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ABSTRACT

Background: Metastasis of rhabdomyosarcoma (RMS) is the primary cause of tumour-related deaths. Previous
studies have shown that overexpression of the guanine nucleotide exchange factor T (GEFT) is correlated
with a poorer RMS prognosis, but the mechanism remains largely unexplored.
Methods: We focused on determining the influence of the GEFT-Rho-GTPase signalling pathway and the epi-
thelial—-mesenchymal transition (EMT) or mesenchymal—epithelial transition (MET) on RMS progression
and metastasis by using RMS cell lines, BALB/c nude mice and cells and molecular biology techniques.
Findings: GEFT promotes RMS cell viability, migration, and invasion; GEFT also inhibits the apoptosis of RMS
cells and accelerates the growth and lung metastasis of RMS by activating the Rac1/Cdc42 pathways. Interest-
ingly, GEFT upregulates the expression levels of N-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 and reduces
expression level of E-cadherin. Thus, GEFT influences the expression of markers for EMT and MET in RMS
cells via the Rac1/Cdc42-PAK1 pathways. We also found that the level of GEFT gene promoter methylation in
RMS is lower than that in normal striated muscle tissue. Significant differences were observed in the level of
GEFT gene methylation in different histological subtypes of RMS.
Interpretation: These findings suggest that GEFT accelerates the tumourigenicity and metastasis of RMS by
activating Rac1/Cdc42-PAK signalling pathway-induced EMT; thus, it may serve as a novel therapeutic target.
Fund: This work was supported by grants from the National Natural Science Foundation of China (81660441,
81460404, and 81160322) and Shihezi University Initiative Research Projects for Senior Fellows
(RCZX201447). Funders had no role in the design of the study, data collection, data analysis, interpretation,
or the writing of this report.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

risk RMS have a poor prognosis, with a 5-year overall survival rate of
20-30% [2]. The incomplete understanding of RMS’ molecular mech-
anisms and metastasis-related genes is the primary reason for its

Rhabdomyosarcoma (RMS) is the most common soft tissue sar-
coma in children. There are two major RMS histologic subtypes—
embryonal RMS (ERMS) and alveolar RMS (ARMS)—and two rare var-
iants—pleomorphic RMS and sclerosing RMS [1]. The prognosis for
RMS depends on the tumour’s metastasis, location, size, and staging,
as well as the patient’s age. Among these factors, the presence of
metastasis is the strongest predictor of poor clinical outcomes [2].
The majority of human cancer-related deaths are caused by tumour
metastasis [3,4]. Despite multimodal therapies, patients with high-
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poor prognosis. Therefore, identifying new molecular therapeutic tar-
gets relevant to the pathogenesis of RMS is crucial. In our previous
studies, we found that overexpression of guanine nucleotide
exchange factor T (GEFT) was significantly correlated with lymph
node metastasis, distant metastasis, and a poor RMS prognosis [5,6].
GEFT was first identified in a retroviral mutation screen for poten-
tial oncoproteins. It is a member of the Dbl protein family that is Rho-
specific for the Rho GEFs and contains 60 distinct mammalian mem-
bers [7-9]. It is highly expressed in brain, heart, and muscle tissues
[8,10]. GEFT promotes the myogenesis of C2C12 cells via activating
RhoA, Rac1, and Cdc42 and their downstream effector proteins [11].
However, two studies have reported that GEFT/p63RhoGEF is a
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Research in context

Evidence before this study

Rhabdomyosarcoma (RMS) is the most common soft tissue sar-
coma in children, and those with high-risk RMS have a poor
prognosis. Our previous studies have demonstrated that overex-
pression of guanine nucleotide exchange factor T (GEFT) is signifi-
cantly correlated with lymph node metastasis, distant metastasis,
and poor RMS prognosis. The epithelial-mesenchymal transition
(EMT) is essential for tumour metastasis. The references searched
were all available PubMed publications, and the search terms
were RMS and GEFT, with an emphasis on EMT.

Added value of this study

GEFT influences the expression of markers for EMT and MET
in RMS cells via the Rac1/Cdc42-PAK1 pathways, as demon-
strated through a variety of in vitro and in vivo experiments.
Our novel findings, along with the existing evidence regard-
ing the resolution mechanisms in RMS, have revealed one of
the mechanisms underlying RMS.

Implications of all the available evidence

Our research may lead to potential targets for RMS therapies by
not only focusing on the function of GEFT in the tumourigenic-
ity and metastasis of RMS but also by revealing its underlying
molecular mechanism. Future research should try to identify
the role of GEFT in the progression and metastasis of other can-
cers, as such studies could provide new therapeutic opportuni-
ties for these patients.

RhoA-specific GEF and not a Rac/Cdc42-specific GEF [12,13]. The
potential functions and pathways of GEFT in regard to RMS progres-
sion and metastasis are unclear.

Interestingly, cells with a high GEFT expression level had cell
shapes that had more spindle-like appearance and fewer cell contacts,
suggesting that epithelial-mesenchymal transition (EMT) or mesen-
chymal-—epithelial transition (MET) may have occurred in RMS. We
know that EMT is essential for tumour metastasis. Hallmarks of EMT
include the loss of expression or function of E-cadherin and a markedly
reduced number of tight junction proteins, which is accompanied by a
considerable increase in mesenchymal markers, such as N-cadherin
[14]. Induction of transcription factors is the key initiating step of EMT.
These factors include the zinc-finger binding transcription factors,
namely, Snaill and Slug, zinc finger E-box—binding homeobox 1
(ZEB1), ZEB2, and Twist, all proteins that bind to the promoter region
of genes associated with cell—cell adhesion and repress their transcrip-
tion [15—17]. Thus, we investigated any changes in the hallmarks of
EMT and EMT-inducing transcription factors in RMS.

We have long known that epigenetics often affects gene expression,
including mechanisms involving DNA methylation, histone modifica-
tion and microRNAs. Our previous investigation showed that targeting
GEFT by miR-874 could impair tumour proliferation and invasion of
RMS [18]. DNA methylation changes may result in altered gene expres-
sion profiles, the silencing of tumour suppressors due to promoter DNA
hypermethylation, as well as oncogene upregulation due to promoter
DNA hypomethylation [19]. There are close relationships between
methylation status and gene mutations and the biological behaviour of
RMS [20]. Sun’s study showed that fusion-positive and fusion-negative
rhabdomyosarcomas possess characteristic methylation profiles [21].

Herein, our study revealed that GEFT promotes RMS cell viability,
migration, and invasion. GEFT also inhibits apoptosis by activating
the Rac1/Cdc42 signalling pathways, and it accelerates lung

metastasis, as demonstrated by the construction of a nude mouse
model of rhabdomyosarcoma xenografts in order to better verify
the results of the in vitro experiments. Furthermore, GEFT influen-
ces the expression of hallmarks of EMT and EMT-inducing transcrip-
tion factors in RMS cells via the Rac1/Cdc42-PAK1 pathways,
subsequently promoting the tumourigenicity and metastasis of
RMS. We also found hypomethylation of GEFT. Thus, GEFT can
potentially be a therapeutic target.

2. Materials and methods
2.1. Tissue samples

Thirty-nine formalin-fixed paraffin-embedded (FFPE) RMS and fif-
teen normal skeletal muscle tissue samples were selected from
archives of the Department of Pathology of the First Affiliated Hospi-
tal, Shihezi University School of Medicine, China. These samples
included 19 embryonal rhabdomyosarcomas (ERMS), 6 alveolar rhab-
domyosarcomas (ARMS), 9 pleomorphic rhabdomyosarcomas (PRMS)
and 5 sclerosing rhabdomyosarcomas (SRMS). Written informed con-
sent was obtained from all participating patients before enrolment in
the study. This study was approved by the institutional ethics com-
mittee at the First Affiliated Hospital of Shihezi University School of
Medicine and conducted in accordance with the ethical guidelines of
the Declaration of Helsinki.

2.2. Cell cultures and transfection

Our study utilised three cell lines derived from human RMS: RD
(ERMS), PLA-802 (ARMS), and RH30 (ARMS). They were purchased
from the Biological Technology Co., Ltd. (Fu Xiang, Shanghai, China).
PLA-802 cells were cultured in RPMI 1640. RD and RH30 cells were
cultured in DMEM medium supplemented with 4.5 g/L of glucose,
2 mM of L-glutamine, and 10% foetal bovine serum (FBS) at 37 °C
with 5% CO,. Human RMS cells were grown on six-well plates for
transfection with Lipofectamine 2000 (Life Technologies, USA). We
performed the procedure according to the manufacturer’s instruc-
tions. Cells were harvested for quantitative real time PCR (qRT-PCR)
or Western blot analysis at 48 h after transfection, and these experi-
ments were performed in triplicate. All experiments were repeated
at least three times.

2.3. Antibodies and inhibition

The primary antibodies were rabbit anti-GEFT (Abcam, ab127690),
rabbit anti-Snail (Abcam, ab229701), mouse anti-Slug (Abcam,
ab51772), mouse anti-Twist (Abcam, ab175430), rabbit anti-Racl
(Abcam, ab33186), mouse anti-E-cadherin (CST, #14472), rabbit anti-
N-cadherin (CST, #13116), rabbit anti-PAK1 (Abcam, ab223849), Cdc42
(Abcam, ab187643), rabbit anti-RhoA (Abcam, ab187027), mouse anti-
Zeb1 (Santa Cruz, sc-81428), mouse anti-Zeb2 (Santa Cruz, sc-271984),
and mouse anti-B-actin (ZSGB-BIO, China). The secondary antibody
was peroxidase-conjugated goat anti-mouse/rabbit IgG (ZB-2305).
Cdc42 Activation Assay Biochem Kit™ (cytoskeleton, Cat. # BK034),
Racl Activation Assay Biochem Kit™ (cytoskeleton, Cat. # BK035) and
Rho A Activation Assay Biochem Kit™ (cytoskeleton, Cat. # BK036)
were used for analysis of Cdc42, Rac1 and Rho A activation. NSC23766
(Selleck, S8031), ZCL278 (Selleck, S7293), and IPA-3 (Selleck, S7093)
inhibitors were acquired commercially.

2.4. Plasmid generation

Human GEFT plasmid (GenBank-ID: NM-182947) was purchased
from QIAGEN (Shanghai, China). The shRNA sequence targeting GEFT
was also designed by QIAGEN (Supplementary Fig. S1). We chose the



124 C. Liu et al. / EBioMedicine 50 (2019) 122—-134

shGEFT sequence with the best results to carry out the follow-up cell
function experiments, except for the colony formation assay.

2.5. qRT-PCR analyses

Total RNA was extracted with an RNeasy Mini Kit (QIAGEN) fol-
lowing the manufacturer’s protocol. GEFT gene primers were pur-
chased from QuantiTect Primer Assays (QIAGEN). The reaction was
performed in an ABI 7500 real-time PCR thermocycler (Applied Bio-
systems) with a Quantifast SYBR Green PCR Kit (QIAGEN). The 2 2ACt
method was used to quantify the expression of GEFT.

2.6. Western blotting

Transfected RMS cells were lysed in RIPA lysis buffer (Solarbio).
Protein lysates were centrifuged at 4 °C for 15 min at 12,000 rpm to
remove cellular debris. Equal amounts of total protein were loaded
onto 15% SDS-polyacrylamide gels and transferred to PVDF mem-
branes (Millipore) after electrophoresis. The membranes were
blocked for 2 h with 5% nonfat dry milk in Tris-buffered saline con-
taining 0.1% Tween 20 and were incubated overnight with the pri-
mary antibodies at 4 °C. Then, the membranes were incubated with
the secondary antibodies for 2 h at room temperature.

2.7. Cell proliferation assays

Cell proliferation was monitored by a Cell Counting Kit-8 (CCK8)
assay (Dojindo, Shanghai, China) and an EDU (KGA337, KeyGen Bio-
TECH, China) assay. CCK8 can be used to measure both proliferation
and cytotoxicity by utilising Dojindo’s highly water-soluble tetrazo-
lium salt. Tumour cells transfected with GEFT, shGEFT, Rac1, or Cdc42
were cultured in 96-well plates at a cell density of 1 x 10* cells/well.
Cell proliferation was assessed every 24 h following the manufac-
turer's protocol. For the EdU assay, tumour cells transfected with
GEFT, shGEFT, Rac1, or Cdc42 were cultured in 12-well plates at a cell
density of 1 x 10° cells/well. Cell proliferation was assessed every
48 h following the manufacturer’s protocol.

2.8. Colony formation assay

Tumour cells were transfected with GEFT plasmid. A total of 1000
cells were seeded per six-well plate. After 2 weeks, the colonies were
fixed with 4% paraformaldehyde for 20 min and then stained with
0.1% crystal violet for 20 min.

2.9. Scratch assay

A total of 6 x 10° cells was seeded in six-well plates and cultured
overnight. When the cultures reached 85% confluency, the cell layer
was scratched with a sterile pipette tip, washed thrice with PBS to
remove any debris, and cultured in complete medium.

2.10. Cell migration and invasion assays

Cell migration and invasion experiments were performed with
Transwell® chambers (Corning Inc., USA), following the manufac-
turer’s protocol. A total of 3 x 10* cells in serum-free media were
placed in the upper chambers of the Transwells. For the invasion
assays, Matrigel™ matrix was used to coat the basement membrane
(BD Biosciences). The basement membrane had an 8.0 um pore size.
The migration assays did not utilise Matrigel. The assays measured
how many cells moved from the upper chamber through the mem-
brane (migration) or through the membrane plus Matrigel (invasion)
to the lower chamber over 24 h (migration) or 48 h (invasion).
Medium containing 20% FBS was added to the lower chamber.

2.11. Flow cytometry analysis of apoptosis

Cells were cultured for 48 h and then washed thrice with cold PBS.
After digestion with Accutase (eBioscience, USA) and centrifugation,
the cells were resuspended in 1 x binding buffer at a 1 x 10° cell/ml
concentration. The cells were analysed by PAS flow cytometry (PAR-
TEC, Germany) with Flow]Jo 7.6 software after staining with Annexin
V-APC/7-AAD or Annexin V-FITC/PIL.

2.12. Pull-down assay

Pull-down assays were conducted using an Activation Assay Bio-
chem kit (Cytoskeleton, Denver, CO) according to the manufacturer’s
protocols. Cell lysates were incubated for 60 min at 4 °C with either
Rhotekin-RBD or PAK-PBD beads to detect active RhoA or Racl/
CdC42, respectively. Proteins were separated on 15% gradient poly-
acrylamide gels and transferred to polyvinylidene fluoride mem-
branes, which were probed for RhoA, Rac1, or Cdc42.

2.13. Quantitative analysis of GEFT DNA methylation by MALDI-TOF MS

DNA was isolated using a DNA Extraction Kit (QIAGEN, 56404). DNA
purity and quality were evaluated by using a NanoDrop spectropho-
tometer (NanoDrop Technologies Inc.) and gel electrophoresis. Human
GEFT methylation primers were 5 aggaagagagAGTTTITTTGTTITTT-
GAGGATTTG 3’ (forward) and 5 cagtaatacgactcactatagggagaaggct
AAAACTTCATACTAAACCCCCACC3’ (reverse). Bisulfite was applied to
treat the DNA by using the EZ DNA Methylation Kit™ (Zymo Research,
D5008). Mass spectra were obtained by MassARRAY Compact MALDI-
TOF MS, and the methylation proportions of individual units were gen-
erated by EpiTyper 1.0.5 (SEQUENOM).

2.14. Animal studies

RD or RH30 cells were constructed with lentiviruses according to
standard protocols by QIAGEN. The animal study was approved by
the Ethics Committee of the First Affiliated Hospital of Medical Col-
lege, Shihezi University. The 5-week-old male BALB/c nude mice,
weighing 16—20 g, were purchased from Beijing Weitonglihua
Experimental Animal Technology Co., Ltd. Nine mice were randomly
divided into 3 groups—the RD group, Vehicle group or RD-GEFT
group—for the analysis of GEFT function. A total of 2 x 10° cells was
subcutaneously injected into the upper flanks of the nude mice. The
mice were monitored every other day, and the tumours were mea-
sured with callipers. Tumour size was estimated by the modified
ellipsoid formula: 1/2 (length x width?). The tumour length and
width were measured every 2 or 4 days.

As for the injected inhibitor groups, after the tumour length size
was >5 mm, NSC23766 (50 mg/kg) or ZCL278 (50 mg/kg) treatment
was started. Eighteen mice were randomly divided into 3 groups—
the RH30-GEFT group, the RH30-GEFT + NSC23766 group or the
RH30-GEFT + ZCL278 group—for analysis of the GEFT pathways. To
establish the mouse model, the mice were injected subcutaneously
with cells, and they were weighed before and during the experiment.
Inhibitor or vehicle was administered intraperitoneal every 2 days. A
Vernier calliper used to measure the tumour size to observe the
growth of the tumours. After anaesthesia (ketamine/xylazine cock-
tail, 85 mg/kg ketamine, 15 mg/kg xylazine), the mice were exposed
to observe in vivo GFP expression of tumour cells using the small ani-
mal in vivo imaging system IVIS-Lumina-Series-Ill. Mice were
euthanised by CO, inhalation at the end of the experiments. The
study was conducted according to the Animal Research Reporting In
Vivo Experiments (ARRIVE) requirements (Supplementary Table 1).
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2.15. Statistical analysis

SPSS 20.0 was employed to conduct the statistical analysis. Data
were presented as the mean + SD. One-way ANOVA (analysis of vari-
ance) was used to compare the indexes among three groups, and 2
independent sample t-test or Wilcoxon nonparametric test was used
to compare the indexes between two groups. Differences of the rate
changes between the two groups were tested by chi-square test.
P < 0.05 was recognised as the level of statistical significance.
*P < 0.05, **P < 0.01, and ***P < 0.001 were noted.

3. Results
3.1. GEFT displays oncogene activity in RMS

Our previous work found that overexpression of GEFT was signifi-
cantly correlated with lymph node metastasis, distant metastasis,
and a poor RMS prognosis; thus, GEFT may act as an oncogene in
RMS [5,6]. To investigate the GEFT signalling pathways in RMS devel-
opment, we first evaluated the biological role of GEFT in RMS cell
lines. The results showed that RMS cell lines transfected with
pCDNA-GEFT showed high GEFT expression relative to the vehicle
control, as assessed by qRT-PCR (Supplementary Fig. S2a). The GEFT
protein levels of cells transfected with shGEFT decreased compared
with those of the vehicle control group, as shown by Western blotting
(Supplementary Fig. S2b). The CCK-8 assay results showed that com-
pared with control cells, the growth of RMS cells transfected with
PCDNA-GEFT was enhanced (Supplementary Fig. S2c). EAU was used
to verify the cell proliferation results, and we found that GEFT could
promote cell proliferation (Fig. 1a). The number of colonies increased
following GEFT overexpression in RD and RH30 cells (Fig. 1b). The
number of migrating and invading tumour cells was remarkably
higher in pCDNA-GEFT-treated cells than that in the control groups
(Fig. 1c and d). Scratch assays with cells transfected with pCDNA-
GEFT healed faster compared with the control cells (Fig. 1e). Simi-
larly, flow cytometry analysis of RMS cells showed that GEFT inhib-
ited apoptosis (Fig. 1f). Thus, GEFT promotes RMS cell viability,
proliferation, migration, and invasion, and inhibits apoptosis; there-
fore, GEFT may act as an oncogene in RMS.

3.2. GEFT influences RMS cells via the Rho guanosine triphosphatase
(Rho-GTPase) pathway

Then, we focused on the signalling pathway mediating GEFT-
induced Rho-GTPase activation. Inhibiting GEFT activity reduced
Rac1 and Cdc42 activation, whereas inducing GEFT activity enhanced
Racl and Cdc42 activation in RMS cell lines, but RhoA remained
unchanged (Fig. 2a). To further indicate that GEFT enhances RMS cell
viability, migration, and invasion via the Rho-GTPase pathway, we
treated RMS cells transfected with pCDNA-GEFT with Rac inhibitor
(NSC23766) or Cdc42 inhibitor (ZCL278). EdU assays showed that
NSC23766 and ZCL278 could inhibit cell proliferation (Fig. 2b). The
CCK-8 assay results showed that treatment with NSC23766 inhibited
the growth of RMS cells transfected with pCDNA-GEFT (Supplemen-
tary Fig. S3). The scratch assay results showed that cells transfected
with pCDNA-GEFT and treated with NSC23766 or ZCL278 had slower
wound healing compared with cells transfected with pCDNA-GEFT
(Fig. 2c). The number of migrating and invading tumour cells was
remarkably lower in NSC23766- or ZCL278-treated cells than in the
control groups according to the Matrigel and Transwell assays
(Fig. 2d and e). The level of GEFT protein did not change in response
to NSC23766 or ZCL278 treatment in RMS cell lines (Fig. 2f). There-
fore, these results indicated that GEFT as an upstream gene of Rac1 or
Cdc42 via Racl/Cdc42-dependent pathways regulates the progres-
sion of rhabdomyosarcoma.

3.3. GEFT promotes RMS cell growth and metastasis via the Rac1/Cdc42
pathway in vivo

To further demonstrate GEFT promotes RMS cell growth and
metastasis in vivo, RD cells stably transfected with lentivirus GEFT
were injected into nude mice. The whole-body green fluorescent pro-
tein (GFP) imaging system revealed that metastasis was more exten-
sive in the RD-GEFT group than in the two control groups (Fig. 3a).
The subcutaneous tumourigenic latency of nude mice in the RD-GEFT
group was shortened (13.875 + 1.464 days); additionally, the growth
rate of tumours over the first 25 days was significantly faster, and the
volume of the tumours was larger. Compared with the RD group
(17.286 £ 1.604 days) and Vehicle group (17.714 &+ 1.604 days), the
difference was statistically significant (P < 0.05, Fig. 3b). Haematoxy-
lin and eosin (HE) staining of the tumour sections revealed that the
RD-GEFT group exhibited more atypical tumour cells and had
enhanced pathological mitosis (Fig. 3c). We then assessed mRNA and
protein expression levels in the tumours. The mRNA expression lev-
els of GEFT, Rac1, and Cdc42 were increased in the LV-GEFT group
(P < 0.05, Fig. 3d). Additionally, the activation of Racland Cdc42
were increased in the RD-GEFT group (P < 0.05, Fig. 3e). These data
are thus consistent with the GEFT-Rac1/Cdc42 signalling in the RMS
cell lines.

3.4. Rac1/Cdc42 pathway inhibitor inhibited tumour growth in vivo

Next, we wanted to investigate whether Rac1/Cdc42 pathway inhib-
itors could inhibit tumour growth in vivo. RH30 cells stably transfected
with lentivirus GEFT were injected into nude mice. Tumours formed
after 7 days. On the 14th day, the nude mice were given intraperitoneal
injections of the optimal concentrations of NSC23766 or ZCL278. Com-
pared with the GEFT control group, the tumour growth slowed after the
14th day of NSC23766 treatment (P < 0.05) or the 12th day of ZCL278
treatment (P < 0.05). The weight of nude mice in the NSC23766 and
ZCL278 groups was significantly lower than that of the control group
after the 14th day (P < 0.05 and P < 0.01) (Fig. 4). These data demon-
strate that Rac1/Cdc42 pathway inhibitors could inhibit RMS tumour
growth in vivo.

3.5. GEFT influences EMT/MET via Rac1/Cdc42-PAK1 pathways

We next tested our hypothesis that GEFT influences EMT and EMT-
inducing transcription factors to promote tumour invasion and metas-
tasis by Rac1/Cdc42 signalling. First, we used immunofluorescence
assays to analyse the fluorescence intensity of various EMT-related
markers. In RMS cells, GEFT enhanced the fluorescence intensity of
N-cadherin protein and reduced the fluorescence intensity of E-
cadherin protein (Fig. 5a). Thus, the protein level of E-cadherin was
reduced, whereas those of N-cadherin and EMT-inducing transcription
factors (Snail, Slug, Twist, ZEB1, and ZEB2) increased in cells trans-
fected with pCDNA-GEFT; further, the opposite effects were observed
in cells transfected with shGEFT (Fig. 5b). When cells were treated
with NSC23766 or Z(CL278, the expression level of E-cadherin
increased, but the expression levels of N-cadherin and Snail, Slug,
Twist, ZEB1, and ZEB2 were reduced (Fig. 5c and d). Last, upregulation
of GEFT could promote the expression of PAK1, but NSC23766 or
ZCL278 could inhibit the expression of PAK1 (Fig. 5e). When treated
with IPA-3 (a classic inhibitor of PAK1), the expression level of
E-cadherin increased, and the expression levels of N-cadherin and
EMT-inducing transcription factors were reduced (Fig. 5f). In summary,
these data provide strong evidence that GEFT influences EMT/MET via
the Rac1/Cdc42-PAK1 pathways to promote tumour invasion and
metastasis.



126 C. Liu et al. / EBioMedicine 50 (2019) 122—-134

Hoechst EdU

Merge

Hoechst

]
° S
= s
o S
= >
[a] [~
B z
¢
T = |
w ]
© o
K
S
=
[
o~ | >
o
@
<
- |
o
-
[T
w
o
b c » &
" & & -
Vehicle GEFT <& Vehicle GEFT & &
804 t=-12.127, P <0.000 X
3 = X sl o ] t=samp <000
RD RD+GEFT 2w fo 3. A
g te-.465, P = 0001 h a 1
: a fof - 2 20
g (3 £ .0 -
2 1 .
£ w s
Y 2 z “ &
€ & o £ o E
# ] " < 2 H
oy eemecom T i z £ JE
2 120 T g £
3 £ .l ol
T o0
5 ms 150 150, t=-1708, P <0000
i 60- é t= 8,623, P <0.000 Eﬂo 3
5w o Ew = S i,
o . © 3 - 2 ... o
S 5 8
& P L H

el
=
o
>
[
™
w
[T}
RD RH30 PLA-802 3
80 2. x?=1323, P <0.000 x“=430, P <0.000
° - < T 100
€ GEFT x3= 264, P <0.000 2 GEFT 2 GEFT
3 o0 Vehicle 2 _a Vehicle 3 w0 Vehicle
32 28 =201, P 20,001 iz
5 - 5 T 60
224 PR o &
&5 5 -3 &5 N
g8 x'=106, pab.0te g8 g2 4 2= 124, PZ0.020
€3 3 £9
© 20 C
gew g 8°
s 7} 5
& = e —_— & e
o 12 24 12 24 o 12 24
Hours Hours Hours
Vehicle GEFT Vehicle GEFT Vehicle GEFT
R AT T Rl
zm})ﬂl‘ J— 3:""&' —— p 101: 22.1 02:259% |Q1: 16.4¢ 02457% - 0120484 02:5.76% 01: 18.70% oz | __40
1: 4% 3 -z P = 2
i g g 100 3 0] #=1zspz00
4 g g g £, ¢ g H
S < < o Sy < T
L - - ] - =
2 2 2 g0 = T ﬁ
g, 10 0 g 0d 5 g
2 - g ' T e —arw | <
orzow | < TR oriE | & " T I et T .
1 ar T T oo v To T o v T v e 01 T
L T T T i ™ a3 a0 a3t o e e SO &

Fig. 1. GEFT displays oncogene activity in RMS. (a) EdU was used to detect cell proliferation. Hoechst stained all cells (blue), EdU labelled proliferating cells (red), and GEFT pro-
moted cell proliferation (pink). (b) Colony-forming assays. (¢) The number of migrating tumour cells, as well as their migratory ability, was significantly higher in pCDNA GEFT-
treated cells than that in the control groups. (d) The number of invading tumour cells, as well as their invasion ability, was significantly higher in pCDNA GEFT-treated cells than
that in the control groups. (e) The migratory ability of RMS cells was investigated by wound-healing assays. (f) GEFT inhibited apoptosis of RMS cells. An independent sample t-test
was used to detect differences between the two groups (b, ¢, d). Differences of the rate changes between the two groups were tested by chi-square test (e, f).
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Fig. 2. GEFT is involved in Rho activation. (a) Rac1 and Cdc42 were activated by GEFT in RMS cells, as shown by pull-down assays, but RhoA was not changed. (b) The EdU assay
shows that NSC23766 or ZCL278 can inhibit cell proliferation of RMS. (c) The migratory ability of RMS cells is inhibited by NSC23766 or ZCL278. Differences of the rate changes
between the two groups were tested by chi-square test. (d and e) The number of migrating and invading tumour cells was significantly lower in NSC23766 or ZCL278-treated cells
than that in the control groups. An independent sample t-test was used to detect differences between the two groups. (f) The level of GEFT protein did not change when the RMS

cell lines were treated with either NSC23766 or ZCL278.
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3.6. GEFT gene methylation levels in rhabdosyosarcoma and their
correlation with clinical pathological characteristics

The overall methylation level of the target fragment of the GEFT pro-
moter was statistically lower (0.52264-0.1147) in rhabdosyosarcoma
than in normal skeletal muscle tissues (0.6768+0.1483, Z= —3.351,
P = 0.001) (Fig. 6a and b). Importantly, the methylation level of 9 CpG
units of the GEFT promoter in rhabdomyosarcoma was lower than that
in normal skeletal muscle tissue, and changes at CpG-2, CpG-7, and
CpG-13 were statistically significant (Fig. 6¢, d and Supplementary Table
2). Furthermore, rhabdomyosarcoma patients had significant differences
among different histological subtypes of rhabdomyosarcoma in
regard to CpG-7 hypomethylation (x? = 10.886, P = 0.012; Supple-
mentary Table 3). However, GEFT gene methylation levels showed
no obvious differences among the patients with regards to their sex,
age, ethnicity, or tumour location (P > 0.05).

We have previously used immunohistochemistry to show that in
39 cases of rhabdomyosarcoma, 37 cases showed overexpression of
GEFT protein (37/39, 94.9%), while in 15 cases of normal skeletal mus-
cle, only 1 case was weakly positive (1/15, 6.7%). Pearson bivariate cor-
relation analysis showed that low level methylation of the CpG-2,
CpG-7, and CpG-13 sites increased the expression level of the GEFT
protein (P =0.006; P =0.041; P=0.037) (Supplementary Table 4).

4. Discussion

Metastasis of tumour cells, rather than the primary tumour, is the
major cause of death from cancer. Therefore, understanding the
molecular mechanism involved in the metastasis of cancer cells is cru-
cial. Metastasis is a complex process that requires the concerted action
of many genes and signalling pathways [22,23]. In this context, Rho-
GTPases play fundamental roles. Rho-GTPases not only regulate the
formation of specific actin-containing structures [24] but also regulate
several other cell migration-related processes, including polarity,

adhesion, and substrate recognition [25]. Furthermore, Rho-GTPases
cycling between GTP-bound and GDP-bound states have been widely
implicated in cancer progression. The key step in their activation is the
exchange of GDP for GTP, which is catalysed by RhoGEFs.

RhoGEFs are intracellular effectors of cell surface receptors; some
RhoGEFs are specific for Rho, Rac, or Cdc42 [26]. Known RhoGEFs
include Vav1-3, P-Rex, Tiam1, TRIO, and Ect2. Most RhoGEFs display
increased abundance or activity in human tumours and can promote
tumour cell migration and invasion [27—33]. Inhibiting some RhoGEFs
blocks many functions associated with tumourigenesis and prevents
metastasis [34,35]. However, reports about the roles of RhoGEFs in sar-
comas are rare. In one study, TRIO was found to be frequently affected
by high-level amplifications and abundant expression, and it may be
involved in the development of soft tissue sarcomas [36]. To date, the
roles of GEFT in tumours have been poorly investigated.

GEFT, as one of the RhoGEFs, comprises the Dbl and pleckstrin
homology domains with short N- and C-terminal sequences. At pres-
ent, the GEFT signalling pathway involved in RMS is unknown. The
interaction between GEFT and the blood vessel epicardial substance
controls cell shape and movement through regulating Rac1/Cdc42
activity [37]. GEFT regulation of lens differentiation and eye develop-
ment occurs through a Rac-mediated mechanism [38]. GEFT selec-
tively couples with Gaq/11 to activate RhoA in blood vessels and
cultured cells; it also mediates the physiologically important
Ca?*sensitisation of force induced by Gaq/11-coupled agonists
[39,40]. Moreover, GEFT is an important mediator of angiotensin
II-dependent RhoA activation in rat aortic smooth muscle cells [41].
GEFT limits lamellipodial protrusion to one direction via RhoA activa-
tion in breast carcinoma cells [42]. The GEFT-RhoA signalling path-
way participates in the regulation of breast tumour initiation and
progression [43]. GEFT activation of the Rac/Cdc42-p21-activated
kinase I (PAK) signalling pathways enhances neurite outgrowth in
neuroblastoma cells [10]. In our study, we confirmed that GEFT influ-
ences RMS cells via the Rho-GTPase signalling pathway.
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EMT consists of disaggregating epithelial units and reshaping epi-
thelia for movement. In transition, the epithelium loses polarity,
adherens junctions, and tight junctions. This phenotypic conversion
requires new molecular biochemical instructions [44]. The cellular
adaptations characterising EMT are driven by growth factor signalling
pathways, such as transforming growth factor b (TGF-b), Wnt, and
fibroblast growth factor (FGF) [45]. Members of the TGF-b family of
growth factors can initiate and maintain EMT in a variety of biological
systems and during pathophysiological progression [46]. EMT
involves signalling factors that induce the expression of specific tran-
scription factors (e.g., Snail, Twist, Zeb) and post-translational regula-
tors, many of which are involved in embryonic development, wound
healing and cancer metastasis [47].

EMT has been extensively studied in the last decade, but MET
has only recently become noteworthy [48]. MET may exist in sar-
comas [49,50]. The MET process is associated with a better progno-
sis through integrated proteomics and genomics analyses in soft
tissue leiomyosarcomas [51]. Snaill is highly expressed both in
ARMS samples from patients and in ARMS cell lines. The expres-
sion level of E-cadherin is downregulated in ARMS [52]. Snail is a
key regulator of ARMS tumour growth and differentiation through
repressing the functions of MYF5 and MYOD [53]. Therefore, MET
may play an important role in mesenchymal tumours.

Racl promotes the EMT programme in gastric adenocarcinoma
and in the acquisition of a cancer stem-like cell state [54]. Racl,
Snail1, Twist1, N-cadherin, and Vim levels are markedly elevated,
whereas E-cadherin levels are substantially decreased in non-small
cell lung cancer (NSCLC). Racl expression is positively correlated
with Snail1, Twist1, N-cadherin, and Vim levels and negatively cor-
related with E-cadherin levels in NSCLC tissues [55]. Interferon reg-
ulatory factor 4 binding protein regulates EMT and the motility of
breast cancer cells via the Rac1/Cdc42 signalling pathways [56]. In
our study, GEFT overexpression upregulated the expression levels
of N-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 and reduced the
expression level of E-cadherin. Additionally, GEFT influenced the
expression of EMT/MET markers of RMS cells via the Rac1/Cdc42-
PAK1 pathways.

There was a study showing that NELL1 activation was corre-
lated with CpG hypomethylation in patients with RMS [57]. We
found that elevated GEFT expression in RMS was due to promoter
hypomethylation, and CpG-2, CpG-7, and CpG-13 hypomethyla-
tion was correlated with the expression of the GEFT protein. Kur-
masheva’s study found that hypermethylation of the PAX3 gene
decreased its protein expression in ERMS, while hypomethylation
of the PAX3 gene has been found in ARMS [58]. A hypermethy-
lated MYOD1 gene was found in ERMS but not in ARMS [59]. Our
results showed that the hypomethylation of the GEFT gene pro-
moter region was different in different histologic subtypes of
RMS, which may open up new approaches for the auxiliary diag-
nosis of RMS.

5. Conclusion

This study not only demonstrated a function of GEFT in the tumouri-
genicity and metastasis of RMS but also delineated its potential molecu-
lar mechanism. GEFT influences RMS cells via the Rac1/Cdc42-PAK
signalling pathway and contributes to the molecular mechanism of EMT
to promote the invasion and metastasis of RMS (Fig. 7). The newly iden-
tified GEFT-Rho-GTPase-EMT axis provides new insights into the inva-
sion and metastasis of RMS and is a valuable target for RMS therapy.
Future studies on its function in other cancers will provide further infor-
mation about the role of GEFT in cancer progression and metastasis.

Collectively, our findings provide important clues about the
mechanisms that GEFT uses to accelerate the tumourigenicity and
metastasis of RMS by activating Rac1/Cdc42-PAK signalling pathway-
induced EMT. These findings suggest that GEFT may serve as a novel
therapeutic target.
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