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Abstract

In female mice, the experience of being shipped from the breeder facility or a single injection

of the bacterial endotoxin, lipopolysaccharide (LPS), during pubertal development alters the

behavioral response to estradiol in adulthood as demonstrated by perturbations of estradi-

ol’s effects on sexual behavior, cognitive function, as well as its anxiolytic and anti-depres-

sive properties. Microglia, the primary type of immunocompetent cell within the brain,

contribute to brain development and respond to stressors with marked and long-lasting mor-

phological and functional changes. Here, we describe the morphology of microglia and their

response to shipping and LPS in peripubertal and adult female mice. Peripubertal mice

have more microglia with long, thick processes in the hippocampus, amygdala and hypo-

thalamus as compared with adult mice in the absence of an immune challenge. An immune

challenge also increases immunoreactivity (IR) of ionized calcium binding adaptor molecule

1 (Iba1), which is constitutively expressed in microglia. In the hippocampus, the age of ani-

mal was without effect on the increase in Iba1- IR following shipping from the breeder facility

or LPS exposure. In the amygdala, we observed more Iba1-IR following shipping or LPS

treatment in peripubertal mice, compared to adult mice. In the hypothalamus, there was a

disassociation of the effects of shipping and LPS treatment as LPS treatment, but not ship-

ping, induced an increase in Iba1-IR. Taken together these data indicate that microglial mor-

phologies differ between pubertal and adult mice; moreover, the microglial response to

complex stressors is greater in pubertal mice as compared to adult mice.

Introduction

Puberty, the transition into a reproductively competent adult, and adolescence are develop-

mental periods of great physiological, psychosocial, and cultural changes [1]. As such, it is also
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a time of considerable vulnerability to stressors. Stressful or traumatic events during the peri-

pubertal period and adolescence contribute to the development and diagnosis of mental ill-

ness, such as anxiety or depression [2–6]. In rodents, the experience of a complex stressor, but

not more commonly-used stressors such as restraint stress, food deprivation, or a multiple

stressor regimen (restraint in combination with light exposure), during this period also

increases stress reactivity, anxiety- and depression-like behaviors, and decreases cognitive per-

formances in adulthood (reviewed in [7]). Female mice exposed to the stress of shipping or an

immune challenge, lipopolysaccharide (LPS), during pubertal development demonstrate a

reduction in hormone-induced sexual receptivity in adulthood [8–10].

In addition to inducing sexual receptivity, ovarian hormones, particularly estradiol, modu-

late the expression of anxiety- and depression-like behaviors; estradiol decreases both, the

expression of anxiety- [11–14] and depression-like behaviors [15–17] in female rats and mice.

Interestingly, although a combined treatment with estradiol and progesterone decreases anxi-

ety-like behavior in ovariectomized (OVX) mice, treatment with LPS during the peripubertal

period eliminates this [18]. Furthermore, rather than decreasing depression-like behaviors,

estradiol treatment increased these behaviors in female mice treated with LPS during the peri-

pubertal period [19]. These effects of LPS are eliminated if the treatment is delayed for two to

four weeks.

The interaction between the neuroendocrine and immune systems has become a widely

studied area in the development and mediation of mental illnesses. Microglia, the brain’s resi-

dent immune cells, play a critical role in brain development such as neurogenesis, migration,

differentiation, synapse formation and neural plasticity [20–23]. Based on their role as the

brain’s immune cells and in the normal neurodevelopmental processes, we postulate that

microglia mediate the vulnerability of the pubertal brain to the effects of an immune challenge

on long-terms changes in estradiol-regulated behaviors.

In support of this idea, a bacterial infection in male rat pups, but not juvenile male rats,

leads to long-term microglial activation, increased brain cytokine levels, and behavioral

changes in adulthood [24, 25]. Male rat pups also have an increased number of microglia at

the same age, and female rats have more microglia in an activated phenotype as juveniles and

adults than do males [26]. Females are more likely to be diagnosed with disorders that present

during adolescence [27–30], suggesting that the developmental status of the microglia may

underlie the onset of neuropsychiatric disorders.

Here, we describe the morphology of the microglia and their response to a complex stressor

during and after pubertal development. We used ionized calcium binding adapter molecule 1

(Iba1) as a marker for microglia as it is uniformly distributed in the cytoplasm of microglia,

making it suitable for analysis of microglia both in normal and in pathological conditions [31].

First, we characterized the morphology of microglia within the brains of peripubertal and

adult female brains. Next, we examined the changes in microglia immunoreactivity following

administration of LPS and the stress of shipping from a commercial breeding facility. These

stressors were chosen because they result in enduring changes in behavioral responses to estra-

diol [8–10, 18, 19, 32].

Material and methods

Animals

Female C57Bl/6 or CD-1 mice were shipped from Charles River Laboratories (Kingston, NY,

USA) at 3 weeks old and housed in an all female colony room under controlled temperature

(24 ± 2˚C) and reversed 14L:10D light cycle (lights off at 1000 h). Mice to be treated with LPS

at 6 or 8 weeks old were shipped at 3 weeks of age, because they are insensitive to the long-
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term effects of shipping on estradiol-influenced behaviors at this age [9]. Mice were also

shipped at 6 or 8 weeks of age to determine the effects of shipping at those ages. Shipping or

LPS administration at 6 weeks of age causes the biggest alteration in hormone-responsive

behaviors; therefore, this age was chosen to examine the effects of the pubertal stressors on

microglia. Mice were housed in groups of four in clear polycarbonate cages with ad libitum
access to food (Teklad 2014, phytoestrogen-reduced diet, Harlan Laboratories, Madison, WI)

and water in glass bottles. This study was approved by the University of Massachusetts,

Amherst Institutional Animal Care and Use Committee (Protocol # 2010–0073, 2013–0081)

and performed in accordance with the National Institutes of Health Guide for Care and Use of

Laboratory Animals. No animals used in these experiments became ill or died prior to the

experimental endpoint. All efforts were made to minimize animal suffering and to reduce the

number of animals used. Experimenters blinded as to treatment groups of animals and brain

sections conducted all experiments.

LPS treatment

LPS from E. coli serotype O26:B6 was obtained from Sigma Aldrich (St. Louis, MO, USA). The

LPS was dissolved in sterile saline vehicle to a concentration of 0.1mg/ml. Mice were randomly

assigned to treatment groups and received a single intraperitoneal injection of LPS (1.5mg/kg

body weight) or an equivalent volume of sterile saline vehicle and returned to their home cage

immediately following injection. The dose of LPS when administered during the peripubertal

period has previously been demonstrated to decrease behavioral responses to estradiol in

adulthood [8, 10, 18, 19, 32]. Consistent with previous reports [8, 10, 18, 19, 32], this dose of

LPS produced moderate sickness behavior.

Sickness behavior

Sickness behavior was scored at 30 min, 4 h, and 24 h following injections of LPS or saline or

arrival from the breeder facility by two observers who were blind to the treatment conditions.

Sickness behavior was scored using a 0–4 scale modified from [33, 34]. Mice were assessed for

lethargy as defined by decreased locomotion, huddling as defined by a curled body posture,

ptosis as defined by drooping or closed eyelids, and piloerection.

Tissue collection

Mice were deeply anesthetized with pentobarbital (100mg/kg), and brains were removed and

submersed into a fixative solution of 4% paraformaldehyde in phosphate buffered saline

(PBS; 0.05M, pH 7.4) at 4˚C, followed by cryoprotection in 30% sucrose in PBS. After cryo-

protection, the brains were frozen on dry ice and stored at -80˚C until processed for immu-

nocytochemistry. Brains were sectioned (30μm) in the coronal plane in a cryostat and stored

in a cryoprotectant solution (ethylene glycol/sucrose in sodium phosphate buffer) until

immunostained.

Immunocytochemistry

Cohorts containing free-floating sections from all treatment groups were rinsed in 0.05M Tris-

buffered saline (TBS; pH 7.2). Sections were then rinsed in a solution containing 10% saline,

1% gelatin, 0.2% sodium azide, and 0.2% Triton-X in 0.05M TBS (gel TBS). Sections were then

incubated in a blocking buffer containing 2% normal goat serum, 1% bovine serum albumin,

and 3.5% hydrogen peroxide in gel TBS for 1 h. Sections were then incubated for 48h at 4˚C

with a rabbit polyclonal antibody raised against ionized calcium binding adapter molecule 1

Microglia in peripubertal female mice
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(Iba1; Wako, Cat. #019–19741, RRID:AB_839504) at a dilution of 1:10,000 in 2% normal goat

serum and 0.5% Triton X-100 in gel TBS. After primary incubation, the sections were rinsed

in TBS and incubated in biotinylated secondary antibody (goat anti-rabbit; Vector Laborato-

ries Cat. # BA-1000, RRID:AB_2313606) in 2% normal goat serum in gel TBS for 90 min,

followed by washes in gel TBS. Finally, the sections were incubated with an avidin-biotin

horseradish peroxidase complex (Vectastain ABC, Elite Kit; Vector Laboratories Cat. # PK-

7100, RRID:AB_2336827) for 90 min at room temperature, washed in gel TBS and then

washed in TBS. The sections were visualized with nickel sulfate and 3,3’-diaminobenzidine tet-

rahydrochloride (DAB kit; Vector Laboratories Cat. # SK-4100, RRID:AB_2336382). After

visualization, the sections were rinsed in TBS, mounted serially onto gelatin-coated glass slides,

and coverslipped.

Unbiased stereology. Anatomically matched sections containing the arcuate nucleus,

ventromedial hypothalamus (VMH), basolateral amygdala (BLA), and hippocampus were ana-

lyzed. Both sides of the nuclei were included in the analysis. Iba1 labeled cells were counted

using the optical fractionator method within StereoInvestigator software (Microbrightfield

Inc., Williston, VT, USA). For analysis, we set an optical dissector height of 10μm with a 1-μm

guard zone on top and bottom, and counted stained cells within each frame. Cells were only

counted as positive if the entire cell body was visible and the stain appeared uniformly dark

throughout the cell.

A 75 μm by 75 μm counting frame was used to count cells throughout each section for

each section counted. For each animal, we analyzed every fourth section throughout the

brain regions and analyzed the three representative sections in each brain region. The count-

ing contour of each region matched Plates 42, 43, and 44 of the mouse brain atlas [35]. For

each section examined, the area was calculated by the StereoInvestigator software and was

based upon the boundaries of the contour tracings. Volume estimates were obtained by sum-

ming the areas given by the Cavalieri estimator, and them multiplying the sum of these areas

with the pre-histology thickness of each sample by the number of sections examined Table 1.

The volumes did not differ between peripubertal and post-pubertal animals for any of the

regions counted.

Iba1-positive cells were classified into four morphological types based on their cell shape

and configuration of their processes based upon the classification criteria described elsewhere

[26]. These four types consisted of round/amoeboid microglia, microglia with stout processes,

microglia with thicker longer processes, and microglia with thinner, more ramified processes.

The total number of each classification of Iba1-positive cells across all representative sections

for each brain region was counted. The total numbers of cells for all sections were analyzed

Table 1. Average volumes for each brain region compared across age.

Region Avg. volume (μm3) ± SEM Peripubertal Avg. volume (μm3) ± SEM Adult Statistics

BLA 216.458 x 106 ± 6.963 x 106 236.802 x 106 ± 8.629 x 106 t(6) = 1.835; p = 0.12

DG 75.424 x 106 ± 5.423 x 106 67.858 x 106 ± 3.551 x 106 t(6) = 1.167; p = 0.29

CA1 147.172 x 106 ± 16.403 x 106 155.356 x 106 ± 23.783 x 106 t(6) = 0.283; p = 0.79

CA3 228.393 x 106 ± 11.856 x 106 25.301 x 106 ± 11.112 x 106 t(6) = 1.519; p = 0.18

ARC 58.994 x 106 ± 1.479 x 106 66.159 x 106 ± 4.837 x 106 t(6) = 1.416; p = 0.21

VMH 233.554 x 106 ± 5.467 x 106 229.935 x 106 ± 9.084 x 106 t(6) = 0.341; p = 0.74

The mean volume ± SEM for each brain region is listed along with the statistical analysis for this data. We found that age of the animals was without effect

on the region volumes. ARC, arcuate nucleus; BLA, Basolateral Amygdala; CA1, CA1 region of the hippocampus; CA3, CA3 region of hippocampus; DG,

dentate gyrus; VMH, ventromedial hypothalamus.

doi:10.1371/journal.pone.0171381.t001
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using a mixed ANOVA with the within subjects factor of morphology and between subjects

factor of age.

Thresholding image analysis. Sections containing the arcuate, VMH, BLA, and hippo-

campus were analyzed. Both sides of the nuclei were included in the analysis. One best-

matched section for each brain area for each mouse was imaged using a Nikon Optiphot-2

microscope connected to a QImaging Micropublisher RTV 5.0 digital color camera (Surrey,

BC, Canada). Gray-scale images of the arcuate, VMH, BLA, and hippocampus were analyzed

with Image J 1.43 (National Institutes of Health). The regions of analysis were outlined bilater-

ally in each section, and cross-sectional area was measured. The Iba1-immunoreactivity (IR)

was quantified for each nucleus using a maximum entropy thresholding algorithm [36] with

threshold set to capture only clearly labeled cell nuclei and processes. Ramified microglia have

been demonstrated to transition into reactive microglia, characterized by shorter and thicker

processes and expanded cell bodies, leading to an increase in the area of microglia [37, 38].

Therefore, Iba1-IR was quantified by the mean area stained [39, 40].

Statistical analysis

Data are represented as means + SEM or ± SEM where appropriate. For experiment 1, a mixed

ANOVA (within subjects for morphology, between subjects for age) was used, followed by

Fishers’ LSD post hoc comparisons. A two-tailed t test was used to compare the total numbers

of microglia counted for each region. For experiment 2, two-way ANOVAs with age and peri-

pubertal treatment as independent measure, followed by Fishers’ LSD post hoc comparisons

were used. All statistical tests were conducted using the IBM Statistics SPSS (Chicago, IL) on a

Macintosh Duo-core computer.

Experiment 1: Which microglial morphological phenotypes are displayed

during the peripubertal period and in adulthood?

Sixteen female CD1 mice, shipped at three weeks of age, were euthanized, and brains were

removed from the skull at six (peripubertal) or ten (adult) weeks of age (Fig 1). These time

points were chosen because LPS treatment at six weeks causes reduction in hormone-induced

sexual receptivity in adulthood [10], alters estradiol’s anxiolytic [18], anti-depressive [19], and

pro-cognitive properties [32]. In contrast, LPS treatment at 10 weeks does not alter these

behavioral measures. Following submersion fixation, brains were cyroprotected, and processed

for Iba1-IR.

Experiment 2: Do immunostressores (e.g., shipping or LPS) capable of

altering hormone-responsive behavior in adulthood increase activation

of microglia during the peripubertal period?

In order to determine if shipping from the breeder facility or LPS treatment induced an

increased response in the microglia of peripubertal mice, thirty-two female C57Bl/6 mice were

shipped at three weeks old, six weeks old (n = 8) or eight weeks old (n = 8). The mice shipped

at three weeks old were divided into two groups: those injected with either saline (n = 8) or

LPS (n = 8) at 6 weeks old, and those injected with saline (n = 8) or LPS (n = 8) at 8 weeks old

(Fig 1). Twenty-four after LPS injection or arrival from the breeder facility, mice were eutha-

nized and brains were removed from the skull. Following submersion fixations, brains were

cyroprotected, and processed for Iba1-IR.

Microglia in peripubertal female mice
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Results

Experiment 1: What are the microglial morphological phenotypes

displayed during the peripubertal period and in adulthood?

Amygdala. In the amygdala, there was a significant interaction of the age of the animal

and the microglial morphology [F(3,24) = 22.15, p<0.0001] (Fig 2). In 6 wk old mice, more

microglia had long, thick processes (p<0.001) compared to all other morphologies. In con-

trast, the long, thin ramified microglia predominate in the 10 wk old mice (p<0.001). There

was no difference in the total numbers of microglia counted [t(6) = 1.01, p = 0.35].

Hippocampus. There was a significant interaction of the age of the animal and the micro-

glial morphology in both the dentate gyrus [F(3,24) = 8.255, p<0.001] (Fig 2) and CA1 [F(3,24) =

7.919, p<0.001] (Fig 2) of the hippocampus. In both of these regions, the 6 wk old mice have

significantly more microglia with long, thick processes than those with the round/amoeboid

morphology (p<0.0001), microglia with short processes (p<0.0001), or microglia with long

thin ramified processes (p <0.0001). While more microglia display the long, thin morphology

compared to round/amoeboid microglia (p<0.001) or those with short processes (p< 0.001)

in 10 wk mice, the number of microglia with long, thick processes did not differ from those

displaying long, thin processes (dentate gyrus p = 0.83; CA1 p = 0.20). There were no differ-

ences in the total numbers of microglia counted in the dentate gyrus [t(6) = 1.501, p = 0.18] or

the CA1 [t(6) = 1.29, p = 0.24].

There was also a significant interaction of the age of the animal and the microglial morphol-

ogy in the CA3 of the hippocampus [F(3,24) = 14.83, p<0.0001] (Fig 2). In the CA3, there were

more microglia with long, thick processes compared to any other morphology (p<0.0001) in 6

wk old mice. In contrast, the long, thin ramified microglia predominate in the 10 wk old mice

Fig 1. Experimental timelines. (A) CD1 mice were shipped from the breeder facility at 3 weeks old, and

brains were collected at 6 or 10 weeks old. Following collection, brains were immunoprocessed for Iba1-IR.

(B) C57Bl/6 mice were shipped from the breeder facility at 3 weeks old. Mice were injected with LPS or saline

vehicle at 6 or 8 weeks old. In addition, mice were shipped from the breeder facility at either 6 or 8 weeks old.

Twenty-four hours following the injections or arrival from the breeder facility, mice were collected, and their

brains were immunoprocessed for Iba1-IR.

doi:10.1371/journal.pone.0171381.g001
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(CA3 p<0.001). There was no differences in the total numbers of microglia counted in the

CA3 [t(6) = 0.47, p = 0.65].

Hypothalamus. There was a significant interaction of the age of the animal and the

microglial morphology in both the arcuate nucleus [F(3,24) = 15.72, p<0.0001] (Fig 2) and the

VMH [F(3,24) = 13.56, p<0.0001] (Fig 2). In both of these regions, there were more microglia

with long, thick processes compared to those that were round/amoeboid (arcuate p<0.0001;

VMH p<0.0001), with short processes (arcuate p<0.0001; VMH p<0.0001), or with long, thin

processes (arcuate p<0.001; VMH p<0.0001) in 6 wk old mice. In contrast, the long, thin ram-

ified microglia predominate in the 10 wk old mice (arcuate p<0.0001; VMH p<0.001 com-

pared to all other morphologies). Importantly, there was no difference in the total numbers of

microglia counted in the arcuate nucleus [t(6) = 0.74, p = 0.49] or VMH [t(6) = 1.489, p = 0.19].

Experiment 2: Do immunostressores (e.g., shipping or LPS) capable of

altering hormone-responsive behavior in adulthood increase activation

of microglia during the peripubertal period?

Sickness behavior. There was a significant interaction of time, age, and the treatment on

the sickness behaviors as defined by decreased locomotion (lethargy), huddling, ptosis, and

piloerection displayed by the mice [F(4, 84) = 3.333 p<0.05] (Fig 3). There was also a significant

Fig 2. Microglia morphology is significantly affected by age in the brain regions analyzed. Within the (A) basolateral amygdala; (B)

dentate gyrus, (C) CA1, and (D) CA3 of the hippocampus; (E) arcuate nucleus; and (F) ventromedial nucleus of the hypothalamus analysis

revealed a significant interaction of age and microglial morphology as peripubertal (6 wk) females had significantly more microglia with thick,

long processes than postpubertal (10 wk) females (*p<0.05). In addition, adult females also had more ramified microglial with thin processes

in the basolateral amygdala, CA1 and CA3 of the hippocampus, the arcuate nucleus, and the ventromedial nucleus of the hypothalamus

than peripubertal females (*p<0.05). There were no differences in the total numbers of microglia counted in any region. Data represent the

mean + SEM of all Iba1-immunopositive cells in each morphological category across all sections analyzed.

doi:10.1371/journal.pone.0171381.g002

Microglia in peripubertal female mice

PLOS ONE | DOI:10.1371/journal.pone.0171381 February 3, 2017 7 / 16



interaction of age and treatment on sickness behaviors [F(2,84) = 3.408, p<0.05] (Fig 3). Post

hoc analysis indicates that mice shipped at 6 wk old or had a significant increase in sickness

behavior 24 h after arrival at the animal facility compared to age-matched, saline-treated mice

(p<0.05) and mice shipped at 8 wk old (p<0.05), suggesting that shipping may have been

more stressful during pubertal development. LPS treatment caused a significant increase in

both 6- and 8-week-old mice at all time points examined compared to the respective saline

controls (p<0.001). There were no differences in the sickness behavior displayed by 6 or 8

week-old mice following LPS administration.

Amygdala. There was a significant interaction of age and treatment on the Iba-IR [F(2,41)

= 3.41, p<0.05] (Fig 4). Both LPS treatment and shipping from the breeder facility caused an

increase in the area of Iba1 immunostain in both 6 week (p<0.0001 for both LPS and shipping)

and 8 week-old (LPS p<0.05; shipping p<0.01) female mice as compared with saline-treated

mice. Importantly, the Iba-IR induced following either LPS treatment or shipping was greater

in 6 week-old mice as compared to 8 week-old mice (p<0.05 for both LPS and shipping).

Fig 3. Sickness scores. Sickness scores in C57Bl/6 peripubertal (6 wk) or postpubertal (8 wk) mice shipped

from the breeder facility or injected with either saline or LPS at 6 or 8 wk of age. Significantly greater than

saline controls (*p<0.05). Significantly greater than 8 wk, within the same treatment (†p<0.05). Data represent

mean sickness scores ± SEM.

doi:10.1371/journal.pone.0171381.g003
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Hippocampus. There was no interaction of treatment type and age on the Iba1-IR in the

dentate gyrus of the hippocampus [F(2,42) = 0.76, p = 0.47] (Fig 5). There was, however, a sig-

nificant main effect of treatment on the area of Iba1 immunostain [F(2,42) = 17.77, p<0.001]

(Fig 5). Post hoc tests indicate that LPS treatment increased the area of Iba1 stain in both 6

week- (p<0.001) and 8 week-old (p<0.001) female mice compared to respective saline-con-

trols. In addition, shipping from the breeder facility increased Iba1-IR in 6 (p<0.05), but not 8

week-old mice, compared to saline-treated mice.

There was no interaction of the treatment type or age of treatment on Iba1-IR in the CA1 of

the hippocampus [F(2,42) = 0.942, p = 0.41] (Fig 5). There were a significant main effects of

treatment [F(2,42) = 15.93, p<0.0001] (Fig 5) and age [F(1,42) = 9,458, p<0.01] (Fig 5). Post hoc

tests indicate that LPS treatment increased Iba1-IR in both 6 week- (p<0.001) and 8 week-old

(p<0.001) female mice compared to respective saline-controls. In addition, Iba1-IR did not

differ in mice shipped at 6 weeks from the saline-treated mice (p = 0.18) nor from the mice

shipped at 8 weeks (p = 0.85). There were, however, trends for LPS administration (p = 0.08)

Fig 4. Iba1 immuoreactivity in basolateral amygdala following shipping or injections of either saline

or LPS in peripubertal (6 wk) and postpubertal (8 wk) C57Bl/6 mice. Shipping from the breeder facility

and LPS injection increases Iba1 immunoreactivity in the basolateral amygdala in both 6 wk and 8 wk mice,

compared to age-matched saline-treated controls (*p<0.05). Shipping and LPS treatment induced a greater

increase in Iba1-immunoreactivity in the arcuate nucleus of 6 wk mice, compared to 8 wk mice within the

same treatment (†p<0.05).

doi:10.1371/journal.pone.0171381.g004
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or shipping (p = 0.07) from the breeder facility to increase Iba1-IR in 6 week-old mice, com-

pared to 8 week-old mice.

There was a significant interaction of treatment and age on area of Iba1 stained in the CA3

of the hippocampus [F(2,42) = 3.375, p<0.05] (Fig 5). Post hoc tests indicate that LPS treatment

increased the area of Iba1-IR in both 6 week- (p<0.001) and 8 week-old (p<0.001) female

mice compared to respective saline-controls. In addition, shipping at 6 weeks from the breeder

facility also increased Iba1-IR compared to saline-treated controls (p<0.05). While there was

no difference in Iba1-IR in mice treated with LPS at 6 compared with 8 wks (p = 0.51), mice

shipped at 6 weeks-old had increased Iba1-IR compared to mice shipped at 8 weeks-old

(p<0.05).

Hypothalamus. There was a significant interaction of both age and pubertal treatment on

the Iba1-IR in the arcuate nucleus [F(2,40) = 7.258, p<0.01] (Fig 6). Post hoc tests indicate that

in the arcuate nucleus, LPS treatment significantly increased the Iba1-IR in both 6 week

(p<0.001) and 8-week-old mice (p<0.05), as compared to saline-treated controls. Importantly,

LPS treatment at 6 weeks causes a significantly greater increase in Iba1-IR, compared to LPS

treatment at 8 weeks (p<0.05). Shipping from the breeder facility did not increase Iba1-IR in 6

week-old mice (p = 0.50) and trended toward significant in 8 week-old mice (p = 0.28), com-

pared to controls.

There was a significant interaction of both age and pubertal treatment on the mean area of

Iba1-stain in the VMH [F(2,40) = 4.728, p<0.05] (Fig 6). As with the arcuate nucleus, LPS treat-

ment significantly increased the area of Iba1-stain in 6 week (p<0.001) and 8-week-old mice

(p<0.05), as compared to saline-treated controls. LPS treatment at 6 weeks causes a signifi-

cantly greater increase in Iba1-IR, compared to LPS treatment at 8 weeks (p<0.01). Shipping

did not increase Iba-IR in 6 (p = 0.26) or 8 week-old mice (p = 0.28) compared to controls.

Discussion

The present study sought to examine the morphological phenotypes of microglia and the

response to shipping from the breeder facility or and LPS during pubertal development and in

Fig 5. Iba1 immuoreactivity in hippocampus following shipping or injections of either saline or LPS in peripubertal (6 wk) and

postpubertal (8 wk) C57Bl/6 mice. Treatment with LPS increases Iba1 immunoreactivity (IR) in the (A) dentate gyrus, (B) CA1 and (C)

CA3 of the hippocampus in both 6 wk and 8 wk mice, compared to age-matched saline-treated controls (*p<0.05). Shipping from the

breeder facility also increases Iba-IR in the dentate gyrus and CA3 in 6 wk mice, compared to saline-treated controls (*p<0.05). Significantly

greater than 8 wk, within the same treatment (†p<0.05). Data represent mean Iba1-immunoreactivity + SEM.

doi:10.1371/journal.pone.0171381.g005
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adulthood. These stressors were chosen because they, but not other typical stressors, have

enduring influences on behavioral response to hormones in adulthood [8–10, 18, 19, 32]. In

general, the microglia have longer, thicker processes during the peripubertal period as com-

pared to a more thinly ramified phenotype post-puberty in the amygdala, CA1 and CA3 of the

hippocampus, arcuate and VMH Table 2. Following shipping from the commercial breeder

facility or an injection of LPS, there was a greater increase in Iba1-immunoreactivity in peripu-

bertal mice than in adult mice Table 2. Taken together, these studies support the hypothesis

that developmental status and morphology of the microglia contribute to the vulnerability of

stressors experienced peripubertally.

Microglia have important roles in brain development: synaptic refinement [41–46], as

ongoing cell genesis, synaptogenesis, and cell death occurs throughout pubertal development

and contribute to the expression of adult behaviors [1, 47–49]. Therefore, it seems likely that

the different morphologies of microglia [26] in the BLA, hippocampus and hypothalamus of

pubertal mice may reflect the contribution of microglia to the ongoing neural development,

which is largely completed post-pubertally, except in areas like the dentate gyrus of the hippo-

campus. Indeed, in the dentate gyrus, the microglia have long, thick processes during and after

puberty.

It was expected that shipment from the commercial breeding facility and the administration

of LPS would lead to similar increases in Iba1-IR, as both of these experiences induce similar

alterations in behavioral response to estradiol in adulthood [8–10]. However, shipping and

LPS both increase Iba1-IR during the peripubertal period than post-pubertally only in the

basolateral amygdala. A primary function of the basolateral amygdala is the stimulation of fear

Fig 6. Iba1 Immunoreactivity in the arcuate nucleus and ventromedial hypothalamus following shipping or

injections of either saline or LPS in peripubertal (6 wk) and postpubertal (8 wk) C57Bl/6 mice. Treatment of

LPS increases the optical density of Iba1-immunostrain and the Iba1 immunoreactivity in the (A) arcuate (B)

ventromedial hypothalamus 6 wk mice, compared to age-matched saline-treated controls (*p<0.05). In the arcuate

nucleus, LPS treatment also increased Iba-immunoreactivity in 8 wk mice, compared to saline-treated controls.

LPS treatment induced a greater increase in Iba1-immunoreactivity in the arcuate nucleus of 6 wk mice, compared

to 8 wk mice treated with LPS (†p<0.05). Data represent Iba1-immunoreactivity + SEM.

doi:10.1371/journal.pone.0171381.g006
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and anxiety [50]. It is tempting to speculate that the perturbations of anxiety behaviors follow-

ing peripubertal LPS result from altered trajectories of the ongoing neurodevelopment. That

is, the increased activation could result in increases in cell death or an altered trajectory of syn-

aptic pruning or refinement.

The experience of shipping and LPS both lead to altered sexual behavior; therefore, an

increase in Iba1-IR was expected in VMH and arcuate nucleus, as both of these regions are

involved in hormone-induced, female sexual behavior [51–55] and have decreased expression

of ERα following shipping during the vulnerable period [10]. While LPS administration

increase Iba1-IR in pubertal, compared to post-pubertal mice, shipping was without effect on

Iba1-IR in these areas. The discordance between behavioral effects of LPS (e.g., alterations in

cognitive and anxiety- and depression-like behaviors [18, 19, 32]) and the differential increase

in Iba1-IR extends to the hippocampus, in which age was a factor in response to shipping, but

did not influence the amount of microglial activation LPS administration.

It is also important to note that we measured sickness behavior 4 and 24 h after the arrival

of the animals. The time after the onset of the stress of shipping (e.g., removal from home cage

at breeder, packing, transit from the breeder facility, etc.) is not known. It is possible that the

critical time to observe the effects shipping was missed. Perhaps examining the microglial acti-

vation from the onset of shipping, as opposed to arrival in the laboratory would be more com-

parable to 4 and 24 h after the LPS injection. It is also important to note that animals that were

Table 2. Summary findings.

Summary Findings

Brain

Region

Experiment 1 Experiment 2

BLA • More microglial with thick, long

processes in peripubertal mice

• More microglia with thin, ramified

processes in adult mice

• Increased Iba1-IR following LPS treatment or

shipping in peripubertal and adult mice

• Greater increase in Iba1-IR in peripubertal mice

following LPS treatment or shipping

DG • More microglial with thick, long

processes in peripubertal mice

• Increased Iba1-IR following LPS treatment in

pubertal and adult mice

• Increased Iba1-IR following shipping in

peripubertal mice

CA1 • More microglial with thick, long

processes in peripubertal mice

• More microglia with thin, ramified

processes in adult mice

• Increased Iba1-IR following LPS treatment in

peripubertal and adult mice

CA3 • More microglial with thick, long

processes in peripubertal mice

• More microglia with thin, ramified

processes in adult mice

• Increased Iba1-IR following LPS treatment in

peripubertal and adult mice

• Increased Iba1-IR in mice shipped during the

peripubertal period

ARC • More microglial with thick, long

processes in peripubertal mice

• More microglia with thin, ramified

processes in adult mice

• Increased Iba1-IR following LPS treatment in

peripubertal and adult mice

• Greater increase in Iba1-IR in peripubertal mice

following LPS treatment

VMH • More microglial with thick, long

processes in peripubertal mice

• More microglia with thin, ramified

processes in adult mice

• Increased Iba1-IR following LPS treatment in

peripubertal and adult mice

• Greater increase in Iba1-IR in peripubertal mice

following LPS treatment

ARC, arcuate nucleus; BLA, Basolateral Amygdala; CA1, CA1 region of the hippocampus; CA3, CA3 region

of hippocampus; DG, dentate gyrus; VMH, ventromedial hypothalamus.

doi:10.1371/journal.pone.0171381.t002
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shipped from the breeder facility did not receive a vehicle i.p. injection; therefore, it is possible

that some of effects on sickness behavior and/or microglial activation are due to the experience

of the i.p. injection. Furthermore, perhaps some of the behavioral changes (e.g., sexual and

cognitive behaviors) may be secondary to alterations in fear and anxiety.

Region-specific microglial profiles have been identified based upon the gene expression of

proteins involved in not only in activation, but also in pathogen recognition or phagocytosis

[56]. One source of the region-specific microglial activation could be the response to ovarian

hormones, particularly estradiol. The presence of the ovary, and estradiol in particular, has

been reported to be necessary for LPS to trigger an inflammatory response in the microglia

[57]. Brain regions such as the arcuate nucleus and the VMH have high concentration of ERα;

in contrast, the hippocampus has a high concentration of ERβ [58]. It is likely that the age dif-

ferences in microglial activation following a stressor may result from these differences in ER

populations, as the receptors have been reported to share antagonistic, sequential, or synergis-

tic relationships [59]. The mice used in the current study were ovarian intact, as were the mice

used in the previous studies, further supporting the idea that the signaling mechanisms of ERs

may contribute to activation of microglia. It should be noted that these animals were not

staged for ovarian cyclicity or hormone-controlled. This is, in part, because the mice used in

the previous studies [8–10, 18, 19] were also not staged or hormonally manipulated. However,

the contributions of the different ERs and the role of the ovarian hormones on the microglial

activation or gene expression or protein profiles of the microglia, particularly in the peripuber-

tal period, remain to be determined.

Taken together, the data presented here suggest that the peripubertal microglia may be

more responsive to the experiences of shipping or LPS, which then lead to increases both

Iba1-IR and sickness behavior in peripubertal mice. Although not directly tested, these data

also are consistent with the hypothesis that increased inflammation underlies the peripubertal-

stressor-induced perturbations in behavioral responses to estradiol and progesterone in adult-

hood. Furthermore, these data also yield insight as to why the peripubertal period may be a

critical time for the development of mental disorders.
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