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Abstract

Mendelian rare genetic diseases affect 5%–10% of the population, and with over

5300 genes responsible for ∼7000 different diseases, they are challenging to

diagnose. The use of whole‐genome sequencing (WGS) has bolstered the diagnosis

rate significantly. The effective use of WGS relies on the ability to identify the

disrupted gene responsible for disease phenotypes. This process involves genomic

variant calling and prioritization, and is the beneficiary of improvements to

sequencing technology, variant calling approaches, and increased capacity to prior-

itize genomic variants with potential pathogenicity. As analysis pipelines continue to

improve, careful testing of their efficacy is paramount. However, real‐life cases ty-

pically emerge anecdotally, and utilization of clinically sensitive and identifiable data

for testing pipeline improvements is regulated and limiting. We identified the need for

a gene‐based variant simulation framework that can create mock rare disease sce-

narios, utilizing known pathogenic variants or through the creation of novel gene‐
disrupting variants. To fill this need, we present GeneBreaker, a tool that creates

synthetic rare disease cases with utility for benchmarking variant calling approaches,

testing the efficacy of variant prioritization, and as an educational mechanism for

training diagnostic practitioners in the expanding field of genomic medicine. Gene-

Breaker is freely available at http://GeneBreaker.cmmt.ubc.ca.
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1 | BACKGROUND

Next‐generation sequencing, and increasingly third‐generation
sequencing, has been revolutionary in rare disease diagnosis

(Wise et al., 2019). By sequencing the entire genome, millions of

variants are identified, prioritized, and then manually curated to

arrive at a diagnosis for the affected individuals. This process

occurs both in a familial setting (e.g., trio sequencing of

mother–father–proband) as well as in groups of individuals with

similar phenotypes (e.g., case series or cohort studies). The ana-

lysis process can be broken down into two distinct steps: variant

calling and variant interpretation.
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Advances in bioinformatics tools for variant calling have recently

expanded the types of variants being detected from single nucleotide

variants (SNVs) and small insertions and deletions (indels), to now

routinely include copy number variants (CNVs), tandem repeat

expansions (REs), mobile element insertions (MEIs), and complex

structural variants (SVs) such as inversions, insertions, and translo-

cations. A major challenge within the expansion to these more

complex variant types is a large amount of noise and artifacts

stemming from limitations of short‐reads—with a length of 100–250

base pairs (bp)—attempting to resolve repetitive sequences within

the genome. These short reads, even when being sequenced from

two ends of a DNA fragment with ~500 bp length, cannot span the

repetitive elements in the genome. Specifically, interspersed repeats

and short tandem repeats whose length often exceeds 500 bp, can-

not be resolved and uniquely mapped against a reference. These

mapping ambiguities lead to strict region‐based filtering to mitigate

noise, in spite of the significant proportion of disease‐associated
genes overlapping these regions (Ebbert et al., 2019; Goldfeder

et al., 2016). As both read length technology and algorithmic ap-

proaches continue to evolve, new tools will emerge as candidates to

use within diagnostic pipelines (Wenger et al., 2019). While bench-

marking the variant calling process in human genomes has been a

focus of international consortia, the majority of comparisons focus

on evaluations of healthy individuals with well‐characterized variant

sets (Krusche et al., 2019). In the diagnosis of rare genetic diseases,

benchmarks should be focused on assessing the detection capacity of

pathogenic or potentially pathogenic variants.

Beyond the landscape of rapidly evolving variant calling ap-

proaches is the emergence of a multitude of variant interpretation

tools and pipelines. Several in silico effect predictors for the

assessment of functional variant impact already exist, and research

efforts are now adding interpretation capacities for features outside

of the coding regions of the genome, for example, splice regulating

sequences (Jaganathan et al., 2019). Furthermore, continuously ex-

panding population databases serve as filters to help identify rare

genomic events (Karczewski et al., 2020; Lek et al., 2016). Both in

silico predictors and the population allele frequency of observed

variants are used as filters when attempting to identify a pathogenic

variant causal for rare genetic disease phenotypes.

Combinations of different variant calling and variant inter-

pretation pipelines are implemented across the world in clinical‐
grade and research‐grade genomic diagnostic laboratories. These

approaches utilize tools that consistently receive upgrades to un-

derlying software and databases used within analysis pipelines. As

diagnostic pipelines continue to evolve, there is an emerging need for

specific performance testing to compare different tools and ensure

each new version of an analysis pipeline can identify the disrupted

gene in an applied setting. The process of iteratively “spiking”

thousands of pathogenic variants into a background set of variants is

a common process, especially within research papers publishing no-

vel prioritization methods (e.g., Exomiser; Robinson et al., 2014).

However these methods typically draw upon known pathogenic

events—usually curated by consortiums such as ClinVar—and are

often limited to SNVs and indels. As multiple classes and genic im-

pacts begin to be explored within the automation space, tools that

create unique combinations of rare disease scenarios will become

necessary for testing. Combining multiple classes of variants across

inheritance patterns is critical to rare disease diagnosis, and the

careful creation of such scenarios enables benchmarking “edge”

cases within automated pipelines.

There is a demand for developing the capacity to create syn-

thetic scenarios of rare disease cases for education and training

purposes. As genomic medicine advances into the standard of care,

there will be a need for easy access to training datasets of rare

disease cases of increasing complexity. Institutional policies and

guidelines around access and use of sensitive and identifiable

data for research purposes beyond that of the specific disease di-

agnosis vary significantly between different studies and globally

(Martani et al., 2019; Raza & Hall, 2017). This means, establishing a

universal “standard” of bonafide genomes suitable for personnel

training and benchmarking is challenging. Further complicating re-

analysis of such data is the possibility of uncovering incidental

findings, perhaps affecting either the parents or the proband (Green

et al., 2013). In light of incidental findings, this can lead to institu-

tional policies that are strict regarding reanalysis of data post-

diagnosis. Even with access to such data for educational purposes,

the scale or volume of available data would be limited compared to

the potentially infinite possibilities of simulated genomic errors.

To meet these needs and serve the growing community of

genomic medicine, we developed GeneBreaker: a simulation tool for

Mendelian rare genetic diseases. GeneBreaker has an online web

interface for designing custom genetic disease scenarios based on

user‐guided parameters. It has the capacity to simulate variants of

multiple different classes, affecting different genic regions, and can

either draw upon known pathogenic variants from resources such as

ClinVar (Landrum et al., 2014) and ClinGen (Rehm et al., 2015) or

facilitate user creation of novel events. Created variants can be

embedded within different familial inheritance models, to model real‐
life scenarios that may be encountered within clinical or research

settings.

2 | IMPLEMENTATION

2.1 | Architecture

GeneBreaker is a web server deployed as Node.js, which commu-

nicates with a REST API that accesses an underlying data repository

(storing gene models and known pathogenic variants), and a variant

simulation framework written in the Python programming language.

User interaction with the online tool guides the stepwise process of

variant simulation as follows: (1) select the gene and transcript to be

“broken”; (2) simulate the first variant by selecting the variant class

and either novel creation or existing pathogenic variant(s); (3) pro-

ceed to design the second variant or finish and output a variant call

format file (VCF; Figure 1a). Variant creation is done with Mendelian
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disease cases in mind, where a single gene/locus is disrupted in either

a dominant (single variant) or recessive (one variant per allele)

manner. Gene models and known pathogenic variants are stored

within a MySQL database, which is used for variant creation. Python

code interacts with the MySQL database REST API to extract variant

and gene information, and subsequently creates variants based on

user parameters. Code for variant creation and MySQL database

interaction can be found here https://github.com/wassermanlab/

GeneBreaker. While the primary output of the simulator is a VCF

file, there is also the capacity to enable downstream benchmarking.

Support for downstream benchmarking includes facilitating a tran-

sition to a VarSim‐compatible VCF file for full synthetic WGS

F IGURE 1 GeneBreaker overview. (a) Overview of GeneBreaker design framework showing user interaction with the website (light blue),
connected MySQL tables (red), underlying variant subclasses (dark blue), and output VCF file (yellow). The user interacts with the GeneBreaker
website (light blue) which is connected to hidden components for gene description and variant creation/selection. (b) Downstream
benchmarking operations enabled by GeneBreaker including splitting variant amongst VCF files according to user‐designed pedigree (yellow),
and then either spiking‐in the variant within open source trios for annotation and prioritization testing or simulating the proband variant as a
full synthetic simulation via VarSim (purple). VCF, variant call format
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simulation, and integration into background variant sets for testing

annotation and prioritization approaches (Figure 1b). Details about

the variant simulation process and downstream benchmarking are

below.

2.2 | Host web server and underlying data

GeneBreaker is hosted on a virtual web server at the Centre for

Molecular Medicine and Therapeutics, with 12GB of RAM and 4 CPUs

running CentOS 7. The variant data within the underlying repository

comes from open‐source variant catalogs including ClinVar (Landrum

et al., 2018), ClinGen (Rehm et al., 2015), and a manually curated set of

pathogenic short tandem repeat expansions (Table S1) (Dolzhenko

et al., 2020). Gene models come from the RefSeq annotation database

provided by the UCSC Genome Browser (NCBI Homo sapiens Anno-

tation Release 109 (March 29, 2018); Haeussler et al., 2019).

2.3 | Variant simulation walk‐through

The user interaction with the simulation process is stepwise and

guided, and a video tutorial detailing the creation process is available

at http://genebreaker.cmmt.ubc.ca/more_info. The variant creation

process is detailed below.

2.3.1 | Initial configuration

Starting at the variant designer page (http://genebreaker.cmmt.ubc.

ca/variants): (1) user selects reference genome, proband sex, and

enters a gene symbol into the “gene” textbox; (2) user clicks “Fetch

Transcripts” and all transcripts associated with the gene symbol

appear, and the user selects a single transcript which is then dis-

played in the IGV browser. The primary transcript, as defined by

RefSeq Select (https://www.ncbi.nlm.nih.gov/refseq/refseq_select/),

appears with an asterisk to guide transcript selection; and (3) user

proceeds to variant creation by clicking “Next.”

2.3.2 | Variant creation

From the variant 1 info page: (1) user selects the “Region,” which

includes a set of genomic regions: coding, UTR, intronic, and genic

(anywhere in the body of the gene). These genomic regions restrict

the set of possible variants to those which overlap the defined re-

gions, for example, coding selection means a variant will have to be

created over coding regions of the selected gene; (2) user selects the

variant “Type”, either choosing from predefined variant sets: ClinVar,

ClinGen copy number variant, and short tandem repeat; or novel

creation methods: copy number variant, mobile element insertion,

indel, single nucleotide variant; and (3) user selects the “Zygosity”:

heterozygous or homozygous.

For each of the variant classes, additional information will be re-

quired as input. All variant positions are represented in the one‐based
half‐open coordinate system. Users must choose positions for variants

that overlap the selected regions. For ClinVar and ClinGen copy number

variant, clicking the “Fetch variants” box will populate the window with

coordinate‐sorted variants from the ClinVar or ClinGen databases

which overlap the defined genomic region. Clicking on a single variant

line will select it and enable the user to proceed to the next page. For

copy number variant, the user specifies the start and end positions, as

well as the copy change (deletion or duplication). For mobile element

insertion, the user specifies the start position and element type: LINE,

ALU, or SVA. For indel, the user specifies the start position, and the

length as a positive integer for insertion of random nucleotides, or as a

negative integer for a deletion. For single nucleotide variant, there are

multiple SNV types that can be selected: stop‐loss, missense, nonsense,

synonymous, or simply creating alternate alleles from any of the four

nucleotides A, T, C, and G. All effects are listed independently of the

region selected; however, the effects must comply with the region to

proceed. As an example, selecting the intronic region and nonsense

variant will give an error. For nonsynonymous variant effects (stop‐loss,
missense, and nonsense), the variant position must have the capacity to

create an amino acid change. As an example, creating a nonsense

(premature stop codon) SNV requires that altering the single base at

the specified position will change the codon sequence to become TAA,

TAG, AGA, or AGG. To facilitate this, the three‐frame translation in the

IGV window can be displayed by zooming into the nucleotide level, and

clicking the gear on the right side of the IGV window to select

“Three‐frame Translate.” For short tandem repeat, clicking on the “Fetch

Short tandem repeats” box will populate the window with all short

tandem repeats which overlap the genic region. Each STR has the re-

peat motif, and if the repeat is known to be pathogenic then it displays

the number of repeat copies that have to be inserted to be considered

damaging. After selecting a repeat, enter the repeat length as an integer

value of the number of repeats you want to add or remove, using

positive or negative integers, respectively.

After creating a variant, the user can either repeat the process

to create a second variant or proceed to Family Info to guide the

variant inheritance.

2.3.3 | Inheritance modeling

After the creation of variants, a summary page with Family Info

appears and a portion of the variant information is displayed in-

cluding chromosome, position, reference allele sequence, and alter-

nate allele sequence, adhering to specifications from VCF version 4.2

(https://samtools.github.io/hts-specs/VCFv4.2.pdf). Below the var-

iant summary is information for each of the individuals in the family

which will be included in the output, starting with information from

the proband including sex, presence of variant 1 (Var1), presence of

variant 2 (Var2), and affected status (check box). The user will then

add family members by clicking on the “Add Family Member” box,

choosing to add a mother, father, sister, or brother. After adding the
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individual, the user will select the boxes for Var1 and Var2 to

indicate whether that individual has the variant or not, and their

affected status. In the case of homozygous variants, selecting both

Var1 and Var2 will add a homozygous variant for that individual.

After adding multiple individuals and completing their variant/af-

fected status, the output files can be downloaded by clicking on the

“Download Outputs” box. Both the merged VCF containing variant

records for all individuals, and the associated pedigree (PED) file can

be downloaded.

2.4 | Incorporate variants into reads to test
detection capacity

Simulation of variants within read sets can be performed in two

primary ways: (1) incorporating variants into a reference genome

sequence (FASTA format) and then simulating reads from the se-

quence; or (2) incorporating variants directly into mapped read files.

While several tools exist for reference‐based incorporation and read

simulation, we chose to use VarSim (Mu et al., 2015) due to its ease

of use and capacity to simulate other variants alongside the patho-

genic variants of interest. Variants were incorporated using VarSim's

default configuration with the hg19 (hs37d5) reference genome,

background variants from dbSNP common variants version 150

(https://ftp.ncbi.nih.gov/snp/pre_build152/organisms/human_9606_

b150_GRCh37p13/), and DGV variants (from VarSim's installation

script). Before variant incorporation, VCF files from GeneBreaker

may need to be reformatted if they contain a mobile element in-

sertion using the reformatForVarSim.py script (https://github.com/

wassermanlab/GeneBreaker/blob/master/BenchmarkingTransition/

FullSimulation/reformatSimToVarSim.py).

BamSurgeon is a tool for incorporating variants directly into

mapped read files (Ewing et al., 2015). GeneBreaker VCF files can be

parsed for use within BamSurgeon. We chose to demonstrate the utility

of GeneBreaker with VarSim, although both approaches are feasible.

2.5 | Spike‐in the variant within a trio setting for
testing prioritization approaches

Beyond simulating variants for benchmarking variant calling approaches,

there is also utility in testing variant prioritization methods. To facilitate

this, we collected open source trio PCR‐free WGS data from the Polaris

Project (https://github.com/Illumina/Polaris) and processed it using a

standard approach with cutting‐edge tools. The data were mapped

against the reference genome GRCh37 (http://www.bcgsc.ca/downloads/

genomes/9606/hg19/1000genomes/bwa_ind/genome/GRCh37-lite.fa)

and GRCh38 (ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/

dna/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz) using BWA

mem (v0.7.17) with default settings (Li & Durbin, 2009). Output SAM files

were converted into bam and sorted using Samtools (v1.9; Li et al., 2009).

Variant calling was done using DeepVariant (0.10.0; Poplin et al., 2018).

Visualizing the mapped reads was done using Integrative Genomics

Viewer (IGV; v2.4.10; Robinson et al., 2011). We applied the same

mapping and conversion procedure, using the GRCh37 reference gen-

ome, to simulated data from VarSim.

The output is a set of VCF files, one per individual, which serve as

background variants for both male and female probands (children) and

their parents. These variants are deposited in the online repository

alongside other full simulations (see Section “Data Availability State-

ment”). Combining the background variants with the pathogenic variants

from the GeneBreaker tool is managed using bash scripts that match the

sex and reference genome. These scripts utilize standard tools including

bcftools (Li, 2011), htslib (bgzip and tabix), and a custom reformatting

script (https://github.com/wassermanlab/GeneBreaker/blob/master/Ben-

chmarkingTransition/BuryVariant/reformatSimToDeepVariant.py). After

creating the merged VCF files, we tested them for correct simulation

using Exomiser (v12.1.0; Robinson et al., 2014). We searched Exomiser

output within each gene‐based inheritance table for the known gene

using the command line tool grep (e.g., “grep ‐w ABCD1 ‐n Exomiser-

Output_AR_genes.tsv”).

2.6 | Creation of training scenarios

Hypothetical cases were created and clinical descriptions generated

based on clinical experience. Genes and diseases were selected from

OMIM for diverse genetic conditions and include rare disorders,

including primary immunodeficiencies, inborn errors of metabolism,

developmental disorders, and congenital disorders. HPO terms as-

sociated with the disease‐associated gene were taken from the HPO

website (https://hpo.jax.org/app/) and selected to include common

phenotypes associated with the disease.

2.7 | Creation of phenopackets

Phenopackets are an emerging standard, accepted by the Global

Alliance for Genomics and Health (GA4GH), for representing phe-

notypic information in combination with observed variants. For the

10 inheritance cases, as well as the 10 training scenarios, we created

phenopacket JSONs using the phenopacket‐schema repository

(https://github.com/phenopackets/phenopacket-schema), following

the test example for Python (https://github.com/phenopackets/

phenopacket-schema/tree/master/src/test/python). The phenopack-

et JSONs are available on the GeneBreaker website alongside the

inheritance testing and training scenarios.

3 | RESULTS

3.1 | Simulator‐created rare disease scenarios

We created rare disease scenarios of varying difficulty to test the

efficacy of GeneBreaker simulations and for use within benchmark-

ing scenarios (Table 1). These simulations cover different modes of
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inheritance, variant classes, and genic impacts. The first set of var-

iants covers several inheritance models for combinations of coding

variants, either designed by hand or extracted from ClinVar and

other published works. Each of the variants in the table was syn-

thetically generated using the online GeneBreaker interface in either

the GRCh37 or GRCh38 genome (Table 1). The variants were then

assigned to proband, mother, and father according to the inheritance

pattern. Finally, the variants were embedded in the background of

open‐source trios with matched proband sex (Supporting Informa-

tion Material). The output from the embedding process is a merged

VCF file, which can then be used as input for testing common

prioritization workflows, such as the commercial package VarSeq or

the open‐source Exomiser tool (Robinson et al., 2014).

Beyond creating cases to test inheritance models, we also demon-

strate the ability of GeneBreaker to create combinations of variants that

are emerging out of anecdotal reports. These variant combinations span

multiple classes and genic impacts, and are responsible for the missing

heritability in undiagnosed cases (Maroilley & Tarailo‐Graovac, 2019).
These include a set of cases where pathogenic SNVs and indels lie be-

yond the coding regions of the gene, and a set of variants which include

CNVs, STRs, and MEIs (Table 2).

Finally, we also designed variants within the “dark regions” of

the genome, or regions that are inaccessible to standard variant

calling pipelines (Ebbert et al., 2019; Goldfeder et al., 2016). We

consider these variants important to simulate due to the need to

evaluate results from emerging methods capable of genotyping

within such regions (Table 2).

3.2 | SNV and indel inheritance testing

To the best of our knowledge, there are no currently available open‐
source tools for prioritizing combinations of different classes of pa-

thogenic variants affecting the same gene. However, the Exomiser tool

is a fast and easy‐to‐use method that can prioritize coding SNVs and

indels for Mendelian rare genetic disease cases, and requires as input a

merged VCF file, a pedigree (PED) file, and a set of Human Phenotype

Ontology (HPO) terms (Robinson et al., 2008, 2014). The HPO terms

for a set of selected genes were chosen by matching each gene to a

disease using OMIM, and then selecting 4–7 HPO phenotype terms

which were common for that disease (https://hpo.jax.org; Table S2). We

simulated each of the inheritance testing cases (Patients 1–10) and

searched the output from Exomiser (Supporting Information Material).

The causal variant was annotated correctly for both user‐created
SNVs and indels, confirming that our simulation framework for creating

novel variants is functional. In 7 out of the 10 cases, the variant was

prioritized in the correct inheritance category and was ranked in the

top two candidates at the gene level (Table 1). The two scenarios

(SLC6A8 and INPP5E) with compound heterozygous de novo in-

heritance patterns caused issues with Exomiser's interpretation. A

compound heterozygous de novo scenario is where a disease‐
associated allele is inherited from one parent, and a de novo mutation

disrupts the other allele of the same gene. In both these scenarios, the

variants were found to be ranked in the top 10 for a dominant

inheritance, likely due to the de novo variant taking priority. For

instance, the SLC6A8 gene did not show up in the X‐linked recessive

candidate gene list, but it ranked second in the X‐linked dominant gene

list. Interestingly, the variant created on the Y chromosome in the SRY

gene, which is responsible for 46 XY Sex Reversal 1, was not prioritized

by Exomiser. It is unclear at which stage this variant was dropped as a

result of Exomiser's inheritance and pathogenicity filtering.

3.3 | Testing variant calling

Exomiser is not currently equipped to prioritize CNVs, STRs, and

MEIs, and we are not aware of a tool that can integrate these variant

classes within inheritance modeling. Therefore, we demonstrate the

efficacy of our method by simulating and visualizing a full WGS data

set using the larger variants and the set of variants within the dark

regions of the genome (Table 2). Using VarSim, the 10 variants from

the CNV/MEI/STR and dark genome categories were simulated in a

single VarSim run. Each of the regions where variants were in-

tegrated was visualized with the IGV (Robinson et al., 2011) to va-

lidate the variant was simulated correctly at the read level

(Figures S1 and S2). An example of the heterozygous duplication of

part of the DMD gene shows the expected increase in read coverage

over the simulated variant (Figure S1a), and the LINE1 transposable

element insertion within the intron of SLC17A5 has the expected

signal of soft‐clipped reads both upstream and downstream of the

insertion site (Figure S1b). For the variants in the dark genome, a

homozygous deletion in SMN2 can be visualized, even though the

observed reads are not mapping uniquely to the region (Figure S2a).

Finally, a four base‐pair coding deletion within CFC1 appears in the

ambiguously mapped reads, confirming previous reports that spe-

cialized methods may be able to locate deletions within these dark

and camouflaged regions (Ebbert et al., 2019; Figure S2b).

3.4 | Training scenarios

To emphasize the capacity for GeneBreaker‐created scenarios to be

utilized within training the next generation of genome medicine

practitioners, we created 10 hypothetical genetic disorder scenarios.

Each hypothetical case has a causal gene, causal variants drawn from

ClinVar, HPO terms, and patient descriptions including relevant family

history and clinical findings (Table 3; Supporting Information Material).

For these 10 cases, they can be utilized within educational materials

that focus on variant interpretation in rare disease diagnosis.

4 | DISCUSSION

The diagnosis of rare genetic diseases will continue to improve as

novel methods for calling, interpreting, and prioritizing variants

emerge and become deployed in a diagnostic setting. Many of the
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previously challenging variants to genotype, due to variant com-

plexity or existing within “dark” genomic regions, are now regularly

identified in WGS datasets. Consequently, there is a critical need for

testing the improved pipelines to ensure that such improvements are

implemented correctly. While real patient data is paramount for

testing the efficacy of a pipeline, access to such data is often pro-

hibitive due to data use restrictions and is limited by the number of

observed cases with available data. With simulation, infinite combi-

nations of any possible genomic variant(s) can be designed, from

nonsense SNVs, to intronic MEIs, and every combination in between.

The introduction of GeneBreaker addresses an unmet need for

simulated rare disease cases in a broadly accessible format. Gene-

Breaker is deployed as a free‐to‐use website, enabling user creation of

pathogenic variants. Downstream of variant simulation, the tool also

supports the transition into benchmarking either variant interpreta-

tion or variant calling analysis pipelines. We tested the efficacy of

GeneBreaker and the downstream benchmarking transition by simu-

lating rare disease scenarios covering different inheritance models,

variant classes, genomic regions, and genic impacts. Using Exomiser,

we validated that the variants we simulate have the expected impact,

and exposed some limitations in the ability to correctly prioritize

variants with challenging inheritance patterns, such as the compound

heterozygous de novo pattern. Our example using Exomiser highlights

that even for combinations of SNVs and indels, inheritance testing can

still be improved upon. Larger, more complex variants were visualized

in IGV to ensure their correct simulation, confirming that VarSim is a

viable option for whole data set simulation to test variant calling ca-

pacity. All of the simulated cases are available online (http://

genebreaker.cmmt.ubc.ca/premade_cases) and can serve as a start-

ing point for benchmarking.

GeneBreaker is not intended as another genome sequencing

data simulator. Such simulation has been broadly explored over

the past decade, with a rich collection of tools available (Escalona

et al., 2016). The narrow scope of GeneBreaker is placed upon the

creation of rare disease simulated genomes, which is achieved by

focusing on the generation of diverse forms of genetic disrup-

tions, which can be embedded within real or simulated genome

sequencing data. This focus has particular value for two use cases:

careful edge‐testing of analysis pipelines and training of inter-

pretation specialists.

When it comes to changing software within a clinical diagnostic

pipeline—even if it only involves upgrading to a newer version of an

existing package—there must be rigorous testing to ensure that the

modifications do not break the pipeline. Any modification to a

standard operating procedure must be tested to ensure that it is still

capable of performing at or above the existing diagnostic capacity.

With the increased adoption of the reference genome version

GRCh38, many pipelines currently utilizing older reference genomes

will need mechanisms to test their correct functionality in GRCh38

before the transition. Adopting a new reference genome can some-

times have unanticipated side‐effects, as was highlighted with an

analysis of missing variant calls from realigning WGS datasets in the

UK Biobank (Jia et al., 2020). A diverse set of variant scenariosT
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involving several inheritance models, genic impacts, and mix of novel

and known pathogenic variants has utility for testing these con-

tinuously updated pipelines, without the challenge of handling sen-

sitive patient data. GeneBreaker is designed with the goal of creating

carefully thought‐out edge testing cases and is not built as a

genotype‐to‐phenotype prioritization benchmarking tool. The pro-

cess of testing gene‐to‐phenotype associations and rankings is better

handled by considering only known pathogenic events and utilizing

thousands of simulations. The careful creation of complex scenarios

is the focus of the benchmarking aspect of GeneBreaker.

GeneBreaker has value beyond benchmarking as a resource for

training a new generation of genome analysts. Rare genetic diseases

affect a sizable portion of the population, and as WGS moves into the

standard of care, many medical professionals will need hands‐on
training in the utilization of this technology. Having synthetic cases,

either at the merged variant set or raw data levels, is imperative. We

encourage those developing educational materials for the analysis of

rare disease genomes to consider using the simulation capacity

of GeneBreaker as a training tool. To emphasize the teaching aspect

of GeneBreaker, and to allow rapid adoption into the educational

setting, we created 10 hypothetical genetic disorder scenarios,

complete with phenotypes, patient descriptions, family history, and

merged variant sets, all available online (genebreaker.cmmt.ubc.ca).

We envision these materials to be invaluable in training individuals

working at many institutions, both academic and commercial, who

are establishing genome sequencing protocols for rare disease

diagnosis.

Future work on GeneBreaker will focus on expanding the simu-

lation capacity to include additional complex variant classes (e.g., in-

versions and translocations) and variants beyond the genic regions

known to disrupt gene regulation. Examples of disruptions to reg-

ulatory elements include mutations affecting chromatin organization

and enhancers (Lupiáñez et al., 2016; Smith & Shilatifard, 2014). A

major challenge in extending to regulatory elements is that the re-

levant genomic regions critical for the regulation of a gene are difficult

to define. As these genome annotations improve, we look forward to

integrating them into GeneBreaker.

We hope that GeneBreaker is adopted by the growing commu-

nity of researchers and clinicians who are utilizing WGS in the di-

agnosis of rare genetic diseases. Feedback is appreciated as we

continue to improve the software and simulation capacities. Gene-

Breaker is available for exploration at http://GeneBreaker.cmmt.

ubc.ca.
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