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Simple Summary: Pheochromocytomas and paragangliomas are rare neuroendocrine tumors that
are often hereditary. Although research has advanced considerably, significant gaps still persist
in understanding risk factors, predicting metastatic potential and treating aggressive tumors. The
study of rare mutations can provide new insights into how pheochromocytomas and paragangliomas
develop. In this review, we provide examples of such rare events and how they can inform our
understanding of the spectrum of mutations that can lead to these tumors and improve our ability to
provide a genetic diagnosis.

Abstract: Pheochromocytomas and paragangliomas are rare tumors of neural crest origin. Their
remarkable genetic diversity and high heritability have enabled discoveries of bona fide cancer driver
genes with an impact on diagnosis and clinical management and have consistently shed light on
new paradigms in cancer. In this review, we explore unique mechanisms of pheochromocytoma
and paraganglioma initiation and management by drawing from recent examples involving rare
mutations of hypoxia-related genes VHL, EPAS1 and SDHB, and of a poorly known susceptibility
gene, TMEM127. These models expand our ability to predict variant pathogenicity, inform new
functional domains, recognize environmental-gene connections, and highlight persistent therapeutic
challenges for tumors with aggressive behavior.

Keywords: pheochromocytomas; paragangliomas; mutations; susceptibility genes; driver mutations;
hereditary; germline; somatic; environment; variants; tumor suppressor genes; metastatic; treatment;
RNAseq; next generation sequencing

1. Overview and Current Status of Genetic Drivers

Pheochromocytomas and paragangliomas (PPGLs) are rare neural crest derived tu-
mors with an incidence of 500 to 1600 cases per year [1,2]. Pheochromocytomas arise from
adrenomedullary chromaffin cells and paragangliomas arise from extra-adrenal chromaffin
cells of the sympathetic paravertebral ganglia of thorax, abdomen, and pelvis or chief
cells that form the paraganglia of glossopharyngeal and vagal nerves in the neck and
base of the skull [3]. While pheochromocytomas and thoracic-abdominal paragangliomas
often produce catecholamines, head and neck paragangliomas are almost invariably non-
secreting [4]. PPGLs are predominantly benign, and malignancy is only established by the
detection of metastasis, which occurs in approximately 30% of paragangliomas and 10–15%
of pheochromocytomas. Currently there are limited options for treatment of metastatic
PPGLs [5,6].

PPGLs are remarkable for their high heritability rate and genetic diversity. More
than 20 genes have been implicated in PPGL [7–9]. Mutations of these genes occur in a
mutually exclusive manner through germline (~30–40%) or somatic (30%) transmission
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(Figure 1A) [10,11]. Within the domain of hereditary mutations, genes that predispose to
genetic syndromes include RET (multiple endocrine neoplasia type 2A and 2B), VHL (von
Hippel Lindau disease), NF1 (neurofibromatosis type 1) and SDH subunit genes (hereditary
paraganglioma syndromes types 1–5) [12]. TMEM127, MAX, FH and MDH2 genes have
also been linked to germline mutations [13]. However, NF1, VHL, RET, and MAX can
also be somatically mutated. Genes exclusively associated with somatic mutations include
EPAS1, ATRX, and HRAS. [10,14–17]. Besides germline and somatic mutations, mosaicism
(post-zygotic mutation) has been reported in EPAS1, H3F3A, VHL and SDHB, and has been
historically associated with NF1, although not specifically in the context of PPGLs [16,18].
Recently, gene fusions have been recognized in PPGLs, especially those involving the
MAML3 transcription factor, including the UBTF-MAML3 fusion [14]. Other genes (listed
in Figure 1A) have only been reported in a few cases, and the evidence supporting their
direct role in PPGLs still remains limited [19].
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Figure 1. Approximate mutation frequency of genes implicated in PPGLs with a known genetic driver. Data were compiled
from published series [10,14,16–18] and our own cohort regardless of age groups and may reflect referral bias. (A) Mutation
distribution based on individual genes and (B) cluster type. Tumors with unknown genetic drivers are not shown. For the
purpose of this representation, mutation frequencies of uncommon genes have been depicted as 0.5%. * genes that can be
post-zygotically mutated. The genes implicated in PPGLs, with various degrees of supporting evidence are: NF1, VHL,
RET, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX, EPAS1, HRAS, FH, EGLN1, EGLN2, MDH2, FGFR1, CSDE1,
MAML3, GOT2, SLC25A11, H3F3A, DLST, IDH1, IDH2, KIF1B, MET.

PPGLs have been classified into three clusters according to the molecular pathways
involved in their pathogenesis [14]. Cluster 1 consists of the pseudohypoxia pathway and
includes tumors with either germline or somatic mutations in VHL, SDHA/B/C/D/AF2,
EPAS1, EGLN1, EGLN2, FH, SLC25A11, and MDH2 (Figure 1B). This cluster is also subdi-
vided into genes associated with the tricarboxylic acid (TCA) or mitochondrial function
(SDH, FH, MDH2, SLC25A11, IDH1/2), also referred to as C1A group, and other hypoxia
pathway-related genes, or C1B (VHL, EPAS1, EGLN1/2 genes) [20]. Cluster 2 is charac-
terized by kinase signaling and protein translation pathways and includes PPGLs with
germline or somatic mutations of RET, NF1, TMEM127, HRAS, FGFR1, and MAX. Cluster
3 has been recognized more recently, is related to activation of targets of the WNT1 transcrip-
tion factor and includes MAML3 fusion genes and truncating mutations in CSDE1 [14,21].
This classification underlies the diverse mechanisms and signals that can initiate PPGLs,
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although it remains challenging to predict the disease course [22]. Although the biological
behavior of PPGLs cannot be anticipated, specific genotypes have been associated with
an increased risk of metastasis. For example, SDHB mutations confer a higher risk of
metastatic progression. Similarly, somatic MAML3 fusions, often accompanied by dis-
ruption of TERT and/or ATRX mutations are enriched in aggressive and/or metastatic
tumors [5,23,24].

2. Leveraging Clinical and Genetic Data for Classification and Patient Management

Current evidence supports genetic testing as a key component of the management of
patients with PPGL to guide treatment selection and follow-up surveillance [1,25]. Disease
presentation and the likelihood of identifying a causative germline mutation will vary
depending on the molecular class of the PPGL [26]. For example, tumors belonging to
Cluster 1 (pseudohypoxia) may present as either pheochromocytoma or paraganglioma,
often occur at a younger age (especially those with germline VHL mutation) and frequently
manifest as multiple and/or recurrent. Metastatic disease, especially if SDHB related,
is enriched in this group [27]. These tumors are characteristically deficient for the en-
zyme which converts norepinephrine (NE) to epinephrine (Epi), phenyl-ethanolamine
N-methyltransferase (PMNT). For these reasons these PPGLs are strictly noradrenergic
and can be diagnosed preferentially by elevated NE levels [26,28]. A germline mutation
can be detected in most cases of C1A-related PPGLs, while the rate of germline mutation is
lower in C1B cases [26]. In contrast, around 20% of Cluster 2 cases (kinase signaling group)
are associated with a germline mutation. These patients have a broad age of presentation
that can be modulated by the specific gene mutated, usually peaks between 40–50 years
of age and present as benign pheochromocytomas [26,29]. Not infrequently these tumors
are multiple, especially related to MEN 2A/2B, but to a lesser extent TMEM127- and
MAX-mutant cases. Cluster 3 (Wnt-altered) presents as pheochromocytomas that are often
metastatic or recurrent, although studies are still limited to few cases. There have not been
germline variants associated with this cluster to date. Both Cluster 2 and 3 express PMNT
and are associated with elevated Epi/NE levels [14,30].

PPGL localization and possible metastasis identification usually involve computed
tomography (CT) or magnetic resonance imaging (MRI) as the initial step, regardless of
genotype. However, in suspected metastatic cases, recurrent disease, or if radionuclide-
based therapy is being considered, distinct functional imaging studies can be utilized,
such as 123I-metaiodobenzylguanidine (MIBG), 6-18F-fluoro-L-dopa (18F-FDOPA), 18F-
fluorodeoxyglucose (18F-FDG), and gallium-68 DOTATATE (68Ga-DOTATATE). Once again,
molecular knowledge can influence the functional imaging choice. For example, Cluster
2-type PPGLs have high avidity for 18F-FDOPA but a low-to-moderate 18F-FDG uptake [26].
In contrast, cluster 1-related PPGLs with VHL or EPAS1 mutations display high uptake
of 18F-FDOPA and 18F-FDG [26,31]. Genotype-functional imaging associations are more
complex in SDH-related PPGLs. In these tumors, nuclear imaging studies will depend
mainly on the tissue of origin, with 18F-FDOPA being characteristically positive for head
and neck PGLs but not for sympathetic PPGLs [31]. Also, SDH-related tumors, particularly
SDHB mutants, are known to show poor sensitivity to 123/131I-MIBG compared to other
radiopharmaceuticals, like 18F-FDG PET/CT and 68Ga-DOTATATE [32,33]. Furthermore,
68Ga-DOTATATE demonstrates superiority to other available functional studies regardless
of location, if SDH-related parasympathetic PGL or metastatic PPGL is identified [34].

The first line of treatment for all PPGLs should be tumor resection with pre-operative
management of catecholamine-related symptoms that are usually achieved by alpha-
blockade, regardless of mutation status [1,35]. However, knowledge of the genotype
impacts on surgical planning, as patients diagnosed with, or at risk of, bilateral pheochro-
mocytomas are recommended to undergo cortical-sparing surgery [36]. However, not all
PPGLs are amenable for surgery due to metastatic disease, surgically challenging tumor
location, or extensive recurrence. In cases where surgery is not feasible, tumor burden,
disease progression, or symptomatic status should guide treatment options that include
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local therapies (radiotherapy, radiofrequency ablation, embolization, among others), ra-
dionucleotide therapy and chemotherapy [5]. Radionucleotide therapy with 131MIBG
can be considered when 123MIBG diagnostic scans demonstrate avid uptake. A recently
FDA-approved, high-specific activity version of 131MIBG showed a response in more than
90% of patients, with tumor reduction in 25% of cases [37], although long-term follow-
up of this drug is still lacking. Cytotoxic radionuclide therapy with 177Lu-DOTATATE
shows promise as a therapeutic option that provides less toxicity than 131MIBG; however,
although studies are still limited [38]. Systemic chemotherapy with cyclophosphamide,
vincristine, doxorubicin (CVD) can reduce tumor burden, decrease catecholamines, and
improve blood pressure in only 30–40% of patients, and data with other agents, such as
temozolomide are limited to small cohorts [5]. Given this limited effectiveness of sys-
temic therapies, targeted therapies have been tested, though usually outside of clinical
trials [5,39]. The highly vascular nature of PPGLs, and increased VEGF expression and
activity especially notable in cluster 1 tumors justifies the use of tyrosine kinase inhibitors
(TKI) with antiangiogenic properties, such as sunitinib, pazopanib, axitinib, cabozantinib,
lenvantinib, and dovitinib [40,41]. Another potential and even more promising therapy
targeting molecular disruption of PPGLs involve HIF inhibitors, in particular HIF-2α,
which has been identified as one of the main oncogenic drivers in PPGL development and
is overexpressed in VHL, SDH, and EPAS1-mutant PPGLs [42,43]. A novel class of HIF-2α-
specific inhibitors showed promising results in advanced clear cell-renal cell carcinoma (cc-
RCC) [44]. This drug, belzutifan (previously known as PT2977), received FDA approval in
August 2021 for the treatment of VHL-related cc-RCC, hemangioblastomas and pancreatic
neuroendocrine tumors (https://www.fda.gov/drugs/resources-information-approved-
drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease, accessed
on 27 August 2021). This is an important milestone that will accelerate the development
of new trials [42,43], including advanced and/or metastatic PPGLs (NCT04924075). Im-
munotherapy is another area of interest in the treatment of cluster 1 related PPGLs, as
pseudohypoxia may prevent immune recognition of the tumors via mechanisms involv-
ing increased expression of the immune checkpoint protein programmed death-ligand 1
(PD-L1) and inactivating cytotoxic T cell lymphocytes. Pembrolizumab, nivolumab and
ipilimumab are being studied as possible therapeutic options [45]. Figure 2 illustrates the
challenges of treating patients with metastatic PPGL and the need for additional research to
better understand the events underlying rapid disease progression after months or years of
indolent metastatic growth, and molecular determinants of acquired resistance to targeted
therapy. Advances on these fronts will be critical to refine treatment strategies and improve
patient outcomes.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease
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Figure 2. Plasma norepinephrine (NE) levels of a patient with a pathogenic germline SDHB mutation diagnosed with
a retroperitoneal paraganglioma, who progressed with metastases and underwent multiple lines of treatment over the
course of her disease. NE levels are tracked closely with the tumor burden and symptoms. Bone metastases were detected
two years post-surgery. The patient received CVD followed by sunitinib, with the initial control of disease, however, both
therapies were eventually discontinued (DC) due to adverse side effects. After disease progression, new attempts were
made with sunitinib and CVD, although once again drugs were poorly tolerated. One dose of octreotide depot was given
to attempt symptomatic control of the disease. Next, the patient was enrolled in the Phase 1 clinical trial for a HIF2α
inhibitor (PT-2977/ MK6484, NCT02974738). The patient had clinical, biochemical, cellular, and molecular responses mainly
demonstrated by a decrease in NE, development of anemia, a common on-target effect of HIF2 inhibition, and reduced
expression of HIF2α target genes (not shown) and remained stable for 8 months. Despite this improvement, the disease
progressed, and the HIF2α inhibitor was discontinued. The patient initiated a trial with CTLA-4 and PD-1 inhibitors
(NCT02834013) but only tolerated one cycle. Disease progressed rapidly and the patient died a few months later. This case
illustrates two critical timepoints during disease evolution that remain gaps in the field: determining the basis for the rapid
increase in disease burden and emergence of resistance to targeted therapy could inform treatment choices in patients with
metastatic pheochromocytoma and/or paraganglioma.

3. Detecting and Interpreting Variants: Protocols and Challenges

Patients with PPGLs should be engaged in genetic testing [1,35]. The relevance
of genetic diagnosis is demonstrated by its positive impact on patient outcomes [46].
Next-generation sequencing (NGS) technology has emerged as a valuable tool capable
of simultaneously evaluating multiple susceptibility genes in the same assay [47]. This
methodology significantly improves the performance of PPGLs genetic testing compared
with conventional methods, increasing the rate of variant identification [10,16]. At the
same time, this approach leads to the detection of rare and novel variants, and the task of
defining their pathogenicity becomes a relevant challenge [47].

According to the ACMG Standards and Guidelines [48], several lines of evidence are
needed to support the classification of a variant as pathogenic or likely pathogenic. Variant
classification requires careful interpretation of a combination of information including (a)
the type of variant, (b) the frequency of the variant, (c) the occurrence of the variant in
clinically-related databases, (d) literature citations of the variant, (e) functional evaluation
of the variant, (f) in silico predictions of variant effect, (g) analysis of co-segregation of
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disease in the family, (h) concordance with phenotype, and (i) co-occurrence of pathogenic
variants [47]. The latter is an increasingly likely scenario observed in NGS-based studies,
which adds to the complexity of interpreting variant relevance [49]; however, this subject
will not be discussed in this brief review. Not uncommonly, very strong evidence (a null
variant in a gene where the loss of function is an established disease mechanism) and
strong evidence (functional studies support a damaging effect; higher prevalence of variant
in affected individuals vs. controls, etc.) that would support pathogenicity is not available.
This is especially true for rare, genetically heterogeneous diseases, such as PPGLs which
can arise due to a germline, somatic or mosaic variant in one of many susceptibility genes.
As a result, a substantial number of variants, especially missense substitutions, identified in
PPGL susceptibility genes are currently classified as variants of uncertain significance (VUS)
pending additional support for pathogenicity [10,16]. Functional studies are recommended
to assess the pathogenicity of variants, which may be resource-intensive [18,22,47].

4. A Workflow to Identify a Driver Mutation in PPGLs

Multiple strategies have been employed for the genetic diagnosis of PPGLs. Our
group adopted a flexible workflow (NCT03160274) depicted in Figure 3A. This process
involves parallel testing of blood and tumor tissue, either fresh frozen or as formalin-fixed,
paraffin-embedded material (Figure 3B). While this protocol includes both germline and
tumor samples for DNA-based screening whenever possible, it prioritizes tumor tissue
processing. This approach allows for improved data interpretation [50], by enabling the
detection of somatic events or suspected areas of copy number variation, including loss of
heterozygosity.

For clearly syndromic cases, the first step of this workflow may include targeted
testing. For non-syndromic PPGLs, a next-generation sequencing (NGS)-based custom
panel of 28 genes is used (Figure 3A). Libraries are processed and sequenced at high depth
(>500× average) in an Illumina MiSeq instrument, easily scalable to higher capacity instru-
ments for higher throughput, as needed (e.g., Illumina NextSeq). Data are analyzed for
sequence variants of interest and copy number changes, or, if tumor tissue is available, sug-
gestive systematic gain/loss patterns of known fusion partner genes. If high-quality tumor
RNA is available, sequencing is followed by a focused transcription profiling step based on
real-time PCR of tumor cDNA. This step has two purposes: (i) to determine whether the ex-
pression pattern of tumors with a detected candidate driver mutation matches the expected
cluster group, and (ii) to guide the subsequent investigation of mechanisms that drive
pathogenicity in tumors with suspected VUS or those with an unknown driver event based
on cluster membership. The genes included in this focused classification were modeled on
top classifiers of the three main expression clusters previously reported [14,21,51,52] and
other curated expression data.

Tumor samples without an identifiable variant are subjected to whole transcriptome
sequencing (RNAseq). This approach can provide multiple levels of information to improve
driver gene detection [53–55]. Although comprehensive analysis of whole transcriptome
data requires bioinformatics expertise, the broad use of RNAseq-based algorithms has
simplified this process [53,56]. First, it provides sequence data of the whole transcrip-
tome, beyond the known PPGL genes, enabling the identification of potentially novel
candidate driver genes. Although the depth of coverage of conventional RNAseq data
tends to be generally lower than that provided by typical custom DNA panels, and can be
subject to variability dependent on transcription instability of certain mutants, high-depth
RNAseq can improve detectability [57]. Secondly, the data can also reveal genes targeted
by aberrant splicing that may explain atypical and/or suspect variants. Thirdly, RNAseq
data also generates expression classifications that can help support putative candidate
variants (e.g., pseudohypoxia expression signature of a sample with a SDHB VUS). A
fourth advantage of RNAseq is its ability to predict putative in-frame gene fusions that
may have an oncogenic role in PPGLs. Putative fusions can be orthogonally verified by
designing specific breakpoint spanning primers and by sequencing independent tumor
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samples with a shared expression profile. Thus, the incorporation of tumor RNAseq for
fusion and splicing aberration detection can expand the characterization of novel structural
variants. When integrated with expression profiles, these data can also provide insights
into the potential dominant signaling disruption (e.g., pseudohypoxia).
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Additional steps of the workflow are guided by individual findings [47]. For exam-
ple, these analyses can be complemented by immunohistochemical staining of selected,
well-established targets [58], or novel targets, to help support cluster membership and the
functional impact of candidate variants. Additional functional experiments are usually
tailored to the candidate gene and variant type, as exemplified in the next section. Other
analytical platforms also contribute to improved diagnosis and classification, when in-
tegrated with sequencing, transcription and immunohistochemical analyses. Epigenetic
(especially DNA methylation profiling, but also analysis of posttranslational modifications)
and metabolite profiling can help to narrow down the classes of possible susceptibility
gene mutations, as well as potential consequences of candidate variants [19,50,59,60].

5. Lessons Learned from Atypical/Novel/Unsuspected Genetic Disruptions

This session addresses the relevance of exploring rarer or atypical variants and how
these investigations can reveal driver mutations and mechanisms of PPGL tumorigene-
sis, illustrated with examples from our cohort. Some PPGL susceptibility genes, like the
transmembrane protein encoding gene TMEM127, are poorly known upon their identifica-
tion [61]. TMEM127 has been previously described as a tumor suppressor, an endomem-
brane protein, and a negative regulator of mTOR signaling [61,62]. Tumor suppressor
genes are often inactivated by frameshift and nonsense/truncating variants, but the effects
of missense variants are more difficult to characterize. Individually, missense variants
observed in PPGL patients and families may not reveal much information, but collectively,
they can highlight specific functional protein hotspots. Recently we used in vitro transient
expression of cDNA constructs to investigate a cluster of missense TMEM127 variants that
suggested the presence of a putative functional domain not previously described in the N-
terminal region [63]. We had reported earlier that membrane binding ability appears to be
required for TMEM127 function [64,65], therefore analysis of variant subcellular localization
patterns served as an efficient first-pass approach in evaluating loss of structure/function.
All missense variants in the N-terminal cluster had a diffuse/cytoplasmic pattern, in con-
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trast with the punctate, endomembrane pattern of wild-type (WT) TMEM127 indicating
that these variants lost their membrane binding ability. Moreover, these variants were
rapidly degraded, in favor of a loss of function defect. Through this process and additional
topology studies, a fourth TMEM127 transmembrane domain was identified [63]. These
findings were recently supported by highly accurate deep learning protein structure pre-
dictions [66]. At the same time, distinctive variants can also reveal key protein features. A
C-terminal, frameshift variant, disrupting the region downstream of the last transmem-
brane domain of TMEM127, was found to display a unique, plasma membrane bound
pattern. This observation suggested that the variant lost its internalization capability. Fur-
ther analysis revealed that an atypical endocytic signaling motif resided in the C-terminal
tail and was necessary for effective localization of TMEM127 [63].

Another example of atypical variants with unsuspected functional consequences is
illustrated by synonymous variants. Unless they are located close to exon-intron bound-
aries, where they could disrupt donor and acceptor splice sites, synonymous variants are
often filtered out during screening because they are not predicted to result in a change to
the protein sequence. However, considerations need to be made that synonymous variants
occurring in the middle of an exon may also have an effect on splicing, as demonstrated
recently with VHL [67,68]. Although the mechanism is not understood, a synonymous
variant in the middle of exon 2 of VHL at proline 138 (c.414A > G, p.138=) results in a
splicing effect that omits exon 2 from the transcript, resulting in an in-frame transcript
consisting of exon 1 and exon 3 [67,68]. Importantly, exon 2 encodes most of the oxygen-
dependent degradation domain (ODD) of VHL, the HIF binding site, and its absence leads
to reduced HIF2α degradation, similar to other loss-of-function VHL mutations. Several
families carrying this variant have now been reported, enabling reclassification of this
variant as pathogenic [67,68].

The reports above demonstrate the utility of functional studies in expanding and
redefining our knowledge of existing genes as well as supporting variant classification.
Over time and with long-term follow up these observations may be updated to uncover new
genotype-phenotype associations of value in implementing clinical surveillance practices.
Despite these efforts, there remain tumors with undefined driver events. These tumors
may carry disruptions of the noncoding genome, epigenetic events, or involvement of
multiple genes, and their study will require additional approaches [69].

6. Epistatic Interactions between Genetics and the Environment

Establishing causality of gene-environment interactions in cancer, defined by co-
participation in the same causal mechanism, is challenging [70]. Several disease models
have emerged in which cancer development has been traced to specific types of environ-
mental stress [70]. However, the ability to precisely measure the impact of exposure to
environmental stressors, such as radiation, toxins, or oxygen variability, and define their
direct role in the acquisition of genetic mutations which can influence disease risk and
severity is limited.

An intriguing natural model of environmental risk is represented by patients with
cyanotic congenital heart disease (CCHD), a group of diseases caused by complex heart
defects present at birth that result in low blood oxygen levels (hypoxemia) [71]. Even
after corrective surgeries, some degree of hypoxemia may remain, which creates a state of
chronic systemic hypoxia in these patients [72]. It has long been recognized that CCHD
patients have a higher incidence (~5-fold) and earlier occurrence of PPGLs compared
to the general population [72–74]. Although a molecular basis had not been previously
established, it was considered that these two diseases might share an inherited genetic
susceptibility. However, recent studies support that the development of PPGLs in CCHD
patients is linked to a somatic event in one of the PPGL susceptibility genes. Specifically, the
EPAS1 gene, which codes for the hypoxia inducible factor HIF2α, which plays a significant
role in the hypoxia-response pathway, was found to be susceptible to somatic mutations at
critical residues [75]. In a study of six tumor samples from five CCHD patients, including
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five sympathetic PPGLs and one carotid body paraganglioma (CB-PGL), we found that four
out of five sympathetic PPGLs displayed a somatic EPAS1 mutation affecting either alanine
530 or proline 531 [75]. As these residues play a key role in regulating HIF2α stability,
the resulting amino acid changes prevent degradation and, hence, confer a constitutively
active status for HIF2α [76]. Notably, these patients had no germline mutations of known
PPGL susceptibility genes, supporting a driver role for the somatic EPAS1 mutations [75].
Interestingly, the PGL of the single patient without a somatic EPAS1 mutation showed an
SDHA/SDHB immunohistochemistry pattern compatible with deficient SDH function,
suggesting a qualitatively distinct mechanism of tumorigenesis in this case. The single
carotid body PGL in this series, which arose in the same patient with an EPAS1 mutant
pheochromocytoma, also did not carry a somatic EPAS1 mutation.

In the sections above, we emphasized the overrepresentation of hypoxia-related genes
in mutated PPGLs (VHL, SDH subunits, EGLN1/2, FH, IDH, EPAS1), highlighting the
relevance of this pathway for tumor development [42]. While most PPGLs within the
pseudohypoxia cluster result from germline variants, suggesting an early event, the EPAS1
gene is targeted instead by somatic mutations [14,77]. These somatic EPAS1 mutations are
detected at a frequency no higher than 7% in cohorts of generic PPGLs [14,77]. In contrast,
in PPGLs arising in patients with CCHD the frequency of EPAS1 mutations is markedly
elevated, at 80% [75]. The timing of the emergence of the EPAS1 mutation within the
PPGL tumorigenesis process in CCHD patients remains unknown. However, the specific
conditions experienced by these patients, which include prolonged tissue exposure to low
circulating oxygen levels, may act as an environmental cue that favors PPGL development
through somatic mutations that selectively target a key component of the hypoxia response.
These observations suggest that sympathetic cells of the adrenal and paraganglia are
uniquely sensitive to the CCHD environment, similar to other cell types that experience
specific genetic vulnerabilities in the presence of particular external factors, much like
targeted therapy-induced resistant mutations in cancer [78].

At the same time, CB-PGLs differ from other PPGLs in the cell of origin (chief cells
instead of chromaffin cells), and, hence, may have genetic vulnerabilities distinct from
chromaffin-derived PPGLs [79]. Of note, individuals living in certain high-altitude areas,
such as the Andes, who are exposed to low relative ambient oxygen pressure have a higher
incidence of CB-PGLs [73,74]. In some cases, CB-PGL development has been attributed to
germline variants in SDHB [80] or SDHD [81]. However, not all tumors have detectable
variants in SDH genes [82]. Future studies will be needed to determine whether chief cells
have a distinct vulnerability to mutations and whether other genes related to the hypoxia
response can also be implicated in these tumors. Regardless, the remarkable association
between CCHD and EPAS1 mutated-PPGLs should spur studies to further investigate
and model the impact of environmental influences in PPGL tumorigenesis that may also
illuminate our knowledge of other cancers.

7. Conclusions

Great advances have been achieved in the knowledge of the genetic basis of PPGLs.
However, the driver event remains unidentified in at least one-third of the cases. Im-
portantly, the ability to recognize molecular identifiers of metastatic risk persists as an
unattained goal. Bridging these gaps will require optimization of workflows for genetic
diagnosis, improvement of variant annotation and the recognition of atypical genetic dis-
ruptions that shed light on novel disease mechanisms. Overcoming these challenges will
require unified efforts of researchers in this field.
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