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Abstract

There are currently limited Food and Drug Administration (FDA)-approved drugs and vac-

cines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced

understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infec-

tion and pathogenesis is critical for the development of therapeutics. To provide insight into

viral replication, cell tropism, and host–viral interactions of SARS-CoV-2, we performed sin-

gle-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithe-

lial cells (HBECs) in air–liquid interface (ALI) cultures over a time course. This revealed

novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the

onset of infection, which we confirmed by electron and immunofluorescence microscopy.
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Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell

types including basal and club cells. Infection induces cell-intrinsic expression of type I and

type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of

interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a

detailed characterization of genes, cell types, and cell state changes associated with SARS-

CoV-2 infection in the human airway.

Introduction

In December 2019, a novel viral pneumonia, now referred to as Coronavirus Disease 2019

(COVID-19), was observed in Wuhan, China [1]. Severe Acute Respiratory Syndrome (SARS)

Coronavirus (CoV) 2, the causative agent of COVID-19, has caused a global pandemic. There

are currently no approved drugs or vaccines for the treatment or prevention of COVID-19.

Enhanced understanding of viral pathogenesis at the cellular and molecular level is critical for

the development of prognostic tools and novel therapeutics. CoVs are enveloped viruses with

positive-sense, single-stranded RNA genomes ranging from 26 to 30 kb [2]. Six human CoVs

have been previously identified: HCoV-NL63 and HCoV-229E, which belong to the Alphacor-

onavirus genus; and HCoV-OC43, HCoV-HKU1, SARS-CoV-1, and Middle East Respiratory

Syndrome CoV (MERS-CoV), which belong to the Betacoronavirus genus [3]. In the past 2

decades, CoVs have become a major public health concern due to potential zoonotic transmis-

sion, as revealed by the emergence of SARS-CoV in 2002, which infected approximately 8,000

people worldwide with a mortality rate of approximately 10%, and MERS-CoV between 2012

and 2020, which infected 2,500 people with a mortality rate of approximately 36%, and now

SARS-CoV-2, with an estimated mortality rate of approximately 1% [4,5]. SARS-CoV-2 infec-

tion is characterized by a variable presentation with common symptoms including fever,

cough, and malaise [6,7]. Severe cases of COVID-19 progress to acute respiratory distress and

acute lung injury that can lead to death [8,9].

Tissue and cell tropism are key determinants of viral pathogenesis. SARS-CoV-2 entry into

cells depends on the binding of the viral spike (S) protein to its cognate receptor angiotensin

converting enzyme II (ACE2) on the cell surface [6,10]. ACE2 is also the receptor for SARS--

CoV-1 and HCoV-NL63, yet these viruses induce distinct morbidity and mortality, suggesting

unknown determinants of coronavirus pathogenesis [11,12]. Additionally, proteolytic priming

of the S protein by host proteases is also critical for viral entry [10]. The cellular protease trans-

membrane protease serine 2 (TMPRSS2) cleaves and primes the SARS-CoV-2 S protein

[10,13,14]. Endosomal cysteine proteases cathepsin B and cathepsin L are also sufficient to

prime the S protein [15,16]. Another host protease, furin, has been shown to cleave the S pro-

tein at the S1/S2 site to mediate SARS-CoV-2 entry into cells [17–19]; however, the precise

role of host proteases in SARS-CoV-2 entry remains to be determined [20,21].

COVID-19 patients have increased levels of pro-inflammatory effector cytokines, such as

tumor necrosis factor alpha (TNFα), interleukin (IL)-1B, and IL-6, as well as chemokines, such

as CCL2 and CXCL10, especially in those who are critically ill [22–25]. These studies suggest

that an overexuberant immune response characterized by cytokine storm rather than direct

virus-induced damage may be responsible for COVID-19 pathogenesis. The cell types and

mechanisms underlying this immune response are unclear for SARS-CoV-2. In addition, it

has been observed that age is a strong risk factor for more severe disease [26]. In the United

States of America, between February 12 and March 16, 2020, the case fatality rate was 10.4% to
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27.3% for patients 85 years old, compared to 0.1% to 0.2% for patients 20 to 44 years old [26].

The reasons for this increased risk remain unknown.

Our knowledge of SARS-CoV-2 biology and pathogenesis is incomplete. To address this

gap, we performed single-cell (sc) RNA sequencing (RNA-seq) on organotypic human bron-

chial epithelial cells (HBECs) infected with SARS-CoV-2. This culture system supports epithe-

lial cell differentiation and mimics key aspects of the mucosal epithelium. By utilizing scRNA-

seq, electron microscopy, and immunofluorescence microscopy, we revealed that ciliated cells

are a major target of SARS-CoV-2 infection in primary bronchial epithelial cells. During the

course of infection, cell tropism of SARS-CoV-2 extended to other epithelial cells including

basal and club cells. Furthermore, SARS-CoV-2 infection elicited cell-intrinsic expression of

type I interferons (IFNs), type III IFNs, and IL-6 but not IL-1. Interferon-stimulated gene

(ISG) expression was observed in both infected and bystander cell populations. Here, we pro-

vide a detailed analysis of SARS-CoV-2 infection in HBECs which reveals novel SARS-CoV-2

transcripts, identifies preferential tropism for ciliated cells, and characterizes host gene expres-

sion and cell states related to infection.

Results

Dynamics of SARS-CoV-2 infection in primary human bronchial epithelial

cells

To characterize SARS-CoV-2 interaction with the human airway, we performed scRNA-seq of

SARS-CoV-2–infected airway epithelium. We cultured primary HBECs at an air–liquid inter-

face (ALI) for 28 days and then challenged the apical surface of the epithelium with 104 plaque

forming units (PFUs) of SARS-CoV-2 (USA/WA1-2020) (Fig 1A). Exponential viral replica-

tion over the course of the experiment was demonstrated by quantitative real-time polymerase

chain reaction (qRT-PCR) of cell lysate for the SARS-CoV-2 nucleocapsid (N) gene (Fig 1B).

At 1, 2, and 3 days post-infection (dpi), a single-cell suspension was generated, and 30 scRNA-

seq was performed on 77,143 cells across 4 samples with an average of 31,383 reads per cell

(Fig 1C, S1 Data). To define SARS-CoV-2–infected cells, we mapped reads to the viral refer-

ence genome and quantified viral transcript abundance on a per cell basis across the condi-

tions (Fig 1D). We defined productively infected cells as those with at least 10 viral transcripts

per cell, which controls for background due to misaligned reads in the mock sample. Mapping

viral counts per cell showed an increase in SARS-CoV-2 transcripts during the course of infec-

tion (Fig 1D) as represented by the dense colored clusters in the Uniform Manifold Approxi-

mation and Projection (UMAP; Fig 1E). Consistent with viral genome replication (Fig 1B), we

observed a time-dependent increase in the abundance of infected cells from 1 to 3 dpi (Fig 1F).

Mapping of productive infected cells reveals multiple infected cell clusters that expand over

time and are not present in the mock sample (Fig 1G). These results further validate that pri-

mary HBECs are permissible to SARS-CoV-2 and can be used as a platform to recapitulate the

conditions found in the human airway.

SARS-CoV-2 transcriptome in primary human bronchial epithelial cells

reveal unique noncanonical reads

Next, we characterized the SARS-CoV-2 transcriptome at the single-cell level across the differ-

ent conditions in HBECs (Fig 2, S1 Data). Increased detection of SARS-CoV-2 open reading

frame (ORF) counts were observed in a time-dependent manner; in particular, ORF1ab, nucle-

ocapsid, and ORF10 were highly detected (Fig 2A). We then investigated the distribution of

total viral transcript counts per cell over the course of infection. In parallel with the detection
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Fig 1. scRNA-seq reveals SARS-CoV-2 infection in HBECs. (A) Experimental process for longitudinal scRNA-seq.

HBECs in ALI cultures were mock-infected or infected with 104 PFU of SARS-CoV-2. Cells were then harvested at 1,

2, and 3 dpi and processed via scRNA-seq using the 10x Genomics platform. (B) HBEC ALI cultures were infected

with 104 PFU SARS-CoV-2 and harvested at 1 hpi, 1, 2, and 3 dpi. Viral transcripts were detected by real-time

quantitative PCR using primers specific for the nucleocapsid gene. (C) UMAP visualization of cells after batch

correction with BB-kNN. Each dot represents a cell; color represents the given time post-infection. (D) Normalized

and square-root transformed counts of the SARS-CoV-2 viral genome in mock, 1, 2, and 3 dpi samples. Viral counts in

each cell were determined by aligning reads to a single, genome-wide reference. (E) UMAP visualization of the

normalized and square-root transformed counts of SARS-CoV-2 reads (color). (F) Percent of cells infected by

SARS-CoV-2 in mock, 1, 2, and 3 dpi; cells were considered infected if they had greater than 10 SARS-CoV-2 full-

length genome counts. (G) UMAP visualizations of infected (orange) and bystander cells (blue) in each time point

after batch correction. The number of infected cells over time is indicated in each time point. Bystander cells are
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of individual ORFs (Fig 2A), increases in total viral transcript counts per cell were observed

throughout the course of infection (Fig 2B), consistent with active viral replication. In addi-

tion, the distribution of polyadenylated viral transcripts shifts from 30 to 50 during the infection

time course (Fig 2C). Furthermore, aside from the viral reads expected to align immediately

upstream of the canonical SARS-CoV-2 poly-A tail, our results show additional reads aligning

elsewhere in the viral genome suggesting the existence of noncanonical, poly-adenylated sub-

genomic RNAs (sgRNAs) (Fig 2C). The distribution of polyadenylated viral transcripts shifts

from 30 to 50 during the course of infection (Fig 2C). Using reverse transcription PCR

(RT-PCR), we successfully validate 2 unique peaks (red open boxes), one peak (A) that

mapped in the middle of the ORF1ab region and a second peak (B1/2) that mapped near the

ORF6 boundary (Fig 2C). Our results confirm that RT-PCR products corresponding to each

of the 2 peaks appear after 2 dpi (Fig 2D, red arrows). Importantly, the absence of these

RT-PCR bands in the mock and 1 dpi samples suggests that they are not the result of nonspe-

cific oligo-d(T) priming of cellular or viral RNAs. We included 2 positive controls (green open

boxes), one peak (C) that mapped near the middle region of nucleoprotein (N) and another

peak (D) at the 30 end and amplifying RT-PCR products of increasing length from the canoni-

cal SARS-CoV-2 poly-A tail (Fig 2D, bottom panel, green arrows). These RT-PCR bands that

appear as early as 1 dpi are specific to infected cells and run at their expected lengths. These

positive controls validate that we are able to capture known poly-adenylated viral transcripts

with this RT-PCR priming strategy. This is consistent with a recent SARS-CoV-2 transcrip-

tome study [27].

SARS-CoV-2 preferentially infects ciliated cells in primary human

bronchial epithelial cells

The human airway is composed of diverse epithelial cell types with critical functions in gas

exchange, structure, and immunity. We sought to determine the cell tropism of SARS-CoV-2

in the bronchial epithelium, as the airway is a critical target of viral pathogenesis. We identified

8 major clusters comprising canonical epithelial cell types: ciliated cells, basal cells, club cells,

goblet cells, neuroendocrine cells, ionocytes, and tuft cells (Fig 3A, S1 Data). We also observed

a cell population intermediate between basal cells and club cells (BC/club) likely representing

basal stem cells differentiating into club cells. Analysis of differentially expressed genes (DEGs)

shows that these cell clusters express classical epithelial cell type–specific markers (Fig 3B).

Mapping viral infected cells within specified epithelial cell types reveals that ciliated, basal,

club, and BC/Club cells are susceptible to SARS-CoV-2 infection, whereas goblet, neuroendo-

crine, tuft cells, and ionocytes are relatively resistant to infection (Fig 3C and 3D). At 1 dpi, cil-

iated cells represent approximately 84% of infected cells and continue to comprise the

majority of infected cells throughout infection (Fig 3C, S1A–S1D Fig). However, during pro-

ductive infection, the number of infected basal, club, and BC/club cells also increase, suggest-

ing that these cells are significant secondary target cells (Fig 3C, S1C and S1D Fig). The

distribution of polyadenylated viral transcripts along the length of the genome is similar across

infected cell types in which nucleocapsid phosphoprotein and ORF10 were the top viral genes

identified (S1E Fig). To independently verify SARS-CoV-2 cell tropism, HBECs cultured

defined as cells that remain uninfected in HBEC samples challenged with SARS-CoV-2. The individual numerical

value per condition for C–G is listed in S1 Data. Illustration for Fig 1A was created using BioRender.com. ALI, air–

liquid interface; BB-kNN, batch-balanced kNN; dpi, days post-infection; HBEC, human bronchial epithelial cell; hpi,

hour post-infection; PFU, plaque forming unit; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2;

scRNA-seq, single-cell RNA sequencing; UMAP, Uniform Manifold Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3001143.g001
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under identical conditions as for scRNA-seq were assessed by transmission electron micros-

copy. At 2 dpi, we observed numerous virus particles approximately 80 nm in size in ciliated

cells (Fig 3E, right panel). This is consistent with the size and morphology of coronaviruses

[28]. These particles were not observed in a mock control sample (Fig 3E, left panel). To

Fig 2. SARS-CoV-2 transcriptome analysis reveals noncanonical transcripts. (A) Heatmap showing average expression (normalized and square-

root transformed counts) for reads aligned to individual viral ORFs at each time point. (B) Histograms of viral transcript raw counts per cell on a

logarithmic scale for 1, 2, and 3 dpi. (C) Coverage plot of SARS-CoV-2 transcriptome at the scRNA-seq level. The sequencing depth was computed

for each genomic position for each time point. The coverage showed both canonical (near the 30 end, green boxes) and noncanonical (near the 50 end)

poly-adenylated sgRNAs. Two unique peaks were identified (red boxes). The individual numerical value per condition for A–C is listed in S1 Data.

(D) RT-PCR spanning the junctions between poly-A tails and SARS-CoV-2 genome body for noncanonical transcripts (Peaks A, B1/2, red boxes)

and 2 positive controls (Peaks C, D, green boxes). The products were run on agarose gels. Red arrowheads denote the expected amplicons for novel

transcripts, while green arrowheads denote amplicons for the natural viral 30 end. The raw images for D can be found in S1 Raw Images. dpi, days

post-infection; ORF, open reading frame; RT-PCR, reverse transcription PCR; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2;

scRNA-seq, single-cell RNA sequencing; sgRNA, subgenomic RNA.

https://doi.org/10.1371/journal.pbio.3001143.g002
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Fig 3. SARS-CoV-2 tropism in primary HBECs reveals ciliated cells as primary target cells. (A) UMAP visualization of the cell clusters after

manual annotation. The UMAP projections of the dataset are color coded by cell type. Eight distinct cell clusters were identified: ciliated, basal,

club, a mixture of basal and club cells (BC/Club), goblet, neuroendocrine, ionocytes, and tuft cells. (B) Louvain clusters were annotated with a cell

type based on enrichment of canonical cell type markers (see Materials and methods). Violin plots show range-scaled expression (normalized and

square-root transformed counts) of marker genes across clusters. (C) Reads mapping to the full SARS-CoV-2 genome were mapped to each of the

8 distinct cell types; cells with greater than or equal to 10 viral transcript counts were considered infected. The absolute number of infected cells in
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further validate ciliated cell tropism by SARS-CoV-2, we infected HBECs with a SARS-CoV-2

mNeonGreen reporter virus and 2 dpi co-stained for the ciliated cell markers FOXJ1 and acet-

ylated tubulin (Ac-tubulin) [29–31]. SARS-CoV-2 positive cells colocalized with FOXJ1 posi-

tive cells (Fig 3F). Together, this confirms that ciliated cells are a major target of SARS-CoV-2

in the initial phase of infection but not the sole cell type infected in the human bronchus.

Determinants of cell tropism of SARS-CoV-2 in primary human bronchial

epithelial cells

Next, we sought to determine the host transcriptional correlates of SARS-CoV-2 cell tropism.

As viral entry is a major determinant of cell tropism, we first investigated whether expression

of ACE2, the SARS-CoV-2 receptor, predicted infection. We observed ACE2 expression at low

levels across ciliated, basal, club and BC/club cells in the mock condition (Fig 4A, S1 Data).

ACE2 expression is a significant predictor of infection at the cell type level as ACE2 expression

was increased in the 4 susceptible cell populations: ciliated (Fig 4B), basal (Fig 4C), club (Fig

4D), and BC/club (Fig 4E) relative to the non-susceptible cell types: neuroendocrine (Fig 4F),

ionocytes (Fig 4G), tuft cells (Fig 4H), and goblet cells (Fig 4I). Yet, ACE2 expression was

poorly correlated with SARS-CoV-2 infection on a per cell basis (Spearman’s r between viral

genome and ACE2 in ciliated cells, rho = −0.06). ACE2 was recently demonstrated to be an

ISG [32]. However, we do not observe a significant increase in ACE2 expression in either

infected or bystander cells relative to the mock sample (Fig 4E–4H).

To examine whether expression of other potentially proviral genes explain SARS-CoV-2

cell tropism, we assessed the expression of the proteases that may potentiate SARS-CoV-2

infection. The transmembrane serine protease TMPRSS2 and cathepsin L have been impli-

cated in SARS-CoV-2 entry [10]. We also examined the related protease TMPRSS4, which

cleaves influenza hemagglutinin, similar to TMPRSS2, and may also play a role in SARS-CoV-

2 entry [33,34]. TMPRSS2 and CTSL were expressed predominantly in basal, club, and ciliated

cells, while TMPRSS4 was broadly expressed in all epithelial cell types (Fig 4A–4E). The spe-

cific role of proteases in governing SARS-CoV-2 tropism in the human airway epithelium

remains to be further elucidated.

Innate immune response to SARS-CoV-2 infection

We investigated the host transcriptome to assess the host immune response to SARS-CoV-2

infection at single-cell resolution in the human airway epithelium. We observed robust induc-

tion of both type I IFN (IFNB1) and type III IFNs (IFNL1, IFNL2, and IFNL3) in ciliated,

basal, club, and BC/club (Figs 5A–4D, S1 Data) cells co-expressing SARS-CoV-2 transcripts.

Interestingly, the kinetics of IFNB1 induction were delayed relative to type III IFN. In contrast,

there was scant IFN induction in uninfected ciliated, basal, club, and BC/club cells (Figs 5A–

4D). This demonstrates that direct SARS-CoV-2 infection of a given cell is critical for IFN

induction. Type I and III IFNs signal through IFNAR and IFNLR, respectively, resulting in the

each cell type is plotted and stratified by time point (color). (D) Heatmap, where each row and column represents the proportion of infected cells

in a particular cell type and condition (color per row and column represents the number of infected cells divided by the total number of cells in

that particular subset). Conditions are color coded as indicated in Fig 1C, and cell types are color coded as depicted in Fig 3A. The individual

numerical value per condition for A–D is listed in S1 Data. (E) Transmission electron microscopy image of mock (left) and SARS-CoV-2 HBEC

reveal infected ciliated cells at 2 dpi (right). Scale bars correspond to 500 nm. White arrows denote virus particles, and red arrows denote cilia. (F)

Immunofluorescence assay of mock- and mNeon-Green SARS-CoV-2 on differentiated HBECs stained with Ac-tubulin (red) and FOXJ1 (white),

known markers for ciliated cells. Scale bars correspond to 25 μm. The raw images for E can be found in S2 Raw Images, and raw images for F can

be found in S3 Raw Images. Ac-tubulin, acetylated tubulin; dpi, days post-infection; FOXJ1, Forkhead Box J1; HBEC, human bronchial epithelial

cell; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; UMAP, Uniform Manifold Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3001143.g003
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expression of hundreds of ISGs. Consistent with this, we observed broad ISG induction (IFI27,

IFITM3, IFI6, MX1, and ISG15) in both infected and bystander cells of all cell types (Figs 5A–

4D, S3A–S3D Fig), suggesting that IFN from infected cells is acting in trans on both infected

cells and uninfected bystander cells.

The host antiviral response also results in chemokine induction, leading to recruitment of

immune cells, a hallmark of severe COVID-19 [35]. Here, we observe induction of CXCL9,

CXCL10, and CXCL11 which propagate signals through the cognate CXCR3 receptor to

recruit activated T cells and NK cells (Fig 5A–5D). This induction was evident in infected but

not in bystander cells (Fig 5). In contrast, CCL2 and CXCL16 which recruit monocytes and T

cells, respectively, were not dynamically regulated over the conditions evaluated (Fig 5A–5D).

We also observed substantial induction of the pro-inflammatory cytokine IL-6 in infected cili-

ated, basal, club, and BC/club cells but not in uninfected bystander cells of these same popula-

tions (Fig 5A–5D). Interestingly, expression of pro-inflammatory IL-1 was modestly down-

regulated in all cell types after infection, whereas IL-10 and TNFα expressions were not

Fig 4. Expression of known entry determinants across bronchial epithelial cell types during SARS-CoV-2 infection. (A) UMAP visualization of HBEC

samples, colored by expression (normalized and square-root transformed counts) of the ACE2 receptor, CTSL, TMPRSS2, and TMPRSS4 proteases. (B–I)

Heatmaps comparing average expression (represented as a z-score, where each cells’ expression is transformed by subtracting the average and dividing by the

standard deviation across the entire dataset) of genes homologous to ACE2 (ACE, ANPEP, and CLTRN) or relevant to other coronaviruses (DPP4; MERS-CoV

receptor and ANPEP; and 229E receptor), in ciliated (B), basal (C), club (D), BC/Club cells (E), neuroendocrine (F), ionocytes (G), tuft cells (H), and goblet

cells (I) in infected, bystander, and uninfected cells at different time points. The average is calculated with respect to cells in infected, bystander, and uninfected

cells in mock, 1, 2, and 3 dpi (color bar legend atop heatmaps). The color scale shows the average expression (represented as z-score) for each cell type and

condition. The individual numerical value per condition for A–I is listed in S1 Data. ACE2, angiotensin converting enzyme II; dpi, days post-infection; HBEC,

human bronchial epithelial cell; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; TMPRSS2, transmembrane protease serine 2; UMAP,

Uniform Manifold Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3001143.g004
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Fig 5. SARS-CoV-2 infection induces a robust innate immune response. (A–D) Heatmaps showing average

expression (represented as z-score) of key innate immune and inflammatory genes in ciliated (A), basal (B), club (C),

and BC/club cells (D) in infected, bystander, and uninfected cells in different time points (color bar legend atop

heatmaps). Rows index average expression for type I and III IFNs and chemokines (left color bar legend). The

individual numerical value per condition for A–D is listed in S1 Data. (E–I) Cytokine and chemokine measurement in

basolateral supernatants of HBEC cultures infected with SARS-CoV-2 at 0 (mock), 1, 2, and 3 dpi from 3 independent
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significantly regulated by infection in this system (Fig 5A–5D). We further characterized the

levels of secreted cytokines and chemokines in the basolateral supernatant of mock and

infected HBECs and observed induction of IL-6 and CXCL9 but not IL-1A, IL-1B, and IL-

1RN, consistent with gene expression changes (Fig 5E–5I).

Differentially expressed genes in response to SARS-CoV-2 infection

To determine how SARS-CoV-2 infection perturbs the cellular transcriptome, we computa-

tionally pooled the 3 infected samples and analyzed the top 100 DEGs between infected and

uninfected bystander cells of a given cell type within the 1, 2, and 3 dpi samples (Fig 6A). We

also analyzed the top 30 DEGs per time point on the 4 major cell types (ciliated, basal, club,

and BC/club) comparing the infected and bystander cells (S3A Fig). PANTHER gene ontology

analysis revealed that infected ciliated cells versus bystander cells had significant down-regula-

tion of genes included in biological processes involved in cilium function (e.g., DYNLL1), cal-

cium signaling (e.g., CALM1 and CALM2), and iron homeostasis (e.g., FTH1 and FTL; Fig 6B

and 6C, S3A Fig). Increased expression of genes involved in apoptosis (e.g., PMAIP1,

SQSTM1, and ATF3), translation initiation and viral gene expression (e.g., RPS12 and

RPL37A), and inflammation (e.g., NFKBIA and NFKBIZ) were observed in infected ciliated

cells compared to bystander cells (Fig 6B and 6C, S3A–S3C Fig). We observed similar results

when time points were analyzed in isolation (S4A–S4C Fig, S2 Data). We then analyzed the

top and bottom 200 genes of SARS-CoV-2–infected versus bystander ciliated cells (S3 Data) to

explore up-regulation and down-regulation of cellular pathways. This highlighted significant

down-regulation of cilium assembly and motility pathways during SARS-CoV-2 infection (Fig

6D).

Discussion

To effectively treat COVID-19, we must first understand how SARS-CoV-2 causes disease

and why the clinical presentation varies from asymptomatic infection to lethal disease.

Here, we report a longitudinal single-cell transcriptomic analysis of SARS-CoV-2 in

infected organotypic HBECs that recapitulates the orientation and complexity of the air-

way epithelium. Primary human airway epithelial cells have the ability to differentiate into

multiple cell types that cannot be attained using 2D cultures, thus making this system a

more physiologic relevant model to study host–pathogen interactions as well as mecha-

nisms involved in respiratory diseases. Our study shows that in primary HBEC cultures,

ciliated cells are the major target cell of SARS-CoV-2 infection at the onset of infection

and that cell tropism expands to basal, club, and BC/club over time. Identification of the

cell types infected by SARS-CoV-2 informs pathogenesis. Ciliated cells, which are abun-

dant in the respiratory epithelium, are involved in the mucociliary clearance in the human

lung that helps propel harmful aerosols, pathogens, and toxins in the lower respiratory

tract [36]. Our finding that ciliated cells are the predominant target cell of SARS-CoV-2 at

the onset of infection in primary bronchial epithelium has several important implications.

First, dysfunction of ciliated cells by infection by SARS-CoV-2 may impair mucociliary

experiments. SARS-CoV-2 infection induces IL-6 (E) and CXCL9 (I) secretions. Minimal changes in IL-1A (F), IL-1B

(G), and IL-1RN (H) secretions are observed. All statistical analysis was performed using Prism GraphPad version 8.

Significance compared to mock infection was analyzed using nonparametric Kruskal–Wallis test, indicated with a bar,

and the p-value is represented by a symbol (�p< 0.05, ��p< 0.01, ���p< 0.001). dpi, days post-infection; HBEC,

human bronchial epithelial cell; IFN, interferon; IL, interleukin; SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.pbio.3001143.g005
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clearance and increase the likelihood of secondary infection. Second, asthma, chronic

obstructive pulmonary disease, and smoking are associated with both cilia dysfunction

and increased severity of COVID-19 [37]. Whether these underlying conditions alter cili-

ated cells and thus increase their susceptibility to infection remains unclear. SARS-CoV-

2–infected ciliated cells have been identified in autopsied and hospitalized patients

[38,39], highlighting a potential connection between ciliated cells susceptibility to SARS--

CoV-2 infection and COVID-19 disease progression. An important determinant of

SARS-CoV-2 infection is receptor recognition. ACE2 is used by SARS-CoV-2 as a receptor

for entry and the proteases TMPRSS2 and cathepsin L for priming the S protein [10].

ACE2 expression was relatively low in the present dataset, consistent with independent

studies [40–42]. Levels of ACE2 poorly correlate with SARS-CoV-2 susceptibility on a per

Fig 6. Expression of DEGs in ciliated cells in response to SARS-CoV-2 infection. (A) Schematic of the differential expression analysis comparing

ciliated cells from the infected and bystander populations. (B) Volcano plots highlighting the most DEGs between infected and bystander populations

in ciliated cells pooled from 1, 2, and 3 dpi samples, as ranked by the EMD. The y-axis shows the negative log base-10, Benjamini–Hochberg corrected

p-value from a Mann–Whitney U test with a continuity correction, comparing the expression between infected and bystander. The dashed line shows

the significance, set at pcorrected� 0.01 (see Materials and methods). (C) Heatmap showing the average expression (represented as z-score) in each

condition (color bar legend atop heatmap) of the top 15 differentially up-regulated and top 15 down-regulated genes from the analysis in Fig 6A and

6B. (D) Pathway analysis of top and bottom 200 DEGs which are significantly down-regulated in SARS-CoV-2–infected versus bystander ciliated cells.

The analysis was done using the PANTHER GO tool with significance assessed using Fisher exact test. The individual numerical value per condition

for A–D is listed in S1 Data. The raw data for generating B–D are listed in S3 Data. Illustration for Fig 6A was created using BioRender.com. DEG,

differentially expressed gene; dpi, days post-infection; EMD, Earth Mover’s Distance; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus

2.

https://doi.org/10.1371/journal.pbio.3001143.g006
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cell basis. This is consistent with low levels of ACE2 being sufficient for infection by

SARS-CoV-2 and the limitation in detecting low abundance transcripts by single-cell

methods. Subcellular localization of ACE2 to the motile cilia on the apical surface of air-

way epithelial cells may facilitate infection of cells with low levels of ACE2 expression [43].

ACE2 expression levels and dynamics may play an important role in COVID-19 pathogen-

esis in vivo, although not observed here. Specifically, given ACE2 is an ISG, it is intriguing

to speculate that SARS-CoV-2 infection induces IFN, which, in turn, induces ACE2

expression, creating a positive feedback cycle to amplify infection and promote disease

[44,45]. ACE2 can also be regulated by noninfectious factors which may contribute to

COVID-19 pathogenesis. In particular, cigarette smoke caused a dose-dependent up-regu-

lation of ACE2 expression, potentially explaining the susceptibility of smokers to SARS--

CoV-2 infection [37].

Our data reveal several novel viral transcripts, and our methodology differentiated

infected from bystander cells. Single-cell transcriptomics enabled us to elucidate the

SARS-CoV-2 transcriptome at single-cell resolution in multiple primary cell types over

time. We also identified polyadenylated viral transcripts remote from the 30 end of the

viral genome, which was unexpected given our sequencing method. Our RT-PCR valida-

tion experiments confirm the production of at least 2 unique transcription regulatory

sequence (TR)S-independent transcripts with poly-A tails that do not appear to result

from nonspecific oligo-d(T) priming. As the reported recombination rate for coronavi-

ruses is high [46,47], it is possible that these short reads correspond to nonspecific poly-

merase jumping. However, recent studies have identified TRS-independent chimeric

RNAs produced during SARS-CoV-2 infection of Vero cells, a small portion (1.5%) of

which are fused in frame [27]. Taken together with our results, this may suggest that non-

canonical sgRNAs with coding potential are produced during SARS-CoV-2 infection;

however, this would require further validation. HCoV-229E nonstructural protein 8

(nsp8) was recently shown to possess template-independent adenyltransferase activity

[48]. Because poly-A tails play important roles in the stability and translation potential of

canonical SARS-CoV-2 sgRNAs, it is interesting to speculate that coronaviruses might rely

on the production of noncanonical, poly-adenylated sgRNAs to serve as decoys for cellular

deadenylases. This would result in preservation of the poly-A tails of the genomic and

sgRNAs. Indeed, the production of sgRNAs during flaviviral infections is important for

resistance to cellular exoribonucleases and innate immune evasion [49,50].

COVID-19 pathogenesis is characterized by a lag following viral transmission with symp-

tom onset at day 7 and disease severity peaking 14 dpi [51,52]. This is in contrast to seasonal

human coronaviruses and implicates an important role for the host immune response in

COVID-19 progression. Several recent studies have revealed that induction of innate immu-

nity during SARS-CoV-2 infection is dependent on viral replication kinetics and multiplicity

of infection (MOI) [53,54]. IFN responses that promote ISGs are important defense mecha-

nisms. Here, we show that the innate response to SARS-CoV-2 is intact and rapid, as charac-

terized by induction of IFN in infected cells resulted in broad ISG expression in both infected

and bystander cells. We also observed potent induction of the pro-inflammatory cytokine IL-6

and chemokines, which likely contribute to the inflammatory response in vivo [53]. Consistent

with this, IL-6 is a potent pro-inflammatory cytokine, and serum IL-6 levels predict respiratory

failure [55]. IL-6 was also found to be elevated in response to SARS-CoV-2 in cell culture, ani-

mal models, and bronchoalveolar lavage fluid of COVID-19 patient samples [24,56]. In con-

trast, we did not see any significant change in the levels of IL-1RN or IL-1RA in the infected

HBECs which was observed in other cell and animal models [56]. The discrepancy may be due
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to species or cell type differences. Therapies targeting the IL-6 receptor are currently in clinical

trials for the treatment of COVID-19 [57].

By assessing the transcriptome of SARS-CoV-2–infected bronchial epithelial cells, we

observed up-regulation of genes involved in inflammation, apoptosis, and translation initia-

tion and viral gene expression. In contrast, we detected down-regulation of genes involved in

cilium function, calcium signaling, and iron homeostasis. Interestingly, while we do not

observe broad depletion of virus-susceptible cell populations, we detect increased expression

of cell death–associated genes, which suggests that the host antiviral response is cytotoxic and

may contribute to disease pathogenesis. Further investigation is warranted to determine

whether similar responses occur in other SARS-CoV-2 target tissues both in vitro and in vivo.

Materials and methods

Air–liquid interface culture of HBECs

HBECs, from Lonza, were cultured in suspension in PneumaCult-Ex Plus Medium according

to manufacturer’s instructions (STEMCELL Technologies, Cambridge, Massachusetts, USA).

To generate ALI cultures, HBECs were plated on collagen-coated transwell inserts with a

0.4-micron pore size (Costar, Corning, Tewksbury, Massachusetts, USA) at 5 × 104 cells/ml

per filter and inserted into 24-well culture plates. Cells were maintained for the first 3 days in

PneumaCult-Ex Plus Medium, then changed to PneumaCult-ALI Medium (STEMCELL

Technologies) containing the ROCK inhibitor Y-27632 for 4 days. Fresh medium, 100 μl in

the apical chamber and 500 μl in the basal chamber, was provided every day. On day 7,

medium at the apical chambers were removed, while basal chambers were maintained with

500 μl of PneumaCult-ALI Medium. HBECs were maintained at an ALI for 28 days, allowing

them to differentiate. Medium in the basal chamber was changed every 2 to 3 days (500 μl).

Viral infection

SARS-CoV-2 isolate USA-WA1/2020 was obtained from BEI reagent repository. All infection

experiments were performed in a Biosafety Level 3 facility, licensed by the State of Connecticut

and Yale University. Immediately prior to infection, the apical side of the HBEC ALI culture

was gently rinsed 3 times with 200 μl of phosphate buffered saline without divalent cations

(PBS−/−). Moreover, 104 PFUs of SARS-CoV-2 in 100 μl total volume of PBS was added to the

apical compartment. Approximately 106 cells were present at the time of infection in each sam-

ple yielding an MOI of approximately 0.01. Cells were incubated at 37˚C and 5% CO2 for 1

hour. Unbound virus was removed, and cells were cultured with an ALI for up to 3 days. Infec-

tions were staggered by 1 day, and all 4 samples were processed simultaneously for scRNA-seq,

as described below.

Sample preparation for single-cell RNA sequencing

Inoculated HBECs were washed with 1X PBS−/− and trypsinized with TrypLE Express

Enzyme (Thermo Fisher Scientific, Waltham, Massachusetts, USA) to generate single-cell sus-

pensions. A total of 100 μl of TrypLE was added on the apical chamber, was incubated for 10

minutes at 37˚C in a CO2 incubator, and was gently pipetted up and down to dissociate cells.

Harvested cells were transferred in a sterile 1.5-ml tube and neutralized with DMEM contain-

ing 10% FBS. An additional 100 μl of TrypLE was placed on the apical chamber repeating the

same procedure as above for a total of 30 minutes to maximize collection of cells. Cells were

centrifuged at 300 × g for 3 minutes and resuspended in 100 μl DMEM with 10% FBS. Cell

count and viability was determined using trypan blue dye exclusion on a Countess II (Thermo
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Fisher Scientific). The targeted cell input was 10,000 cells per condition, and based on calcula-

tions by 10x Genomics, we estimate our doublet rate is approximately 7.6%, given the cell

numbers collected for each sample. The Chromium Next Gel Bead-In Emulsion (GEM) Single

Cell 3’ Gel beads v3.1 kit (10x Genomics, Pleasanton, California, USA) was used to create

GEMs following the manufacturer’s instructions. All samples and reagents were prepared and

loaded into the chip and ran in the Chromium Controller for GEM generation and barcoding.

GEMs generated were used for cDNA synthesis and library preparation using the Chromium

Single Cell 3’ Library Kit v3.1 (10x Genomics) following the manufacturer’s instruction. Gen-

erated libraries were sequenced on NovaSeq 6000 system using HiSeq 100 base pair reads and

dual indexing. Cells were sequenced to an average depth of 31,383 reads per cell. The human

genome, Ensembl GRCh38.98.gtf, and the SARS-CoV-2 genome, NCBI Genome database

accession MT020880.1, were combined and used for alignment. We ran the standard 10x

Genomics cellranger pipeline with a combined human and SARS-CoV-2 genome to obtain

count matrices for each of the 4 growth conditions. Per condition, there were an average of

between 10,000 and 15,000 counts per cell or an average of 2,400 to 3,600 unique genes

detected per condition. Library preparations and sequencing were performed by the Yale Cen-

ter for Genome Analysis.

Quantitative RT-PCR of SARS-CoV-2

Viral RNA from SARS-CoV-2–infected HBEC cell lysates was extracted using TRIzol (Life

Technologies, Carlsbad, California, USA) and purified using Direct-zol RNA MiniPrep Plus

according to the manufacturer’s instructions (Zymo Research, Irvine, California, USA). A

2-step cDNA synthesis with 5 μl RNA, random hexamer, and ImProm-II Reverse Transcrip-

tase (Promega, Madison, Wisconsin, USA) was performed. The quantitative polymerase chain

reaction (qPCR) analysis was performed in duplicate for each of the samples and standard

curves generated using SARS-CoV-2 nucleocapsid (N1) specific oligonucleotides from Inte-

grated DNA Technologies (Coralville, Iowa, USA): Probe: 50 6FAM-ACCCCGCAT-

TACGTTTGGTGGACC-BHQ1 30; Forward primer: 50 GACCCCAAAATCAGCGAAAT-30;

Reverse primer: 50 TCTGGTTACTGCCAGTTGAATCTG 30. The limit of detection was 10

SARS-CoV-2 genome copies/μl. The virus copy numbers were quantified using a control plas-

mid which contains the complete nucleocapsid gene from SARS-CoV-2.

Validation of polyadenylated SARS-CoV-2 transcripts

Huh7.5 cells grown in DMEM containing 10% FBS were infected with 104 PFU of SARS-CoV-

2, and cell lysates were harvested at 0, 1, 2, and 3 dpi. Using 0.3 μg total RNA extracted from

mock or SARS- CoV-2-infected Huh7.5 cells at different time points, reverse transcription was

performed with oligo-d(T)20 (Thermo Fisher Scientific) and MarathonRT, a highly processive

group II intron-encoded RT. MarathonRT purification and RT reactions were performed as

previously described [58]. PCR (NEBNext Ultra II Q5 R Master Mix, NEB, Ipswich, Massachu-

setts, USA) was performed with a gene-specific forward primer designed 700-nt upstream of

the apparent boundary between the SARS-CoV-2 genome body and the putative poly-A tail.

Oligo-d(T)20 was used as a reverse primer. Touchdown PCR cycling was used to enhance

specificity of the PCR reaction. RT-PCR products were resolved on a 1.3% agarose gel with lad-

der (100 bp DNA Ladder, 1 kb Plus DNA Ladder, Invitrogen, Carlsbad, California, USA). For-

ward PCR oligonucleotides used in this experiment are below, which includes 2 positive

controls. Primer Name Position on Genome 50-30 Sequence:

F Val 1 7700 GAGAGACTTGTCACTACAGTTTAAA

F Val 2 26650 AATTTGCCTATGCCAACAGGA
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F Val (+)ve 1 28600 AGATCTCAGTCCAAGATGGTA

F Val (+)ve 2 29000 GGTAAAGGCCAACAACAACAA

Electron microscopy

The cells were fixed using 2.5% glutaraldehyde in 0.1 M phosphate buffer, osmicated in 1%

osmium tetroxide, and dehydrated in increasing ethanol concentrations. During dehydration,

1% uranyl acetate was added to the 70% ethanol to enhance ultrastructural membrane con-

trast. After dehydration, the cells were embedded in Durcupan. Moreover, 70-nm ultrathin

sections were cut on a Leica ultramicrotome, collected on Formvar coated single-slot grids,

and analyzed with a Tecnai 12 Biotwin electron microscope (FEI, Hillsboro, Oregon, USA).

Immunofluorescence assay

HBECs grown in transwell filters as described above were inoculated with 104 PFU of ic-

SARS-CoV-2-mNG [59] or a mock control. HBECs were fixed with 4% PFA for 30 minutes at

RT, followed by permeabilization with 0.2% Triton X100 in 1X PBS for 10 minutes at RT. Cells

were blocked with 10% normal goat serum in 1X PBS (blocking buffer) for 1 hour at RT. Pri-

mary antibodies for Ac-tubulin (Abcam, Cambridge, Massachusetts, USA) and Forkhead

Box J1 (FOXJ1) (Sigma Aldrich, St. Louis, Missouri, USA) were diluted in blocking buffer at

1:500 and were incubated overnight at 4˚C. Goat anti-mouse Alexa Fluor 594 (BioLegend, San

Diego, California, USA) and goat anti-rabbit APC (Invitrogen) were diluted in the blocking

buffer at 1:200 and were applied for 2 hours at RT and further stained with Hoechst 33342

(Life Technologies) for 30 minutes at RT. The transwell filters were then cut and placed in a

glass slide and mounted with a Prolong Diamond Antifade Mountant (Life Technologies).

Representative photos were taken using a Leica LSR microscope. Scale bars correspond to

25 μm.

Cytokine measurement by multiplex immunoassay

Levels of IL-6, IL-1A, IL-1B, IL-1RN, and CXCL9 in the basolateral supernatants of mock and

infected HBECs from 3 independent experiments were all performed by EVE technologies

(Calgary, Alberta, Canada) using the multiplex immunoassay analyzed with a BioPlex 200. All

statistical analysis was performed using Prism GraphPad version 8. All were statistically ana-

lyzed using nonparametric Kruskal–Wallis test is indicated with a bar, and the p-value is repre-

sented by a symbol (�p< 0.05, ��p< 0.01, ���p< 0.001).

scRNA-seq data analysis

Cell type annotation. We used the standard scRNA-seq analysis pipeline for clustering

[60]. Briefly, to account for transcript dropout inherent to scRNA-seq, we removed genes that

were expressed in fewer than 3 cells and removed cells that expressed fewer than 200 genes.

Next, we filter out cells with more than 10% of mitochondrial genes. We did not find a correla-

tion between viral copy number and mitochondrial expression. The resulting raw unique

molecular identifier (UMI) counts in each cell were normalized to their library size. Then, nor-

malized counts were square-root transformed, which is similar to a log transform but does not

require addition of a pseudo count. Data preprocessing was performed in Python (version

3.7.4) using Scanpy (version 1.4.6) [61,62]. We visually observed batch effects between condi-

tions in 2D cellular embeddings. To remove these batch effects for clustering, cell type annota-

tion, and visualization, we used an approximate batch-balanced kNN graph for manifold

learning (BB-kNN batch-effect correction) using Scanpy’s fast approximation implementation
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[61,62]. BB-kNN assumes that at least some cell types are shared across batches and that differ-

ences between batches for a same cell type are lower than differences between cells of different

types within a batch. For each cell, the 3 nearest neighboring cells in each condition were iden-

tified by Euclidean distance in 100-dimensional principal component analysis (PCA) space.

This kNN graph was used as the basis for downstream analysis. To visualize the scRNA-seq

data, we implemented various nonlinear dimension reduction methods and used the BB-kNN

batch-corrected connectivity matrix as input for UMAP [63] and Potential of Heat-diffusion

for Affinity-based Trajectory Embedding (PHATE) [64]. UMAP projections were generated

using a minimum distance of 0.5. PHATE projections were generated with a gamma parame-

ter of 1. For cell clustering, we used the Louvain community detection method [65] with the

BB-kNN graph. We used high-resolution community detection and merged clusters based on

expression of bronchial epithelium cell-type markers in order to isolate some rare cell types,

e.g., tuft cells [66,67]. To annotate the different cell types present in HBECs, we analyzed

expressions of a range of marker genes that were reported [67–77] and in a molecular cell atlas

from Travaglini colleagues [66]. We focused on 8 cell types: (i) basal cells (KRT5, DAPL1, and

TP63); (ii) ciliated cells (FOXJ1, CCDC153, CCDC113, MLF1, and LZTFL1); (iii) club cells

(SCGB1A1, KRT15, CYP2F2, LYPD2, and CBR2); (iv) BC/club (KRT4 and KRT13); (v) neuro-

endocrine cells (CHG1 and ASCL1); (vi) Tuft cells (POU2F3, AVIL, GNAT3, and TRPM5);

(vi) ionocytes (FOXI1, CFTR, and ASCL3); and (viii) goblet cells (MUC5AC, MUC5B, GP2,

and SPDEF).

Infection threshold and metric for transcriptomic similarity to infected cells. Counting

a viral transcript in a cell does not mean the cell is infected, as this count can come from a

virus attached to the surface of the cell, ambient virus in the suspension, or from read misalign-

ment. Given the reported shared 30 poly(A) tail in coronavirus transcripts [78], we were unsure

whether we could correctly capture the different ORFs using the 10x Genomics 30 gene expres-

sion library. Therefore, we aligned the viral reads to a genome-wide single “exon,” i.e., a count

is given for a read mapped to SARS-CoV-2 ORFs and intergenic regions. These counts were

used to infer individual cells’ infectious state. To filter out cells with viral genome transcript

counts that may result from viral cell surface attachment, ambient virus in the droplet suspen-

sion, or read misalignment, we considered infected cells to have 10 viral transcripts counts.

This threshold of 10 viral transcripts to define an infected cell was determined empirically as it

represents an inflection point (S1A Fig). While the mock condition is not expected to have

viral counts, we did observe a small number of reads that could be attributed to misalignment

or transcript leakage. We observed only 5 mock cells with full SARS-CoV-2 viral genome tran-

script counts 10 transcripts. These criteria allowed us to find 144 infected cells at 1 dpi, 1,428

cells at 2 dpi, and 3,173 cells at 3 dpi. To quantify the extent to which an individual cell is tran-

scriptionally similar to an infected cell, we used a previously developed graph signal processing

approach called Manifold Enhancement of Latent Dimensions (MELD) [79]. We encoded a

raw experimental score for each cell in the dataset such that −1 represents a bystander or unin-

fected cell, and +1 represents an infected cell. Using the kernel from the BB-kNN graph

(described above), these raw scores were smoothed in the graph domain, yielding a metric for

transcriptomic similarity to infected cells per cell that represents the extent to which an indi-

vidual cell is transcriptionally similar to infected cells. For example, if an infected cell is more

transcriptionally similar to bystander cells, it will have a low value of the metric, closer to −1.

Cells in a cluster of transcriptionally similar cells that are infected will have values closer to +1,

indicating similar transcriptomic signatures to infected cells. For summary statistics, this score

was stratified by cell type and condition.

Viral genome read coverage analysis. To visualize the viral read coverage along the viral

genome, we used the 10x Genomics cellranger barcoded binary alignment map (BAM) files
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for every sample. We filtered the BAM files to only retain reads mapping to the viral genome

using the bedtools intersect tool [80]. We converted the BAM files into sequence alignment

map (SAM) files in order to filter out cells that were removed in our single-cell data prepro-

cessing pipeline. The sequencing depth for each base position was calculated using samtools

count. To characterize read distribution along the viral genome, we counted transcripts of 10

different ORFs: ORF1ab, Surface glycoprotein (S), ORF3a, Envelope protein (E), Membrane

glycoprotein (M), ORF6, ORF7a, ORF8, Nucleocapsid phosphoprotein (N), and ORF10.

Differential expression analysis. To find DEGs across conditions, we used a combination

of 3 metrics: the Wasserstein or Earth Mover’s Distance, an adjusted p-value from a 2-sided

Mann–Whitney U test with continuity and Benjamini–Hochberg correction, and the binary

logarithm of fold change between mean counts. Significance was set to padjusted 0.01. The Earth

Mover’s Distance, or 1-dimensional Wasserstein distance, can be defined as the minimal cost

to transform distribution to another and was previously used to assess gene expression that sig-

nificantly differs between conditions [81,82]. We performed several binary comparisons for

each time point and for pooling 1, 2, and 3 dpi: infected versus bystander, infected versus

mock cells, and bystander versus mock cells. The 30 most DEGs (up- or down-regulated,

ranked by Wasserstein distance) in each condition, cell type, and analysis were represented in

heatmaps. To identify up-regulated and down-regulated cellular pathways across conditions in

infected and bystander ciliated cells, we analyzed the top and bottom 200 DEGs using

PANTHER-GO [83] statistical overrepresentation tests utilizing the default Human

PANTHER-GO reference list as a background. Statistical significance was assessed by Fisher

exact test, and correction was assessed by calculating the false discovery rate.

Supporting information

S1 Fig. Detection of SARS-CoV-2 viral transcript and genome in different cell types. (A)

Margin for which SARS-CoV-2 preferentially infects ciliated cells for various thresholds. The

margin of the difference in SARS-CoV-2 tropism for various cell types across each time point

was calculated by taking the percent of infected ciliated cells for each threshold minus the per-

cent infected of the highest infected, non-ciliated cell type. Line style shows margin of ciliated

cell tropism for each time point, and colored points show the highest infected non-ciliated cell

type for each infection threshold and condition. (B) For all thresholds based on read counts

aligned to the SARS-CoV-2 genome, the percentage of thresholds for which ciliated cells are

the highest infected cell type across each time point. (C) Histogram of the average raw counts

of viral transcripts per cell type across conditions in a given time point. (D) Infection score

inferred from MELD showing prototypicality of infection per cell, stratified by condition

(color). (E) Heatmap, range-scaled for each row (cell type), where the color represents expres-

sion (normalized and square-root transformed counts) of viral ORFs in each cell type across 3

conditions: 1, 2, and 3 dpi. The individual numerical value per condition for A–E is listed in S1

Data. CC, ciliated cell type; dpi, days post-infection; non-CC, a cell type that is not a ciliated

cell; MELD, Manifold Enhancement of Latent Dimensions; ORF, open reading frame; SARS--

CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

(TIF)

S2 Fig. Innate immune response in different cell types in SARS-CoV-2 infection. (A–D)

Heatmap showing expression of key innate immune and inflammatory genes in neuroendo-

crine cells (A), ionocytes (B), tuft (C), and goblet (D) in infected, bystander, and uninfected

cells at different time points. The color scale shows the average expression (represented as z-

score) for each cell type and condition. The individual numerical value per condition for A–D
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is listed in S1 Data. SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

(TIF)

S3 Fig. DEGs across different cell types. (A) Heatmaps showing the average expression (rep-

resented as z-score) of the union of the top 30 most differentially up-regulated and top 30

most differentially down-regulated genes between infected and bystander cells in each condi-

tion. (B) Schematic of the differential expression analysis, comparing infected and mock cili-

ated cells at 1, 2, and 3 dpi. (C) Schematic of the differential expression analysis comparing

mock and bystander ciliated cells at 1, 2, and 3 dpi. (B, C) The volcano plots annotate the top

10 up-regulated and down-regulated genes between mock and infected ciliated cells, as ranked

by EMD, after pooling cells from 1, 2, and 3 dpi. The individual numerical value per condition

for A–C is listed in S1 Data. DEG, differentially expressed gene; dpi, days post-infection;

EMD, Earth Mover’s Distance.

(TIF)

S4 Fig. DEG analysis in ciliated cells at different time points. Infected versus bystander dif-

ferential gene expression analysis in ciliated cells, separated for each time point: 1 dpi (A), 2

dpi (B), and 3 dpi (C). (D) Overlap in the number of genes that are significantly differentially

expressed in ciliated cells across time points. Significance is defined as P corrected (Benja-

mini–Hochberg) < = 0.01. The individual numerical value per condition for A–C is listed in

S1 Data. The raw data for generating A–D are listed in S2 Data. DEG, differentially expressed

gene; dpi, days post-infection.

(TIF)

S1 Data. The individual numerical values for the following figure panels: Figs 1B, 1C, 1D,

1E, 1F, 1G, 2A, 2B, 2C, 3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H, 4I, 5A, 5B, 5C, 5D,

6B, 6C and 6D and S1A, S1B, S1C, S1D, S1E, S2A, S2B, S2C, S2D, S3A, S3B, S3C, S4A,

S4B, S4C and S4D Figs.

(XLSX)

S2 Data. The raw data used to generate S4A, S4B, S4C and S4D Figs.

(XLSX)

S3 Data. The raw data used to generate Fig 6B, 6C and 6D.

(XLSX)

S1 Raw Images. The raw images for Fig 2D.

(TIF)

S2 Raw Images. The raw images for Fig 3E.

(TIF)

S3 Raw Images. The raw images for Fig 3F.

(TIF)
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10. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell

Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell.

2020; 181: 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052 PMID: 32142651

11. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a

functional receptor for the SARS coronavirus. Nature. 2003;450–454. https://doi.org/10.1038/

nature02145 PMID: 14647384

12. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. Human coronavirus NL63

employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad

Sci U S A. 2005;7988–7993. https://doi.org/10.1073/pnas.0409465102 PMID: 15897467

13. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 Acti-

vates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and

Reduces Viral Control by the Humoral Immune Response. J Virol. 2011;4122–4134. https://doi.org/10.

1128/JVI.02232-10 PMID: 21325420

14. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contrib-

utes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection.

J Virol. 2019;93. https://doi.org/10.1128/JVI.01815-18 PMID: 30626688

15. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity

of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181: 281–292.e6. https://doi.org/10.1016/j.cell.

2020.02.058 PMID: 32155444

16. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient Activation of the Severe

Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2.

J Virol. 2010;12658–12664. https://doi.org/10.1128/JVI.01542-10 PMID: 20926566
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