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Abstract

Background: Leptin-deficient ob/ob mice are a model of type 2 diabetes induced peripheral neuropathy. Ob/ob mice exhibit
obesity, insulin resistance, hyperglycaemia, and alterations of peripheral nerve fibres and endoneural microvessels. Here we
test the hypothesis that cartilage oligomeric matrix protein (COMP)-Ang-1, a soluble and stabile form of Ang-1 which
promotes angiogenesis and nerve growth, improves regeneration of nerve fibres and endoneural microvessels in ob/ob
mice.

Methods and Findings: COMP-Ang-1 (100 ng/ml) or NaCl were intraperitoneally (i.p.) injected into male (N = 184), 3-month
old, ob/ob or ob/+ mice for 7 and 21 days. We measured expression of Nf68, GAP43, Cx32, Cx26, Cx43, and TNFa in sciatic
nerves using Western blot analysis. To investigate the inflammation in sciatic nerves, numbers of macrophages and T-cells
were counted after immunofluorescence staining. In ultrathin section, number of myelinated/non-mylinated nerve fibers, g-
ratio, the thickness of Schwann cell basal lamina and microvessel endothelium were investigated. Endoneural microvessels
were reconstructed with intracardial FITC injection. Treatment with COMP-Ang-1 over 21 days significantly reduced fasting
blood glucose and plasma cholesterol concentrations compared to saline treated ob/ob mice. In addition, COMP-Ang-1
treatment: 1) up-regulated expression of Nf68 and GAP43; 2) improved expression of gap junction proteins including
connexin 32 and 26; 3) suppressed the expression of TNFa and Cx43 and 4) led to decreased macrophage and T-cell
infiltration in sciatic nerve of ob/ob mice. The significant changes of sciatic nerve ultrastructure were not observed after 21-
day long COMP-Ang-1 treatment. COMP-Ang-1 treated ob/ob mice displayed regeneration of small-diameter endoneural
microvessels. Effects of COMP-Ang-1 corresponded to increased phosphorylation of Akt and p38 MAPK upon Tie-2 receptor.

Conclusions: COMP-Ang-1 recovers molecular biomarkers of neuropathy, promotes angiogenesis and suppresses
inflammation in sciatic nerves of ob/ob mice suggesting COMP-Ang-1 as novel treatment option to improve morphologic
and protein expression changes associated with diabetic neuropathy.
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Introduction

Peripheral diabetic neuropathy (PDN) is a serious complication

of diabetes which is associated with neurotrophic changes,

demyelination and degeneration of all fiber types, loss of sensory

fibers, alterations of endoneural microvessels and decreased

performance of the perineurium blood-nerve barrier in the

peripheral nerve [1,2,3,4]. Increasing evidence suggests that the

pathogenesis of diabetic neuropathy is multifactorial [5]. Chronic

hyperglycaemia, increased levels of advanced glycation end

products (AGEs), reactive oxygen species (ROS) and inflammatory

cytokines significantly contribute to the development of PDN

[5,6,7]. Until now, there is no causal treatment of diabetic

neuropathy and improvement of glycaemic control is the only way

to minimize the risk of PDN [8].

Leptin-deficient ob/ob mice are widely accepted as an animal

model of type-2 diabetes induced PDN [9]. Drel and co-authors

[9] demonstrated that ob/ob mice have motor and sensory nerve

conduction deficits, small sensory nerve fiber neuropathy,

intraepidermal sensory nerve fiber loss as well as oxidative-

nitrosative stress in peripheral nerve, spinal cord, and dorsal root

ganglions (DRG). These alterations of the peripheral nervous

system are most likely related to the phenotype of ob/ob mice,

which exhibit over 50% body fat mass, insulin resistance,

hyperglycaemia and alterations of endoneural microvessels

[10,11].
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Angiopoetin-1 has been shown to act anti-apoptotic and

neurotrophic on neurons of central – and peripheral nervous

system in vitro [12,13,14,15]. Recently, cartilage oligomeric matrix

protein (COMP) -angiopoietin-1 (Ang-1) has been developed as a

soluble, stable, and potent Ang-1 variant which was shown to

protected against radiation-induced apoptosis in microcapillary

endothelial cells of the intestinal villi and prolonged survival [16].

Recombinant COMP-Ang-1 was generated by replacing the N-

terminal portion of Ang-1 with the short coiled-coil domain of

cartilage oligomeric matrix protein, which is more potent than

native Ang-1 in phosphorylation of Tie-2 receptor [16]. The Ang-

1/Tie-2 system is involved in endothelial cell migration, pericyte

recruitment as well as formation, remodelling and maturation of

blood vessels [17,18] and promotes angiogenesis and neuritogen-

esis, thereby coordinating the healing process of injured nerve

fibres and endoneural microvessels [13].

Interestingly, hyperglycemia causes significant reduction of

Ang-1 and Tie-2 expression and disruption of Ang-1/Tie-2

signalling pathway [19,20]. COMP-Ang-1 was further shown to

activate osteogenesis by promoting angiogenesis in spinal fusions

[21], decreases lipopolysaccharide-and ischemia reperfusion

induced acute kidney injury [22]. Based on the beneficial effects

of COMP-Ang-1 on angiogenesis and nerve growth, we here test

the hypothesis that COMP-Ang-1 may improve regeneration of

nerve fibres and endoneural microvessels in ob/ob mice.

Materials and Methods

Animals
Male (N = 184; Table 1), 3-month old, ob/ob homozygote and

ob/+ heterozygote (B6.V-Lep ob/ob and B6.V-Lep ob/J) mice were

obtained from the Taconic Europe (Ry, Denmark) and body

weight was recorded for each group (ob/+: mean 27 g, range 26–

28 g; and ob/ob: mean 48 g, range 47–49 g). Mice were adjusted

to the local animal facilities (3–6 mice per group and cage) and

maintained at 2161uC on a 12 h light/dark cycle; mice had free

access to water and were fed with regular food (Global Rodent

T.2018.R12 from Harlan Teklad, containing 12% of calories from

fat). Experiments followed the international guidelines for the

prevention of animal cruelty and were approved by the

Regierungspräsidium Leipzig, the local authority for animal care

(TVV 11/10). All mice were sacrificed via a CO2 overdose. The

sciatic nerves were dissected and the number of endoneural

microvessels, expression of structural and proinflammatory

proteins as well as crucial signaling pathways were evaluated.

Application of COMP-Ang-1
COMP-Ang-1 (Axxora Deutschland GmbH, Lörrach, Ger-

many; 100 ng/ml, diluted in sterile 0.9% NaCl) or sterile 0.9%

NaCl solution (B. Braun, Melsungen, Germany; 5 ml/1 g body

weight) were intraperitoneally (i.p.) injected into ob/ob or ob/+
mice every 24 h, for 7 or 21 days. A fasting whole-blood glucose

concentration $16 mmol/l in ob/ob mice and 5–8 mmol/l in ob/+
control mice were the criteria to include the animals in the

intervention studies.

Lipid status and blood glucose concentration
Blood glucose concentration was measured using an Opticum

Omega glucometer (GlucoMen, Menarini Diagnostics, Berlin,

Germany) in whole blood taken from the ventral caudal vein at

baseline, 1, 4, 7, 14 and 21 days after COMP-Ang-1 or NaCl injection

Blood samples (0.5 ml) for lipid status were taken by cardiac

puncture between 8 and 10 AM, 21 days after administration of

the COMP-Ang-1 or NaCl. Triglyceride, HDL/LDL cholesterol

were determined in the supernatant (ELISA; Linco, St. Charles,

USA) (n = 6 per group).

Immunoblotting
Sciatic nerves of each group (n = 4) were lysed by ultrasonica-

tion in 60 mM Tris-HCl, pH 6.8, containing 2% sodium dodecyl

sulfate (SDS) and 10% sucrose. Tissue lysates were diluted 1:1 in

sample buffer (250 mM Tris-HCl, pH 6.8, containing 4% SDS,

10% glycerol, and 2% b-mercaptoethanol) and denatured at 95uC
for 5 min. Protein concentration was assessed with the BCA

protein assay (Pierbo Science, Bonn, Germany). Proteins (30 mg

per lane) were separated by electrophoresis on a 12.5% or 15%

SDS-polyacrylamide gel and transferred to nitrocellulose by

electroblotting. Nonspecific binding sites were blocked with 5%

dry milk for 45 min, then subsequently incubated with primary

antibodies: mouse anti-neurofilament 68 (NF68, clone NR4),

mouse anti-growth associated protein (GAP) 43 (Sigma Aldrich;

Table 1. The number of animals used in experiments. The experimental groups: NaCl ob/+, NaCl ob/ob, COMP-Ang-1 ob/+ and
COMP-Ang-1 ob/ob mice.

7 days of treatment 21 days of treatment total number

n (per each group) n (per each group)

Western blot:

Nf68, GAP43 4 4* 32

Cx32, Cx26 4 4* 32

TNFa, Cx43 4 4 32

Ang-1, Tie-2, p-Tie-2 4 16

Akt,p-Akt, p38 MAPK, p-p38 MAPK 4 16

reconstruction of endoneural Microvessels 6u 24

Immunostaining: Iba1, CD3, TNFa Nf200 5 20

transmission electron microscopy 3 12

184

*lipid status.
ublood glucose concentrations and body weight.
doi:10.1371/journal.pone.0032881.t001

COMP-Ang-1 Suppresses Diabetic Neuropathy
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Taufkirchen, Germany, 1:2 000) rabbit anti-Connexin (Cx) 26,

mouse anti-Cx32 (Millipore, Schwalbach, Germany), mouse anti-

Cx43 (Clone CXN-6; Sigma), tumour necrosis factor alpha

(TNFa, Abcam, MA, USA; 1:1 000), goat anti-Ang-1 (Santa

Cruz Biotechnology, Santa Cruz, CA; 1:500), anti-mouse Tie-2,

rabbit anti-phospho-Tie-2 (all from R&D Systems, Wiesbaden-

Nordenstadt, Germany; 1:2 000), rabbit Akt, phospho-Akt

(Ser473) mouse mAb, rabbit p38MAPK, phospho-p38MAPK

(Thr180/Tyr182) mouse mAb (all from Millipore; 1:1 000) at 4uC
overnight. Proteins were detected by incubating with HRP

conjugated secondary antibodies at a 1:3 000 dilution; Dianova)

at RT for 2 h and chemiluminescence kit (Amersham, Pharmacia,

Freiburg, Germany). Integrated optical densities of the immuno-

reactive protein bands were measured with Gel Analyzer software

(Media Cyberneties, Silver Spring, MD). Equal protein loading

was verified using mouse anti-D-glyceraldehyde-3-phosphate

dehydrogenase antibody (GAPDH, Research Diagnostics, Flan-

ders, The Netherlands; 1:3 000).

Immunostaining
Mice (n = 5 per group) were perfused with 4% paraformalde-

hyde in 0.1 M PBS. Dissected sciatic nerves were postfixed in the

same fixative for 4 hr, rinsed with PBS, transferred into 30%

buffered sucrose solution, and stored at 4uC until sectioning. The

10-mm-thick frozen cross sections were mounted on gelatinized

glass slides. After buffer rinse, sections were incubated with rabbit

polyclonal microglia/macrophage cytoplasmatic calcium adaptor

Iba-1 antibody for the detection of macrophages (1:200; WAKO

Chemicals USA, Richmond, VA) or with rabbit polyclonal CD3

for detection of T-cells (1:200; Dako Cytomation, Hamburg,

Germany) in double staining with the mouse monoclonal antibody

against neurofilament 200 (NF200; 1:500; Sigma Aldrich,

Taufkirchen, Germany). For co-localization study, Iba-1 and

CD3 antibody was used in combination with the mouse

monoclonal TNFa antibody (1:100; Abcam, ab1793) at 4uC
overnight. After buffer rinse, Cy3-conjugated goat anti-mouse IgG

(Dianova) with FITC-conjugated goat anti-rabbit IgG was diluted

1:700, and sections were incubated at room temperature for

another 2 h. Sections were mounted with Dako Glycergel (Dako

Cytomation) containing 10 mg/ml DAPI (Serva, Heidelberg,

Germany) for nuclear staining and 25 mg/ml DABCO (Sigma)

to prevent photobleaching. By replacement of the primary antisera

with normal mouse IgG, rabbit serum or PBS, respectively, no

specific immunoreaction occurred.

Determination of macrophages and T-cells
Digitalized pictures were taken with the LSM 510 Meta

confocal microscope (Zeiss). The number of macrophages and

T-cells was counted in cross sciatic nerve sections (n = 5, in each

experimental group) stained by immunohistochemistry for Iba-I (a

macrophage marker) or CD3 (a T cell marker). Values represent

numbers of stained cells per mm2.

Endoneural microvessel detection by fluorescein
isothiocyanate-dextran (FITC)

Immediately upon death, each animal (n = 6 per group) were

perfused via the left heart ventricle, first with 5 ml phosphate buffered

saline (PBS, pH 7.4) containing 6250 u/l heparin (Sigma, Tauf-

kirchen, Germany), and then 5 ml 4% formaldehyde in PBS,

followed by 10 mg/ml FITC (Sigma) in PBS. All perfusion buffers

were warmed to 37uC. Sciatic nerves from both the right and left side

dissected above division into fibular and tibial nerve were mounted

on a cork-plate, postfixed in 4% buffered formaldehyde for 1 h,

rinsed with PBS, and embedded on glass slides with Glycergel

mounting medium (DAKO Cytomation, Hamburg, Germany).

Transmission electron microscopy
The left sciatic nerves of each group (n = 3) were fixed in 2%

glutaraldehyde with 1% paraformaldehyde in 0.1 M PBS at 4uC
for 2 h, and postfixed in 1% buffered osmium tetroxide (1.5 h,

4uC). Cross-cut samples of the sciatic nerves were transferred into

70% acetone, treated with 1% phosphotungstic acid and 1%

uranyl acetate (20uC, 1 h) and further dehydrated in acetone.

Samples were embedded in resin (DurcopanH ACM Fluka, Sigma-

Aldrich, Steinheim Germany) and polymerized at 60uC for 48 h.

Semithin sections were stained with 1% toluidine blue solution;

ultrathin sections were mounted on copper grids, contrasted with

uranyl acetate and lead citrate, and analyzed using an EM 900

electron microscope (Zeiss, Jena, Germany).

Thickness of myelin sheath and number of myelinated/
non-mylinated nerve fibers

To measure the thickness of the myelin sheath, digitalized

photographs were taken from cross-cut ultrathin sections of two

samples per mouse at 30006 magnification. To begin with the

upper left corner of the grid, a total of 50 pictures were obtained

for each nerve. Nerve fibers of round to oval forms were selected

according to Weibel (1963); the smallest diameter was measured

for the axon and nerve fiber size by the TRS Docu TEM Package

software (Zeiss, Oberkochen, Germany), and the myelin sheath

thickness was estimated as a g-ratio (obtained by axon diameter/

fiber diameter ratio for each axon). To ensure blinded investiga-

tions, measurements were conducted without the knowledge of the

genotypes. In addition, the absolute number of non-myelinated

and myelinated fibers was assessed per 400 mm2 area from 50

pictures for each nerve.

Thickness of Schwann cell basal lamina
We also measured the thickness of the basal lamina of Schwann

cells (approximately 150 cells per nerve from 30 digitalized TEM-

pictures; 90% of Schwann cells related to myelinated fibers) using

the TRS Docu TEM Package software (Zeiss).

Thickness of endoneural microvessel endothelium
The smallest diameter was measured for the capillary lumen

and capillary by the TRS Docu TEM Package software (Zeiss).

Thickness of endoneural microvessel endothelium was validated as

a capillary lumen diameter/capillary diameter ratio.

Statistical analyses
Data are presented as means 6 SEM or 6 SD. Differences

among the groups were validated by one-way-ANOVA and the

Newman-Keuls test using SigmaStat (Jandel Scientific, San Rafael,

CA). A value of p,0.05 was considered statistically significant.

Results

COMP-Ang-1 treatment decreases blood glucose and
plasma cholesterol concentrations in ob/ob mice

The application of COMP-Ang-1 significantly decreased blood

glucose concentration in hyperglycaemic ob/ob mice compared

with NaCl treated animals. After 21 days treatment, fasting blood

glucose concentration of ob/ob mice was indistinguishable from

non-diabetic ob/+ controls (Fig. 1A). COMP-Ang-1 had no effect

on blood glucose concentration in non-diabetic ob/+ control mice

(Fig. 1A).

COMP-Ang-1 Suppresses Diabetic Neuropathy
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HDL- and LDL-cholesterol plasma concentrations were

significantly higher in ob/ob mice, whereas circulating triglycerides

were lower compared to ob/+ mice (Table 2). Significant decrease

about 54% of total cholesterol and about 28% increase of

triglyceride serum concentrations were observed in ob/ob mice

after 21 days of the COMP-Ang-1 treatment (Table 2). Notewor-

thy, these effects of COMP-Ang-1 treatment were independent of

the body weight, which did not significantly change during the

study course in ob/ob and ob/+ mice (Fig. 1B). Only saline treated

ob/ob mice showed a tendency for increased body weight during

the last week of treatment (Fig. 1B).

Effect of COMP-Ang1 treatment on neuron-structural
protein expression

Neurofilaments (Nfs) are major determinants of axonal

calibre whereas growth associated proteins (GAPs) belong to

membrane-associated plasticity markers. Noteworthy, in ex-

perimental diabetes and diabetic patients, alterations of

peripheral nerve are associated with decreased expression of

Nfs and GAPs [3,23]. Therefore, we tested the effects of

COMP-Ang-1 treatment on Nf68 and GAP43 protein expres-

sion, both after 7 and 21 days of treatment. In ob/ob mice,

COMP-Ang-1 application resulted in about 57% and 59%

increase of Nf68 protein expression on day 7 and 21 when

compared with NaCl treated group (Fig. 2). On day 7, no

changes of GAP43 protein levels were noted between COMP-

Ang-1 and NaCl treated ob/ob mice. Strikingly, COMP-Ang-1

caused the increase (about 91%) of GAP43 expression in ob/ob

mice compared with NaCl treated animals on day 21 of

application (Fig. 2).

Effect of COMP-Ang-1 on gap-junction and pro-
inflammatory protein expressions in sciatic nerve of ob/
ob mice

Gap junction proteins - connexins (Cx) are an important

component in the maintenance of the perineurium blood-nerve

barrier. Several studies have demonstrated that perturbation of

this barrier and altered expression of connexins contribute to

diabetes related neuropathy [4,24,25]. Therefore, the expression

of Cx26, 32 and 43 was examined in sciatic nerve of ob/ob and ob/

+ mice. In NaCl treated groups, a significant reduction of Cx26

(about 72%) and Cx32 (about 90%) was observed in sciatic nerves

of ob/ob mice when compared with ob/+ controls (Fig. 3). In

contrast, significantly increased levels of Cx43 (about 50%) were

detected in ob/ob mice compared with ob/+ animals (Fig. 3).

COMP-Ang-1 treatment resulted in about 50% increase of Cx26

protein expression as well as in about 83% and 92% increase of

Cx32 protein level on days 7 and 21, respectively. Cx43 protein

expression was about 11% higher on day 7 and it dropped about

43% on day 21 in COMP-Ang-1 treated ob/ob mice compared

with saline treated mice (Fig. 3).

Up-regulation of Cx43 protein was found to occur in parallel

with the increased synthesis of pro-inflammatory cytokine-TNFa
in macrophages, Schwann cells, and endothelial cells of diabetic

nerves [26,27,28]. TNFa plays a pivotal role in pain transmission,

nerve degeneration and insulin resistance in diabetes related

neuropathies [29,30]. We therefore tested whether COMP-Ang-1

dependent Cx43 decrease corresponds to changes in TNFa
expression. TNFa expression was markedly increased (about

72%) in hyperglycaemic ob/ob mice as compared with ob/+
control animals. In ob/ob mice, COMP-Ang-1 treatment

Figure 1. Effect of COMP-Ang-1 treatment on blood glucose
concentrations and body weight. Metabolic parameters and body
weight of ob/ob mice and non-diabetic ob/+ control mice with COMP-
Ang-1 (100 ng/ml) or NaCl treatment. COMP-Ang-1 significantly
decreased blood glucose level (A) in ob/ob mice compared with NaCl
treatment at 21 days. After 21 days, glucose concentration was
indistinguishable between COMP-Ang1 treated ob/ob and non-diabetic
ob/+ mice. (B) Effect of COMP-Ang-1 treatment of body weight. Data are
means 6SD; n = 6 per group.
doi:10.1371/journal.pone.0032881.g001

Table 2. COMP-Ang-1 treatment (100 ng/ml) effect of ob/ob
and ob/+ mice on lipid profile after 21 days.

[mmol/l] ob/ob ob/ob ob/+ ob/+

NaCl COMP-Ang-1 NaCl COMP-Ang-1

±SD ±SD ±SD ±SD

Triglyceride 0.56 0.03 0.78 0.02 0.83 0.01 0.85 0.04

Cholesterol 4.47 0.67 2.08 0.08 1.71 0.19 1.89 0.22

HDL-
Cholesterol

2.78 0.45 1.68 0.29 1.47 0.09 1.48 0.13

LDL-
Cholesterol

0.65 0.16 0.19 0.01 0.15 0.02 0.16 0.02

The COMP-Ang-1 dependent decrease of plasma cholesterol and increase of
triglyceride were noted in ob/ob mice. Data are means 6 SD; n = 6 per group.
doi:10.1371/journal.pone.0032881.t002
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significantly decreased TNFa protein level on days 7 (about 17%)

and 21 (about 51%) as compared with NaCl treated group (Fig. 3).

Effect of COMP-Ang-1 on local inflammatory response in
sciatic nerve of ob/ob mice

To further investigate whether COMP-Ang-1 modulates

inflammatory processes in sciatic nerve, the immunostaining

against microglia/macrophage cytoplasmatic calcium adaptor

Iba-1 for macrophages and CD3 for T-cells was performed in

COMP-Ang-1 treated ob/ob mice compared with saline treated

mice or with the ob/+ control mice at 21 days.

The sciatic nerves of hyperglycemic ob/ob mice showed greater

infiltration of macrophages compared with normoglycemic ob/+
mice. Most interestingly, the COMP-Ang-1 treatment decreased

about 45% the macrophage number in sciatic nerves of ob/ob mice

at 21 days (Fig. 4A, B).

In contrast, the number of infiltrating T-cells in untreated mice

was much lower that the number of infiltrating macrophages. T-

cell infiltration appeared to be highest in ob/ob mice vs. ob/+
mice. An about 47% decrease of T-cells was observed in ob/ob

mice under COMP-Ang-1 treatment (Fig. 4C, D).

To identify the cell types, which were immunoreactive for

proinflammatory cytokine TNFa, double immunofluorescence

staining was performed. The TNF IR co-localized with macro-

phages (Fig. 4E) and partly with T cells.

COMP-Ang-1 promotes the regeneration of sciatic nerve
endoneural microvessels in ob/ob mice

The endoneural microvessels abnormalities precede the axonal

degeneration in diabetes related neuropathy [31] and vice versa,

revascularization precedes regenerating axons [32,33]. Therefore,

the sciatic nerve endoneural blood vessels of COMP-Ang-1 or

NaCl treated ob/ob and ob/+ mice were examined using FITC

injection and then classified into three groups according to their

diameters (Fig. 5). NaCl treated ob/ob mice showed significantly

impaired density of microvessels with the smallest diameter

(,5 mm) and more with largest (.10 mm) diameter compared

with ob/+ controls. No differences were observed in the number of

microvessels with the medium (5–10 mm) diameter between both

groups. Interestingly, COMP-Ang-1 significantly enhanced densi-

ty of endoneural microvessels with smallest diameter in ob/ob mice

comparing with NaCl treated group on day 21 of application. The

Figure 2. Expression of NF68 and GAP43 in sciatic nerve biopsies of ob/ob and ob/+ mice. (A) Representative Western blots and
corresponding densitometrical analyses (B) of neurofilament (NF) 68 and growth associated protein (GAP) 43 in sciatic nerve of ob/ob and ob/+ mice
treated with COMP-Ang-1. The decreased level of NF68 protein and strikingly down-regulation of GAP43 indicates on degeneration of nerve fibres in
the sciatic nerve of ob/ob mice compared with ob/+ controls. COMP-Ang-1 treatment significantly up-regulates expression of both neural-structural
proteins in ob/ob mice compared with NaCl treatment at 21 days. (B) Data from n = 4 are presented as mean 6SEM. * p#0.05, ** p#0.01,
*** p#0.001, according to the one-way analysis of variance together with the Newman-Keuls test. GAPDH was used as normalization control.
doi:10.1371/journal.pone.0032881.g002
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Figure 3. Effect of COMP-Ang-1 on Cx26, Cx32, Cx43 and TNFa expression in sciatic nerves. Diabetic neuropathy is associated with
increased expression of tumour necrosis factor alpha (TNFa) and connexin (Cx) 43 and with decreased expression of Cx26 and Cx32 in endo-/
perineurium of sciatic nerve in ob/ob mice compared with ob/+ controls. COMP-Ang-1 treatment inhibited up-regulation of pro-inflammatory
cytokine TNFa and Cx43 and recovered the synthesis of Cx26 and Cx32 in sciatic nerve of ob/ob mice at 7 and 21 days. (A) Representative Western
blots; (B) Data of densitometrical analysis after normalization to GAPDH. Results are presented as mean 6SEM. * p#0.05, ** p#0.01, *** p#0.001,
according to the one-way analysis of variance together with the Newman-Keuls test (n = 4).
doi:10.1371/journal.pone.0032881.g003
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numbers of smallest endoneural microvessels between COMP-

Ang-1 treated ob/ob and ob/+ mice were similar (Fig. 5).

Sciatic nerve ultrastructure
No significant differences of fiber morphology, including axons

diameters and thickness of the myelin sheath, were found in sciatic

nerve of COMP-Ang-1 and saline treated ob/ob and ob/+ mice

(Fig. 6d). However, the number of non-myelinated nerve fibers

appeared to be higher in COMP-Ang-1 vs. saline treated ob/ob

mice, but these differences were not statistically significant (Fig. 6e).

The characteristic changes of endoneural microvessel, such as a

thickened basement membrane and microvessel endothelium, as

well as thickened Schwann cell basal lamina were observed in

hyperglycemic ob/ob mice vs. normoglycemic ob/+ mice. No

differences were found between saline and COMP-Ang-1 treated

ob/ob mice (Fig. 6e, f).

COMP-Ang-1 induces phosphorylation of Tie-2, Akt and
p38-MAPK in sciatic nerve of ob/ob mice

Diabetic hyperglycaemia causes impairment of Ang-1 and Tie-2

signalling, closely associated with reduced angiogenesis [19].

Therefore, Ang-1 and Tie-2 protein expressions as well as Tie-2

phosphorylation were examined. There was about 45% drop in

Ang-1 protein level in sciatic nerve of NaCl treated ob/ob mice

compared with ob/+ controls. COMP-Ang-1 led to about 39%

increase of Ang-1 expression level in ob/ob mice on day 21 of

application (Fig. 7). An about 24% decrease of Tie-2 receptor

protein level was noted in saline treated ob/ob mice compared with

ob/+ controls. Expression of Tie-2 did not change in response to

21-day COMP-Ang-1 treatment (Fig. 7), however, COMP-Ang-1

application induced phosphorylation of Tie-2 (Fig. 7)

We analyzed Akt and p38 MAPK phosphorylation, because

both proteins are important mediators downstream of COMP-

Ang-1 and are involved in the axon growth and angiogenesis

[16,34]. We show here that COMP-Ang-1 induces phosphoryla-

tion of the Akt (Ser 473) and p38MAPK (Thr180/Tyr182) in

sciatic nerve of ob/ob and ob/+ mice 60 min after application

(Fig. 7). These data support the hypothesis that in sciatic nerves,

angio- and neurotrophic- action of COMP-Ang-1 involves

phosphorylation of Akt and p38 MAPK upon Tie-2 receptor.

Discussion

Ang-1, based on its angiogenic properties, has been proposed as

a therapeutic strategy to target microvascular diseases in several

experimental models. In this line, COMP-Ang-1, a new developed

soluble and stabile form of Ang-1, has been shown to prevent the

diabetes related retinopathy and nephropathy [35,36]. Previously,

we demonstrated a direct effect of Ang-1 in axonal outgrowth of

sensory neurons in vitro [13]. These results maybe linked to the

recently reported anti-apoptotic and neuritotrophic function of

Ang-1 on neurons in CNS [12,14,15]. The bifunctional trophic

action of Ang-1 both on blood vessels and on nerve fibers

prompted us to hypothesize that Ang-1 may have a wider

therapeutic range including beneficial effects in neuropathy.

In the present study, we demonstrate that COMP-Ang-1 can

reverse the impaired expression of neural structural and gap

junction proteins, alteration of endoneural microvessels as well as

decreases the infiltration of macrophages and T cells in sciatic

nerve of ob/ob mice. Additionally, we show that COMP-Ang-1

treatment significantly improves blood glucose and plasma

cholesterol concentrations.

A decline of axon calibre, demyelination and impaired neuronal

microvasculature belong to the characteristics of PDN [1,3].

Neurofilaments are the most abundant structural components in

axons which determine their calibre and conduction velocities

[37]. In streptozotocin-induced diabetes in rats, neuropathy was

associated with suppressed mRNA expression of Nfs as well as

GAP43 in sensory neurons and their impaired incorporation into

distal branches [38]. The decrease in gene expression contributed

to inhibition of axonal radial growth and axonal degeneration with

consequent reduction of nerve conduction velocity [33,38]. Our

present findings are in accordance with these observations and

extent previous findings by demonstrating a markedly decreased

expression of Nf68 and GAP43 in sciatic nerve of hyperglycemic

ob/ob compared with normoglycemic ob/+ mice. Interestingly,

COMP-Ang-1 treatment significantly up-regulates Nf68 and

GAP43 protein expressions in sciatic nerve of ob/ob mice after

21-day application.

Previously, we have shown that Ang-1 induces the synthesis of

Nf68 and the neurite outgrowth through Tie-2 receptor in dorsal

root ganglion neurons [13]. Noteworthy, an association between

Ang-1/Tie-2 system and the activation of Akt and p38 MAPK

pathways was recently reported [39,40]. The p38 MAPK and Akt

belong to recently identified signaling molecules implicated in

regeneration of injured nerves [41,42]. Here, we detect an

activation of Tie-2, p38 MAPK and Akt proteins in sciatic nerve

upon chronic COMP-Ang-1 treatment. Activation of Akt and p38

MAPK has been associated with morphological responses such as

neurite elongation, branching and increase of axon calibre of

cultured sensory neurons and PC12 cells as well as of regenerating

motor neurons in vivo [34,43,44]. Therefore, COMP-Ang-1

induced increase of neural structural proteins observed in sciatic

nerve of ob/ob mice may be mediated through phosphorylation of

p38 MAPK and Akt upon Tie-2 receptor. It can not be excluded

that these signal cascades are primary activated in DRG neurons

and then incorporated into distal fibres. Notably, we have

previously shown Ang-1/Tie-2 to cause trans-activation of nerve

growth factor tyrosine-kinase receptor A (trkA) in cultivated

sensory neurons [13]. Since Akt and p38 MAPK molecules are

activated by trkA, interaction between COMP-Ang-1/Tie-2-

trkA- Akt signalling pathways are plausible.

Peripheral axons and their associated Schwann cells of

endoneurium are isolated from the extracellular space by a

diffusion blood–nerve barrier (BNB) also known as the blood-

nerve interface. This barrier consists of gap-junctioned perineurial

cells of perineurium and endoneurial vascular endothelium [45].

Connexins, expressed by Schwann cells, are an important

component implicated in the maintenance of BNB [24]. Altered

expression of connexins Cx26, 32 and 43 has been shown to

contribute in BNB leakage in diabetic and non-diabetic neurop-

Figure 4. Analysis of macrophages and T cells distribution in cross sections of sciatic nerves from ob/ob and ob/+ mice under
treatment of COMP-Ang-1 at 21 days. Quantification of Iba-1+ macrophages (A) and CD3+ T-cells (C) activation in sciatic nerves (n = 5). B, D:
Double immunofluorescence staining against Iba1 (green, macrophages) or CD3 (green, T cells) and neurofilament 200 (red). Immunoreactivity
(arrows) for macrophages and T-cells was higher in nerves of non-treated ob/ob mice compared to COMP-Ang-1 treated ob/ob or ob/+ mice. E:
Double immunofluorescence staining against Iba1 (green, macrophages) and TNFa (red). Note that TNFa immunoreactivity co-localizes with
macrophages (arrows). Cell nuclei were stained with DAPI (blue). Bar represents 100 mm (B, D) and 30 mm (E) respectively. Results are presented as
mean 6SEM. * p#0.05, ** p#0.01, *** p#0.001, according to the one-way analysis of variance together with the Newman-Keuls test.
doi:10.1371/journal.pone.0032881.g004
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Figure 5. COMP-Ang-1 dependent regeneration of endoneural microvessels in ob/ob mice. COMP-Ang-1 treatment enhanced densities of
small-diameter endoneural microvessels in ob/ob mice. Endoneural microvessels were visualized by FITC injection (10 mg/ml). To measure the
number and diameter of FITC-injected endoneural microvessels, digitalized pictures were taken with the LSM 510 Meta confocal microscope both in
the longitudinal and the cross-cut view per nerve (n = 6) (a–d, scale bars: 50 mm). e: Significantly more endoneural microvessels with a smallest
diameter (Ø,5 mm) were found in ob/+ controls, whereas ob/ob mice showed degeneration of small-diameter microvessels. COMP-Ang-1 treatment
enhanced densities of small-diameter endoneural microvessels in ob/ob mice compared with NaCl groups after 21 day-long treatment (a, b, e). f, g:
COMP-Ang-1 treatment does not affect the number of endoneural microvessels with the medium (Ø = 5–10 mm) and larger diameter (Ø.10 mm)
both in ob/ob and ob/+ mice compared to NaCl treatment.
doi:10.1371/journal.pone.0032881.g005

Figure 6. Analysis of sciatic nerve ultrastructure. a–c: Sciatic nerves with endoneural microvessels of NaCl ob/ob, COMP-Ang-1 ob/ob and NaCl
ob/+ mice. d–g: The g-ratio (as axon/fiber diameter), number of myelinated/non-mylinated nerve fibers, endoneural microvessel endothelium and SC
basal lamina thicknesses were examined by electron microscopy in COPM-Ang-1 or saline treated ob/ob and ob/+ mice (n = 3). d: There are no
significant differences in g-ratio in the all groups. e: The number of non-myelinated nerve fibers appears to be low in saline ob/ob mice compared
with ob/+ control mice and increased after 21-day long COMP-Ang-1 treatment, these data were not statistically significant. f: The ratio of endoneural
microvessels endothelium thickness shows a statistically significant decrease in ob/ob mice vs. ob/+ mice. g: The thickness of Schwann cells basal
lamina is increased in the ob/ob mice. The differences between COMP-Ang-1 and saline treated ob/ob mice were not apparent. Results are presented
as mean 6SEM. * p#0.05, ** p#0.01 according to the one-way analysis of variance together with the Newman-Keuls test.
doi:10.1371/journal.pone.0032881.g006
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athy [24]. Furthermore, significant reduction of 26 and 32 Cx

isoforms in peripheral nerves of STZ diabetic rats has been

reported [4]. In the light of these studies and our results, it seems

likely that the markedly decrease of Cx26 and 32 and up-

regulation of Cx43 expression or higher number of Iba-1 positive

macrophages and CD3 positive T-cells in sciatic nerve of ob/ob

mice could be closely related to an inflammatory reaction, similar

to this observed in degenerated nerve [46].

The lesions with inflammatory infiltrates around epineurial and

endoneurial blood vessels and abnormal cytokine production have

been shown in various nerve biopsies of patients with diabetic

proximal neuropathy [47]. Moreover, we found that the

inflammatory cytokine TNFa, mainly expressed in macrophages

and Schwann cells, was over expressed in sciatic nerve of ob/ob

mice compared with normoglycemic controls.

The severity of diabetic neuropathological abnormalities has

been related to endoneurial microangiopathy with distinct

thickening of basal membrane [31,48,49]. Giannini and Dyck

[31] have shown that alterations of endoneural microvessels

preceed the development of fiber degeneration. In addition the ob/

ob mice showed impaired density of microvessels with the smallest

diameter (,5 mm) compared with ob/+ groups [11]. COMP-Ang-

1 enhanced density of endoneural microvessels with smallest

diameter in ob/ob mice compared to saline controls. Recent studies

have shown that microangiopathy is closely associated with

disruption of the angiopoietins/Tie-2 system in diabetic mice

[19]. We show here that expression of angiopoietin-1 and Tie-2 is

significant decreased in sciatic nerve of ob/ob mice compared with

controls. COMP-Ang-1 treatment caused up-regulation of Ang-1

protein expression and phosphorylation of Tie-2.

Ob/ob mice are characterized by obesity and hyperglycaemia

[50]. Noteworthy, COMP-Ang-1 improves hyperglycaemia inde-

pendent of body weight changes. The potential mechanism of

COMP-Ang-1 action on improving blood glucose may include

vascular enlargement and increased blood flow, subsequently

leading to enhanced insulin sensitivity and insulin-stimulated

glucose uptake in skeletal muscle [40]. Interestingly, Ade-COMP-

Ang-1 decreased plasma glucose without changes in serum insulin

level in leptin-receptor deficient diabetic (db/db) mice [36]. The

authors have suggested that COMP-Ang-1 has an insulin

sensitizing effect in peripheral tissues without direct effect on

insulin secretion machinery in pancreatic ß-cells. However, insulin

sensitivity and morphology of pancreatic ß-cells were not assessed

in this study. Further studies are needed to test whether COMP-

Ang-1 treatment may in addition improve insulin sensitivity and/

or affect insulin secretion.

Taken together, our data suggest that regenerative changes in

sciatic nerve of ob/ob mice could be a consequence of: 1) COMP-

Ang-1/Tie2 dependent activation of Akt, p38 MAPK signalling

pathways in perineurial cells, Schwann cells, pericytes as well as

Figure 7. Ang-1, Tie-2, Akt and p38 MAPK expression in sciatic nerve biopsies of ob/ob and ob/+ mice. Representative Western blots (A)
and corresponding densitometrical analyses (B) of Ang-1, Tie-2, Akt and p38 MAPK and in sciatic nerve of ob/ob and ob/+ mice under treatment of
COMP-Ang-1. A: COMP-Ang-1 led to the increase of Ang-1 expression in ob/ob mice on day 21 of application and improved the expression of
phospho–Tie2, -Akt and -p38 MAPK after 60 min of the injection in both ob/ob and ob/+ mice. B: Results are presented as mean 6SEM. ** p#0.01,
*** p#0.001, according to the one-way analysis of variance together with the Newman-Keuls test (n = 4).
doi:10.1371/journal.pone.0032881.g007
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endothelial cells in sciatic nerve and DRG neurons of ob/ob mice;

2) COMP-Ang-1 dependent glucose uptake or a combination of

both.

Lack of evident morphological changes of nerve fibers could be

explained with the short time of COMP-Ang-1 treatment (21 days)

to complete nerve regeneration. In the light of our results, we

propose, that decreased inflammation, the increase of nerve

structural and gap junction protein expressions as well as growth of

endoneural microvessels, are signs of early stages of the peripheral

nerve regeneration.

In conlusion, COMP-Ang-1 recovers molecular biomarkers of

neuropathy, promotes angiogenesis and suppresses inflammation

in sciatic nerves of ob/ob mice suggesting COMP-Ang-1 as novel

treatment option to improve morphologic and protein expression

changes associated with diabetic neuropathy.
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