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ABSTRACT
Background: Advances in metabolomics are anticipated to decipher associations between dietary exposures and health. Replication biomarker
studies in different populations are critical to demonstrate generalizability.
Objectives: To identify and validate robust serum metabolites associated with diet quality and specific foods in a multiethnic cohort of pregnant
women.
Design: In this cross-sectional analysis of 3 multiethnic Canadian birth cohorts, we collected semiquantitative FFQ and serum data from 900
women at the second trimester of pregnancy. We calculated a diet quality score (DQS), defined as daily servings of “healthy” minus “unhealthy”
foods. Serum metabolomics was performed by multisegment injection-capillary electrophoresis-mass spectrometry, and specific serum metabolites
associated with maternal DQSs were identified. We combined the results across all 3 cohorts using meta-analysis to classify robust dietary
biomarkers (r > ± 0.1; P < 0.05).
Results: Diet quality was higher in the South Asian birth cohort (mean DQS = 7.1) than the 2 white Caucasian birth cohorts (mean DQS <3.2).
Sixty-six metabolites were detected with high frequency (>75%) and adequate precision (CV <30%), and 47 were common to all cohorts. Hippuric
acid was positively associated with healthy diet score in all cohorts, and with the overall DQS only in the primarily white Caucasian cohorts. We
observed robust correlations between: 1) proline betaine—citrus foods; 2) 3-methylhistidine—red meat, chicken, and eggs; 3) hippuric acid—fruits
and vegetables; 4) trimethylamine N-oxide (TMAO)—seafood, meat, and eggs; and 5) tryptophan betaine—nuts/legumes.
Conclusions: Specific serum metabolites reflect intake of citrus fruit/juice, vegetables, animal foods, and nuts/legumes in pregnant women
independent of ethnicity, fasting status, and delays to storage across multiple collection centers. Robust biomarkers of overall diet quality varied by
cohort. Proline betaine, 3-methylhistidine, hippuric acid, TMAO, and tryptophan betaine were robust dietary biomarkers for investigations of
maternal nutrition in diverse populations. Curr Dev Nutr 2020;4:nzaa144.
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Introduction

High-throughput metabolomic profiling technology has rapidly ad-
vanced clinical medicine in recent years (1). Its application in large-
scale epidemiological studies also offers novel insights regarding how
dietary exposures influence chronic disease risk (2–4). This approach
could shift studies of diet and health away from a reliance on FFQs as
the dietary assessment tool of choice for large-scale population-based
studies (3, 5). Although FFQs can broadly stratify people as either high
or low consumers of certain foods and nutrients (6), they fare less well
at estimating exact intakes of many nutrients (7), and can produce bi-
ased estimates of true intake because participants rely on memory rather
than recording information in real time (8), and their responses are
subject to social desirability bias (9). Furthermore, most FFQs lack de-
tailed information on food preparation methods while not reflecting
variable rates of digestion and absorption of nutrients via the gastroin-
testinal tract, and biotransformation by the liver and gut microbiota
(5). Food metabolites that are not subject to large interindividual dif-
ferences in metabolism have great potential to reflect true food con-
sumption more accurately, avoiding the limitations of the self-reported
FFQ (5).

Biomarkers of food intake can be sensitive and specific to changes
in dietary patterns in free-living populations (10, 11). Previous large
studies of food-metabolite associations have been conducted predom-
inantly in white nonpregnant populations, either including only men,
or postmenopausal women. It is well described that pregnancy con-
sists of a series of small, continuous physiological changes that af-
fect the metabolism of all nutrients. For example, adjustments in the
metabolism of nitrogenous compounds are in place by the second quar-
ter of pregnancy, and these serve to promote positive nitrogen balance
during the final quarter of pregnancy when fetal demands are greatest
(12). Changes in maternal dietary patterns during gestation can aug-
ment the physiological adaptations. However, the substantial variability
in food intakes makes it difficult to assess using conventional assess-
ment tools. Though some studies have described metabolic phenotype
changes across a healthy pregnancy (13–15) or adverse pregnancy con-
ditions (16, 17), few have reported associations in dietary intake in preg-
nancy based on circulating metabolites that are generalizable in a mul-
tiethnic population.

A recent publication that summarized the results of an NIH-
organized workshop on “Omics Approaches to Nutritional Biomark-
ers” (18) highlights that future work to “test […] a variety of foods and
dietary patterns across diverse populations to identify universal candi-
date biomarkers” is necessary. Thus, replication studies involving candi-
date dietary biomarkers are key to translational epidemiology that can
impact population health (19). Here we report the association between
self-reported dietary intake using a semiquantitative FFQ and 47 serum
metabolites consistently measured with high frequency in a multieth-
nic population of 900 pregnant women from 3 independent birth co-
horts. Specifically, in pregnant women in their second trimester our ob-
jectives were to: 1) identify serum metabolites associated with mater-
nal adherence to a high- or low-quality diet, and 2) determine corre-
lations between selected food groups with putative circulating metabo-
lites associated with diet quality across 3 birth cohorts from Canada,
appropriately considering variations in ethnicity, regional location, and
fasting status.

Methods

Participants
This investigation was conducted on data and serum samples ob-
tained from 3 prospective birth cohorts of pregnant women conducted
in different geographical regions of Canada, and enrolling women
of diverse ethnicities that comprised the NutriGen Birth Cohort Al-
liance (20). This cohort consortium includes mother-infant pairs from
the SouTh Asian biRth cohorT (START) study (21) recruited from
the Peel Region (Ontario); the Family Atherosclerosis Monitoring In
earLY life (FAMILY) study (22) recruited from the city of Hamil-
ton (Ontario); and the Canadian Healthy Infant Longitudinal Devel-
opment (CHILD) cohort study (23) recruited from 4 cities/regions
across the country (Winnipeg-Morden, Manitoba; Vancouver, British
Columbia; Hamilton, Ontario; and Toronto, Ontario). Participants
were recruited between 2004 and 2012 and follow-up is ongoing.
For more details on these cohorts, please refer to the Supplemental
Methods.

Detailed dietary information was available from a semiquantitative
FFQ from each cohort. The START and FAMILY birth cohorts used
FFQs specifically designed and validated for use in Canadian South
Asians and white Caucasians, respectively (24). The CHILD study used
a “Canadianized” multiethnic FFQ derived from a validated instru-
ment created by the Fred Hutchinson Cancer Research Center (25). We
excluded women who did not complete an FFQ sufficiently (>5% of
questions left blank), or who reported implausible energy intake (<500
or >6500 kcal/d). This left 5001 eligible for serum metabolomics anal-
yses, of which 900 were selected for the present analyses based on con-
trasting diet quality, as described below.

Diet quality assessment
The FFQs were harmonized to create 36 common food groups as de-
scribed previously (26). Though others have used the Healthy Eating
Index (27, 28) or Alternative Healthy Eating Index (AHEI) (29) to char-
acterize dietary patterns, our FFQs did not capture all of the AHEI com-
ponents with sufficient precision for direct use. We therefore developed
a diet quality score (DQS), calculated as the sum of daily servings of
“healthy” foods (fermented dairy, fish and seafood, leafy green vegeta-
bles, cruciferous vegetables, legumes, fruits, nuts, and whole grains) less
the sum of daily servings of “unhealthy foods” (processed meats, re-
fined grains, French fries, snacks, sweets, and sweet drinks), described
in Supplemental Table 1. These foods were chosen because they have
been widely used to characterize healthy dietary patterns (i.e., prudent
diet) that reduce chronic disease risk (30–37). Our DQS correlates well
with a modified version of the AHEI previously derived in these cohorts
(26, 38).

Within each cohort, those with a DQS >90th percentile of the co-
hort were considered “high” diet quality; those with a DQS <10th per-
centile of the cohort were considered “low” diet quality, and the re-
maining participants were considered “intermediate” diet quality. We
then selected 100 participants from each of these 3 groups at ran-
dom from each cohort (300 per cohort), to create a cohort of 900
pregnant women for serum metabolomics analyses (Supplemental
Figure 1).

The DQS is a single aggregate metric that considers both healthy
foods and unhealthy foods, and therefore it could lack specificity for
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serum metabolites. To address this issue, we separated the diet score
into a healthy diet subscore and an unhealthy diet subscore, and
reassessed the associations of each individually, and mutually adjusted,
with serum metabolites. The subscore is the number of servings for
each of the “healthy” and “unhealthy” items in the score. The healthy
score is the sum of servings of fermented dairy, fish and seafood,
leafy green vegetables, cruciferous vegetables, legumes, fruits, nuts,
and whole grains. The unhealthy score is the sum of servings of pro-
cessed meats, refined grains, French fries, snacks, sweets, and sweet
drinks. The DQS ranges from −41.1 to 66.6, after constraining influ-
ential leverage points in the components of the DQS (unhealthy and
healthy diet scores >3 × IQR were winsorized at the fifth and 95th per-
centiles). The distribution of these scores is presented in Supplemental
Figures 2–5.

Covariates
In addition to ethnicity and whether the sample was collected in the
fasting or nonfasting state, and region in Canada (CHILD), we also
used maternal age and gestational age at time of recruitment, sociode-
mographic information, prepregnancy BMI, parity, multivitamin use,
smoking history, height, weight, and medical history (including gesta-
tional diabetes and hypertension during the current pregnancy) from
existing data files.

Biospecimen collection and metabolomic analysis
Serum samples were collected from all pregnant women and stored
in liquid nitrogen at the Hamilton Clinical Research Laboratory. In
2 of the cohorts, the sample was collected after an overnight fast
(START, FAMILY) and in 1 a random nonfasting sample was collected
(CHILD).

Maternal serum metabolome analyses
A validated, high-throughput platform based on multisegment
injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS)
was used for the identification and quantification of polar/ionic
metabolites measured consistently in serum filtrate samples with
stringent quality control (QC) (10, 39–41). This multiplexed sep-
aration platform is described in more detail in the Supplemental
Methods, including a standardized method protocol for charac-
terization of the maternal serum metabolome. Briefly, the number
of serum metabolites that satisfied selection criteria for analysis in
START, FAMILY, and CHILD were 67, 66, and 47, respectively;
of these, 47 serum metabolites were measured consistently across all
3 cohorts when using MSI-CE-MS under 2 configurations with positive-
and negative-ion mode detection. An iterative data workflow was used
to reject spurious signals, redundant peaks, and background ions when
performing targeted and nontargeted metabolite profiling based on
analysis of a pooled serum sample that also served as QC for assessing
technical precision (40). Furthermore, serum metabolites were ana-
lyzed only if they satisfied 2 additional criteria: 1) the metabolite was
detectable in ≥75% of individual samples in a cohort (i.e., frequency
filter), and 2) the technical precision for metabolites measured in repeat
QC samples (i.e., reproducibility filter) had a CV <30% (or 40% for
low-abundance metabolites with signal-to-noise <10). Nondetectable
values were replaced with a missing value input corresponding to
half of the minimum response measured for a serum metabolite in

each cohort. Also, a robust QC-based batch correction algorithm was
used to correct for long-term signal drift when using MSI-CE-MS, as
described elsewhere (40). In this work, most serum metabolites were
unambiguously identified (level 1) by their comigration and accurate
mass (<5 ppm) after spiking with an authentic standard in a pooled QC
sample, and subsequently quantified (micromolar) using a calibration
curve, where ion responses were normalized to a single internal stan-
dard (i.e., relative peak area, RPA). Reference concentrations for serum
metabolites for second-trimester pregnant women from different birth
cohorts are reported elsewhere (). Otherwise, all serum metabolites
were annotated based on their characteristic accurate mass and relative
migration time (RMT) under positive (p) or negative (n) ion mode
(m/z:RMT:mode). Also, unknown serum metabolites were further
annotated based on their most likely molecular formula (level 4), with
most compounds putatively identified (level 2 or 3) following acquisi-
tion of high-resolution tandem MS spectra at different collision energies
(42). This stringent process ensured that only fully authenticated serum
metabolites reliably measured in most serum samples were corre-
lated to habitual dietary patterns to reduce false discoveries and data
overfitting.

Ethics
Enrolled participants provided full informed written consent for
participation, and each study obtained ethics approval from the
McMaster Hamilton Integrated Research Ethics Board [START
(HiREB #10–640), FAMILY (HiREB #02–060), and CHILD (HiREB #
07–2929)].

Statistics
For objective 1 (identification of dietary biomarker candidates), we per-
formed 2-tailed t tests to compare mean natural logarithm–transformed
metabolite concentrations between pregnant women with low (n = 100)
compared with high (n = 100) diet quality within each cohort. We con-
sidered batch-corrected serum metabolite response (RPA) differences
nominally significant at P < 0.10 (without correction for multiple test-
ing) candidates for multivariate analyses (43). In multivariable linear
regression models, natural logarithm serum metabolite RPAs were re-
gressed on the continuous diet score within each cohort (n = 300),
adjusted for prepregnancy BMI, gestational age, total energy (kcal), ma-
ternal age, maternal ethnicity (in CHILD only, because it was the only
cohort with multiple ethnicities), and center (in CHILD only, because it
was a multicenter study). DQS-serum metabolite associations were con-
sidered significant at P < 0.05, tested independently with no correction
for multiple testing. To understand whether it was the presence or ab-
sence of “healthy” or “unhealthy” foods driving associations, we fit sim-
ilar multivariate linear regression models for the healthy and unhealthy
subscores separately, each additionally adjusted for the opposing diet
subscore.

For objective 2 (linking serum metabolites to self-reported habit-
ual intake of specific foods), we selected food groups for which there
is moderate to strong evidence of a metabolite biomarker in the pub-
lished literature, as summarized by Exposome Explorer (http://expo
some-explorer.iarc.fr; see Supplemental Methods). Food group vari-
ables represented as servings per day were natural log transformed to
correct for skewness prior to analysis. Analysis included: 1) report-
ing unadjusted pairwise Pearson correlation coefficients between the
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TABLE 1 Participant characteristics for the metabolomics subcohort analysis1

Cohort START (n = 300) FAMILY (n = 300) CHILD (n = 300) Overall (n = 900)

Age, y, mean (SD) 30.0 (3.7)a 32.3 (4.9)b 31.3 (5.1)c 31.2 (4.7)
Gestational age at recruitment, wk, mean

(SD)
26.6 (1.7)a 29.5 (3.8)b 25.1 (6.5)c 27.1 (4.8)

Prepregnancy BMI, kg/m2, mean (SD) 23.9 (4.3)ac 26.8 (6.4)b 24.4 (5.0)c 25.1 (5.3)
Primiparous, n (%) 103 (34.8) 154 (51.3) 134 (45.9) 391 (44.0)2

Prenatal multivitamin use, n (%) 285 (95.0) 220 (94.0) 290 (96.7) 795 (95.3)2

Type 2 diabetes (baseline), n (%) 8 (2.7) 9 (3.0) 4 (1.3) 21 (2.3)2

Gestational diabetes, n (%) 76 (26.2) 50 (17.5) 12 (4.0) 138 (15.8)2

Hypertension (baseline), n (%) 4 (1.3) 9 (3.0) 9 (3.0) 22 (2.5)2

Gestational hypertension, n (%) 5 (1.7) 11 (3.7) 6 (2.1) 22 (2.5)2

Employed full- or part-time, n (%) 162 (54.2) 248 (82.7) 240 (80.5) 650 (72.5)2

Maternal ethnicity
White Caucasian, n (%) 0 (0.0) 300 (100.0) 293 (97.7) 593 (65.9)2

South Asian, n (%) 300 (100.0) 0 (0.0) 1 (0.3) 301 (33.4)2

East/Southeast Asian, n (%) 0 (0.0) 0 (0.0) 2 (0.7) 2 (0.2)2

African, n (%) 0 (0.0) 0 (0.0) 1 (0.3) 1 (0.1)2

Other, n (%) 0 (0.0) 0 (0.0) 3 (1.0) 3 (0.3) 2

Smoking history
Never smoked, n (%) 300 (100.0) 191 (64.8) 217 (73.1) 708 (79.4)2

Quit before pregnancy, n (%) 0 (0.0) 48 (16.3) 56 (18.9) 104 (11.7)2

Quit during pregnancy, n (%) 0 (0.0) 43 (14.6) 11 (3.7) 54 (6.1)2

Current smoker, n (%) 0 (0.0) 13 (4.4) 13 (4.4) 26 (2.9)2

Diet quality
Diet quality score 7.1 (8.1)a 1.6 (6.5)b 3.2 (8.6)c 4.0 (8.1)

Healthy foods, servings/d 12.0 (6.2)a 9.1 (4.7)b 10.1 (6.4)c 10.4 (5.9)
Unhealthy foods, servings/d 4.9 (3.0)a 7.4 (3.9)b 6.9 (4.5)c 6.4 (4.0)

mAHEI3 36.3 (10.8)a 29.6 (10.9)b 29.3 (10.3)c 31.8 (11.1)
1Values in same row with different superscript are significantly different (P < 0.05) on Tukey honestly significant difference post hoc test. CHILD, Canadian Healthy Infant
Longitudinal Development; FAMILY, Family Atherosclerosis Monitoring In earLY life; mAHEI, Modified Alternative Healthy Eating Index; START, SouTh Asian biRth cohorT
study.
2Distribution of this condition was different across the 3 cohorts.
3mAHEI scored as follows: 1) Fruits [4 + servings/d = 10 points; (servings/d divided by 4 × 10) = score]; 2) Vegetables [5 + servings/d = 10 points; (servings/d divided by
5 × 10) = score]; 3) Nuts and soy protein [1 + servings/d = 10 points; (servings/d divided by 1 × 10) = score]; 4) Ratio of fish servings to (meat + eggs servings) >4.0 = 10
points; (ratio/4 × 10) = score); 5) Whole grains [3 + servings/d = 10 points; (servings/d divided by 3 × 10) = score]; 6) Fried foods (reverse scored) <0.5 servings = 10
points; (ratio/0.5 × 10) = negative score; 5 + servings/d = −10. Total mAHEI score = sum points (fruits, vegetables, nuts and soy protein, fish:meat + eggs ratio, whole
grains, fried foods); maximum = 60, minimum = 0.

serum metabolite and specified food group; 2) assessing the associ-
ation between serum metabolite concentration and DQS and foods,
using multivariable linear regression (using log-transformed metabo-
lites), adjusted for prepregnancy BMI, gestational age, total energy
intake, maternal age, and ethnicity (in CHILD, because it was the
only cohort with multiple ethnic groups), prior to meta-analysis,
and region in Canada (CHILD only—Toronto, Edmonton, Winnipeg,
and Vancouver); 3) combining the results of the 3 cohorts using
inverse-variance random-effects meta-analyses; and 4) for signifi-
cant diet-metabolite pairs we conducted random-effects metaregres-
sions to explore/evaluate the moderating effect role of sample fasting
status.

To assess the robustness of our regression models, we conducted k-
fold crossvalidation by dividing the dataset into 10 equal-size subsets
(i.e., k = 10) (44). For each iteration, we combined k − 1 subsets to
serve as the training set, and the 1 remaining subset served as the test
set. Every sample served as a test data point once and only once, with
higher Pearson correlation coefficient values (r) considered evidence of
a robust association. All analyses were completed in R (v3.6.3; R Foun-
dation). Model assumptions and missing data handling are described in
the Supplemental Methods.

Results

Participant characteristics
Nine hundred participants were included in the discovery analysis
(300 women from each of the 3 cohorts) (Table 1). Participants in the
metabolomics study were generally representative of pregnant women
in each of the cohorts with a mean (± SD) age of 31.2 ± 4.7 y, and
a prepregnancy BMI of 25.1 ± 5.3 kg/m2. All women in START were
South Asian; and >97% were white Caucasian in FAMILY and CHILD.
White Caucasian women from CHILD were overrepresented in our
sample compared with the full CHILD cohort (97.7% compared with
72.9%). Overall, 44% of women were primiparous, >89% used a prena-
tal vitamin, 79% had never smoked, 18% were former smokers, and 3%
were current smokers. All START mothers were lifelong never smok-
ers, and the smoking profiles were similar in CHILD and FAMILY. The
cohorts had different chronological and gestational ages at recruitment
(with START mothers being youngest, and FAMILY being oldest), and
different prepregnancy BMI (with START mothers being lowest, and
FAMILY being highest). START mothers were most likely to have ges-
tational diabetes (26.2% of mothers), and least likely to be employed at
the time of the survey (54.2%).
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FIGURE 1 Venn diagram of metabolites that were significantly
associated with Diet Quality Score (A); Healthy Diet Score (B); and
Unhealthy Diet Score (C); adjusted for adjusted for prepregnancy
BMI, gestational age, total energy intake, maternal age, and
ethnicity. CHILD, Canadian Healthy Infant Longitudinal
Development study; FAMILY, Family Atherosclerosis Monitoring In
earLY life study; START, SouTh Asian biRth cohorT study; TMAO,
trimethylamine N-oxide.

The Spearman rank coefficient (ρ) was 0.76 (P < 0.0001) be-
tween the DQS and the modified Alternative Healthy Eating Index
(mAHEI) for the entire data set (n = 900), which was consistent
across each cohort (r = 0.66 in START, 0.76 in FAMILY, and 0.68 in
CHILD; n = 300 each) (Table 2). The mean maternal DQS in preg-
nancy differed significantly between the cohorts and was highest in
START (7.1 ± 8.1), lowest in FAMILY (1.6 ± 6.5) and intermediate
in CHILD (3.2 ± 8.6) (Table 1, Supplemental Figures 2–5). Across the
cohorts, a higher DQS was consistently associated with higher mA-
HEI, higher total fiber, protein, vitamin A, vitamin C, folate, calcium,
and potassium intakes, a higher polyunsaturated:saturated fat ratio, as
well as lower saturated and trans-fat and cholesterol intakes (Table 2),
reflecting a nutrient-rich and health-promoting maternal dietary
pattern.

Associations between diet quality index and serum
metabolites
Candidate serum metabolites passing the initial P < 0.10 threshold us-
ing the extreme-ends approach (Supplemental Tables 2 and 3) included
14 from START, 14 from FAMILY, and 9 from CHILD. Collectively,
these 29 metabolites were then entered into multivariable linear regres-
sion models to assess the associations with the DQS, and the healthy
and unhealthy indices separately. The initial screen identified signifi-
cant and high magnitude of differences in serum metabolic responses
(RPA) between high and low DQS for methylhistidine, choline, argi-
nine, and tryptophan betaine in START; hippuric acid, hypoxanthine,
methylhistidine, and gluconic acid in FAMILY; and hippuric acid, pro-
line betaine, and monomethylarginine in CHILD, as shown in the vol-
cano plots (Supplemental Figure 6a–c).

In adjusted multivariate linear models, 8 serum metabolites in
START, 10 in FAMILY, and 3 in CHILD were significantly associated
with DQS, after adjusting for prepregnancy BMI, maternal age, total
energy (kcal), and gestational age (Supplemental Table 4). In START,
higher DQS was associated with higher circulating concentrations of
arginine, choline, serine, tryptophan betaine, 2-hydroxybutyric acid,
and an unknown singly charged cation annotated by its m/z:RMT:mode
and most likely molecular formula [334.688.0.805:p; C20H47N18O6S],
whereas serum 3-methylhistidine and uric acid were inversely cor-
related to the DQS. In FAMILY, a higher DQS was associated with
higher circulating concentrations of aminoadipic acid, dimethylglycine,
gluconic acid, hippuric acid, monomethylarginine, trimethylamine-N-
oxide (TMAO), and 2-hydroxybutyric acid. In contrast, DQSs were in-
versely correlated to serum hypoxanthine, pyruvic acid, and a singly
charged cation annotated by its m/z:RMT:mode and most likely
molecular formula [129.066.0.739:p; C5H8N2O2]. In CHILD, a higher
DQS was associated with higher circulating concentrations of hip-
puric acid, proline betaine, and an unknown singly charged anion
[145.0142:0.866:n; C5H10N2O3]. However, there was little overlap be-
tween the cohorts for these serum metabolites as shown in the Venn
diagram, suggesting that though there are some common metabolites,
the associations did differ by cohort-level factors (Figure 1).

The healthy diet score and unhealthy diet score component anal-
ysis within each cohort is shown in Supplemental Table 4. Of the
14 serum metabolites identified in START, 7 (3 positively, 4 negatively)
were associated with the healthy diet score and 7 (0 positively, 7 nega-
tively) with the unhealthy diet score. Of the 14 serum metabolites iden-
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tified in FAMILY, 4 (2 positively, 2 negatively) were associated with a
healthy diet score and 6 (2 positively, 4 negatively) with an unhealthy
diet score. Of the 9 serum metabolites identified in CHILD, 2 (2 pos-
itively, 0 negatively) were associated with healthy diet score and 1 (1
negatively) with an unhealthy diet score. Serum hippuric acid was asso-
ciated with a healthy diet score in the 2 largely white Caucasian cohorts,
FAMILY and CHILD (Supplemental Table 4).

Associations between specific food groups and serum
metabolites
Robust correlations (i.e., those with a meta-analysis pooled association
|>| 0.1 and P < 0.05 across all 3 cohorts) were observed between the
self-reported intake of several food groups and circulating metabolite
concentrations measured in pregnant women (Figure 2). Citrus fruits
and citrus juice were robustly correlated with serum proline betaine,
when grouped together (random effects meta-analysis pooled Pearson
r = 0.29; P < 0.0001; Figures 2 and 3) and separately for citrus fruits
(r = 0.42; P < 0.0001) and citrus juice (r = 0.36; P < 0.0001). Red
meat (r = 0.21; P < 0.0001), chicken (r = 0.26; P < 0.0001), and eggs
(r = 0.18; P < 0.0001) were each positively correlated with serum 3-
methylhistidine. Vegetable (r = 0.16; P < 0.001) and fruit ( r = 0.18;
P < 0.0001) intake were each positively correlated with serum hippuric
acid. Seafood (r = 0.12; P < 0.0001), meat (r = 0.10; P = 0.003), red
meat ( r = 0.09; P = 0.009), and eggs ( r = 0.11; P = 0.001) were each di-
rectly associated with serum TMAO concentrations ( Supplemental Ta-
ble 5). Additionally, total intake of nuts, seeds, peanuts, and legumes was
modestly correlated with tryptophan betaine (r = 0.15; P = 0.03). The
correlation of the combined intake of nuts, seeds, and peanuts (peanuts
were not assessed separately from other nuts and seeds in our cohorts)
with tryptophan betaine was nonsignificant, but this metabolite only
passed QC for detection in START and FAMILY (r = 0.13; P = 0.30).
Scatterplots of food groups against selected metabolites, and boxplots
of the correlation between selected metabolites and food groups by diet
quality tertile (i.e., low/medium/high) are presented in Supplemental
Figures 7–11.

No significant correlations were observed for serum carnitine and
total protein or chicken, but a weak association was found with eggs
(r = 0.06; P = 0.06) and red meat (r = 0.09; P = 0.007). Interestingly,
serum uric acid was not associated with consumption of total meat, red
meat, chicken, eggs, or total protein. No significant associations were
observed for lactate, pyruvate, or 2-hydroxybutyrate and total carbo-
hydrate intake or sugar-sweetened beverages, or for glycine and total
protein intake (Supplemental Table 5). Our 10-fold crossvalidation of
significantly correlated food item–metabolite pairs yielded poor results
(R2ranging from 0 to 0.16, Supplemental Table 6). Model predictions
were better in FAMILY than in START and CHILD in most cases, and
models pooling our fasting studies (START + FAMILY) performed bet-
ter than models merging data for fasting and nonfasting studies in 7/8
cases. More complex models combining multiple food items should be
tested to improve the prediction with serum metabolites concentrations.

Fasting status influenced the food group to metabolite correlations of
uric acid with fruit and vegetables, and lactic acid with carbohydrates.
For those serum metabolites, which were significantly correlated with
specific foods/food groups, we investigated the influence of fasting sta-
tus that also coincides with longer delays in blood processing across

multiple centers in CHILD by adjusting for this variation in a metare-
gression (Supplemental Table 7).

Discussion

In this study, we examined self-reported dietary and quantitative
metabolomics data from 3 unique cohorts of women in their second
trimester of pregnancy. We demonstrate that the serum metabolomic
phenotypes can reflect complex dietary patterns when foods are clas-
sified as predominantly healthy or unhealthy, and that several serum
metabolites are also associated with the average intake of specific food
items as applied to a multiethnic Canadian population. The correlations
between dietary scores and circulating metabolites are generally modest
(r ∼0.2–0.4), though robust correlations exist between certain foods and
certain serum metabolites that are consistent across cohorts irrespective
of fasting status, age, prepregnancy BMI, ethnicity, and/or region.

Maternal metabolism changes substantially during pregnancy. In
this diverse cohort of pregnant women from across Canada, we repli-
cated previously described food-metabolite associations, notably citrus-
containing fruits and juices with circulating concentrations of proline
betaine (Figure 3) because it is an exogenous compound prevalent in
citrus juices (45), as well as red meat, chicken, and eggs with methyl-
histidine because both 1- and 3-methylhistidine positional isomers are
present in muscle and other dietary sources of histidine, such as eggs
(46). Also, the average intake of vegetables and/or fruit was associated
with serum hippuric acid (a major metabolite of flavonoids prevalent
in fruits and vegetables) (47), whereas self-reported consumption of
seafood, meat, and eggs was also correlated with serum TMAO (present
in free form in fish and animal flesh, and also generated from the ac-
tions of host and gut microflora cometabolism of carnitine from intake
of meat or eggs) (48, 49). Additionally, intake of nuts/legumes was as-
sociated with circulating concentrations of tryptophan betaine (which
accumulates in the seeds of most Erythrina species) (50), and was pre-
viously reported to be associated with peanut intake (51). In future in-
vestigations of maternal diet and child health outcomes these serum
metabolites can be combined to constitute a “metabolic signature” re-
flecting a healthy diet, and generalizable to a multiethnic population.
Specific food group–metabolite associations were robust across cohorts
despite differences in DQS distributions in maternal populations sam-
pled from multiple regions across Canada (Figure 2).

Prior investigations of the relation between dietary intake in preg-
nancy and the serum metabolome are limited. Cross-sectional studies
have explored urinary untargeted metabolomics in healthy pregnant
women (15), and 2 studies investigated targeted metabolomics longi-
tudinally in healthy pregnancies (14, 52), but neither investigated the
relation between a standardized dietary score and blood metabolite pro-
file. In these studies, compared with nonpregnant women, all lipopro-
tein subclasses and lipids are increased in pregnant women, notably the
intermediate-density, low-density, and high-density lipoprotein triglyc-
eride concentrations. Large differences are also seen for many fatty acids
and amino acids. Pregnant women also have higher concentrations of
low-grade inflammatory marker glycoprotein acetyls and IL-18 and
lower concentrations of IL-12p70 (15). The plasma concentrations of
several essential and nonessential amino acids, long-chain PUFAs, car-
nitines, phosphatidylcholines, and sphingomyelins have been reported
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FIGURE 2 Random effects meta-analyses of metabolite-to-food groups correlations by cohort. Shaded diamonds at the bottom of each
meta-analysis shows the pooled point estimate and the left and right vertices are the lower and upport 95% confidence limits. CHILD,
Canadian Healthy Infant Longitudinal Development study; FAMILY, Family Atherosclerosis Monitoring In earLY life study; START, SouTh
Asian biRth cohorT study; TMAO, trimethylamine N-oxide.
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FIGURE 3 Association of proline betaine with citrus fruits + juice intake by cohort. Panel A shows boxplots of the log(Proline Betaine) by
cohort, in all cohorts pooled, and in FAMILY and START (the two studies with the most-similarly measured diet) cohorts only, within people
with low, medium, and high daily servings of citrus fruits and juice. Whiskers represent 1.5 x interquartile range; black dots denote oulier
points. Panel B shows linear regression equation (top), and Pearson’s R ("R") of proline betaine regressed on log(servings/d of citrus fruits
+ juices, servings/d) by cohort, in all cohorts pooled, and in FAMILY and START. Solid line is line of best-fit; shading respresents 95
confidence limits of the slope of the regression line. CHILD, Canadian Healthy Infant Longitudinal Development study; FAMILY, Family
Atherosclerosis Monitoring In earLY life study; START, SouTh Asian biRth cohorT study.

to change as a function of gestational period (14). Though previous
studies have shown that characterization of the human metabolome
can reflect differences in contrasting dietary patterns (10, 53), there
have been few studies analyzing the maternal serum metabolome dur-
ing pregnancy (13, 15), and these are limited due to their small size and
lack of generalizability to diverse populations without dietary associa-
tions to semiquantitative FFQs.

Though there were several consistent food-metabolite associations
demonstrated across cohorts, we also highlight some differences. These
differences suggest that dietary biomarkers discovered in largely white
Caucasian populations of men and postmenopausal women might not
transfer to other ethnicities with distinctive dietary patterns, and possi-
bly life-stages, such as major physiological adaptations occurring during
pregnancy. These differences can arise for several reasons: 1) differences
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in the number of foods within categories on the FFQ (e.g., 20 vegetables
on the South Asian FFQ; 18 vegetables on the white Caucasian FFQ);
2) composition of the foods that make up food groups that contribute
to the dietary scores across cohorts (e.g., roti, paratha, and chapatti as
sources of whole grains in South Asians compared with whole wheat
bread and rolls in white Caucasians); 3) differences in cooking methods
(e.g., potatoes are usually curried with spices or stir-fried among South
Asians whereas potatoes are mainly boiled, mashed, or baked among
white Caucasians); and/or 4) between-subject differences in absorption
and metabolism of foods and nutrients. Despite efforts to create a stan-
dardized DQS that would be associated with presumably similar serum
metabolites across cohorts, differences, presumably due to the unique
foods eaten by each cohort, led to lack of consistency in the associa-
tion between the DQS and specific serum metabolites. Another study
limitation was that CHILD was the most heterogeneous birth cohort in
terms of serum sampling procedures that were performed under non-
fasting conditions for pregnant women recruited from multiple centers
in Canada. This resulted in fewer and more variable serum metabolites
measured within CHILD compared with the 2 other fasting birth co-
horts (START, FAMILY), while also introducing confounding from re-
cent dietary intake rather than habitual (i.e., long-term) dietary con-
sumption patterns that better match self-reported FFQs (54).

Few studies have examined metabolomic markers associated with
habitual dietary patterns. In a secondary analysis of a controlled feed-
ing study, a classifier using metabolites that differed between diets
was able to correctly differentiate between a low-fat (20%), very-low-
carbohydrate (10%), and low-glycemic-index diet (glycemic index =
32.9) in 60 of 63 cases (>95% accuracy) (53). A recent analysis of the
Dietary Approaches to Stop Hypertension (DASH) trial, comparing the
intervention with the control group, showed that the healthy interven-
tion diet levels of proline betaine and tryptophan betaine were signifi-
cantly higher in the healthy diet group (55). In a randomized controlled
trial we conducted (10, 56), fasting plasma and single-spot urinary pro-
line betaine and 3-methylhistidine trajectories differentiated a “West-
ern” from a “Prudent” dietary pattern in nonpregnant, free-living adults
following 2 wk of food provision.

Our work provides evidence that metabolomics can be used to as-
sess habitual intake of specific foods applicable to diverse populations
of pregnant women with highly variable and complex dietary patterns.
By examining associations of food groups with metabolites established
in prior studies, we confirm similar associations exist in a multiethnic
cohort of pregnant women in their second trimester for citrus fruits
and juices, legumes (including peanuts), meat protein, fruit and veg-
etables, and seafood, eggs, and meat. Proline betaine, tryptophan be-
taine, TMAO, 3-methylhistidine, and hippuric acid have been identified
in previous studies in nonpregnant adult, and adolescent populations.
These serum metabolites could be used in future studies as robust di-
etary biomarkers reflective of healthy and unhealthy diets that comple-
ment FFQ assessments. However, dietary biomarkers are not immune
to misclassification errors. For example, because our DQS increases (be-
comes “healthier”) with increased fruits and vegetables, those who eat a
lot of fruits and vegetables, but exclude citrus fruits (i.e., enriched with
proline betaine), might still be misclassified by biomarker pattern alone.
This fact emphasizes that few dietary biomarkers are entirely specific to
certain foods and are more often associated with habitual eating pat-
terns of distinctive collections of food categories. Dose–response asso-

ciations in nutrition are often difficult to demonstrate (57). Here, we
show increases in circulating metabolites proportionate to intake of the
studied foods within each cohort, and when all 3 cohorts are pooled, as
shown in Figure 2 and Supplemental Figures 7–11.

Inferring direct associations between food intake and biomarkers in
observational studies is difficult. Indeed, larger studies of metabolomic
markers as independent predictors of cardiovascular disease have
shown little correlation to the putative (self-reported) food sources of
that compound (58). This is likely because the FFQ and the metabolite
reflect different time windows of exposure—the FFQ typically the pre-
vious year, and the metabolite typically days if not hours, depending on
fasting status. Detection of compounds that are largely not produced
endogenously, such as proline betaine, indicate high consumption of
that food (e.g., citrus) with high certainty. Detection of compounds pro-
duced from body protein catabolism and food sources, such as methyl-
histidine, might not exclusively reflect consumption of that food (e.g.,
meat) with any certainty. Well-controlled feeding studies are needed to
validate the dose–response of putative dietary biomarkers from obser-
vational studies (59) in conjunction with characterization of their abun-
dances in various foods to establish their specificity (60). Also, combi-
nations of dietary biomarkers can improve robustness and plausibility
instead of single compounds.(61)

Strengths and limitations
Our work addresses an important limitation in previous metabolomic
studies in nutrition by evaluating an understudied population. Maru-
vada et al. (18) and the NIH group, in addition to noting the importance
of testing food intake biomarkers across diverse populations to iden-
tify universal candidate biomarkers, also emphasize the importance of
“replication of initial biomarker studies in different populations,” which
is “often necessary to generalize the results, to accommodate popula-
tion heterogeneity, and to properly account for food choice diversity
and dietary patterns.” This sentiment is echoed by leaders in this field
(62), who note “the large inter-individual variation in response to foods
mak[es] it difficult to identify biomarkers that respond reproducibly
across populations.” Our work involving a multiethnic cohort of preg-
nant women addresses this major knowledge gap and contributes data
on the interpopulation differences in food-metabolite associations.

Although a single independent external study was not selected for
replication analysis, the simultaneous assessment of 3 independent birth
cohorts from the same country provided independent populations in
which to assess consistency, using a validated analytical platform for
metabolomic analyses with stringent QC and batch correction adjust-
ment. Limitations include the measurement of diet using a self-reported
FFQ; however, this is widely used in epidemiological research studies.
Additionally, there was a difference in sample collection timing (i.e.,
fasting compared with nonfasting) across studies, including delays to
processing blood samples across multiple centers. To counter these fac-
tors, we used only validated FFQs, and fasting status was adjusted for
in the meta-regression analysis. Also, nontargeted metabolite profiling
by MSI-CE-MS used in this study was limited to the analysis of po-
lar/ionic metabolites in serum and not lipid classes, which require use of
nonaqueous buffer conditions (11). Also, we found that not all metabo-
lites were consistently detectable across cohorts. Finally, we acknowl-
edge that associations in an observational study such as ours are al-
ways subject to the possibility of confounding, which is a serious threat
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to causal inference. We attempted to reduce the likelihood of known
confounders through our multivariable adjustment approach, which is
also further supported by independent metabolite-dietary associations
in nonpregnant populations. However, we cannot exclude the possibil-
ity of residual confounding of these associations owing to unmeasured
confounders.

Conclusions
In a multiethnic cohort of pregnant women, DQSs are associated with
concentrations of specific circulating serum metabolites that reflect
higher intakes of both healthy and unhealthy foods. Proline betaine, 3-
methylhistidine, hippuric acid, TMAO, and tryptophan betaine were ro-
bust dietary biomarkers associated with habitual intake of specific foods,
and can be used for investigations of maternal nutrition in multiethnic
populations that can also tolerate preanalytical variations in blood col-
lection in diverse settings (e.g., fasting status, delays to processing).
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