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ABSTRACT

The discovery of ribozymes strengthened the RNA
world hypothesis, which assumes that these precurs-
ors of modern life both stored information and acted
as catalysts. For the first time among extensive
studies on ribozymes, we have investigated the influ-
ence of hydrostatic pressure on the hairpin ribozyme
catalytic activity. High pressures are of interest when
studying life under extreme conditions and may help
to understand the behavior of macromolecules at the
origins of life. Kinetic studies of the hairpin ribozyme
self-cleavage were performed under high hydrostatic
pressure. The activation volume of the reaction
(34 = 5 ml/mol) calculated from these experiments
is of the same order of magnitude as those of common
protein enzymes, and reflects an important compac-
tion of the RNA molecule during catalysis, associated
to a water release. Kinetic studies were also carried
out under osmotic pressure and confirmed this
interpretation and the involvement of water move-
ments (78 = 4 water molecules per RNA molecule).
Taken together, these results are consistent with
structural studies indicating that loops A and B of
the ribozyme come into close contact during the
formation of the transition state. While validating
baro-biochemistry as an efficient tool for investigat-
ing dynamics at work during RNA catalysis, these res-
ults provide a complementary view of ribozyme
catalytic mechanisms.

INTRODUCTION

The RNA world theory assumes that modern life arose from
molecular ancestors in which RNA molecules both stored

genetic information and catalyzed chemical reactions (1-5).
According to this scenario, ribozymes of the RNA world would
have been able to self-replicate (6) and to ensure complex
metabolisms with an expanded chemical repertoire (7,8).
Until recently, RNA catalysis was believed to be limited,
but in vitro selection experiments and recent discoveries con-
cerning natural ribozymes demonstrated that the catalytic
capacities of RNA are far more numerous and various than
previously anticipated (9-15).

The hairpin ribozyme is a small catalytic RNA isolated from
the minus strand of the tobacco ringspot virus satellite RNA,
(—)STRSV. It acts as an endonuclease that catalyzes a revers-
ible sequence-specific cleavage reaction within a substrate
RNA (16-19). Despite the large amount of information on
the structural organization of the hairpin ribozyme—substrate
complex (20-22), the catalytic mechanism of the ribozyme is
not entirely known (23). Nevertheless, it has been concluded
that catalysis requires an important conformational transition
of the molecule, which allows the formation of the active site.
During this molecular rearrangement, loops A and B (Figure 1)
come into close contact (24,25), a process that might be
rate-determining in catalysis (26-30).

The influence of hydrostatic pressure on biochemical
reactions has been known for a long time (31,32), but baro-
biochemistry was not applied to ribozymes so far. Several
reasons led us to study the hairpin ribozyme under high pres-
sure in order to better understand the structural and functional
aspects of this RNA catalysis. First of all, pressure, similar
to temperature, is a physical parameter that can lead to
the determination of thermodynamical constants of the
reaction and thus, helps in understanding the catalytic per-
formance of the ribozyme. Second, many contemporary organ-
isms experience environmental stresses such as high
hydrostatic pressure (33), osmotic pressure (34) and/or
extreme temperatures (35,36). In this context, it is interesting
to understand the mechanisms that let macromolecules
operate in such extreme conditions. Finally, this study
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Figure 1. Wild-type hairpin ribozyme construct sequence. The cleavage site is
indicated with an arrow, and nucleotides directly involved in catalysis are
marked with a dot (22). 5" and 3’ extensions added for hybridization with
replication primers are marked with dashes.

could help to learn more about the relevance of the RNA world
hypothesis, especially in the context of early life extreme
conditions.

The effects of hydrostatic pressure on the conformation and
properties of macromolecules have been extensively studied
(37-39). Pressure modifies hydrophobic and ionic interactions
in a reversible manner and alters the solvation around these
macromolecules. As a consequence, pressure can modify the
equilibrium constant of a reaction if it is accompanied by a
significant volume change (AV). It can also influence the
velocity of reactional processes that involve a significant
activation volume (AV®). These parameters (AV and AV”)
can be directly measured by studying the variation of the
reaction equilibrium and rate constants as a function of pres-
sure.

Osmotic pressure can also modify enzyme properties by
affecting the conformational changes accompanied by hydra-
tion variations occurring during catalysis and, therefore,
provides information about these variations (40,41).

In this work, we explored the effects of hydrostatic pressure
on the catalytic activity of the minimal hairpin ribozyme
shown in Figure 1. We applied high hydrostatic pressures
(up to 200 MPa) on this ribozyme, knowing that the covalent
structure of nucleic acids is stable up to at least 1200 MPa
(42—-44), and is therefore not affected. The results obtained
from the combination of hydrostatic and osmotic pressure
experiments indicate that the catalytic process involves a
transition state whose formation is accompanied by a positive
AV” (34 £ 5 ml/mol), associated with a release of 78 + 4 water
molecules per RNA molecule.

MATERIALS AND METHODS
Materials

DNA template and primers were provided by Proligo and
MWG-Biotech. Tag DNA polymerase, dNTPs and PCR buffer
were obtained from Invitrogen. T7 RNA polymerase, -NTPs
and transcription buffer were obtained from Fermentas. Urea
was from Prolabo, ethanol from Merck, formamide, polyethyl-
ene glycol 400 (PEG 400) and dextran 10000 were from
Sigma.

RNA preparation

Single-stranded DNA template and primers were chemically
synthesized. The sequence of primer P1 (promoter primer) is
5'-TAATACGACTCACTATAGGGTACGCTGAAACAGA-
3’, and that of primer P2 (reverse primer) is 5'-CCTCCGAAA-
CAGGACTGTCAGGGGGTACCAG-3'. The 85-nt-long
template constitutes the minus strand that allows the synthesis
of a hairpin ribozyme. Its entire sequence is 5-CCTCCGA-
AACAGGACTGTCAGGGGGTACCAGGTAATATACCAC-
AACGTGTGTTTCTCTGGTTGACTTCTCTGTTTCAGCG-
TACCC-3'. The two primer-binding regions are located in the
5’- and 3’-termini. A 4 ml PCR with each primer (P1 and P2) at
1.5 uM, template at 6 nM and 100 U of Tag DNA polymerase
in appropriate buffer was performed: 2 min at 94°C, 35 cycles
(30 s at 94°C, 30 s at 56°C, 1 min at 72°C) and 7 min at 72°C.
The double-stranded DNA pool was then ethanol precipitated
and subjected to in vitro transcription. The reaction mixture
(8 ml) contained 2.5 mM each of fNTP, 0.15 uM of DNA
and 4800 U of T7 RNA polymerase in the transcription buffer
(Fermentas). After overnight incubation at 37°C, the full-
length uncleaved ribozyme was purified on a 10% denaturing
PAGE, ethanol precipitated and resuspended in distilled water
at a concentration of 25 UM, yielding ~11 nM of RNA.

RNA molecules cleavage reaction

RNA (25 uM) was dissolved in cleavage buffer and subjected
to denaturation and renaturation steps. The solutions were then
completed with cleavage buffer (50 mM Tris—HCl, pH 7.5,
0.1 mM EDTA) containing 1 mM MgCl, at final concentration
so that RNA reaches a final 1 pM concentration. When needed,
osmotic pressure agents or solvents were added during this
final dilution at appropriate concentrations (see below). The
reaction started at room temperature when MgCl, was added
to the mixture. The low concentration of MgCl, used [1 mM
instead of 10 mM in standard conditions (27)] was necessary to
slow down the reaction rate and to obtain a better accuracy in
the initial steps. When needed, various hydrostatic pressures
were applied. Aliquots were then removed from the mixtures
at various times, and the reaction was stopped by adding 1 vol
of loading solution (7 M urea, 50 mM EDTA, pH 7.5 and
0.01% xylene cyanol).

Kinetics of the cleavage reaction under hydrostatic
pressure

The influence of hydrostatic pressure was investigated by
subjecting the reaction mixtures detailed above to constant
hydrostatic pressures ranging from 0.1 to 200 MPa by using
the previously described apparatus (45), which allows one to
remove samples from the incubation chamber while keeping
the pressure constant. Aliquots were removed, quenched at
various times (0—180 min), ice-stored and analyzed as
described below. For technical reasons it takes ~2 min to fill
the incubation chamber and apply the desired pressure. Con-
sequently, for the determination of the rate constants, the
fraction of ribozyme cleaved before pressure application was
subtracted from all cleavage values in order to visualize only
the catalytic activity under pressure. However, for the estima-
tion of the equilibrium constants, the fraction of RNA cleaved
during this lag and before the addition of MgCl, (during pre-
paration and storage) was taken into account. The activation



volume of the reaction AV* was calculated from the equation:
k=A -exp — (PAV?/RT). The volume variation of the reaction
AV was calculated using the equation: K= A - exp — (PAV/RT).
k and K are, respectively, the rate and the equilibrium
constants of the reaction, R is the universal gas constant
(8.314 cm® Mpa °K ' mol ") (1 MPa = 10 bar = 10.13 atm),
T the temperature (°K) and P the pressure (MPa) (37). Error
bars were calculated based on experimental variances and
using the margin of error given by the software for the fits.

Kinetics of the cleavage reaction under
osmotic pressure

The influence of osmotic pressure was investigated by includ-
ing osmotic pressure agents, namely polyethylene glycol 400
or dextran 10000 in the cleavage medium, at final concentra-
tions ranging from 0 to 10% (v/v) and from 0 to 36% (w/v),
respectively. These ranges allowed comparison of identical
osmotic pressures using different molecules (40). Aliquots
were removed, quenched at various times (0-40 min),
ice-stored and analyzed as described below. The number of
water molecules released upon ribozyme cleavage was calcu-
latedousing”the equation: OkT In(K"YkC) /O o, = AV, = AN,
(30 A%; k' is the observed cleavage rate constant (kyps) at
osmotic pressure I, k° is the kops 1n the absence of added
solute. k is the Boltzmann constant and 7 the temperature (°K).
AV, is the linked change in volume, 30 A? the molecular
volume of water and AN,, the linked change in the number
of associated water molecules (46-48).

Kinetics of the cleavage reaction in the presence of
co-solvents

The influence of co-solvents was investigated by including
ethanol or formamide in the cleavage buffer at final concen-
trations ranging from 0 to 20%, in order to decrease or increase
the dielectric constant of the buffer. At various times
(040 min), aliquots were removed, quenched, ice-stored
and analyzed as described below.

Analysis of the products of self-cleavage reactions

After each cleavage reaction, ice-stored aliquots (60 pl con-
taining 0.8 nug of RNA) were analyzed by denaturing 10%
PAGE and ethidium bromide staining. RNA fragments were
revealed by ultraviolet (UV) trans-illumination and scanned.
The relative light intensities of the fragments were quantified
using an image analyzer (N.ILH. Image). The percentages of
cleavage were plotted as a function of time for each condition,
subtracting the #, values so that all plots start at 0, unless
otherwise specified. Using the software Kaleidagraph, the
kinetics toward equilibrium were fitted to the exponential
equation: x = xeq(1 —e "), where xoq is the fraction of
cleaved RNA at equilibrium, x the fraction of cleaved RNA
at time ¢ and kg is the observed cleavage rate constant.

RESULTS

Effects of hydrostatic pressure on the self-cleavage
reaction

Kinetic studies of the reaction at atmospheric pressure showed
that the cleavage percentage reaches a maximum of ~40%.
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This value is significantly lower than those obtained for other
minimal ribozymes (26,27), and could be explained in terms of
structural differences with the ribozyme construct used in this
study. This construct contains two additional base pairs in
helix 1, which should impair the release of the small strand
at the end of the reaction and thus favor the reverse ligation
reaction (Figure 1). In order to determine whether hydrostatic
pressure alters the rate of the ribozyme self-cleavage reaction,
the incubation mixture was exposed to pressures ranging from
0.1 to 200 MPa for a period of 60 min, and the percentage of
cleavage was determined as indicated in Materials and
Methods. Figure 2 shows that, indeed, pressure dramatically
decreases the extent of cleavage over that period of time.

Influence of hydrostatic pressure on the self-cleavage
reaction rate

This negative effect of pressure could result from an influence
on the catalytic constant of the reaction, or on its equilibrium
constant, or both. In order to distinguish between these pos-
sibilities, cleavage kinetics were analyzed over the same pres-
sure ranges (Figure 3). Each curve was fitted to an exponential
process as described above. The observed cleavage rate
constant (k.ps) clearly decreases with increasing hydrostatic
pressure (P).

The logarithms of these constants were then plotted as a
function of pressure (Figure 4a); one observes a linear
decrease in the logarithm of the rate constant when pressure
increases. This type of variation is characteristic of reactions
involving a positive activation volume (AV”), which can be
directly calculated from the slope of the graph. This calcula-
tion gives an activation volume of 34 + 5 ml/mol.

The extrapolation of the kinetic data using the exponential
equation allowed the estimation of the equilibrium constant at
each pressure used. The variation of the logarithm of these
constants as a function of pressure, shown in Figure 4b,
decreases linearly, suggesting an influence of pressure on
the reaction equilibrium. A volume variation (AV) of
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Figure 2. Effects of hydrostatic pressure on self-cleavage activity. The fraction
of cleaved ribozyme observed after 1 h of reaction is plotted as function of the
pressure applied.
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17 £ 4.5 ml/mol was calculated from this graph. The signi-
ficance of this result will be further discussed.

Reversibility of hydrostatic pressure effects

The apparent decrease in the equilibrium constant reported
above could also result from irreversible alterations of the
RNA molecule under pressure. In order to test this possibility,
the reversibility of the pressure-induced effects on the
ribozyme activity was investigated at 120 and 200 MPa.
The reaction kinetics were followed under those pressures
for 3 h, after which the reaction mixtures were instantly
brought back to atmospheric pressure and allowed to react
for three more hours. The percentages of cleaved products
were then plotted as a function of time (Figure Sa).

30

- [u%} [\S]
(4] o w

Cleavage (%)

0 20 80
Time (min)

Figure 3. Hydrostatic pressure dependence of the self-cleavage reaction.
Cleavage kinetics are shown for the reactions at atmospheric pressure
(closed triangles), 25 MPa (closed circles), 40 MPa (open squares), 75 MPa
(crosses), 120 MPa (open circles) and 200 MPa (open triangles).

Slope = -AV*/RT
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Unambiguously, after 3 h under pressure, as soon as the mix-
ture was back to atmospheric pressure, the reaction reached the
rate observed in the atmospheric pressure control. This is con-
firmed by the values of the cleavage rate constants reported in
Figure 5a. These results show that the influence of high pres-
sures (up to 200 MPa) on the reaction rate is fully reversible.

Furthermore, aliquots of the reactions performed under
pressure (200 MPa) taken at various reaction times (0—180 min)
were placed at atmospheric pressure, allowed to react for 2 days
to reach the equilibrium, and the percentage of cleaved ribo-
zyme in the mixture was quantified. The fraction of cleavage
product at equilibrium was virtually the same for all samples,
showing again that hydrostatic pressure does not alter the struc-
ture of the RNA molecule in an irreversible manner (Figure 5b).

Influence of osmotic pressure on the self-cleavage
reaction

The positive activation volume obtained from hydrostatic
pressure experiments reflects an important compaction of
the ribozyme during the reaction, associated with a release
of water molecules. In order to investigate such a change in the
ribozyme solvation during catalysis, the influence of osmotic
stress on cleavage kinetics was examined. Figure 6a shows that
the presence of increasing concentrations of PEG 400, which
increases the osmotic pressure, provokes a gradual stimulation
of the ribozyme cleavage rate. In order to evaluate to what
extent this effect is specifically due to osmotic pressure,
additional experiments were conducted in the presence of
dextran 10000 using a range of concentration that gives the
same osmotic pressure variation as PEG 400 (40). On this
basis, the dextran stimulatory effect is similar to that of
PEG (data not shown). This confirms the positive influence
of osmotic pressure on ribozyme activity, and supports the
conclusion that an important solvation change occurs during
catalysis. From the variation of the reaction rate constant as a
function of osmotic pressure (Figure 6b), it was calculated that
the formation of the transition state involves the release of
78 = 4 water molecules per RNA molecule (see Materials and
Methods).

(b) ©o . : : -

Slope = -AV/RT

0 50 100 150 200
Pressure (MPa)

Figure 4. (a) Linear decrease in the logarithm of observed cleavage rate constants (k,s, per minute) with increasing hydrostatic pressure. Logarithms of the ks for
each reaction are plotted as a function of the applied pressure. (b) Linear decrease in the logarithms of the theoretical equilibrium constants with increasing hydrostatic
pressures. K., was calculated as the ratio of cleaved and uncleaved fractions at equilibrium. The percentages of cleaved products were obtained from the extrapolation
of each exponential fit, the fraction cleaved during preparation, storage and before pressure application being taken into account.
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Figure 5. (a) Reversibility of the effects of hydrostatic pressure on catalytic activity. Cleavage kinetics are shown for the reaction at atmospheric pressure (closed
triangles), 120 (closed circles) and 200 MPa (open squares). After 3 h of reaction under pressure, the mixtures were exposed to atmospheric pressure and allowed to
react for three more hours. The observed rate constants (kops, per minute) are shown for each reaction at atmospheric pressure. The percentages of cleaved products
observed at 7 were subtracted, so that all plots start at 0. (b) Reversibility of the effects of hydrostatic pressure on equilibrium. Aliquots of the reactions under pressure
(200 MPa) taken at various reaction times (0—180 min) were placed at atmospheric pressure and allowed to react for 2 days. The percentage of cleavage product for
each sample is plotted as a function of the time spent under pressure, the fraction cleaved during preparation, storage and before pressure application being taken into
account.
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Figure 6. Osmotic pressure dependence of self-cleavage reactions. (a) Cleavage kinetics are shown for increasing PEG 400 concentrations: 0% (closed triangles),
2.5% (v/v) (closed circles), 5% (open squares), 7.5% (crosses) and 10% (clsoed diamonds). (b) Effect of osmotic pressure on the observed cleavage rate constant: kT’
In(k"k®) is plotted as a function of osmotic pressure. k"' and k© are, respectively, the observed rate constant of the reaction under osmotic stress and in standard
conditions, & is the Boltzmann constant and T the absolute temperature (°K).

According to dielectric constant measurements (49), the

Influence of co-solvents on the self-cleavage reaction

Since the effect of PEG and dextran on catalysis could also be
partially due to their influence on the polarity of the solution,
cleavage kinetics were followed in the presence of different
co-solvents: ethanol (dielectric constant € = 24.3) and formam-
ide (dielectric constant € = 109), which respectively decrease
and increase the dielectric constant of the buffer (water dielec-
tric constant € = 80). As shown in Figure 7, in the presence of
increasing ethanol concentrations, the rate of the reaction is
enhanced. In contrast, it is decreased in the presence of increas-
ing formamide concentrations, showing a clear correlation
between the buffer dielectric constant and the rate of the reac-
tion. These results are consistent with a direct effect of solvent
polarity on catalysis, and the involvement of polar and ionic
interactions in the formation of the transition state.

PEG concentrations used here lead only to a small increase
in the buffer dielectric constant. Based on the negative influ-
ence of formamide on catalytic activity, such an increase in
buffer polarity should decrease the catalytic rate. The reaction
stimulation observed in the presence of PEG is therefore due to
its effect on osmotic pressure, and not to its influence on the
solvent dielectric constant. However, this osmotic pressure
effect might be slightly higher than estimated here because
of the small opposite influence of dielectric constant.

DISCUSSION

The results reported above show that the reaction catalyzed by
the hairpin ribozyme used in this study involves a positive
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Figure 7. Solvent dependence of self-cleavage reactions. Cleavage kinetics are shown for each solvent concentration: (a) ethanol: 0% (closed triangles), 5% (closed
circles) and 20% (open squares). (b) Formamide: 0% (closed triangles), 5% (closed circles) and 20% (open squares).

activation volume AV” of 34 + 5 ml/mol. Interestingly, this
value is in the range of those reported in the case of protein
enzymes. This rather high value indicates that during the
formation of the transition state of this reaction the ribozyme
condenses on itself in such a way that its solvation decreases
and that water molecules must be released. This value pre-
sumably includes docking, formation of the transition state and
probably the small contribution of the chemical step of the
reaction. It may be an overall average for RNA molecules at
different stages of docking at the beginning of the reaction.
The osmotic stress experiments confirm this release of water
molecules and provide an estimation of 78 £ 4 water molecules
expelled per ribozyme molecule. This value is in reasonable
agreement with the fact that the solvent accessible surface of
the ribozyme decreases by 1570 A? during the association of
loops A and B (20).

The extrapolation of the progress curves to equilibrium val-
ues, calculated from the fit of these curves to an exponential
process, suggests that the cleavage reaction is also accompanied
by asignificant AV of 17 £ 4.5 ml/mol. This result suggests that,
at the end of the reaction, the cleaved ribozyme molecule
remains significantly less solvated than the uncleaved molecule.
The existence of an intermediary conformation between the
opened and the closed forms of the ribozyme was recently evid-
enced on the basis of FRET experiments (50). The less solvated
conformation detected by our pressure experiments may cor-
respond to that intermediary conformation. Alternatively, the
AV observed might result from the existence of a mixture of
docked and undocked cleaved RNA molecules, a situation
recently described by Nahas et al. (51). These interpretations
are based on the assumption that the plateau reached at the end of
the reaction corresponds to a real equilibrium. This is likely the
case since the ribozyme also catalyzes the reverse ligation reac-
tion (26). However, the exact nature of this cleavage—ligation
equilibrium should be further investigated since several reports
in literature indicate that the ribozyme preparation can lead to
the presence of sub-conformations unable to catalyze the reac-
tion (27,51). The existence of such sub-conformations and the
plasticity of RNA molecules that it suggests might have been of
importance in the development of their aptitude to catalyze a
large catalog of reactions during the early development of life.

Nw= 7. Si 4 water molecules
AVP=34+ 5 ml/mole

—_—— Transition
State

AV=17%4.5 ml/mole

Fd

Figure 8. Volume changes and water movement during the hairpin ribozyme
cleavage reaction. The closure of the molecule and formation of the transition
state is accompanied by a positive activation volume AV” of 34 + 5 ml/mol and
the release of 78 =4 water molecules per RNA molecule. The positive AV of the
reaction suggests that after cleavage the molecule relaxes to a conformation that
is less solvated than the uncleaved opened conformation.

As far as the experiments performed under pressure are
concerned, the controls of the reversibility of the pressure
effects indicate that the influence of even the highest pressure
used in this study (200 MPa) is fully reversible and that no
denaturation or irreversible damage to the RNA occurs under
these conditions.

Taken together with structural informations (20,24,25,51),
the mechanism suggested by the results of this study is illus-
trated in Figure 8. In this mechanism, the formation of the
transition state brings the A and B loops together to constitute
the catalytic and the cleavage sites. This step is associated with
an activation volume of 34 ml/mol and with the release of 78
water molecules per RNA molecule. After cleavage, the
molecule relaxes either completely or to a certain extent as
suggested by the measured AV of the reaction, while the small
and large RNA fragments, resulting from the cleavage, either
stay together or dissociate slowly (51). This last point will
deserve further analysis. Interestingly, the mechanism sugges-
ted by the present investigation is in complete agreement with
the structural information recently obtained by NMR on the
opened form (52,53), and by crystallography on condensed



forms of the ribozyme obtained through the binding of van-
adate or a competitive inhibitor (20,21). In particular, this
mechanism is consistent with the conclusion that loops A
and B must come into close contact during the formation of
the transition state (20,24,25,51).

The results obtained in the presence of co-solvents, which
increase or decrease the dielectric constant of the incubation
medium, indicate that the polarity of the solvent also influ-
ences the rate of the reaction. This is also in agreement with the
structural information which shows that the formation of the
transition state involves the formation of numerous polar inter-
actions between A and B loops as well as an important reshuff-
ling of their internal hydrogen bond networks (20,21,52-54).

In a previous work, variants of the ribozyme used in this
study were obtained which exhibit an absolute requirement for
adenine as a co-factor (55). The methodologies used here
should provide information about the way in which adenine
confers activity to these modified forms of the ribozyme. The
adenine requirement for catalysis might specifically allow the
distinction between docking and transition state formation in
activation volume calculation.
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