined as a shift in phenotype from
underlying variation in exceptionally few generations
(Hairston et al. 2005), and can occur as a result of several
mechanisms (Whitehead et al. 2017). First, selection can act
on novel mutations, which may arise frequently if pests have
intrinsically large population sizes (much greater than�106)
and are not mutation-limited (Barton 2010; Cutter et al.
2013). This could lead to repeated evolution of resistance
among different populations, often with independent muta-
tions at loci underlying resistance phenotypes (Rinkevich
et al. 2012). Second, as a special case of the first mechanism,
key mutational changes could affect a master regulatory
gene (L�opez-Maury et al. 2008; Roelofs et al. 2010; Reid
et al. 2016), where mutations drive expression of the same
downstream molecular pathways in different populations.
Rapid gene regulatory evolution has been raised as a possible
mechanism underlying repeated evolution of pesticide resis-
tance in the spider mite Tetranychus urticae, where it has
been linked to a transcriptional cascade in xenobiotic detox-
ification (Dermauw et al. 2013). Third, an alternative path-
way of rapid evolution would draw on standing genetic
variation (Crow 1957). Standing genetic variation is increas-
ingly viewed as a common source of rapid adaptive variation
(Messer and Petrov 2013), where the initial frequency of
mutations in a population determine the rate at which
populations respond to selection pressures (Barton and
Keightley 2002; Pujol et al. 2018). Although population size
must typically be large to retain large reservoirs of standing
variation, admixture among divergent populations can in-
crease standing variation (De Carvalho et al. 2010; Corr̂ea
et al. 2019). In an extreme case, ancestral standing genetic
variation can lead to parallel selection, where the same genes
are selected in independent populations resulting in conver-
gent phenotypes (Tennessen and Akey 2011). However,
standing genetic variation can also be present in the form

of redundancy in molecular pathways that are critical to
pesticide resistance phenotypes (e.g., in generalist herbivo-
rous insects that specialize on toxic plants: Hardy et al. 2018;
Rane et al. 2019; L�aruson et al. 2020). It should be empha-
sized that these mechanisms of adaptation need not be ex-
clusive, yet it remains unclear how each contributes to the
evolutionary success of the top arthropod super-pests.
Emerging genomic data sets provide the opportunity to de-
tect and quantify the importance of different mechanisms
underlying rapid evolutionary change by screening for geno-
mic signatures of selection (P�elissi�e et al. 2018).

The Colorado potato beetle (CPB), Leptinotarsa decemli-
neata, is a global super-pest and an especially tractable exem-
plar of rapid evolution to insecticides. CPB has evolved
resistance to over 50 different insecticides in all the major
classes, in some cases within the first year of use (Alyokhin
et al. 2008). CPB has demonstrated an ability to rapidly evolve
in response to a wide range of environmental pressures, in-
cluding host–plant defenses and climatic variability (Petek
et al. 2012; Izzo et al. 2014). This super-pest originated in
the Great Plains region of the United States (Izzo et al.
2018), following a host shift to potato (an introduced crop)
in the mid-19th century (around 1859) that allowed for rapid
spatial expansion from Nebraska to the Eastern US in a 20-
year period and colonization of Eurasia by the early 1900s
(Walsh 1866; Lu and Lazell 1996; Grapputo et al. 2005).
Despite rapid spatial expansion, populations are genetically
differentiated (Grapputo et al. 2005; Izzo et al. 2018) and
insecticide resistance is geographically heterogeneous
(Crossley et al. 2018; Szendrei et al. 2012; Dively et al. 2020),
even over local landscape scales (Crossley et al. 2017). In par-
ticular, beetles from Long Island, New York are known to have
the highest levels of baseline resistance and are typically the
first populations to develop resistance to all compounds
(Hitchner et al. 2012; Dively et al. 2020), whereas populations
in the Pacific Northwest remain susceptible to insecticides
despite an equivalent duration of usage and comparable
treatment practices (Rondon 2012; Dively et al. 2020).
Nonpest populations are native to the Great Plains and
Mexico, where they use ancestral host plants (primarily
Solanum rostratum) (Hsiao 1978). Closely related congeners
in the genus Leptinotarsa are sympatric in the southern part
of CPB’s geographical range (Hsiao 1988). It is unknown
whether multiple populations, or species, contribute to CPB
pest variation through past episodes of admixture (Izzo et al.
2018). By integrating across this diversity, CPB can serve as a
model for understanding evolutionary mechanisms that fa-
cilitate and constrain rapid evolution.

Here, we leverage the recent publication of the CPB ge-
nome (Schoville et al. 2018) to investigate whether repeatable
patterns of evolution occur in highly resistant pest popula-
tions. We compare CPB genomic and transcriptomic varia-
tion across populations in the United States, Mexico, and
Europe, as well as nine closely related Leptinotarsa species,
to assess three competing models of rapid evolution: perva-
sive selection on de novo mutation (independent hard
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selective sweeps in geographically separate populations),
rapid regulatory evolution, or repeated selection on standing
genetic variation (see table 1 for predictions). We also assess
whether parallel selection on the same ancestral genomic
variation has led to convergent phenotypes underlying neon-
icotinoid resistance in six geographic regions.

Our approach provides an important insight on the ge-
netic basis for traits that are adaptive in agriculture such as
insecticide resistance. Traditional models of insecticide resis-
tance evolution assume that resistance is caused by a simple
mutation at a single gene (Roush 1989; Hawkins et al. 2019),
whereas repeated selection by insecticides on standing ge-
netic variation likely results in polygenic trait architecture
(multiple genes contributing to resistance phenotypes),
which we assess based on the number of selected genes
and pathways, as well as the size of selective sweeps
(Pritchard et al. 2010). In practice, however, it is difficult to
determine the cause of polygenic trait architecture. Although
polygenic adaptation to a single insecticide (or mode of ac-
tion) alone can generate polygenic architectures in resistance
traits (Crow 1957), its effects are difficult to distinguish from
the genomic consequences of independent bouts of insecti-
cide adaptation without appropriate temporal sampling.
Since many CPB pest populations have shown some level
of resistance to multiple insecticides and/or multiple modes
of action (Crossley et al. 2017), we avoid speculating about
the potential role of polygenic insecticide adaptation. Instead,
we focus on evidence for polygenic architecture of resistance
as a product of selection on standing genetic diversity in CPB.
To improve our interpretations of insecticide resistance pat-
terns, we provide a detailed description of genomic diversity
patterns, evolutionary relationships, and the population

history of CPB pest lineages, in order to understand how
expansion history or admixture have influenced geographical
variation in insecticide resistance. Over the long-term, by im-
proving our understanding of the evolutionary processes and
genomic mechanisms underlying the ability to repeatedly
evolve insecticide resistance in super-pests, integrated pest
management strategies can be developed to provide more
sustainable agricultural practices (Kirk et al. 2013; Chen and
Schoville 2018).

Results

Extensive Genomic Diversity within CPB
To provide a broad-scale assessment of genomic diversity
patterns, we examined short-read whole-genome sequences
for a geographically dispersed set of 85 CPB samples, as well as
nine additional Leptinotarsa species (fig. 1 and supplementary
file 1: table S1 and fig. S2, Supplementary Material online).
CPB samples were selected to maximize information about
genomic differentiation across the range of CPB, but also
include six geographically proximate pairs of neonicotinoid
(imidacloprid) susceptible and resistant samples to test for
parallel selection to this compound: Maine (R) and Vermont
(S), New York (R) and New Jersey (S), Maryland (R and S),
Michigan (R and S), Wisconsin (R and S), and Oregon (R and
S). However, all pest populations may have evolved resistance
to legacies of previous insecticides. Employing best practices
in genotype ascertainment, we sequenced each sample (most
resulted in coverage >4�, supplementary file 1: fig. S3,
Supplementary Material online), and found that CPB shows
considerable genomic diversity, with 76,647,868 single-nucle-
otide polymorphisms (SNPs) recovered from the nuclear

Table 1. Predictions from Alternative Mechanisms of Rapid Evolution to Insecticide Resistance in Colorado Potato Beetle.

Evolutionary
Mechanism

Geographical Pattern in
Resistant Populations

Genome Scans of
Selection

Haplotype-Based
Selection Scan

Differential Gene
Expression

De novo
mutation

Independent hard selec-
tive sweeps

A few statistically signif-
icant candidate genesa

Long haplotype blocks
around selected loci
(i.e., hard selective
sweeps)

Differential gene expres-
sion limited to key
pathways

Rapid regulatory
evolution

Selection in key regula-
tory genes leading to
repeated upregulation
of resistance pathways

A few statistically signif-
icant regulatory genes

Long haplotype blocks
around regulatory
genes encoding tran-
scription factors (i.e.,
hard selective sweeps)

Differential expression of
key transcription fac-
tors and constitutive
expression differences
in insecticide resis-
tance pathways

Standing genetic
diversity

Repeated selection on
candidate insecticide
resistance genes

Numerous statistically
significant candidate
genes.

Separate test for parallel
selection shows selec-
tion of the same genes
if ancestral variation is
repeatedly selected in
resistant populationsb

Short haplotype blocks
around selected loci
(i.e., a soft selective
sweep)

Multiple differentially
expressed genes in the
same molecular path-
ways and constitutive
expression differences
in insecticide resis-
tance pathways

aFor de novo mutations, the expectation would be the detection of very few outliers (monogenic resistance) related to insecticide resistance, in about the same order of
magnitude as the number of compounds populations have evolved resistance to (perhaps as many as 52; Alyokhin et al. 2008). Note that this number is expected to be even
lower, as a many insecticides share the same molecular mode of action (physiological target; there are 12 modes of action for insecticides used to control CPB).
bIf selection on standing genetic variation acts on ancestral polymorphism, tests for parallel selection among replicate resistant-susceptible pairs of populations are expected to
show a pattern of repeated selection of the same genes in resistant populations.
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FIG. 1. (A) Unrooted phylogenetic tree of Leptinotarsa species obtained with SNPhylo, based on 35,838 SNPs (after LD-based reduction). Node
labels represent bootstrap values. The blue arrow highlights a monophyletic clade comprising CPB samples collected in the United States and
Europe. (S), imidacloprid susceptible population; (R), imidacloprid resistant population. (B) Geographical sampling of Leptinotarsa decemlineata
and estimated admixture coefficients. Admixture proportions were estimated with SNMF on the intergenic “CPB” data set for k¼ 6 clusters, and
are shown as both pie charts and an individual bar-plot. Each pie chart represents a sampled location (small charts for single samples; large ones for
populations of five individuals), referenced as a number. Colored boxes around large pie charts differentiate susceptible (green) versus resistant
samples (red). (C) Population demographic histories (median Ne only) estimated from SMCþþ. Colors correspond to geographical regions.
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genome (supplementary file 1: table S2, Supplementary
Material online; the CPB genome is estimated to be
�670 Mb in size). Following variant recalibration, there
were a total of 47,969,460 SNPs, of which 30,973,249 were
in intergenic regions.

We estimated genome-wide nucleotide diversity (p) using
a 10-kb sliding window. Within-population genetic diversity
of nonpest CPB samples from the inferred ancestral source
population, the US Plains region, was high with an average
p¼ 0.005. Field samples of the US pest populations had less
nucleotide diversity (average p¼ 0.0028 and 0.0030 for colo-
cated pairs of pesticide resistant and susceptible populations,
respectively; supplementary file 1: table S3 and fig. S4,
Supplementary Material online), but pooling colocated pairs
of field samples increased nucleotide diversity in a given ag-
ricultural region by 40% (reaching an average p¼ 0.005).
There is thus no difference in p among pest and nonpest
regions, showing that high levels of variation have been
retained in the beetle’s expansion into agricultural regions.
Individual heterozygosity appeared to be reduced relative to
expectations under random mating for all populations, as
measured by the inbreeding coefficient (FIS). Inbreeding val-
ues were slightly larger in pest populations (on average
FIS ¼ 0.603 and 0.557 for susceptible and resistant popula-
tions, respectively; supplementary file 1: table S4 and fig. S5,
Supplementary Material online), relative to Plains individuals
(on average FIS¼ 0.531), but mean values are not significantly
different (P¼ 0.453). The New Jersey lab population, which
was maintained as a breeding colony for pesticide assays
(since the mid-1980s, but after a history of insecticide expo-
sure and reported cases of resistance), showed the highest
level of inbreeding (FIS¼ 0.723) and was significantly different
from the nearby New York population (P¼ 0.008).
Susceptible and resistant pest samples had a comparable
number of private alleles (93,407 vs. 89,599, respectively; sup-
plementary file 1: figs. S6 and S7, Supplementary Material
online), but Plains samples had three times as many private
alleles (262,140 vs. 91,503, respectively). Private allele abun-
dance between the Plains and pest populations was highly
significantly different (P¼ 1.482e-05). Examining observations
of nucleotide diversity, inbreeding, and private alleles suggests
that pest lineages lost rare genetic variation (private alleles) as
they expanded into agricultural habitats, but did not experi-
ence a strong reduction in effective population size.

Evolutionary Diversification and Demographic History
In order to examine the evolutionary history of CPB, we in-
vestigated phylogenetic and population genetic divergence
patterns. Phylogenetic reconstruction (fig. 1A) clearly sepa-
rated the Mexican samples from all the US samples, and
pairwise FST suggests genomic divergence of Mexican samples
relative to the US Plains region (Northern Mexico vs.
Plains¼ 0.187, and Southern Mexico vs. Plains¼ 0.619). All
CPB populations from potato growing regions in the United
States and Eurasia formed a well-supported monophyletic
group, whereas separate clades contained samples in the
Pacific Northwest, Southwest US and the US Plains region.
The Arizona CPB sample was found outside the CPB clade,

next to the L. lineolata sample, suggesting high divergence.
This placement appears to be an effect of long-branch attrac-
tion driven by a large number of private alleles (supplemen-
tary file 1: fig. S7, Supplementary Material online), as the
Arizona sample is genetically related to other Plains samples
in a principal component analysis (see below). Interestingly,
CPB from Mexico and other Leptinotarsa species were mixed
together, suggesting that Mexican CPB are also strongly di-
vergent and may represent unidentified cryptic Leptinotarsa
species.

Genetic divergence among the US CPB pest and nonpest
populations was generally limited (average pairwise
FST ¼ 0.09; supplementary file 1: tables S5 and S6,
Supplementary Material online) and empirical FST quantiles
broadly overlapped, but pairwise FST exceeded >0.1 when
New Jersey or the Michigan resistant population were com-
pared. Principal component analysis shows clear geographical
patterns of population genetic structure (supplementary file
1: figs. S8–S10, Supplementary Material online). Due to their
significant genetic divergence, all Mexican CPB, the Arizona
sample, and other Leptinotarsa species were removed from
analyses of population structure and demographic change, as
their inclusion would violate statistical assumptions in those
approaches. Admixture-based clustering (fig. 1B and supple-
mentary file 1: figs. S11 and S12, Supplementary Material on-
line) converges with the principal component analysis in
supporting six populations, which are identified hierarchically
as the New-Jersey population (at K¼ 2), a western popula-
tion (Oregon plus Idaho, at K¼ 3), a distinctive Michigan
resistant population (at K¼ 4), a Plains population (at
K¼ 5), and a Midwestern population and Eastern US popu-
lation (which includes the introduced European samples, at
K¼ 6). Admixture tests using the D statistic were examined
among CPB pest and nonpest populations, as well as with
other Leptinotarsa species. These tests provided limited evi-
dence of admixture contributing to genetic diversity of pest
lineages (fig. 2), ruling out the hypothesis of standing genetic
variation increasing in the pest lineage as a result of hybrid-
ization. The highest Dmin values suggest historical admixture
from Mexico to the Plains (0.036) and Mexico to the Western
populations (0.044), and limited ongoing gene flow between
New York and the Michigan susceptible population
(D¼ 0.015). Similarly, an assessment of admixture with other
Leptinotarsa species (supplementary file 1: fig. S13,
Supplementary Material online) does not suggest recent
gene flow into pest populations.

Demographic reconstruction of CPB populations using
SMCþþ and Stairway plot analysis (fig. 1C and supplemen-
tary file 1: figs. S14 and S15, Supplementary Material on-
line) showed consistent population size fluctuations
through time, with similar trajectories of effective size
(Ne) for all pest populations. Nearly all agricultural popu-
lations exhibited recent population size increases in the
SMCþþ analysis, most notably in the Eastern US. The split
time analysis suggested an early split of the western pop-
ulations from the Plains region, and subsequent near-
simultaneous split times of Midwest and Eastern popula-
tions (supplementary file 1: fig. S16, Supplementary
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Material online). Applying a mutation rate from other in-
sect taxa (2.1� 10�9 substitutions per site per generation)
suggests that populations contracted between 300k and
100k years ago, expanded between 200k and 70k years, and
declined again until 10k to 5k years ago. The splits of most
pest populations from the sampled populations in the
Plains occurred between 21k and 11k years, during the
transition from the late Pleistocene to early Holocene.

Genome-Wide Patterns of Natural Selection
Evidence of natural selection acting on genomic diversity was
first assessed across the entire geographical range of the United
States to test hypotheses about de novo mutation and standing

genetic variation contributing to insecticide resistance in CPB.
Outlier-based tests correcting for population differentiation
identified 0.37% of all SNPs as outliers (i.e., 65,815 out of
17,599,906, with a false discovery rate, or FDR, of 0.01%). A total
of approximately 32% of the outlier SNPs could be assigned to
8,760 known genes (supplementary file 1: tables S7 and S8,
Supplementary Material online; gene list provided in supple-
mentary file 2, Supplementary Material online). Of these genes,
336 were linked to candidate insecticide resistance genes, in-
cluding 205 genes involved in detoxification pathways, 91 target
sites, and 40 genes involved in cuticle development. The well-
known voltage-sensitive sodium channel gene (LDEC011942)
that provides knockdown resistance to pyrethroids was

FIG. 2. Heatmap of D-statistics, showing the introgression patterns among CPB populations. The color of the heatmap cell indicates the most
significant Dmin found with every population pairs: red colors indicate higher D-statistics, and generally more saturated colors indicate higher P
values. The complete biallelic data set was analyzed.
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included among the target-site genes. We removed the New
Jersey samples to see if this population biased our results: 5,044
of the 8,760 genes remained outliers, whereas 224 of the 336
candidate genes remained outliers (see supplementary file 2,
Supplementary Material online, for a list of these genes).

Based on a gene set enrichment analysis of the full outlier
data set, overrepresented gene ontology terms were linked to
insecticide resistance and/or stress (supplementary file 1: fig.
S17, Supplementary Material online). For biological processes,
GO terms included oxidation–reduction process and re-
sponse to oxidative stress (and multiple nested terms),
among others. For cellular components, terms linked to in-
secticide resistance included voltage-gated sodium channel
and acetylcholine-gated channel complexes, presynaptic ac-
tive zone and synapse, and integral component of the mem-
brane. Among the molecular functions, terms such as heme
and zinc ion binding (including iron ion binding), extracellular
ligand-gated ion channel activity (including voltage-gated so-
dium channel and acetylcholine receptor activity), glutathi-
one transferase activity, ATP-binding cassette (ABC)
transporter activity via the term ATPase activity coupled to
transmembrane movement, and peroxidase activity (includ-
ing cytochrome p450 [CYP] monooxygenase activity) were
associated with insecticide resistance.

To leverage another genome scan approach to test for
patterns of natural selection, we also employed gene environ-
ment association analysis to examine five different, ecologi-
cally relevant environmental predictors of natural selection
on the genome: latitude, elevation, precipitation, minimum
temperature in the coldest month, and potato land cover.
Only 0.02% of the analyzed SNPs (4,098 out of 17,599,906
SNPs, with an FDR of 0.01%) were significantly associated
with at least one environmental variable (supplementary
file 1: table S9 and fig. S18, Supplementary Material online;
gene list provided in supplementary file 2, Supplementary
Material online). A total of 67.6% of the SNPs were associated
with precipitation, 15.5% with latitude, 10.7% with potato
land cover, 2.8% with elevation, and 3.7% with temperature.
Of all significant SNPs, 29% were found in 816 known genes,
including 42 resistance-related genes (28 involved in meta-
bolic detoxification mechanisms, three in cuticle develop-
ment, and 11 target-site genes; supplementary file 1: table
S10, Supplementary Material online). Based on a gene set
enrichment analysis, overrepresented gene ontology terms
were associated with insecticide resistance and/or stress (sup-
plementary file 1: fig. S19, Supplementary Material online).
Among the biological processes, terms included chemical
synaptic transmission, oxidation–reduction process, proteol-
ysis, defense response, and DNA repair. Among the cellular
components, terms included synapse and presynaptic active
zone, as well as integral component of the membrane.
Among the molecular functions, terms included heme
and iron ion binding, carboxylic ester hydrolase activity, ex-
tracellular ligand-gated ion channel activity, oxidoreductase
activity (including monooxygenase activity), and ubiquitin
binding.

The outlier-based and environmental-association genome
scans employ different models to detect selection, but a

comparison of the results shows that a total of 557 genes
(see supplementary file 2, Supplementary Material online)
were shared in both tests, and 29 of these are candidate
insecticide resistance genes (table 2). The largest group rep-
resents xenobiotic detoxification genes, with nine ABC trans-
porters, seven CYP genes, two esterase genes, one MFS gene,
and one glutathione S-transferase (GST) gene represented.
Target-site genes included four voltage-dependent channel
genes and two nicotinic acetylcholine receptors, and three
cuticle genes overlap in both tests. Gene set enrichment anal-
ysis of significant genes identified as overlapping in the two
genome scan tests (supplementary file 1: fig. S20,
Supplementary Material online) showed enrichment of
gene ontology terms associated with insecticide resistance
and stress. Among biological processes, terms included chem-
ical synaptic transmission, oxidation–reduction process, pro-
teolysis, DNA repair, and chloride transport, transmembrane
transport, and ion transport. Terms associated with cellular
components included integral component of membrane,
synapse, and presynaptic active zone. Terms associated
with molecular functions included pathways such as heme
and iron ion binding, ATPase activity coupled to transmem-
brane movement, GABA and G-protein coupled receptor
activity, and monooxygenase and oxidoreductase activity.

Local Adaptation to Insecticides
In order to examine how frequently selection events are
population-specific and if they arise from de novo mutations
or standing genetic variation, we employed a haplotype-
based approach that examines shifts in haplotype frequency
along branches of a population tree. Due to the fragmented
nature of the reference genome, we examined haplotype fre-
quencies on the longest 95 genomic scaffolds (encompassing
�21% of the genome, all >1 Mb). Our analyses show that
1.1% (72,386 SNPs), 0.01% (7,826 SNPs), and 0.16e�3% (1,106
SNPs) of the markers were significant at a¼ 0.01, 0.001, and
0.0001, respectively (see list in supplementary file 2,
Supplementary Material online). SNPs were grouped into
regions, where each region was separated by at least 1 kb
up- and downstream. This resulted in 1,169 selection regions
at a¼ 0.01, 140 regions at a¼ 0.001, and 24 regions at
a¼ 0.0001 (supplementary file 1: table S11, Supplementary
Material online). Excluding one extremely long region (35 kb
in length), the average length of the most significant haplo-
types (a¼ 0.0001) was 3.1 kb (supplementary file 1: fig. S21,
Supplementary Material online). On an average (across a
levels and branch association thresholds), these regions in
the genome were repeatedly selected in multiple populations
(on an average, in 6.06 branches of the population tree, and
only 4.87% of these selection events were singularly associated
with one population; supplementary file 1: table S12,
Supplementary Material online). These singular regions
tended to be short (1.1 kb on an average). Out of all selected
regions (a¼ 0.01), 319 were found in 224 genes and only 3.8%
were singular (supplementary file 1: fig. S22, Supplementary
Material online).

Among the 224 genes, 16 were candidate insecticide
resistance-associated genes, including six ABC transporters,
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two esterases, one nicotinic acetylcholine receptor, two genes
associated with glutamate pathways, four growth factors, and
one odorant-binding protein, which is included as a possible
sensory receptor of insecticides (supplementary file 1: table
S13, Supplementary Material online). These 16 genes showed
selection in 24 regions (as selection was detected in different
exons), with most of these regions representing haplotypes
less than 1 kb in length (supplementary file 1: fig. S23,
Supplementary Material online). These regions also show re-
peated selection in nine to 11 branches of the population tree
(fig. 3 and supplementary file 1: fig. S24, Supplementary
Material online). For example, selection occurred in both
Western and Eastern populations (supplementary file 1: fig.
S25, Supplementary Material online), which were the most
genetically distinct and geographically isolated populations.
Furthermore, several of these candidate genes (LDEC004355,
LDEC005089, and LDEC002775) with multiple regions under
selection had clear population-specific patterns.

Over 150 of the 224 genes (68.5%) identified in the
haplotype-based test were also identified in the outlier test
(supplementary file 1: fig. S26, Supplementary Material on-
line), including 11 of the 16 candidate insecticide resistance
genes. Seven of these were ABC transporters, and notably
three were significant in all selection tests (the ABC subfamily
C/multidrug associated gene LDEC002518, and two ABC sub-
family G genes, LDEC002775 and LDEC005530). The other
ABC genes included: the subfamily F gene LDEC004565, and
three additional multidrug associated genes LDEC005089,
LDEC003183, and LDEC002116. The remaining genes in-
cluded one target site gene, the acetylcholine receptor b
subunit (LDEC002850), one cuticle protein (LDEC003397),
one transient receptor potential (TRP) gene (LDEC003216),
and one odorant-binding gene (LDEC003898).

To determine whether parallel selection (positive selection
on ancestral genomic variation in the same genes) drives
repeated insecticide adaptation across the geographical range

Table 2. Candidate Resistance Genes Identified in Both PCAdapt and LFMM.

Mechanisms Categories Gene IDa Annotated Gene Name Principal
Component

Metabolic detoxification ABC transporters LDEC015007
LDEC002775
LDEC005530
LDEC019090
LDEC020530
LDEC022533
LDEC005086
LDEC002518
LDEC012031

ABC subfamily a member 5-like isoform 32
ABC subfamily g member 1-like
ABC subfamily g member 4-like
MULTIDRUG resistance-associated 1
Multidrug resistance-associated 4-like
Multidrug resistance-associated protein 4
Multidrug resistance-associated protein 4
Probable multidrug resistance-associated

protein lethal 03659
Probable multidrug resistance-associated

protein lethal 03659

1
4
1
1
1
3
2
1
5

CYPs LDEC018533
LDEC019188
LDEC019765
LDEC019766
LDEC015048
LDEC018119
LDEC005460

Cytochrome P450
Cytochrome P450
Cytochrome P450
Cytochrome P450
Cytochrome P450
Cytochrome P450
Cytochrome P450 6BQ10

3
1
1
2
4
5
1

Esterases LDEC017038
LDEC018118

Esterase
Esterase

3
2

GSTs LDEC012947 Glutathione S-transferase theta-1 1
MFS LDEC009079 Major facilitator superfamily domain-con-

taining protein 8
1

Target sites Voltage-dependent
channels

LDEC009862
LDEC000112
LDEC021584
LDEC015955

Glutamate receptor 2-like isoform 34
Voltage-dependent calcium channel subunit

alpha-2 delta-3
Voltage-dependent calcium channel type D

subunit alpha-1
Voltage-dependent calcium channel type D

subunit alpha-1-like protein

1
1
1
1

Known insecticide resis-
tance genes

LDEC016101
LDEC007707

Nicotinic acetylcholine receptor a9 subunit
Nicotinic acetylcholine receptor subunit

alpha4

2
1

Growth factors Cuticle proteins LDEC003392
LDEC014693
LDEC010803

Cuticle protein 19
Cuticular protein analogous to peritrophins 1-

j precursor
Larval cuticle protein 8-like

2
1
3

NOTE.—The loading of each gene on a principal component is indicated (see supplementary file 1: fig. S9, Supplementary Material online).
aAmong these genes, three (the CYP gene LDEC015048, the cuticle protein LDEC010803, and the voltage-dependent calcium channel gene LDEC000112) were found as
candidate genes among field populations within Wisconsin (Crossley et al. 2017). The nicotinic acetylcholine receptor subunit alpha4 (LDEC007707) was also found as a
candidate gene in a comparative genomic analysis of Leptinotarsa by Cohen et al. (2021).
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of CPB, we examined six pairs of neonicotinoid (imidacloprid)
resistant and susceptible pest populations. FST outliers for
each pair, identified in 1-kb windows across the genome using
a conservative threshold of the 99th percentile, show limited
overlap (parallelism) among geographical regions (0.7 to 2.7%
overlap; supplementary file 1: table S14, Supplementary
Material online). A small proportion (4–6%) of these outlier
regions intersect with candidate insecticide resistance genes
(supplementary file 1: table S15, Supplementary Material on-
line), with few genes (one to three) showing evidence of
parallel selection in more than one region. These include a
voltage-sensitive sodium channel gene (LDEC011942), the
nicotinic acetylcholine receptor subunit alpha 6
(LDEC000437), five esterase genes (LDEC009237,
LDEC011823, LDEC019607, LDEC024201, and LDEC014120),
and three ABC transporters (LDEC008906, LDEC005089, and
LDEC008907). Although few genes are commonly selected
among geographical regions, gene set enrichment shows
that insecticide resistance pathways are commonly targeted
(see supplementary results in supplementary file 1,
Supplementary Material online), as five of the six regions
show enrichment of terms for metal ion binding, zinc ion
binding, integral component of membrane, and intracellular
anatomical structure.

Finally, to test for patterns of rapid gene regulatory evolu-
tion, we examined gene expression profiles for a subset of CPB
populations sampled among geographical regions (supple-
mentary file 1: table S16, Supplementary Material online).
As most of the samples represent previously published results,
we first assessed whether differences in experimental design
influenced the expression of candidate insecticide resistance
genes (see detailed results in supplementary file 1,
Supplementary Material online). Based on these comparisons,

we determined that regional population differences could be
compared for adults from field populations irrespective of
generation sampled, but lab reared larvae needed to be com-
pared separately. For the larval comparison, we removed
samples representing an insecticide induction treatment, fo-
cusing our analysis on constitutive differences in gene expres-
sion. These comparisons showed strong geographical
differences in overall gene expression profiles despite local
populations representing both neonicotinoid resistant and
susceptible phenotypes (supplementary file 1: figs. S27 and
S28, Supplementary Material online). Focusing on signifi-
cantly differentially expressed candidate insecticide resistance
genes, geographical regions showed divergent patterns of
constitutive upregulation among populations (fig. 4 and sup-
plementary file 1: fig. S29, Supplementary Material online; see
gene list in supplementary file 2, Supplementary Material
online). Seven differentially expressed candidate insecticide
resistance genes were found among the adults and 84 among
larvae (supplementary file 1: fig. S29 and table S17,
Supplementary Material online), with only one esterase
(LDEC019310) and one ABC transporter (LDEC004154) com-
mon to both data sets. A gene set enrichment analysis of the
differentially expressed gene list in among-population com-
parisons of adults (supplementary file 1: fig. S30,
Supplementary Material online) showed enrichment of terms
associated with insecticide detoxification and/or stress, in-
cluding heme and ion iron binding, oxidoreductase activity
and dioxygenase activity, proteolysis, transport, defense re-
sponse, and integral component of the membrane. Among
larvae (supplementary file 1: fig. S31, Supplementary Material
online), there was enrichment of terms associated with reg-
ulatory changes to gene networks underlying insecticide de-
toxification or stress, such as glutathione transferase activity,

FIG. 3. Population tree showing the distribution of 24 resistance-associated selection events identified with hapFLK in the first 95 genomic
scaffolds. Colors refer to geographical location. Internal branches show few selection events (one or two events in four branches, no selection event
in five branches).
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hexachlorocyclohexane metabolism, oxidoreductase and
monooxygenase activity, gap junction channel activity, pro-
teolysis, substrate-specific transmembrane transporter activ-
ity, heme and iron ion binding, innate immune response, and
integral component of the membrane. Although 26 transcrip-
tion factors were significantly differentially expressed among
the four larval populations (supplementary file 1: fig. S32 and
table S18, Supplementary Material online), they are not
known to be associated with detoxification pathways.

Although these results support gene regulatory evolution,
they do not support rapid evolution of master regulatory genes,
as different protein-coding genes, and in some cases different
molecular pathways, are favored in each regional population.
Gene set enrichment analysis of the overlapping set of signif-
icant genes in larvae and adult differential expression analysis

gene sets (supplementary file 1: fig. S33, Supplementary
Material online) showed shared regulatory changes in gene
networks linked to insecticide detoxification and stress, such
as oxidoreductase and dioxygenase activity, heme and iron ion
binding, proteolysis and integral component of membrane.
The shared enrichment of lipid metabolism might also be re-
lated to insecticide detoxification (through an interaction with
oxidation–reduction or membrane-transport processes), rather
than metabolism per se.

Finally, we examined a global intersection of gene ontology
terms that were enriched in the range-wide genome scans
and differential expression data sets (supplementary file 1: fig.
S34, Supplementary Material online). Six gene ontology terms
were identified, each of which has been related to insecticide
resistance in prior studies: biological process terms include

FIG. 4. Gene expression heatmap among four populations of CPB larvae, showing divergent constitutive expression of 84 differentially expressed
candidate insecticide resistance genes. Colors of expression levels correspond to log-fold change. See table S17, Supplementary Material online for
the functional annotation of these genes.
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oxidation–reduction process and proteolysis, whereas cellular
components include integral component of the membrane,
and molecular functions include oxidoreductase activity act-
ing on paired donors with incorporation or reduction of mo-
lecular oxygen, heme binding, and iron ion binding.

Discussion
Population genomics is increasingly providing insight into the
evolutionary mechanisms that give rise to super-pests and
holds promise for improving pest management practices
(P�elissi�e et al. 2018). Our study provides the first comprehen-
sive genomic and geographical assessment of genome-wide
patterns of genetic variation for a super-pest in the center of
its origin. Whole-genome variation demonstrates that the
CPB is geographically structured, including among pest pop-
ulations, and corroborates evidence from microsatellite and
mitochondrial markers that CPB pest populations are most
closely related to populations in the Great Plains instead of
Mexico (Edgerton 1861; Casagrande 1987; Izzo et al. 2018). In
evaluating the competing (but not mutually exclusive) mech-
anisms of rapid evolution, our data suggest that selection
occurs independently across growing regions, and even
among different populations within regions, with statistical
tests providing a consistent pattern of repeated evolution at
many candidate insecticide resistance genes. The observed
pattern does not involve parallel selection on ancestral vari-
ation in the case of recent adaptation to imidacloprid, but
instead the recruitment of different genes underlying the
similar molecular resistance mechanisms across geographical
regions. Therefore, our results suggest that insecticide resis-
tance in CPB readily evolves from an underlying polygenic
trait architecture. Below we discuss in turn the evidence that
supports insecticide resistance arising from standing genetic
variation, in contrast to hypotheses of selection on de novo
mutation and rapid regulatory evolution. We close by discus-
sing the pest management consequences of these modes of
rapid evolution.

Evidence for Repeated Selection on Standing Genetic
Variation
Population clustering analyses demonstrate that regional CPB
pest populations (western US, eastern US, multiple lineages in
the Midwestern US, and Europe) are genetically distinct, with
D-statistics suggesting limited ongoing gene flow. This alone
supports previous observations that insecticide resistance
evolves locally among CPB populations (Alyokhin et al.
2008; Szendrei et al. 2012; Crossley et al. 2017; Dively et al.
2020). However, genome scans, using both outlier-based and
environmental association-based methods, as well as
haplotype-based tests, provide clear signatures of adaptation
occurring repeatedly across different populations of CPB.
Focusing on candidate genes of insecticide resistance, the
considerable overlap among pathways, but not specific genes,
suggests that different genes are selected in different popula-
tions (see PC loadings in table 2 and parallel selection test in
supplementary file 1: table S13, Supplementary Material on-
line). Similarly, candidate insecticide resistance genes are

constitutively upregulated, but in distinct patterns in different
populations (fig. 4). Selected genes also encompass multiple
resistance mechanisms, including metabolic detoxification,
target site resistance, and cuticle proteins, which is broadly
supported by gene set enrichment analyses across multiple
tests (supplementary file 1: fig. S34, Supplementary Material
online).

An important caveat to these results is that tests of selec-
tion are prone to false positives (Mallick et al. 2009). For
example, hapFLK tends to show a high false-positive rate
under population models with continuous migration
(Fariello et al. 2013; Vatsiou et al. 2016), whereas it has per-
formed well in species (e.g., domestic livestock and dogs) that
experience strong bottlenecks (Boitard et al. 2016; Schlamp
et al. 2016). We did not integrate simulations to assess the
false-positive rate of our genome scans due to the complex
population structure and demography underlying our study
design, although this should be a major goal in future work.
However, we did employ conservative testing thresholds to
mitigate false positives, as well as multiple independent tests.
Although chance false positives might contribute to our ob-
served patterns, it is highly unlikely that so many would occur
in candidate insecticide resistance genes. Furthermore, these
results are consistent with previous genetic studies that have
documented many of these same genes (see table 2 and
supplementary file 2, Supplementary Material online) or
mechanisms in CPB resistance (Hawthorne 2003; Alyokhin
et al. 2008; Rinkevich et al. 2012; Clements, Schoville,
Peterson, Lan, et al. 2016; Gaddelapati et al. 2018). We also
identify compelling new candidates, such as the multiple ABC
transporters, as well as acetylcholine receptor b subunit
(LDEC002850), which are likely linked to neonicotinoid resis-
tance phenotypes (Tan et al. 2008; Qu et al. 2016).

Although our analysis focuses on pesticide resistance can-
didates, we note that other interesting genes emerged from
our study. In particular, an octopamine receptor
(LDEC006841), which was identified as a gene associated
with pest behavior in a comparative genomics analysis of
CPB (Cohen et al. 2021), emerged as a significant target in
contrasts of nonpest and pest populations in both LFMM and
PCAdapt. The observed patterns of repeated local adaptation
are most consistent with evolution from standing genetic
variation. Using a more sophisticated haplotype-based
method (focusing on �21% of the genome), we found 24
highly significant (P< 0.0001) haplotype blocks suggestive of
selective sweeps. Only one selected region exceeded 4 kb in
length (35 kb), whereas the remaining regions averaged 3.1 kb
in length. These shorter sweep lengths are similar to those
found in at least one other insect pest, Spodoptera frugiperda
(on an average, sweeps are 4.1 kb: Nam et al. 2020), but are
much smaller than the strong selective sweeps found in other
prominent cases of insecticide resistance (Schlenke and
Begun 2004; Calla et al. 2020; Weedall et al. 2020). Sweep
lengths typically scale inversely with the rate of recombina-
tion as a product of increasing effective population size, so we
might have expected sweep lengths similar to those found in
insects with large population size (typically >10 kb in
Drosophila melanogaster) (Garud et al. 2021). Instead, nearly
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all strong candidate selective events from hapFLK are more
consistent with soft sweeps that recur in multiple geograph-
ically distant populations. Most importantly, the sweep
regions in CPB occur on multiple branches of the population
tree (on an average, 8.16 branches). CPB populations must
have high levels of genomic variation for soft sweeps to be a
reasonable mechanism in the evolution of insecticide resis-
tance. Traditionally, the host-shift to potato, coupled with
agroecosystem invasion over a broad geographical scale, has
been presumed to reduce genetic variation in CPB (Zehnder
et al. 1992; Lu and Lazell 1996). Instead, we find that CPB pest
populations, despite having recently invaded agroecosystems,
exhibit no reductions in nucleotide diversity and only modest
declines in private alleles that most likely reflects their spatial
expansion history. Dense population sampling of CPB at a
landscape scale in the Midwestern US also supports high
levels of standing variation at a regional level (Crossley et al.
2017).

Early population genetic research on insecticide resis-
tance by J.F. Crow suggested that resistance evolution arises
from polygenic standing variation (Crow 1957). The quan-
titative nature of most phenotypic traits has been docu-
mented in many cases of adaptation (Dermauw et al. 2013;
Faucon et al. 2015; Cheng et al. 2017; Barghi et al. 2020), and
since large-effect mutations often require compensatory fit-
ness changes that are unlikely to evolve quickly enough to
prevent such mutations from being removed by antagonis-
tic selection, the most likely outcome of evolution in theo-
retical models is polygenic adaptation (Wellenreuther and
Hansson 2016). Quantitative variation in insecticide toler-
ance, among populations and individuals within popula-
tions, is frequently observed, even under controlled
laboratory conditions (Tabashnik and Cushing 1989;
Kobiela and Snell-Rood 2020). The action of multiple genes
and their regulatory elements can be difficult to detect us-
ing population genomics methods, as only modest changes
in allele frequencies are expected under soft or partial se-
lective sweeps (Teshima et al. 2006; Messer et al. 2016;
Stephan 2016). Yet, our results suggest that insecticide re-
sistance in CPB has a polygenic trait architecture, with many
different genes (but shared molecular pathways) rapidly
evolving across the geographical range. This is in broad sup-
port with the emerging view that polygenic architecture is
now common in contemporary cases of insecticide resis-
tance (Schmidt et al. 2017; Kreiner et al. 2018; Hawkins
et al. 2019). Unfortunately, in our results, it is difficult to
determine whether polygenic evolution occurs as resistance
evolves to a single insecticide, or if instead the pattern of
polygenic architecture merely reflects a legacy of evolved
resistance to many different insecticides. In other words, it
is possible that individual episodes of selection to more than
50 compounds contribute to a signature of polygenic ad-
aptation in present-day genetic patterns (Crossley et al.
2017). The main line of evidence supporting polygenic ad-
aptation to at least some insecticides is that we find many
genes under selection (�50, much more than expected for
monogenic evolution to �50 compounds) and haplotype
signatures of selected alleles are consistent with a pattern of

soft sweeps that are expected under polygenic adaptation
(Barghi et al. 2020). Future efforts to test these different
explanations could leverage temporal sampling and quanti-
tative modeling to investigate the age of alleles and modes
of selection underlying the complex genetic architecture of
insecticide resistance.

Selection on De Novo Mutation: Is CPB Mutation
Limited?
Selection on novel mutations could lead to repeated evolu-
tion of resistance in pests with intrinsically large population
sizes (much greater than �106) that are not considered
mutation-limited (Barton 2010; Cutter et al. 2013). Analyses
of nucleotide diversity in protein-coding genes is known to
range widely in animal species and is most strongly correlated
with reproductive strategy and effective population size, with
highly fecund (r-selected) species like CPB having the greatest
diversity (Romiguier et al. 2014). Schoville et al. (2018) found
evidence for a high rate of polymorphism in protein-coding
regions of CPB (nucleotide diversity, p, was�0.01), suggesting
a high level of standing genetic diversity and large effective
size. Furthermore, CPB shows a larger effective size, higher rate
of positive selection, and greater levels of standing variation
compared with other species in the genus Leptinotarsa
(Cohen et al. 2021). In this study, irrespective of pest or
nonpest status across different geographical regions, we iden-
tify an average genome-wide nucleotide diversity of 0.005
within CPB. Although this rate of nucleotide diversity remains
high relative to most vertebrates (median 0.0025), it is not
exceptional among arthropods (median 0.0125 all sites,
0.00204 synonymous sites; Leffler et al. 2012). Despite its
super-pest status, CPB nucleotide diversity falls within the
range of empirical estimates for insect species (0.0023–
0.0288). Among Coleoptera, nucleotide diversity found in
the bark beetles Dendroctonus ponderosae and
Dendroctonus brevicornis (0.0023 and 0.008, respectively;
Keeling et al. 2013; Bracewell et al. 2018) and the horned
scarab beetle Onthophagus taurus (0.0056, Choi et al. 2010)
is similar to CPB. Lepidopteran pest genomes are more poly-
morphic than CPB; five species of Helicoverpa range in nucle-
otide diversity from 0.004 to 0.010 in autosomal regions, with
the super-pest H. armigera as the most polymorphic
(Anderson et al. 2018), whereas two sympatric strains of
the pest species Spodoptera frugiperda range from 0.043 to
0.044 (Kiwoong et al. 2020) and the closely related pest
Spodoptera litura has nucleotide diversity as high as 0.016
(Cheng et al. 2017).

These results suggest that CPB is not exceptional in terms
of the potential for rapid evolution. However, the amount of
nucleotide diversity is not a perfect proxy to measure muta-
tion limitation. There is an upper limit on nucleotide diversity
in species with large effective population sizes (e.g., Drosophila
melanogaster), as nucleotide variation at neutral sites is re-
moved as a result of selection on nearby linked sites (Corbett-
Detig et al. 2015). In fact, patterns of reduced variation in
species with large effective population sizes might reflect se-
lection from recurrent adaptive mutation (Karasov et al.
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2010). On the other hand, there is considerable debate about
this interpretation, as reduced nucleotide diversity might al-
ternatively arise from purifying selection acting on nearly
neutral sites in the form of background selection (Galtier
2016; Campos et al. 2017). Distinguishing among these alter-
natives will require direct estimates of genome-wide muta-
tion and recombination in CPB, in addition to improved
sampling, and it is not yet clear that CPB is mutation-
limited. Therefore, we interpret our results to propose that
recruitment of standing genetic variation plays a significant
role in insecticide resistance, although an improved genome
assembly and denser geographical sampling might reveal the
added effect of hard selective sweeps from de novo mutations
that we were unable to detect here.

Are Key Regulatory Shifts Contributing to Resistance
Evolution?
Overexpression of multiple CYP, GST, and ABC transporter
genes is often associated with insecticide resistance and sev-
eral studies have shown that transacting transcription factors
may simultaneously regulate the expression of these targets
(Ingham et al. 2017; Peng et al. 2017; Smith et al. 2018; Hu et al.
2019). Known transacting transcription factors involved in
the xenobiotic detoxification pathway include CncC, Maf-S,
AhR, ARNT, and Met. CncC forms a heterodimer with Maf-S
to regulate multiple detoxification loci in many insects
(Wilding 2018), including the highly resistant Long Island
population of CPB (Gaddelapati et al. 2018) and deltamethrin
resistant populations of the beetle Tribolium castaneum (Kalsi
and Palli 2015). However, in comparing gene expression pro-
files of CPB populations throughout several growing regions,
we found that expression levels of insecticide detoxification
genes vary across populations, suggesting that varied tran-
scriptional patterns are most-likely achieved through cis-
regulatory evolution (Wittkopp and Kalay 2011; Verta and
Jones 2019). In a similar analysis, comparison of transcrip-
tomic profiles of Anopheles gambiae across Africa revealed
the recruitment of many population-specific candidate insec-
ticide resistance genes (Ingham et al. 2018), suggesting cis-
regulatory evolution of these pathways may be common
among insect pests.

Our data do not support the role of a single master-
regulatory switch driving insecticide resistance, as we see no
evidence for differential expression of key transacting tran-
scription factors despite comparing insecticide resistant and
susceptible populations. Furthermore, the role of different
genes in metabolic resistance in CPB has been demonstrated
by RNAi experiments where knockdown of different upregu-
lated CYP genes restores susceptibility in different pesticide
resistant CPB populations (Clements, Schoville, Peterson,
Huseth, et al. 2016; Kalsi and Palli 2017). Altogether, our
results suggest that a simple upstream shift in Cap-n-collar
expression is not sufficient to explain all cases of metabolic
resistance in CPB and that, instead, additional cis-regulatory
changes are required to account for the heterogeneity and
diversity of resistance pattern among populations (Wilding
2018). This is consistent with widespread evidence that cis-

regulatory evolution is more common in adaptive evolution,
whereas transacting gene regulation is typically constrained
by strong stabilizing selection (Wray 2007; Signor and
Nuzhdin 2018).

Implications for Pest Management and Novel Control
Tactics
Current resistance management strategies assume that the
evolution of resistance is a rare event, caused by simple (single
gene) mutations (Roush 1989), thereby ignoring the impor-
tance of alternative mechanisms involving multiple loci
(Denholm and Rowland 1992). Resistance management
models also assume that resistance involves fitness tradeoffs
(Tabashnik 1990), a rationale underlying high dose/refuge
strategies where gene flow from susceptible “refuge” popula-
tions into insecticide-treated fields delays resistance evolution
(Sudo et al. 2018). However, it is increasingly difficult to un-
derstand the rate of pesticide resistance evolution using con-
ventional models of single, large-effect mutations in
conferring a resistance phenotype (Haridas and
Tenhumberg 2018). Rates of insecticide resistance evolution
in CPB are among the highest observed in agricultural pests
(Brevik et al. 2018) and often lead to failure unless imple-
mented in an integrated pest management framework
(Alyokhin et al. 2015). From our results, evolution of multiple
resistance loci from standing variation appears to best explain
this pattern, although we note that some alternative mech-
anisms were not investigated and could contribute to rapid
evolutionary change. Notably, recent work in CPB has shown
that changes in DNA methylation patterns might drive trans-
generational epigenetic mechanisms of regulatory evolution
that lead to pesticide resistance (Brevik et al. 2021).

As society faces the challenge of global food security, there
is a prevailing view that insect pests have won the arms race
involving conventional chemical pesticide control (Gould
et al. 2018). Novel chemical modes of action are needed to
avoid target-site resistance, yet there is a high cost to such
efforts, both in terms of development costs and environmen-
tal impacts. In addition, the widespread emergence of cross-
resistance, especially through metabolic detoxification, sug-
gests novel modes of action may have limited efficacy and
durability (Vontas et al. 2020). Although gene drives have
been raised as promising novel control tactics (Scott et al.
2018; Gui et al. 2020), most recent work in CPB has focused
on gene-targeted insecticides via the RNAi pathway (Palli
2014). Gene knock-down via RNAi could allow for highly
effective, species-specific management if multiple genes are
targeted simultaneously, and such products are currently un-
der development (Zhu and Palli 2019).

How do genome-wide population genetic data shed light
on RNAi implementation? Drawing on the mechanisms of
evolution described in this paper, where standing variation is
substantial, the likelihood of resistance evolution to RNAi
might be high unless population-specific approaches are de-
veloped. One target site mutagenesis experiment in CPB has
shown that a mismatch rate of 3% or less still allows for
effective gene target suppression (He et al. 2020), but clearly
some CPB target genes would be problematic due to high
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levels of diversity. Additionally, alternative pathways of RNAi
resistance might emerge. For example, experiments with cell
lines of CPB have shown that resistance evolving from muta-
tions altering the uptake and transport of dsRNA (Yoon et al.
2018). CPB is known to utilize both sid-1 transmembrane
channel-mediated uptake and clathrin-mediated endocytosis
in processing dsRNA (Cappelle et al. 2016), suggesting that
there are multiple targets for resistance evolution in the RNAi
pathway. Comparison of dsRNA efficacy among European
CPB populations also suggested variation in the RNAi path-
way itself (involving the multiple homologs of dicer, argonaut,
and staufen) was more likely to evolve than at target site loci
(Mehlhorn et al. 2020). However, knockdown experiments in
other Coleopteran pests have shown that loss of function of
genes in the RNAi pathway impair development and reduce
reproductive fitness (Davis-Vogel et al. 2018), thus the inher-
ent trade-off in resistance may be too great. One interesting
RNAi resistance pathway involves selection on gut nuclease
activity that alters the sensitivity of CPB to RNAi (Spit et al.
2017). In other insects, such as lepidopteran pests (Guan et al.
2018), a single nuclease is responsible for dsRNA tolerance.
Though clearly RNAi provides a novel mode of action for
controlling CPB pests, the propensity to draw on reservoirs
of standing genetic variation to rapidly evolve suggests that
multiple mechanisms of resistance are likely to occur.

Conclusion
Understanding the molecular mechanisms underlying pesti-
cide adaptation has become increasingly important because
of the widespread occurrence of the “pesticide treadmill”
phenomenon in agricultural pests (Luck et al. 1977), wherein
the repeated and escalating use of pesticides, and the search
for new chemistries (Alyokhin et al. 2015), is required to keep
pace with pest evolution. We provide strong evidence that
repeated evolution from standing variation could explain
how insects rapidly overcome multiple classes of pesticides,
and that resistance phenotypes can be underpinned by poly-
genic trait architectures. Although the importance of poly-
genic adaptation remains mostly theoretical in the insecticide
resistance literature and has proven challenging to identify in
empirical case studies (P�elissi�e et al. 2018), polygenic adapta-
tion has also been broadly implicated in the evolution of
herbicide resistance in agricultural weeds (Kreiner et al.
2018) and antibiotic resistance in bacterial pathogens
(Nyerges et al. 2018). From an applied perspective, we provide
evidence that CPB evolves insecticide resistance repeatedly
across agricultural regions, and often through the same ge-
netic pathways. An important future goal will be to under-
stand how rapidly resistance phenotypes spread among local
pest populations, in order to refine integrated pest manage-
ment practices to maintain the efficacy and sustainability of
novel control techniques.

Materials and Methods

Study Design and Aim
We collected a geographically dispersed set of 88 samples,
selected to maximize information about genomic

differentiation across the range of CPB (supplementary file
1: fig. S1 and table S1, Supplementary Material online). An
additional ten samples comprising nine species of
Leptinotarsa were also collected for relevant information on
outgroup variation and possible sources of hybridization.
Within the 88 CPB samples, we sampled six geographically
proximate pairs of neonicotinoid resistant (R) and susceptible
(S) populations, five beetles per R/S site: Maine (R) and
Vermont (S), New York (R) and New Jersey (S), Maryland
(R and S), Michigan (R and S), Wisconsin (R and S), Oregon
(R and S). The resistance status of beetles was ascertained by
topical exposure to a neonicotinoid insecticide (imidacloprid)
or from published records at those sites (see supplementary
file 1, Supplementary Material online, for detailed methods).
Notably, published data (Dively et al. 2020) suggest popula-
tions in Maine, New York, Maryland, Michigan, and
Wisconsin are resistant to multiple classes of insecticides
(neonicotinoid, ryanoid, semicarbazone, and spinosyn modes
of action). However, all pest populations have potentially
evolved resistance to other insecticides (i.e., organochlorides,
organophosphates, and pyrethroids), as insecticide use was
widespread starting in the late 1940s and cases of resistance
have been reported globally among CPB populations
(Alyokhin et al. 2008). As each diploid individual represents
N¼ 2 genomes, our sample size exceeds the requirements for
most population genomic tests and allows for accurate esti-
mation of frequencies for all but the most rare (and therefore,
presumably, less important) alleles in key potato growing
regions of the United States (Nevado et al. 2014).

Genomic Resequencing, Quality Control, and Variant
Calling
High-quality genomic DNA was isolated from adult beetle
thoracic muscle tissue using DNeasy Blood & Tissue kits
(Qiagen) and then submitted to the University of
Wisconsin-Madison Biotechnology Center. Libraries were se-
quenced using paired-end, 125-bp sequencing on a
HiSeq2500 sequencer (see supplementary file 1,
Supplementary Material online, for detailed methods). We
predetermined sequencing effort to yield >6� average cov-
erage for each of our CPB genomes, a quantity sufficient to
identify SNPs with reasonable accuracy (Li et al. 2009).

Each sample was demultiplexed prior to downstream anal-
ysis, and we followed GATK’s “Best Practices” guidelines (https://
software.broadinstitute.org/gatk/best-practices/). Using the
L. decemlineata reference genome v1.0 (GCA_000500325.1;
Schoville et al. 2018), we aligned demultiplexed reads using
BWA v0.7.101 (Li and Durbin 2009), and converted sam files
to bam format using SAMTOOLS v1.3.12 (Li and Durbin 2009).
We generated one ubam file (i.e., unmapped bam file) per for-
ward–reverse pair of the fastq raw reads using FastqToSam and
then marked Illumina adapters with MarkIlluminaAdapters,
both functions available from PICARD v2.2.4 (https://github.
com/broadinstitute/picard). We then reverted bam files to fastq
format with PICARD’s SamToFastq, aligned the new fastq files to
the reference genome with the BWA-mem algorithm and
merged all alignments into one bam file per sample with
PICARD’s MergeBamAlignment tool. We marked PCR and
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optical duplicates using PICARD’s MarkDuplicates tool, but
some of our samples were sequenced on multiple lanes. For
these samples, we marked duplicates first at the lane level (i.e.,
per replicate), then at the sample level (merging duplicates into
a unique bam output). Finally, we realigned reads around inser-
tions and deletions with GATK’s RealignerTargetCreator and
IndelRealigner tools. In order to assess the quality of our bam
files, we used GATK’s Flagstat and DepthOfCoverage tools.
Among our 88 CPB samples, three samples (two susceptible
samples from Oregon: CPBWGS_59 and CPBWGS_63, and one
susceptible sample from Vermont: CPBWGS_93) had few suc-
cessfully mapped reads and were removed (supplementary file
1: fig. S2 and table S1, Supplementary Material online).

Genotyping was split into two steps: per-individual variant
calling, followed by joint genotyping. Variant calling was con-
ducted with GATK’s HaplotypeCaller tool, which generates a
likelihood score for all reference sites (-ERC GVCF option),
including nonvariant sites. Two different joint genotyping
procedures were performed: one excluding non-CPB samples
(“CPB” data set; N¼ 85), and one including non-CPB samples,
but keeping only one susceptible and one resistant sample
(chosen at random) for populations from Oregon, Wisconsin,
Michigan, Maryland, New-Jersey/New-York, and Vermont/
Maine (“Leptinotarsa” data set; N¼ 50; supplementary file
1: table S2, Supplementary Material online). For joint geno-
typing, we employed variant quality score recalibration
(VQSR) using a training data set. VQSR is based on applying
machine learning algorithms and clustering methods to ex-
amine the overlap of the raw call set and a training data set. It
is composed of two steps: 1) ApplyRecalibration describes the
multidimensional annotation profile of variants and calcu-
lates (for each variant in both data sets) a new, well-
calibrated quality score called VQSLOD (for variant quality
score log-odds). 2) ApplyRecalibration uses VQSLOD to apply
a new cutoff to retain only high likelihood variants from the
call set, based on a proportion of the variants in the training
set that are present in the call set (e.g., 99.9% to enhance
sensitivity or 90% to enhance specificity). As this approach
requires a well-validated, independent data set to be used as a
training set, we used 41,454 SNPs generated from a published
genotyping-by-sequencing experiment (Crossley et al. 2017).
These data represent 188 samples from 24 Midwestern pop-
ulations (supplementary file 1: fig. S35, Supplementary
Material online), which were hard filtered for depth of cov-
erage�10�, polymorphism in at least 30% of the individuals
of each population, minor allele frequency (MAF) �5%, and
less than 20% missing genotypes across all individuals. We
calculated VQSLODs based on the following annotations: QD,
MQ, MQRankSum, ReadPosRankSum, FS, SOR, DP, and
InbreedingCoeff. The recalibrated score provides a continu-
ous estimate for the probability of each variant, which can
then be partitioned into quality tranches. Tranche plots for
the “CPB” and “Leptinotarsa” data sets are based on a 90%
threshold that maximizes specificity over sensitivity (supple-
mentary file 1: fig. S36, Supplementary Material online).
Finally, we used GATK’s VariantsToTable tool to assess the
quality of our inferred SNP data set. We plotted the

improvement in the distribution of QualByDepth (QD) fol-
lowing the VQSR procedure for the “CPB” data set (supple-
mentary file 1: fig. S37, Supplementary Material online) using
the ggplot2 package in R v3.6 (Wickham 2016; R Core Team
2019). After removing sites representing mitochondrial DNA
(1,756 total variant sites), our data set contained 47,969,460
SNPs in the “CPB” data set and 69,680,768 in the
“Leptinotarsa” data set. Some analyses, like demographic re-
construction, require analyses with neutrally evolving loci. To
mitigate the effect of nonneutral loci in these analyses, we
created an “intergenic CPB data set” from our “CPB” data set,
by considering only SNPs located outside of known genes
from the L. decemlineata Official Gene Set (OGS) v1.1
(Schoville et al. 2018).

Genomic Diversity
To estimate the genetic diversity of populations, we used the
“CPB” data set (i.e., not including Mexican samples), removed
multiallelic SNPs and those SNPs with a MAF <5% (using
GATK’s SelectVariants tool; final SNP number¼ 17,599,906).
For these analyses, we examine paired populations (suscepti-
ble/resistant) and grouped individuals from the US Plains
region (Colorado, Nebraska, Kansas, Missouri, New Mexico,
and Texas). We estimated genome-wide nucleotide diversity
(p) using a 10-kb sliding window with VCFtools v0.1.15
(Danecek et al. 2011). We also estimated heterozygosity by
calculating the inbreeding coefficient (F) for each individual,
using the method of moments estimator in VCFtools.
Individual estimates were then averaged per population,
keeping susceptible and resistant individuals separate.
Finally, we used the “singletons” function in VCFtools to cal-
culate the number of singletons and private doubletons for
each sample.

Evolutionary Divergence
In order to reconstruct the evolutionary origins of CPB pop-
ulations, we conducted a phylogenomic analysis of the
“Leptinotarsa” data set. This data set comprised 48 samples,
including ten L. decemlineata samples from Mexico, 28
L. decemlineata from the United States and Europe, and ten
samples of closely related Leptinotarsa species. Since the data
set was quite large, we used only the first 100 scaffolds com-
prising 16,519,065 SNPs. We used SNPhylo v.20160204 (Lee
et al. 2014) to construct a phylogeny, after pruning the SNPs
for linkage disequilibrium (LD). In order to ensure the relative
independence of the SNPs used in the analysis, we tested
several values of the LD threshold parameter and selected
0.5 for downstream analyses, which resulted in 35,838 SNPs.
The SNP data were concatenated and a maximum likelihood
phylogeny was estimated using DNAML in PHYLIP v3.6
(Felsenstein 2005; Shimada and Nishida 2017). Support values
for nodes in the tree were determined by bootstrap resam-
pling 100 times.

To estimate population structure, we examined both the
“CPB” data set and the “intergenic CPB” data set, but the
results were biologically consistent. We used three
approaches: classical FST estimates, principal component
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analysis using PCAdapt (Duforet-Frebourg et al. 2016; Luu
et al. 2017), and ancestry analysis with sNMF (Frichot et al.
2014). For the FST analyses, we first assessed pairwise genetic
divergence of Northern and Southern Mexican populations
to the Plains. We then focused on paired populations (sus-
ceptible/resistant) and Plains individuals (Colorado, Nebraska,
Kansas, Missouri, New Mexico, and Texas) for additional com-
parisons. We measured population-specific FST using the
“fs.dosage” function in the hierfstat package in R (Goudet
2005), measuring the genetic divergence between each focal
population and all other populations. Some paired popula-
tions were quite similar, so we then grouped those and mea-
sured mean weighted pairwise FST in 1-kb sliding windows
using Weir and Cockerham’s estimator in VCFtools (Danecek
et al. 2011). For the principal component analysis, we assessed
the percentage of variance explained by the first 20 principal
components in a scree plot. We followed Cattell’s rule (Cattell
1966), where eigenvectors are retained up to the point of
inflection in the scree plot, above which additional terms
provide diminishing returns in terms of explained variance.
For sNMF, we inferred individual patterns of ancestry by es-
timating ancestral population allele frequencies and admix-
ture coefficients using the R package LEA (Frichot and
François 2015). We first converted our vcf files to PLINK’s
ped format using VCFtools, then to the geno file format using
LEA’s ped2geno tool. We implemented 10 runs per k value
and combined the different runs with CLUMPAK (http://
clumpak.tau.ac.il/). We plotted cross-entropy values to assess
the number of k values.

Finally, to test for possible admixture among ancestral
populations during the invasion of CPB into agroecosystems,
we assessed evidence of gene flow: 1) from Mexican CPB
populations and 2) from other Leptinotarsa species, into
the pest lineage. We used Dsuite (Malinsky et al. 2021) to
calculate the genome-wide D-statistic (D) on allele frequency
data, estimating the strength of introgression based on the
ABBA/BABA test (Green et al. 2010). D ranges from zero (no
introgression) to one (complete introgression), and is calcu-
lated using a set of three focal populations or taxa ((P1, P2),
P3)) with one additional outgroup. For the first test (1), we
only considered populations with sample sizes �5, grouping
susceptible and resistant samples from Vermont/Maine,
Maryland, Wisconsin, and Oregon as FST between these sub-
populations was negligible (supplementary file 1: table S6,
Supplementary Material online), grouping samples from the
“Plains” region (N¼ 7), and grouping all CPB samples from
Mexico (N¼ 10). We tested every possible focal trio of pop-
ulations, retaining the lowest D-statistic for every given trio
(Dmin; a conservative estimate of D). We assessed whether D
was significantly different from zero by calculating a P value
based on jackknifing. We analyzed the complete biallelic SNP
data set with the two L. juncta samples as outgroups (the
results were almost identical when using L. undecemlineata
instead; data not shown). For the second test (2), we included
the nine other Leptinotarsa species using the same data set
from the SNPhylo analysis, comprising the 100 first scaffolds
and 16,519,065 SNPs. The data set contained one susceptible
and one resistant sample for each of the six paired

populations. In order to analyze a balanced data set, we lim-
ited the “Plains” population to the samples from Colorado.
We also created two Mexican populations, representing the
two distinct Mexican clades recovered in our phylogeny:
“Mexico_City” (containing two samples) and
“Mexico_South” (containing the sample from Oaxaca and
the one from Guerrero; supplementary file 1: table S1,
Supplementary Material online). We used L. lineolata as the
outgroup, as it was recovered as the most basal and distantly
related taxon to the US CPB clade.

Demographic Analysis
To reconstruct the population history of CPB, we used the
CPB intergenic SNP data set and employed two coalescent
approaches: the Stairway plot method (Liu and Fu 2015) and
SMCþþ (Terhorst et al. 2017). Demographic reconstructions
rely on an accurate estimate of the mutation rate. Most
estimates of nuclear mutation rate in insects fall into the
range of 2� 10�9 to 7� 10�9 substitutions per site per gen-
eration (Keightley et al. 2015; Allio et al. 2017). As there is no
genome-wide mutation rate estimate for CPB or related bee-
tles, we chose to use a mutation rate of 2.1� 10�9, estimated
recently in the nonbiting midge (Oppold and Pfenninger
2017). We set the generation time of 0.5 per year (i.e., two
generations per year) for all our samples. The Stairway plot
approach relies on the calculation of the expected composite
likelihood of a given site frequency spectrum (SFS), which
reduces the computational burden of inferring population
parameters. It is also suitable for estimating recent population
histories with low-coverage genomic data. We analyzed the
resistant and susceptible paired populations, both separately
and pooled together, and also considered pooled sample
from a geographically cohesive groupings that had some ev-
idence of genetic distinctiveness: the Plains (Colorado,
Nebraska, Kansas, Missouri, New Mexico, and Texas), East
(Florida, Tennessee, North Carolina, Virginia, Kentucky, and
Ohio), and Europe (Italy, Russia). For each population, we
estimated the folded SFS in dadi (Gutenkunst et al. 2009),
calculated for a genome length of 678 Mb (Schoville et al.
2018), and used 200 bootstraps to assess confidence intervals.
We then conducted the Stairway plot analysis with default
parameters and plotted the estimated median (and 95%
confidence intervals) effective population size (Ne) through
time.

We chose SMCþþ (Terhorst et al. 2017) as an alternative
approach, as it incorporates estimates of recombination and
LD in an SFS framework. Even though this method is relatively
computationally efficient, long run times prevented us from
using the entire CPB data set. Due to the fragmented nature
of the genome, we analyzed the longest 95 genomic scaffolds
of the CPB data set, including all intergenic and nonintergenic
biallelic SNPs. This encompasses approximately 21% of the
genome (�140 Mb out of�670 Mb, mean length of 1.9 Mb,
and all >1 Mb) and contains 6,669,259 SNPs. This subset of
highly contiguous reference genomic data ensures we can
accurately infer demography using the sequential Markov
coalescent (Nadachowska-Brzyska et al. 2016), although we
note that analyses considering all >10-kb scaffolds (covering
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95% of the genome) yielded comparable results (i.e., same
population sizes, same demographic events, same time scale;
results not shown).

Selection Analyses
We used four different approaches to study genomic signa-
tures of selection: outlier detection with PCAdapt (Duforet-
Frebourg et al. 2016; Luu et al. 2017), genome–environment
association with LFMM (Frichot et al. 2013), haplotype-
based tests using hapFLK (Fariello et al. 2013), and a FST-
outlier approach for paired susceptible and resistant popu-
lations. Simulation studies have shown that PCAdapt,
LFMM, and hapFLK retain power and have a controlled
false-positive rate under scenarios of recent range expansion
(Frichot et al. 2015; Luu et al. 2017), which we expect based
on the history of rapid geographical expansion of CPB
(Hsiao 1985). To detect outlier SNPs using PCAdapt,
Mahalanobis distances were transformed into P values
and then the FDR was controlled by transforming the P
values into q values and considering an FDR of 0.01%
(a¼ 0.0001). We initially filtered SNPs using a MAF of
0.05 and a conservative setting of K¼ 10, but the number
of SNPs suggested a high rate of false positives (see supple-
mentary file 1, Supplementary Material online). We there-
fore refined our filtering steps using LD clumping (choosing
a window size of 500 SNPs and a squared-correlation coef-
ficient threshold of 0.2). We examined the screeplot of the
principle components and, following Cattell’s rule, selected
K¼ 6 as the optimal clustering level. Finally, we adjusted the
data set by setting a more conservative MAF setting of 0.1.
Using these settings, we ran PCAdapt with and without the
New Jersey population to test for any bias due to inclusion
of this inbred population.

As an alternative genome scan approach, we employed a
genome-environmental association method using latent fac-
tor mixed models (LFMM; Frichot et al. 2013). This test iden-
tifies SNP allele frequencies that are significantly associated
with environmental predictor variables, whereas simulta-
neously modeling the confounding effect of population struc-
ture as latent factors. To account for the population structure
observed in our data, we modeled k¼ 6 latent factors, as
suggested by our PCAdapt and sNMF results. We adjusted P
values by an empirically determined genomic inflation factor,
while controlling the false discovery rate at 0.01%. We ex-
plored five different environmental variables: elevation, pre-
cipitation, minimum temperature in the coldest month and
potato land cover. We reasoned that genes containing SNPs
associated with climate variables could be related to
L. decemlineata adaptation to northern climates during range
expansion, whereas associations with potato land cover
might reveal genes responding to selective pressures faced
in potato agroecosystems, such as novel host plants, natural
enemy pressure and insecticide exposure. We obtained his-
toric, county-level potato land cover data (between 1850 and
2012), as detailed in Crossley et al. (2021). For latitude, eleva-
tion, precipitation, and minimum temperature in the coldest
month, we obtained the data from the PRISM climate group
(http://prism.oregonstate.edu). For each environmental

variable, we took the average value within a 75 km radius
around each sampling site, using functions available in the
rgdal and raster packages in R (Bivand et al. 2014; Hijmans
et al. 2017). For potato land cover, we summarized the aver-
age proportion of area planted with potato within a 75 km
radius of each sample site (2018).

In order to integrate information from linked SNPs in tests
of selection, we used the haplotype frequency-based method
hapFLK (Fariello et al. 2013). This approach models haplotype
frequency changes in a population tree, with population
branch lengths representing the amount of genetic drift rel-
ative to a shared ancestral node. The population tree is esti-
mated using genome-wide haplotype data, and deviation
from the background tree topology is tested to identify can-
didates of selection. The hapFLK method has been shown to
be relatively robust to confounding effects of population
structure and variable population size (Schlamp et al. 2016;
Vatsiou et al. 2016). It also allows selection events to be
pinpointed to specific branches of the population tree, so
that for each identified signature of selection, a local tree is
re-estimated using significant haplotypes while being con-
strained by the overall topology of the population tree.
Statistical significance is computed for the difference between
the branch lengths estimated from the focal region and from
the global tree. We analyzed the first (longest) 95 genomic
scaffolds of the CPB data set (representing �21% of the ge-
nome), including all biallelic SNPs. From a vcf file produced
with GATK’s SelectVariants function, we produced a ped file
and associated map file with VCFtools’ –plink function. In
order to use the multipoint LD model, hapFLK requires the
number of haplotype clusters (K) to be specified and a pop-
ulation tree. We compared hapFLK results for different K
values, ultimately selecting K¼ 20 to minimize imputation
errors (see supplementary file 1, Supplementary Material on-
line, for detailed methods; supplementary file 1: fig. S38,
Supplementary Material online). The population tree was
estimated from a kinship matrix (supplementary file 1: fig.
S39, Supplementary Material online). We standardized
hapFLK values and computed corresponding P values from
a standard normal distribution, examining results at three
nominal levels (a¼ 0.01, 0.001, and 0.0001; supplementary
file 1: fig. S40, Supplementary Material online). We grouped
significant SNPs into selected regions, where each region was
separated by at least 1 kb up- and downstream.

Finally, in order to determine whether parallel selection
(positive selection acting on ancestral variation in the same
genes) drives insecticide adaptation across the geographi-
cal range of pest populations, we first identified FST outliers
in pairs of imidacloprid resistant and susceptible pest pop-
ulation: Oregon, Wisconsin, Michigan, Maryland, New York
(with New Jersey), and Maine (with Vermont). Pairwise FST

was measured in 1-kb sliding windows across the genome,
using a conservative threshold of the 99th percentile (the
0.995 quantile in a one-tailed test) to identify outlier
regions. To identify parallel selection, we examined
whether these outlier regions overlapped with candidate
insecticide genes and exhibited geographical overlap
among the six pairs.
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Candidate Genes and Gene Network Analysis
For each selection test, we obtained functional information
for candidate SNPs using manual annotation of the OGS
supplemented by Blast2GO annotations (Conesa et al.
2005), which have been previously published (Crossley et al.
2017; Schoville et al. 2018). To develop a list of candidate
insecticide resistance genes, Crossley et al. (2017) identified
664 genes associated with processes or functions potentially
linked to known mechanisms of insecticide resistance (sup-
plementary file 1: table S19, Supplementary Material online):
metabolic detoxification including CYPs, esterases, GSTs, and
ABC transporters (Feyereisen et al. 2015); target-site insensi-
tivity including most of the modes of actions classified by the
Insecticide Resistance Action Committee (IRAC; http://www.
irac-online.org/modes-of-action/) such as TRPC channels, so-
dium and calcium channels, glutamate receptors, and acetyl-
choline receptors; and reduced cuticle penetration, including
genes involved in chitin production or cuticle development.

One frequent concern in analyses of large data sets is the
inclusion of false positives (Type I error) resulting from the
large number of statistical tests. Frequently, this is resolved by
adjusting P values to more conservative values, for example,
by implementing multiple testing recalibrations such as
Bonferroni or the Benjamini–Hochberg false discovery rate.
However, in functional genomic studies, gene lists provide
objective hypotheses that can be easily assessed in follow-
up studies, while removing them based on statistical criteria
can sometimes be challenging (François et al. 2016). Although
we employ stringent statistical criteria in all tests, we addi-
tionally leverage our gene lists by comparing results from
different tests. As we expect that both regulatory and struc-
tural changes might lead to genetic adaptation, we tested for
overrepresentation of specific gene networks in selection
tests, gene expression analyses, and combinations of both
approaches. Given multiple data sources, overlap in gene
identity and function provides a measure of support for re-
peated evolution and polygenic adaptation. We curated gene
ontology terms associated with significant genes in lists from
genome-wide selection tests and differential expression tests,
and used a one-sided hypergeometric Fisher’s exact test
(Rivals et al. 2007; De Leeuw et al. 2016) to test for overrep-
resentation (enrichment) of gene ontology terms, with P
value <0.05 used as the statistical significance threshold. To
further refine this analysis, we used REVIGO (Supek et al.
2011), a clustering algorithm that relies on semantic similarity
measures, to summarize the list of enriched gene ontology
terms. Gene ontology terms associated with biological pro-
cesses, cellular components, and molecular function were
separately clustered using the simRel score for functional sim-
ilarity, allowing for redundancy in similar terms up to a value
of 0.7 before removal, and then compared with the UniProt
database to find the percentage of genes annotated with each
gene ontology term. The results were visualized using a CirGO
plot (Kuznetsova et al. 2019). To provide a context for inter-
preting these results, we used our list of candidate genes
(supplementary file 1: table S19, Supplementary Material on-
line) to generate a CirGO plot of gene ontology terms asso-
ciated with insecticide resistance (supplementary file 1: fig.

S41, Supplementary Material online). Major biological pro-
cesses include response to insecticide/response to oxidative
stress, endocytosis, glycerolipid metabolism, sensory percep-
tion, and DNA integration. Major cellular components in-
clude the plasma membrane/integral component of the
membrane and transcription factor complex. Finally, major
molecular functions include metallocarboxypeptidase activ-
ity, monooxygenase activity, acetylcholine binding, lipid bind-
ing, DNA polymerase binding, tetracycline transporter
activity, chromatin binding, chitin binding, and structural
component of cuticle.

Gene Expression Analyses
In order to test for regulatory evolution, we compared gene
expression data from RNA sequencing (RNAseq) experiments
across the geographical range of CPB, including original data
from the Plains region (a Colorado population) and previ-
ously published pest CPB population samples (see supple-
mentary file 1: table S16, Supplementary Material online).
The Colorado population was raised under greenhouse con-
ditions on potato plants (�25 �C, 16:8 light:dark cycle), but
represents the first generation derived from wild-caught
adults feeding on an ancestral hostplant Solanum rostratum.
RNAseq studies are recognized as robust estimators of whole-
genome gene expression profiles (Everaert et al. 2017) that are
highly responsive to experimental conditions (Conesa et al.
2016). As the original experiments varied in their design, we
conducted a set of initial analyses to determine if sampling
conditions might bias geographical comparisons. First, we
assessed whether sampling of an overwintering (postdia-
pause) population versus a summer (nondiapausing) gener-
ation at the same field in Wisconsin altered gene expression
patterns (first generation vs. second generation). Second, we
examined whether direct exposure to imidacloprid was nec-
essary to induce insecticide resistance gene expression
responses, by comparing a set of lab-reared individuals from
Wisconsin, Oregon, and Long Island populations (control vs.
an imidacloprid-induction treatment). Third, we compared
samples of larvae and adults from a susceptible population in
Wisconsin. Based on these comparisons, we determined that
regional population differences could be compared for adults
from field collected populations irrespective of generation
sampled, but lab reared larvae needed to be compared sep-
arately. In both the adult and larval regional analysis, popu-
lations were included notwithstanding imidacloprid
tolerance. We compared constitutive levels of gene expres-
sion in six adult populations: Colorado (CO), Wisconsin (WI),
Michigan (MI), New York (NY), New Jersey (NJ), and eastern
Canada (CAN). We compared constitutive levels of gene ex-
pression in four larval populations: Oregon (OR), Wisconsin
(WI), New York (NY), and New Jersey (NJ). As some of the
adult samples were sequenced as pair-end and single-end
reads, we analyzed only the first read of a set of pair-end
samples representing CO and WI.

We aligned short read data from each sample to the
L. decemlineata reference genome using HISAT2 (Kim et al.
2015). SAMTOOLS was used to convert sam files to bam files.
Read counts per gene per sample were generated using the
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function featureCounts available in the Rsubread package
(Liao et al. 2019), with reference to the L. decemlineata
OGS. Using the resulting counts, we evaluated evidence for
differential gene expression for each region using DESEQ2
(Love et al. 2014). DESEQ2 first estimates the dispersion
among a set of replicated samples and then the logarithmic
fold change of transcript counts among sample groups. It
then employs a generalized linear model based on the nega-
tive binomial distribution of transcript counts and a binomial
Wald statistic to test for differences among experimental
contrasts. We first trimmed the read count matrix to remove
genes with less than five reads and then conducted the dif-
ferential expression analysis. We retained differentially
expressed genes if read counts were >2-fold and the signifi-
cance level a¼ 5% was reached. We then adjusted the false
discovery rate to 1% level, using a Benjamini–Hochberg cor-
rection (Benjamini and Hochberg 1995). Heatmaps of differ-
entially expressed genes were generated in R using the
pheatmap package (Kolde and Kolde 2015). As described
previously, we curated gene ontology terms associated with
significant genes and used a one-sided hypergeometric
Fisher’s exact test to test for overrepresentation (enrichment)
of gene ontology terms, with a P value <0.05 used as the
statistical significance threshold.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Conesa A, Götz S, Garc�ıa-G�omez JM, Terol J, Tal�on M, Robles M. 2005.
Blast2GO: a universal tool for annotation, visualization and analysis
in functional genomics research. Bioinformatics 21(18):3674–3676.

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A,
McPherson A, Szcze�sniak MW, Gaffney DJ, Elo LL, Zhang X, et al.
2016. A survey of best practices for RNA-seq data analysis. Genome
Biol. 17:13.

Corbett-Detig RB, Hartl DL, Sackton TB. 2015. Natural selection con-
strains neutral diversity across a wide range of species. PLoS Biol.
13(4):e1002112.

Corr̂ea AS, Cordeiro EM, Omoto C. 2019. Agricultural insect hybridiza-
tion and implications for pest management. Pest Manag Sci.
75(11):2857–2864.

Crossley MS, Burke KD, Schoville SD, Radeloff VC. 2021. Recent collapse
of crop belts and declining diversity of US agriculture since 1840.
Glob Chang Biol. 27(1):151–164.

Crossley MS, Chen YH, Groves RL, Schoville SD. 2017. Landscape geno-
mics of Colorado potato beetle provides evidence of polygenic ad-
aptation to insecticides. Mol Ecol. 26(22):6284–6300.

Crossley MS, Rondon SI, Schoville SD. 2018. A comparison of resistance
to imidacloprid in Colorado potato beetle (Leptinotarsa decemli-
neata Say) populations collected in the Northwest and Midwest
US. Am J Potato Res. 95(5):495–499.

Crow JF. 1957. Genetics of insect resistance to chemicals. Annu Rev
Entomol. 2(1):227–246.

Cutter AD, Jovelin R, Dey A. 2013. Molecular hyperdiversity and evolu-
tion in very large populations. Mol Ecol. 22(8):2074–2095.

Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T,
Heckel D, Batterham P, et al. 2002. A single P450 allele associated
with insecticide resistance in Drosophila. Science
297(5590):2253–2256.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. 2011. The variant
call format and VCFtools. Bioinformatics 27(15):2156–2158.

Davis-Vogel C, Ortiz A, Procyk L, Robeson J, Kassa A, Wang Y, Huang E,
Walker C, Sethi A, Nelson ME, et al. 2018. Knockdown of RNA
interference pathway genes impacts the fitness of western corn
rootworm. Sci Rep. 8(1):7858.

De Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, Macaya-Sanz D,
Cottrell J, Heinze B, Schanzer I, Lexer C. 2010. Admixture facilitates
adaptation from standing variation in the European aspen (Populus
tremula L.), a widespread forest tree. Mol Ecol. 19(8):1638–1650.

De Leeuw CA, Neale BM, Heskes T, Posthuma D. 2016. The statistical
properties of gene-set analysis. Nat Rev Genet. 17(6):353–364.

Denholm I, Rowland M. 1992. Tactics for managing pesticide resistance
in arthropods: theory and practice. Annu Rev Entomol. 37:91–112.

Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbi�c M, Clark
RM, Feyereisen R, Van Leeuwen T. 2013. A link between host plant
adaptation and pesticide resistance in the polyphagous spider mite
Tetranychus urticae. Proc Natl Acad Sci U S A. 110(2):E113–E122.

Dively GP, Crossley MS, Schoville SD, Steinhauer N, Hawthorne DJ. 2020.
Regional differences in gene regulation may underlie patterns of
sensitivity to novel insecticides in Leptinotarsa decemlineata. Pest
Manag Sci. 76(12):4278–4285.

Duforet-Frebourg N, Luu K, Laval G, Bazin E, Blum MG. 2016. Detecting
genomic signatures of natural selection with principal component
analysis: application to the 1000 genomes data. Mol Biol Evol.
33(4):1082–1093.

Edgerton J. 1861. Potato insects. Prairie Farmer 8:116.
Everaert C, Luypaert M, Maag JL, Cheng QX, Dinger ME, Hellemans J,

Mestdagh P. 2017. Benchmarking of RNA-sequencing analysis work-
flows using whole-transcriptome RT-qPCR expression data. Sci Rep.
7(1):1559.

Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B. 2013.
Detecting signatures of selection through haplotype differentia-
tion among hierarchically structured populations. Genetics
193(3):929–941.

Faucon F, Dusfour I, Gaude T, Navratil V, Boyer F, Chandre F, Sirisopa P,
Thanispong K, Juntarajumnong W, Poupardin R, et al. 2015.
Unravelling genomic changes associated with insecticide resistance
in the dengue mosquito Aedes aegypti by deep targeted sequencing.
Genome Res. 25(9):1347–1359.

Felsenstein J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6.
Seattle: University of Washington.

Feyereisen R, Dermauw W, Van Leeuwen T. 2015. Genotype to pheno-
type, the molecular and physiological dimensions of resistance in
arthropods. Pestic Biochem Physiol. 121:61–77.

ffrench-Constant RH. 2013. The molecular genetics of insecticide resis-
tance. Genetics 194(4):807–815.

ffrench-Constant RH, Bass C. 2017. Does resistance really carry a fitness
cost? Curr Opin Insect Sci. 21:39–46.

François O, Martins H, Caye K, Schoville SD. 2016. Controlling false
discoveries in genome scans for selection. Mol Ecol. 25(2):454–469.

Frichot E, François O. 2015. LEA: an R package for landscape and eco-
logical association studies. Methods Ecol Evol. 6(8):925–929.

Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. 2014. Fast and
efficient estimation of individual ancestry coefficients. Genetics
196(4):973–983.

Frichot E, Schoville S, Bouchard G, François O. 2013. Testing for associ-
ations between loci and environmental gradients using latent factor
mixed models. Mol Biol Evol. 30(7):1687–1699.

Frichot E, Schoville SD, de Villemereuil P, Gaggiotti OE, François O. 2015.
Detecting adaptive evolution based on association with ecological
gradients: orientation matters! Heredity 115(1):22–28.

Fritz ML, DeYonke AM, Papanicolaou A, Micinski S, Westbrook J, Gould
F. 2018. Contemporary evolution of a Lepidopteran species, Heliothis
virescens, in response to modern agricultural practices. Mol Ecol.
27(1):167–181.

Gaddelapati SC, Kalsi M, Roy A, Palli SR. 2018. Cap‘n’collar C regulates
genes responsible for imidacloprid resistance in the Colorado potato
beetle, Leptinotarsa decemlineata. Insect Biochem Mol Biol. 99:54–62.

Galtier N. 2016. Adaptive protein evolution in animals and the effective
population size hypothesis. PLoS Genet. 12(1):e1005774.

Garud NR, Messer PW, Petrov DA. 2021. Detection of hard and soft
selective sweeps from Drosophila melanogaster population genomic
data. PLoS Genet. 17(2):e1009373.

Georghiou GP, Taylor CE. 1986. Factors influencing the evolution of resis-
tance. In: National Research Council, Board on Agriculture,
Committee on Strategies for the Management of Pesticide Resistant
Pest Populations. Pesticide resistance: strategies and tactics for man-
agement. Washington (DC): National Academy Press. p. 157–169.

Goudet J. 2005. Hierfstat, a package for R to compute and test hierar-
chical F-statistics. Mol Ecol Notes. 5(1):184–186.

Gould F, Brown ZS, Kuzma J. 2018. Wicked evolution: can we address the
sociobiological dilemma of pesticide resistance? Science
360(6390):728–732.

Grapputo A, Boman S, Lindström L, Lyytinen A, Mappes J. 2005. The
voyage of an invasive species across continents: genetic diversity of
North American and European Colorado potato beetle populations.
Mol Ecol. 14(14):4207–4219.

Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson
N, Li H, Zhai W, Fritz MH-Y, et al. 2010. A draft sequence of the
Neandertal genome. Science 328(5979):710–722.

Guan R-B, Li H-C, Fan Y-J, Hu S-R, Christiaens O, Smagghe G, Miao X-X.
2018. A nuclease specific to lepidopteran insects suppresses RNAi. J
Biol Chem. 293(16):6011–6021.

Gui S, Taning CNT, Wei D, Smagghe G. 2020. First report on CRISPR/
Cas9-targeted mutagenesis in the Colorado potato beetle,
Leptinotarsa decemlineata. J Insect Physiol. 121:104013.

Guillemaud T, Ciosi M, Lombaert E, Estoup A. 2011. Biological invasions
in agricultural settings: insights from evolutionary biology and pop-
ulation genetics. C R Biol. 334(3):237–246.

P�elissi�e et al. . doi:10.1093/molbev/msac016 MBE

20



Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009.
Inferring the joint demographic history of multiple populations from
multidimensional SNP frequency data. PLoS Genet. 5(10):e1000695.

Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA. 2005. Rapid evo-
lution and the convergence of ecological and evolutionary time. Ecol
Lett. 8(10):1114–1127.

Hardy NB, Peterson DA, Ross L, Rosenheim JA. 2018. Does a plant-eating
insect’s diet govern the evolution of insecticide resistance?
Comparative tests of the pre-adaptation hypothesis. Evol Appl.
11(5):739–747.

Haridas C, Tenhumberg B. 2018. Modeling effects of ecological factors on
evolution of polygenic pesticide resistance. J Theor Biol. 456:224–232.

Hawkins NJ, Bass C, Dixon A, Neve P. 2019. The evolutionary origins of
pesticide resistance. Biol Rev. 94(1):135–155.

Hawthorne DJ. 2003. Quantitative trait locus mapping of pyrethroid
resistance in Colorado potato beetle, Leptinotarsa decemlineata
(Say) (Coleoptera: Chrysomelidae). J Econ Entomol. 96(4):1021–1030.

He W, Xu W, Fu K, Guo W, Zhang J. 2020. Low mismatch rate between
double-stranded RNA and target mRNA does not affect RNA inter-
ference efficiency in Colorado potato beetle. Insects 11(7):449.

Hijmans R, van Etten J, Cheng J, Mattiuzzi M, Sumner M, Jonathan A.
2017. Package ‘raster’. Geographic data analysis and modeling.
Available from: https://cran.r-project.org/web/packages/raster/
index.html. Accessed December 01, 2019.

Hitchner EM, Kuhar TP, Dively GP, Youngman RR, Philips CR, Anderson
TD. 2012. Baseline toxicity and field efficacy of metaflumizone on
Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ
Entomol. 105(1):207–213.

Hoy MA. 1998. Myths, models and mitigation of resistance to pesticides.
Philos Trans R Soc Lond B Biol Sci. 353(1376):1787–1795.

Hsiao TH. 1985. Ecophysiological and genetic aspects of geographic
variations of the Colorado potato beetle. Res Bull. 704:63–77.

Hsiao TH. 1978. Host plant adaptations among geographic populations
of the Colorado potato beetle. Entomol Exp Appl. 24(3):437–447.

Hsiao TH. 1988. Host specificity, seasonality and bionomics of
Leptinotarsa beetles. In: Jolivet P, Petitpierre E, Hsiao TH, editors.
Biology of Chrysomelidae. Dordrecht: Springer. p. 581–599.

Hu B, Huang H, Wei Q, Ren M, Mburu DK, Tian X, Su J. 2019.
Transcription factors CncC/Maf and AhR/ARNT coordinately regu-
late the expression of multiple GSTs conferring resistance to chlor-
pyrifos and cypermethrin in Spodoptera exigua. Pest Manag Sci.
75(7):2009–2019.

Ingham V, Wagstaff S, Ranson H. 2018. Transcriptomic meta-signatures
identified in Anopheles gambiae populations reveal previously unde-
tected insecticide resistance mechanisms. Nat Commun. 9(1):5282.

Ingham VA, Pignatelli P, Moore JD, Wagstaff S, Ranson H. 2017. The
transcription factor Maf-S regulates metabolic resistance to insecti-
cides in the malaria vector Anopheles gambiae. BMC Genomics
18(1):669.

Izzo VM, Chen YH, Schoville SD, Wang C, Hawthorne DJ. 2018. Origin of
pest lineages of the Colorado potato beetle (Coleoptera:
Chrysomelidae). J Econ Entomol. 111(2):868–878.

Izzo VM, Hawthorne DJ, Chen YH. 2014. Geographic variation in winter
hardiness of a common agricultural pest, Leptinotarsa decemlineata,
the Colorado potato beetle. Evol Ecol. 28(3):505–520.

Kalsi M, Palli SR. 2015. Transcription factors, CncC and Maf, regulate
expression of CYP6BQ genes responsible for deltamethrin resistance
in Tribolium castaneum. Insect Biochem Mol Biol. 65:47–56.

Kalsi M, Palli SR. 2017. Transcription factor cap n collar C regulates
multiple cytochrome P450 genes conferring adaptation to potato
plant allelochemicals and resistance to imidacloprid in Leptinotarsa
decemlineata (Say). Insect Biochem Mol Biol. 83:1–12.

Kamdem C, Fouet C, Gamez S, White BJ. 2017. Pollutants and insecti-
cides drive local adaptation in African malaria mosquitoes. Mol Biol
Evol. 34(5):1261–1275.

Karasov T, Messer PW, Petrov DA. 2010. Evidence that adaptation in
Drosophila is not limited by mutation at single sites. PLoS Genet.
6(6):e1000924.

Keeling CI, Yuen MM, Liao NY, Roderick Docking T, Chan SK, Taylor GA,
Palmquist DL, Jackman SD, Nguyen A, Li M, et al. 2013. Draft genome
of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a
major forest pest. Genome Biol. 14(3):R27.

Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK,
Mallet J, Davey JW, Jiggins CD. 2015. Estimation of the spontaneous
mutation rate in Heliconius melpomene. Mol Biol Evol. 32(1):239–243.

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with
low memory requirements. Nat Methods. 12(4):357–360.

Kirk H, Dorn S, Mazzi D. 2013. Molecular genetics and genomics generate
new insights into invertebrate pest invasions. Evol Appl.
6(5):842–856.

Kiwoong N, Nhim S, Robin S, Bretaudeau A, Negre N. 2020. Positive
selection alone is sufficient for whole genome differentiation at the
early stage of speciation process in the fall armyworm. BMC Evol
Biol. 20:152.

Kobiela ME, Snell-Rood EC. 2020. Genetic variation influences tolerance
to a neonicotinoid insecticide in 3 butterfly species. Environ Toxicol
Chem. 39(11):2228–2236.

Kolde R, Kolde MR. 2015. Package ‘pheatmap’. R Package 1:790.
Kreiner JM, Stinchcombe JR, Wright SI. 2018. Population genomics of

herbicide resistance: adaptation via evolutionary rescue. Annu Rev
Plant Biol. 69:611–635.

Kuznetsova I, Lugmayr A, Siira SJ, Rackham O, Filipovska A. 2019. CirGO:
an alternative circular way of visualising gene ontology terms. BMC
Bioinformatics 20(1):1–7.

Labb�e P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M,
Lenormand T. 2007. Forty years of erratic insecticide resistance evo-
lution in the mosquito Culex pipiens. PLoS Genet. 3(11):e205.

L�aruson �AJ, Yeaman S, Lotterhos KE. 2020. The importance of genetic
redundancy in evolution. Trends Ecol Evol. 35(9):809–822.

Lee CE. 2002. Evolutionary genetics of invasive species. Trends Ecol Evol.
17(8):386–391.

Lee TH, Guo H, Wang X, Kim C, Paterson AH. 2014. SNPhylo: a pipeline
to construct a phylogenetic tree from huge SNP data. BMC
Genomics 15:162.

Leffler EM, Bullaughey K, Matute DR, Meyer WK, S�egurel L, Venkat A,
Andolfatto P, Przeworski M. 2012. Revisiting an old riddle: what
determines genetic diversity levels within species? PLoS Biol.
10(9):e1001388.

Lewis WJ, Van Lenteren J, Phatak SC, Tumlinson J. 1997. A total system
approach to sustainable pest management. Proc Natl Acad Sci U S A.
94(23):12243–12248.

Li H, Durbin R. 2009. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.

Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J. 2009. SNP
detection for massively parallel whole-genome resequencing.
Genome Res. 19(6):1124–1132.

Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster,
cheaper and better for alignment and quantification of RNA se-
quencing reads. Nucleic Acids Res. 47(8):e47.

Liu X, Fu Y-X. 2015. Exploring population size changes using SNP fre-
quency spectra. Nat Genet. 47(5):555–559.

L�opez-Maury L, Marguerat S, B€ahler J. 2008. Tuning gene expression to
changing environments: from rapid responses to evolutionary ad-
aptation. Nat Rev Genet. 9(8):583–593.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol.
15(12):550.

Lu W, Lazell J. 1996. The voyage of the beetle. Nat Hist. 105:36–39.
Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MK, Kwiatkowski

DP, Weetman D, Donnelly MJ, Anopheles gambiae 1000 Genomes
Consortium. 2019. Whole-genome sequencing reveals high com-
plexity of copy number variation at insecticide resistance loci in
malaria mosquitoes. Genome Res. 29(8):1250–1261.

Luck RF, van den Bosch R, Garcia R. 1977. Chemical insect con-
trol—a troubled pest management strategy. Bioscience
27(9):606–611.

Rapid and Repeated Evolution in CPB . doi:10.1093/molbev/msac016 MBE

21



Luu K, Bazin E, Blum MG. 2017. pcadapt: an R package to perform
genome scans for selection based on principal component analysis.
Mol Ecol Resour. 17(1):67–77.

Malinsky M, Matschiner M, Svardal H. 2021. Fast D-statistics and
related admixture evidence from VCF files. Mol Ecol Resour.
21:584–595.

Mallick S, Gnerre S, Muller P, Reich D. 2009. The difficulty of avoiding
false positives in genome scans for natural selection. Genome Res.
19(5):922–933.

May RM, Dobson AP. 1986. Population dynamics and the rate of evo-
lution of pesticide resistance. In: National Research Council, Board
on Agriculture, Committee on Strategies for the Management of
Pesticide Resistant Pest Populations. Pesticide resistance: strategies
and tactics for management. Washington (DC): National Academy
Press. p. 170–193.

McCaffery A, Nauen R. 2006. The insecticide resistance action commit-
tee (IRAC): public responsibility and enlightened industrial self-in-
terest. Outlooks Pest Manage. 17:11–14.

Mehlhorn SG, Geibel S, Bucher G, Nauen R. 2020. Profiling of RNAi
sensitivity after foliar dsRNA exposure in different European popu-
lations of Colorado potato beetle reveals a robust response with
minor variability. Pestic Biochem Physiol. 166:104569.

Messer PW, Ellner SP, Hairston NG. 2016. Can population genetics adapt
to rapid evolution? Trends Genet. 32(7):408–418.

Messer PW, Petrov DA. 2013. Population genomics of rapid adaptation
by soft selective sweeps. Trends Ecol Evol. 28(11):659–669.

Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. 2016. PSMC anal-
ysis of effective population sizes in molecular ecology and its appli-
cation to black-and-white Ficedula flycatchers. Mol Ecol.
25(5):1058–1072.

Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d’Alençon E. 2020.
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