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Abstract Detection of objects that move in a scene is a fundamental computation performed 
by the visual system. This computation is greatly complicated by observer motion, which causes 
most objects to move across the retinal image. How the visual system detects scene-relative object 
motion during self-motion is poorly understood. Human behavioral studies suggest that the visual 
system may identify local conflicts between motion parallax and binocular disparity cues to depth 
and may use these signals to detect moving objects. We describe a novel mechanism for performing 
this computation based on neurons in macaque middle temporal (MT) area with incongruent depth 
tuning for binocular disparity and motion parallax cues. Neurons with incongruent tuning respond 
selectively to scene-relative object motion, and their responses are predictive of perceptual deci-
sions when animals are trained to detect a moving object during self-motion. This finding establishes 
a novel functional role for neurons with incongruent tuning for multiple depth cues.

Editor's evaluation
This paper will be of broad interest to readers in the field of visual processing. The authors use 
concurrent psychophysics and single unit recordings, along with modeling, to investigate how visual 
signals in primate cortical area MT can distinguish between visual motion induced by self-motion 
and the motion of other objects in the world. The experiments provide an explanation for otherwise 
puzzling discrepancies in the depth tuning of MT cells.

Introduction
When an observer moves through the environment, image motion on the retina generally includes 
components caused by self-motion and objects that move relative to the scene, both of which depend 
on the depth structure of the scene. Because self-motion typically causes a complex pattern of image 
motion across the visual field (optic flow, Gibson et al., 1959; Koenderink and van Doorn, 1987), 
detecting the movement of objects relative to the world can be a difficult task for the brain to solve. 
An object that is moving in the world might appear to move faster or slower in the image than objects 
that are stationary in the scene, depending on the specific viewing geometry. Thus, a critical computa-
tional challenge for detecting scene-relative object motion is to identify components of image motion 
that are not caused by one’s self-motion and the static depth structure of the scene. This is a form of 
causal inference problem (Shams and Beierholm, 2010; French and DeAngelis, 2020).

Object movement may be relatively easy to distinguish from self-motion when the object’s temporal 
motion profile is clearly different from that of image motion resulting from self-motion (Layton and 
Fajen, 2016a) or when the object moves in a direction that is incompatible with self-motion (Royden 
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and Connors, 2010). Neural mechanisms with center-surround interactions in velocity space have 
been proposed as potential solutions to the problem of detecting object motion under these types of 
conditions (Royden and Holloway, 2014; Royden et al., 2015). However, the brain has a remarkable 
ability to detect object motion even under conditions in which the image velocity of a moving object 
is very similar to that of stationary background elements during self-motion. Rushton et al., 2007 
demonstrated that object movement relative to the scene ‘pops out’ when 3D structure is specified by 
binocular disparity cues but not in the absence of disparity cues. They suggested that disparity cues 
help the visual system to discount the global flow field resulting from self-motion, thereby identifying 
object motion. How the brain might achieve this computation has remained a mystery.

We previously reported that many neurons in area MT have incongruent tuning for depth defined 
by binocular disparity and motion parallax cues (Nadler et al., 2013). We speculated that such neurons 
might play a role in detecting object motion during self-motion by responding selectively to local 
conflicts between disparity and motion parallax cues (Nadler et al., 2013; Kim et al., 2016a). Here, 
we test this hypothesis directly by recording from MT neurons while monkeys perform a task that 
requires detecting object motion during self-motion. We show that monkeys perform this task based 
mainly on local differences in depth as cued by disparity and motion parallax. We demonstrate that 
MT neurons with incongruent tuning for depth based on disparity and motion parallax are generally 
more sensitive to scene-relative object motion than neurons with congruent tuning. We show that MT 
neurons that respond with a consistent preference for scene-relative object motion are predictive of 
the animals’ perceptual decisions and that training a linear decoder to detect object motion based on 
MT responses largely reproduces our main empirical results. We also show that selectively decoding 
neurons with incongruent tuning yields better performance than decoding congruent neurons. Our 
findings establish a novel mechanism for detecting moving objects during self-motion, thus revealing 
a sensory substrate for a specific form of causal inference. Because this mechanism relies on sensitivity 
to local discrepancies between disparity and motion parallax cues, it allows detection of object motion 
without the need for more complex computations that discount the global flow field. Thus, this local 
mechanism may be relatively economical for the nervous system to implement and likely provides a 
complementary approach to mechanisms for computing scene-relative object motion based on optic 
flow parsing (Rushton and Warren, 2005; Warren and Rushton, 2008; Warren and Rushton, 2009b, 
a; Layton and Fajen, 2016b; Niehorster and Li, 2017; Layton and Niehorster, 2019; Layton and 
Fajen, 2020; Peltier et al., 2020).

Results
We recorded from 123 well-isolated single neurons in area MT of two macaques that were trained to 
perform an object motion detection task during self-motion (53 neurons from monkey 1 [M1] and 70 
from monkey 2 [M2]). We begin by describing the task and behavioral data, followed by analysis of 
the responses of isolated MT neurons during this task. Finally, we demonstrate that a simple linear 
decoder trained to perform the task based on responses of our MT population can recapitulate our 
main findings.

Stimulus configuration and behavioral task
During neural recordings, monkeys viewed a display consisting of two square planar objects that 
were defined by random dot patterns (Figure 1A, B; Figure 1—figure supplement 1; Video 1; see 
Methods for details). The animal viewed these objects while being translated (0.5 Hz modified sinu-
soid, see Methods) along an axis in the fronto-parallel plane which corresponded with the preferred-
null motion axis of the neuron under study. In the base condition of the task with no cue conflict 
between depth from disparity and motion parallax, both objects were simulated to be stationary in 
the world, such that their image motion was determined by the self-motion trajectory and the location 
of the objects in depth. When the objects were stationary in the world, their depth defined by motion 
parallax and disparity cues was the same, hence the difference in depth between the two cues was 
zero (ΔDepth = dMP – dBD = 0).

In other conditions (ΔDepth ≠ 0), one of the objects was stationary in the world while the second 
‘dynamic’ object moved in space such that its depth defined by motion parallax, dMP, was not consis-
tent with its depth defined by binocular disparity, dBD (Figure  1B, Figure  1—figure supplement 
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Figure 1. Object detection task and behavior. (A) Schematic illustration of the moving object detection task. Once the animal fixated on a center target, 
objects were presented while the animal experienced self-motion. Saccade targets then appeared at the center of each object, and the animal indicated 
the dynamic object (moving relative to the scene) by making a saccade. (B) Schematic illustration of stimulus generation from behind and above the 
observer. A stationary far object that lies within the neuron’s receptive field (RF, dashed circle) has rightward image motion when the observer moves 

Figure 1 continued on next page
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1B; see Methods for details). As a result of this cue conflict between disparity and motion parallax, 
the dynamic object should appear to be moving in the world based on previous work in humans 
(Rushton et al., 2007). As ΔDepth becomes greater in magnitude, it should be easier for the animal 
to correctly determine which object is the dynamic object. Animals indicated their decision by making 
a saccade to one of two targets that appeared at the locations of the two objects at the end of the 
trial (Figure 1A). Critically, due to the experimental design (see Methods for details), animals could 
not simply detect the dynamic object based on its retinal image velocity since the stationary object(s) 
in the display also moved on the retina due to self-motion combined with depth variation.

Average psychometric functions for the two animals across 104 recording sessions are shown in 
Figure 1C. As expected, the animals perform at chance when ΔDepth = 0, and their percent correct 
increases with the magnitude of ΔDepth. This demonstrates that monkeys can perform the task as 
expected from human behavioral work (Rushton et al., 2007). Furthermore, we found that perfor-
mance was near chance levels in a control experiment without binocular disparity cues (Figure 1—
figure supplement 2), as also expected from previous work (Rushton et al., 2007).

The ranges of depths of the stationary and dynamic objects were overlapping but not identical 
(see Methods). To determine whether the animals primarily made their decisions based on ΔDepth 
and not based upon the individual depths specified by disparity or motion parallax, we performed 
a logistic regression analysis to determine how animals perceptually weighted depth from motion 
parallax (|dMP|), depth from binocular disparity (|dBD|), and the magnitude of ΔDepth (‍

∣∣dMP − dBD
∣∣
‍ ; see 

Methods for details). Results show that animals primarily weighted the |ΔDepth| cue to make their 
decisions (Figure 1D, E), although there were small contributions from the individual depth cues. 
We initially trained each animal to perform the task with four objects present in the display (three 
stationary objects and one dynamic object), as well as three different pedestal depths, to make it 
more difficult for animals to rely on dMP or dBD. Indeed, we found that the logistic regression weights 
were also strongly biased in favor of |ΔDepth| in the four-object version of the task (Figure 1—figure 
supplement 3D, E). To increase the number of stimulus repetitions we could perform during recording 
experiments, we simplified the task to the two-object case.

Congruency of depth preferences and responses to dynamic objects
We measured the tuning of well-isolated MT neurons for depth defined by either binocular disparity 
or motion parallax cues, as described previously (Nadler et al., 2013, see also Methods). Receptive 
fields (RFs) and direction preferences of the population of MT neurons are summarized in Figure 2—
figure supplement 1. Figure 2A shows data for a typical ‘congruent’ cell, which prefers near depth 
defined by both disparity and motion parallax cues (see Methods for definition of congruent and 
opposite cells). Note that motion parallax stimuli are presented monocularly, such that selectivity for 
depth from motion parallax cannot be a consequence of binocular cues. In contrast, Figure 2B, C 
show data for two examples of ‘opposite’ cells that prefer near depths defined by motion parallax 
and moderate far depths defined by binocular disparity. Such neurons would, in principle, respond 
more strongly to some stimuli with discrepant disparity and motion parallax cues. Note that, for all 
of the example cells in Figure 2A–C, responses to binocular disparity are substantially greater than 
responses to motion parallax. This is mainly because binocular disparity tuning was measured with 

to the right. The other (dynamic) object moves rightward independently in space (cyan arrow) such that the object’s net motion suggests a far depth 
while binocular disparity cues suggest a near depth. Gray shaded region indicates the display screen; cross indicates the fixation point. (C) Average 
behavioral performance across recording sessions for each animal (n=47 sessions from monkey 1 [M1] and n=57 sessions from monkey 2 [M2], excluding 
two sessions for which the standard set of ΔDepth values was not used). Error bars denote 95% CIs. (D) Normalized regression coefficients for depth 
from disparity (βBD), depth from motion parallax (βMP), and ΔDepth (βΔ) are shown separately for chosen locations and not-chosen locations (see text 
for details). Gray and black bars denote data for M1 (n=44) and M2 (n=53), respectively. (E) Proportion of fits for which each regression coefficient was 
significantly different from zero (alpha = 0.05). Format as in panel D.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Visual display and motion trajectories.

Figure supplement 2. Results from a control experiment including monocularly presented objects.

Figure supplement 3. Behavioral performance in the more generalized task with four objects.

Figure 1 continued

https://doi.org/10.7554/eLife.74971
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constant-velocity stimuli at the preferred speed, 
whereas the range of speeds used to measure 
depth tuning based on motion parallax is gener-
ally lower (and covaries with depth magnitude).

As done previously (Nadler et  al., 2008; 
Nadler et  al., 2009; Nadler et  al., 2013; Kim 
et  al., 2015a, Kim et  al., 2015b; Kim et  al., 
2017), we quantified the depth-sign preference of 
each MT neuron using a depth-sign discrimination 
index (DSDI, see Methods), which takes on nega-
tive values for neurons with near preferences and 
positive values for neurons with far preferences. 
Across the population of 123 neurons, depth-
sign preferences for motion parallax tended 
to be strongly biased toward near-preferring 
neurons, as reported previously (Nadler et  al., 
2008; Nadler et al., 2013), whereas depth-sign 
preferences for binocular disparity were rather 
well balanced (Figure 3A). Importantly, there are 
roughly equal numbers of neurons in the lower-
left and upper-left quadrants of Figure 3A, indi-
cating that congruent and opposite cells were 
roughly equally prevalent in our sample of MT 
neurons (see also Nadler et  al., 2013). Thus, 
there are many opposite cells in MT that might 
respond selectively to dynamic objects over static 
objects.

Figure  2D shows responses of the example 
congruent cell (from Figure  2A) that were 
obtained during the object detection task. 
Responses to the stationary object (red) are 
plotted as a function of the depth values spec-
ified by motion parallax (which are necessarily 
equal to binocular disparity values for a stationary 
object). Responses to the dynamic object (blue) 
are plotted as a function of both depth defined 
by motion parallax (lower abscissa) and depth 
defined by disparity (upper blue abscissa). This 
allows the reader to determine the depth value 
for each cue that is associated with a dynamic 
object having a particular ΔDepth value. For this 
example congruent cell (Figure 2D), responses to 
stationary objects with large near depths substan-
tially exceeded responses to any dynamic object.

A strikingly different pattern of results is seen 
for the example opposite cell in Figure  2E. In 

this case, there are a few dynamic objects for which the neuron’s response (blue) clearly exceeds 
the response to stationary objects of all different depth values (red). More specifically, this incon-
gruent cell responds most strongly to dynamic objects that have large near depths defined by motion 
parallax and depths near the plane of fixation (0 deg) as defined by binocular disparity. This pattern of 
results is expected from the individual tuning curves in Figure 2B and demonstrates that this opposite 
cell is preferentially activated by a subset of dynamic objects. The second example opposite cell in 
Figure 2C, F shows a generally similar pattern of results. For this cell, peak responses to stationary 
and dynamic objects are similar, but the neuron responds more strongly to dynamic objects over most 
of the stimulus range. Since we applied our ΔDepth manipulation around a fixed pedestal depth of 

Video 1. Visual stimuli used in the dynamic object 
detection task. Examples of visual stimuli in the two-
object task, assuming that the receptive field of a 
neuron is located on the horizontal meridian. The video 
shows a sequence of seven stimuli, which are sorted by 
their ΔDepth values (ΔDepth = −1.53, −0.57, −0.21, 0, 
0.21, 0.57, and 1.53 deg). The depth of the stationary 
object in each stimulus is labeled and was chosen 
randomly. In the actual experiment, the fixation target 
was stationary in the world, and the motion platform 
moved the animal and screen sinusoidally along an 
axis in the fronto-parallel plane (here a horizontal axis). 
Thus, the video shows the scene from the viewpoint 
of the moving observer. The stimulus sequences are 
equivalent to a situation in which the observer remains 
stationary, and the entire scene is translated in front 
of the observer. For each ΔDepth value, two full cycles 
of the stimulus are shown for display purposes; in the 
actual experiment, each trial consisted of just one 
cycle. During the second cycle of each stimulus in the 
video, the text label indicates whether the dynamic 
object was on the left or right side of the display. Red 
and green dots in the video denote the stereo half-
images for the left and right eyes. Note that, without 
viewing the images stereoscopically and tracking the 
fixation target, it is generally not possible to determine 
the location of the dynamic object from the image 
motion on the display.

https://elifesciences.org/articles/74971/figures#video1
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–0.45 deg (to facilitate decoding, see Methods), we do not expect dynamic objects to preferentially 
activate every opposite cell. However, cells that are preferentially activated by dynamic objects should 
tend to be neurons with mismatched depth tuning for motion parallax and binocular disparity cues.

Figure 3B shows that this expected relationship holds across our population of MT neurons. The 
ratio of peak responses for dynamic:stationary objects is plotted as a function of the correlation coef-
ficient, RMP_BD, between depth tuning curves for disparity and motion parallax. Neurons with RMP_BD < 0 
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Figure 2. Responses of representative MT neurons. (A) Depth tuning curves for an example ‘congruent’ neuron preferring near depths based on both 
binocular disparity (magenta) and motion parallax (cyan) cues (DSDIBD = −0.81; DSDIMP = −0.70 [DSDI, depth-sign discrimination index]; p<0.05 for both, 
permutation test; correlation RMP_BD = 0.76, p=0.016). Dashed horizontal lines indicate baseline activity for each tuning curve. (B) Tuning curves for an 
example ‘opposite’ neuron preferring small far depths based on binocular disparity but preferring near depths based on motion parallax (DSDIBD = 0.41; 
DSDIMP = −0.67; p<0.05 for both, permutation test; RMP_BD = −0.36, p=0.32). (C) Another example opposite cell preferring far depths based on binocular 
disparity but near depths based on motion parallax (DSDIBD = 0.46; DSDIMP = −0.56; p<0.05 for both, permutation test; RMP_BD = −0.73, p=0.025). 
(D) Responses of the neuron in panel A to stationary objects (red) and dynamic objects (blue) during performance of the detection task. Stationary 
objects were presented at various depths (bottom abscissa). Dynamic objects generally have conflicts (ΔDepth ≠ 0) between depth from motion parallax 
(bottom abscissa) and binocular disparity (top abscissa). The pedestal depth at which ΔDepth = 0 is shown as an unfilled blue triangle. (E) Responses 
during the detection task for the opposite cell of panel B. Format as in panel D. (F) Responses during detection for the neuron of panel C. Error bars in 
all panels represent s.e.m.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distribution of receptive field (RF) properties.

https://doi.org/10.7554/eLife.74971
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(opposite cells) tend to have peak response ratios 
that lie in the upper-left quadrant, indicating that 
opposite cells tend to be preferentially activated 
by dynamic objects. In contrast, neurons with 
RMP_BD > 0 (congruent cells) tend to have peak 
response ratios in the lower-right quadrant, indi-
cating that they tend to be preferentially activated 
by stationary objects. Across the population, peak 
response ratio is significantly anti-correlated with 
RMP_BD (n=106, Spearman rank correlation, R = 
−0.39, p=2.8×10–5), indicating that the hypoth-
esized relationship between tuning congruency 
and response to scene-relative object motion is 
observed.

We further tested whether differences in depth 
tuning curves for binocular disparity and motion 
parallax can predict whether neurons prefer posi-
tive or negative ΔDepth values. Using responses 
to the dynamic object, we quantified each 
neuron’s preference for positive/negative ΔDepth 
values using a variant of the DSDI metric, DSDIdyn 
(see Methods), and found that it is robustly 
correlated with the difference in DSDI values 
(ΔDSDI) computed from depth tuning curves for 
disparity and motion parallax (Figure 3C, R=0.54, 
p=2.7×10–9, n=106, Spearman correlation). Thus, 
selectivity for ΔDepth during the detection task 
is reasonably predictable from the congruency of 
depth tuning measured during a fixation task.

Correlation with perceptual 
decisions
If neurons with mismatched depth tuning for 
disparity and motion parallax cues are selec-
tively involved in detecting scene-relative object 
motion, we hypothesized that neurons that 
respond preferentially to dynamic objects should 
have responses that are more strongly correlated 
with perceptual decisions. To measure the correla-
tion of neural activity with perceptual decisions, 
we took advantage of the fact that our design 
included a subset of trials in which both objects 
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Figure 3. Relationship between selectivity for moving 
objects and congruency between depth cues. 
(A) Population summary of congruency of depth 
tuning for disparity and motion parallax. The depth-
sign discrimination index (DSDI) value for binocular 
disparity tuning (DSDIBD) is plotted as a function of the 
DSDI value for motion parallax tuning (DSDIMP) for each 
neuron (n=123). Triangles and squares denote data 
for monkey 1 (M1) (n=53) and monkey 2 (M2) (n=70), 
respectively. (B) Population summary of relationship 
between relative responses to dynamic and stationary 
objects as a function of depth tuning congruency. 

Figure 3 continued on next page

The ordinate shows the ratio of peak responses for 
dynamic:stationary stimuli. The abscissa shows the 
correlation coefficient (RMP_BD) between depth tuning 
for motion parallax and disparity. Dashed line is a linear 
fit using type 2 regression (n=106; n=47 from M1 and 
n=59 from M2; sample includes all neurons for which 
we completed the detection task). (C) Population 
summary (n=106) of the relationship between the 
preference for ΔDepth of the dynamic object (as 
quantified by DSDIdyn, see Methods) and the difference 
between DSDIMP and DSDIBD.

Figure 3 continued
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were stationary in the world and were presented 
at the pedestal depth of –0.45 deg (Figure 4A). 
These conditions allowed us to quantify choice-
related activity, for a fixed stimulus, by sorting 
responses into two groups: trials in which the 
monkey chose the object in the neuron’s RF, and 
trials in which the monkey chose the object in the 
opposite hemi-field.

Data for an example neuron (Figure 4B) show 
somewhat greater responses when the monkey 
chose the object located in the neuron’s RF. We 
quantified this effect by applying ROC analysis 
to the two choice distributions (see Methods 
for details), which yielded a detection proba-
bility (DP) metric. DP will be greater than 0.5 
when responses are greater on trials in which the 
monkey reported that the stimulus in the RF was 
the dynamic object. Because DP is only computed 
from the subset of trials with ΔDepth=0, this 
measure need not have any relationship with a 
neuron’s preference for dynamic vs. stationary 
stimuli. For the example neuron of Figure 4B, the 
DP value was 0.75, which is significantly greater 
than chance by permutation test (p=0.006, see 
Methods). Across a population of 92 neurons for 
which there were sufficient numbers of choices 
toward each stimulus (see Methods), the mean 
DP value of 0.56 was significantly greater than 
chance (p=6×10–5, t(91) = 4.21, n=92, t-test) with 
13 of 92 neurons showing individually significant 
DP values (Figure 4C, filled bars). All neurons with 
significant DP values had effects in the expected 
direction, with DP>0.5. In addition, the mean DP 
value was significantly greater than chance for 
each monkey individually (M1: n=39, mean=0.59, 
p=5.7×10–4, t(38) = 3.76; M2: n=53, mean = 0.53, 
p=0.03, t(52) = 2.21, t-test).

Figure  4 shows that many MT neurons have 
responses that are correlated with detection 
choices in the task. We hypothesized that neurons 
with DP>0.5 are more likely to be those that 
respond preferentially to dynamic objects over 
stationary objects. To obtain a signal-to-noise 
measure of each neuron’s selectivity for dynamic vs. 
stationary objects, we again applied ROC analysis 
as illustrated for an opposite cell in Figure 5A–C. 
This neuron responded more strongly to dynamic 
objects than stationary objects across most of 
the depth range (Figure  5A). To quantify this 
selectivity, for each value of ΔDepth, responses 
were sorted into two groups: trials in which the 
dynamic object was in the RF, and trials in which 
the dynamic object was located in the opposite 
hemi-field and a stationary object was in the RF 
(regardless of the depth of the stationary object). 
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Figure 4. Relationship between MT responses and 
detection of object motion. (A) When ΔDepth = 0, two 
stationary objects at the pedestal depth had identical 
retinal motion and depth cues. Animals still were 
required to report one of the objects as dynamic. (B) To 
compute detection probability (DP), responses to the 
ΔDepth = 0 condition were z-scored and sorted into 
two groups according to the animal’s choice. Filled and 
open bars show distributions of z-scored responses 
of an example MT neuron when the animal reported 
that the moving object was in and out of the receptive 
field (RF), respectively. (C) Distribution of DP values 
for a sample of 92 MT neurons, including all neurons 
tested in the detection task for which the animal made 
at least five choices in each direction (see Methods). 
Arrowhead shows the mean DP value of 0.56, which was 
significantly greater than 0.5 (p=6.0×10–5, n=92, t-test).
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Thus, the ROC value computed for each ΔDepth 
value gave an indication of how well the neuron 
discriminated between that particular dynamic 
object and stationary objects of any depth. By 
convention, ROC values >0.5 indicate greater 
responses for a dynamic object in the RF.

Results of this analysis for the example oppo-
site cell (Figure 5B) show that ROC values were 

greater than 0.5 for all ΔDepth ≠ 0; thus, this neuron reliably responded more strongly to dynamic 
objects than to stationary objects. To obtain a single metric for each neuron, we simply averaged the 
ROC metrics for each non-zero ΔDepth value, yielding a neurometric performance (NP) value of 0.78 
for this neuron. The corresponding DP value for this neuron was 0.77 (Figure 5C, p=0.0015, permuta-
tion test), indicating that this neuron shows both strong selectivity for dynamic objects when ΔDepth 
≠ 0 and stronger responses when the animal reports a dynamic object in the RF when ΔDepth = 0.

Data for an example congruent cell (Figure 5D–F) show a very different pattern of results. This 
neuron generally responds more strongly to stationary objects of any depth than to dynamic objects 
(Figure 5D). As a result, ROC values are consistently <0.5 when comparing responses to dynamic vs. 
stationary objects in the RF (ΔDepth ≠ 0, Figure 5E), yielding an NP value of 0.23. The corresponding 
DP value for this neuron (Figure 5F) was 0.39 (p=0.26, permutation test), indicating that it responded 
slightly more to ambiguous stimuli when the monkey reports that the object in the RF was stationary. 
Thus, the data from these two examples neurons support the hypothesis that neurons with prefer-
ences for dynamic objects are selectively correlated with perceptual decisions.

To examine whether this hypothesis holds at the population level, we plotted the DP value for each 
neuron against the corresponding NP value. These two metrics, which are computed from completely 
different sets of trials (ΔDepth = 0 for DP; ΔDepth ≠ 0 for NP), are strongly correlated (Figure 5G, 
R=0.47, p=3.2×10–6, n=92, Spearman rank correlation) such that neurons with DP values substantially 
greater than 0.5 tend to be neurons that are selective for dynamic objects (NP >0.5). In addition, we 
observed a significant positive correlation for each animal individually (M1: n=39, R=0.59, p=7.9×10–5; 
M2: n=53, R=0.33, p=0.015, Spearman correlation). It is also worth noting that all neurons with large 
DP values (>0.7) also have NP values substantially greater than 0.5. Thus, the MT neurons that most 
strongly predict decisions to detect the dynamic object (on ambiguous trials) are those with a consis-
tent preference for dynamic objects.

It is worth noting that the distribution of NP values in Figure 5G is biased toward values >0.5; 
indeed, the mean NP value (0.56) is significantly greater than 0.5 (one-sample t-test, t(105) = 4.98, and 
p=2.5×10–6). This effect likely arises due to the distribution of stimulus values involved in the dynamic 
object condition. Because neurons were generally tested with a pedestal depth of –0.45 deg, the 
depth values for both disparity and motion parallax tend to be mostly negative for the dynamic object 
condition (see blue and black x-axes in Figure 2D–F). This bias toward negative (near) depth values 
of dynamic objects, combined with the fact that most neurons have a near preference for depth from 
motion parallax (Figure 3A), means that many neurons (including congruent cells) tend to have mean 
responses to dynamic objects that are greater than the mean response to stationary objects (e.g. 
Figure 2D). This asymmetry leads to a mean NP value >0.5.

How is the result of Figure 5G related to neurons’ preference for dynamic relative to stationary 
objects? Figure 5—figure supplement 1A shows that NP is robustly correlated with peak response 
ratio (R=0.43, p=4.5×10–6, Spearman rank correlation). Neurons with peak response ratios substan-
tially greater than unity almost always have NP >0.5. However, some neurons with peak response 
ratios near unity also have high NP values (including the neuron in Figure 2C, F). In contrast, we did 
not find a significant correlation between DP and peak response ratio (Figure 5—figure supplement 
1B: R=0.12, p=0.25). A main reason for this appears to be that there is a cluster of neurons with large 
peak response ratios that have DP values near 0.5. These neurons generally have tuning properties 
similar to the example cell in Figure 2B, E. While incongruent tuning creates a clear preference for 
dynamic objects for these neurons, that preference is limited to a narrow range of depth values, such 
that NP values tend to be only modestly >0.5. To achieve high NP values, neurons need to have a 
consistent preference for dynamic objects (e.g. Figures 2F and 5A). Thus, what seems to be crucial 
for producing high DP values is that a neuron consistently prefers dynamic objects over the range 

figure supplement(s) for figure 4:

Figure supplement 1. Time courses of choice-related 
activity.

Figure 4 continued
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Figure 5. Relationship between detection probability (DP) and neurometric performance for dynamic objects. (A) Responses of an example opposite 
neuron to dynamic and stationary objects during the detection task. Format as in Figure 2D. (B) ROC values comparing responses to a dynamic object 
at each value of ΔDepth with responses to stationary objects, for the neuron of panel A. Neurometric performance (NP = 0.78 for this neuron) is defined 
as the average ROC area for all ΔDepth ≠ 0. (C) Distribution of z-scored responses sorted by choice for the same neuron as in panels A,B. Format as in 
Figure 4B. (D–F) Data from an example congruent cell, plotted in the same format as panels A–C. (G) Relationship between DP and NP for a population 
of 92 MT neurons. Dashed line: linear fit using type 2 regression (slope = 1.06, slope CI = [0.80 1.48]; intercept = –0.04, intercept CI = [–0.31 0.11]).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Relationships between preference for dynamic objects, neurometric performance (NP), and detection probability (DP).
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tested. This explains the robust correlation between DP and NP (Figure 5G) and the weak correlation 
between DP and peak response ratio (Figure 5—figure supplement 1B). Thus, incongruent tuning 
tends to lead to a preference for dynamic objects (high peak response ratio, Figure 3B), but does not 
always lead to high DP values (Figure 5—figure supplement 1B).

We also examined the time course of choice-related activity and found that it appeared within a 
few hundred ms after the onset of self-motion (Figure 4—figure supplement 1). This choice-related 
activity was largely sustained throughout the rest of the stimulus period, even when motion of the 
object was in the anti-preferred direction.

Decoding model
The results described above suggest that perceptual detection of dynamic objects might be driven by 
the activity of MT neurons with depth tuning curves that make them respond preferentially to dynamic 
objects. To further probe this hypothesis, we trained a simple linear decoder to detect dynamic objects 
based on simulated responses of a population of neurons that is closely based on our data, and we 
examined whether performance of the decoder shows a similar relationship between DP and NP (see 
Methods for details).

In the simulation (as in the experiments), the dynamic object could appear in either the right or left 
hemi-field, and the decoder was trained to report the location of the dynamic object. For each neuron 
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Figure 6. Linear decoding reproduces the relationship between detection probability (DP) and neurometric performance (NP). (A) Performance of a 
linear decoder that was trained to detect moving objects based on simulated population responses with independent noise (see Methods for details). 
Error bars represent 95% CIs (n=100 simulations). (B) Neural responses were sorted by the output of the decoder to compute a predicted DP (DPpred) for 
each unit in the simulated population (n=97, including all neurons recorded in the detection task using identical ΔDepth and stationary depth values, 
see Methods). DPpred is plotted as a function of the measured NP for each neuron. Error bars represent 95% CIs (n=100 simulations). (C) Relationship 
between DPpred and the readout weight (β) for each unit in the decoded population. Error bars represent 95% CIs. (D–F) Analogous results for a decoder 
that was trained based on population responses with modest correlated noise (see text and Methods for details). Format as in panels A-C.
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in the population, responses were simulated to have the same mean and SD as empirically measured 
responses. Since neurons were recorded separately and we could not measure correlated noise, we 
simulated responses based on either independent noise or correlated noise (see Methods for details).

The decoder was trained to report the location of the dynamic object based on simulated popula-
tion responses from the subset of trials for which ΔDepth ≠ 0. The trained decoder was then used to 
predict responses for the completely ambiguous (ΔDepth = 0) trials in which identical objects were 
presented in both hemi-fields. Responses to ambiguous trials were then sorted according to the 
decoder output to compute predicted DP values (DPpred) for each neuron in the population.

We first compared DPpred with NP values for simulations in which all neurons were assumed to have 
independent noise. This decoder performs very well based on a sample of 97 MT neurons (Figure 6A, 
see Methods for selection criteria), indicating that there is extensive information available in a moder-
ately sized sample of MT neurons. We find a significant positive correlation between DPpred and NP 
(Figure 6B, R=0.53, p=4.9×10–8, n=97, Spearman correlation) in this simulation, consistent with the 
empirical observations of Figure 5G. The decoding weights provide an indication of how neurons 
with different properties contribute to the classification outcomes. With independent noise, we find a 
strong relationship (Figure 6C, R=0.92, p<1×10–15, n=97, Spearman correlation) between DPpred and 
decoding weights, with positive readout weights being associated with DPpred values greater than 0.5.

While the relationship between DPpred and NP in Figure  6B has a positive slope, DPpred values 
tend to be substantially closer to 0.5 than the values observed experimentally (Figure 5G). However, 
this is not surprising given that neurons in this simulation were assumed to have independent noise. 
It is well established that neurons in MT exhibit correlated noise (e.g. Zohary et al., 1994; Huang 
and Lisberger, 2009) and that choice-related activity is expected to be stronger in the presence 
of correlated noise (Britten et  al., 1996; Shadlen et  al., 1996; Haefner et  al., 2013; Gu et  al., 
2014; Pitkow et al., 2015). Thus, we also simulated responses with a moderate level of correlated 
noise (median Rnoise = 0.15, see Methods for details), which had little impact on decoder performance 
(Figure 6D). In the presence of correlated noise, DPpred values show a greater spread around 0.5 and 
are much more strongly correlated with NP values (Figure 6E, R=0.89, p<3×10–16, n=92, Spearman 
correlation). While correlated noise enhances the relationship between DPpred and NP, it also weakens 
the relationship between DPpred and decoding weights (Figure  6F, R=0.46, p=3.4×10–6, n=92, 
Spearman correlation), as expected from theoretical studies (Haefner et al., 2013).

These simulations show that our main experimental finding is recapitulated by a simple linear 
decoder that is trained to distinguish between dynamic and static objects based on MT responses. 
Note, however, that we have not attempted to find parameters of our decoding simulations that 
would best match the empirical data (Figure 5G). This would almost certainly be possible, but we 
do not feel that it is a worthwhile exercise given that we would have to make assumptions about the 
structure of correlated noise that we cannot sufficiently constrain.

To further assess whether neurons with incongruent tuning for disparity and motion parallax can 
provide a greater contribution to detecting scene-relative object motion, we performed additional 
decoding simulations after dividing the population into subgroups based on peak response ratio. 
Four subgroups were defined: lowest third, middle third, highest third, and a random subsample of 
the same size from all neurons. Figure 7A shows that decoding performance is significantly greater 
for the subgroup of neurons with the highest peak response ratios, as compared with the low and 
middle subgroups (error bars denote 95% CIs). We also performed a similar analysis after dividing the 
population based on the correlation between depth tuning from disparity and motion parallax cues, 
RMP_BD. This revealed parallel results in which neurons with the most negative values of RMP_BD achieved 
significantly greater decoding performance (proportion correct: 0.88±0.008, mean ±95% CIs) than 
neurons with intermediate (0.82±0.01) or high (0.84±0.009) values of RMP_BD.

We further examined whether detection probabilities predicted by the decoder depend on tuning 
congruency, using the same subgroups based on peak response ratio. We find that DPpred values from 
these decoding simulations are greatest for neurons with the highest peak response ratios, and not 
significantly above chance for neurons with the lowest peak response ratios (Figure 7B, see caption 
for details). These results demonstrate that neurons with incongruent tuning carry enhanced informa-
tion for detecting moving objects during self-motion.

Together, these decoding simulations demonstrate that a population of MT neurons with the 
depth tuning properties that we have described could be utilized to detect scene-relative object 

https://doi.org/10.7554/eLife.74971
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Figure 7. Decoder performance depends on selectivity for dynamic objects. Decoding was performed separately 
for three subgroups of MT neurons based on their peak response ratios: lowest third (n=33), middle third (n=32), 
and highest third (n=32) of peak response ratio values. In addition, decoding was performed for mixed subgroups 
of the same size (n=32) that were selected randomly from the population. (A) Decoder performance for each 
subgroup based on peak response ratio. For each subgroup, 500 decoding simulations were performed (gray dots) 
using different samples of correlated noise, as described in Methods. For the mixed subgroup, each of the 500 
simulations also involved drawing (without replacement) a new random subset of 32 neurons from the population. 
Black filled symbols denote mean proportion correct across the 500 simulations, and error bars represent 95% 
CIs. (B) Predicted detection probability (DPpred) for each neuron in each subgroup (gray symbols), along with mean 
DPpred values (black symbols, error bars denote s.e.m). For the mixed subgroup, data are shown for all 97 neurons 
since each neuron was included in many different subsamplings. In this case, gray data points represent the 
mean DPpred value for all random subsamplings (165, on average) that included each neuron. Median DPpred was 
not significantly different from 0.5 for the lowest third subgroup (p=0.59, n=33), was marginally significant for the 
middle third subgroup (p=0.043, n=32), and was significantly greater than 0.5 for the highest third (p=2.2×10–5, 
n=32) and mixed (p=3.2×10–5, n=97) subgroups (signed-rank tests comparing median DPpred with 0.5).
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motion, and that such a read-out could produce the relationship between DP and NP that we have 
observed empirically. The simulations further indicate that neurons with larger peak response ratios 
provide better decoding performance, consistent with the idea that incongruent tuning is adaptive for 
detecting object motion during self-motion.

Discussion
We find that neurons having incongruent depth tuning for binocular disparity and motion parallax 
cues often respond more strongly to objects that move in the world than to stationary objects. More-
over, neurons with a consistent preference for dynamic objects tend to more strongly predict percep-
tual decisions regarding object motion relative to the scene. While it has been established that 
humans can detect object motion based on cue conflicts between binocular disparity and motion 
parallax (Rushton et al., 2007), in the absence of other cues to object motion, the neural basis of 
this capacity has remained unknown. Our findings establish a simple neural mechanism for detecting 
moving objects, which can be computed locally and is complementary to flow-parsing mechanisms 
that involve more global computations (discussed further below). In addition, our findings establish 
another important function for neurons with mismatched tuning for multiple stimulus cues, building 
on recent studies (Kim et al., 2016b; Goncalves and Welchman, 2017; Sasaki et al., 2017; Sasaki 
et al., 2019; Zhang et al., 2019a). Our task involves a form of causal inference (Körding et al., 
2007; Shams and Beierholm, 2010), and our findings support the idea that a sensory representa-
tion consisting of a mixture of congruent and opposite cells provides a useful sensory substrate for 
causal inference (Rideaux et al., 2021). To our knowledge, these findings provide the first empirical 
evidence for a specific contribution of opposite neurons to perceptual inference about causes of 
sensory signals.

Comparison to other types of mechanisms for detecting object motion
In many instances, scene-relative object motion produces components of image motion that differ 
clearly in velocity or timing from the background optic flow at the corresponding location. Human 
observers can detect object motion when there are sufficient differences in local direction of motion 
between object and background (Royden and Connors, 2010). Humans can also detect object 
motion based on local differences in speed when there are sufficient depth cues (Rushton et  al., 
2007; Royden et al., 2016) or when the image speed of an object is outside the range of background 
speeds in a particular task context (Royden and Moore, 2012).

Royden and Holloway, 2014 have shown that a model built on MT-like operators with surround 
suppression can effectively detect object motion when there are sufficient directional differences 
between object and background motion, or when object speed is outside the range of background 
speeds. However, such a model would not be able to detect object motion under task conditions like 
ours or those of Rushton et al., 2007, because our dynamic object had the same motion axis as the 
stationary distractors and because the speeds of our dynamic objects were well within the range of 
speeds of stationary objects. More recently, Royden et al., 2015 have added disparity-tuned opera-
tors to their model, which allow detection of object motion even when it is aligned with background 
flow lines. This model computes local differences in response of separate velocity and disparity-tuned 
operators. It then applies an arbitrary threshold to detect cases for which there are differences and 
identifies these as possible object motion. While this model shows that differences in signals related 
to motion and disparity can be used to identify object motion in more general cases, it does not 
provide a biologically plausible neural mechanism.

Our findings demonstrate a key, and apparently thus far unappreciated, neural mechanism for 
identifying local discrepancies between binocular disparity and motion parallax cues that accompany 
moving objects, even in difficult cases for which there are no local differences in the direction or 
timing of image motion. The activity of MT neurons with incongruent depth tuning for motion parallax 
and disparity provides a critical signal about these local discrepancies. Moreover, our simulations 
indicate that these signals can be easily read out by a linear decoder to detect object motion during 
self-motion.

https://doi.org/10.7554/eLife.74971
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Relationship to flow-parsing mechanism for computing scene-relative 
object motion
A more general approach to computing scene-relative object motion during self-motion is flow 
parsing, in which global patterns of background motion related to self-motion are discounted (i.e. 
subtracted off) such that the remaining signal represents object motion relative to the scene (Rushton 
and Warren, 2005). Several studies Warren and Rushton, 2007; Warren and Rushton, 2008; 
Warren and Rushton, 2009a; Warren et al., 2012; Foulkes et al., 2013; Rushton et al., 2018 have 
provided strong behavioral support for the flow-parsing hypothesis in humans, including some which 
suggest strongly that it involves a global motion process (Warren and Rushton, 2009b). In addition, a 
recent study has demonstrated flow parsing in macaque monkeys (Peltier et al., 2020). If flow parsing 
completely discounts background motion due to self-motion, then the computations for detecting 
scene-relative object motion would be greatly simplified and would be essentially the same as when 
there is no self-motion. However, flow parsing alone may not be sufficient to detect scene-relative 
object motion. Recent evidence (Niehorster and Li, 2017; Peltier et al., 2020) indicates that the gain 
of flow parsing can be well below unity, such that background motion is only partially discounted. In 
this case, the output of a flow-parsing mechanism may not be sufficient to detect scene-relative object 
motion, and a mechanism such as we found in area MT would be valuable.

An advantage of our proposed mechanism over flow parsing is that it does not require estimation 
of the global flow field, nor a complicated mechanism (Layton and Fajen, 2016b; Layton and Fajen, 
2020) for implementing the flow-parsing computation at each location in the visual field. Thus, our 
proposed mechanism may provide a valuable complement to flow parsing. On the other hand, the 
mechanism that we have described clearly does not obviate the need for flow-parsing mechanisms. 
Unlike our local mechanism, flow parsing does not require binocular disparity signals to operate. 
Furthermore, flow parsing allows for the estimation of scene-relative object velocity, rather than just 
facilitating object motion detection. Thus, our results do not discount the contributions of center-
surround or flow-parsing mechanisms to computation of object motion, nor the contributions of 
mechanisms that may rely on multisensory signals (Kim et al., 2016b). Rather, our findings provide 
evidence of an additional complementary mechanism that is likely to be synergistic. Indeed, since our 
stimuli involved peripheral background dots (Figure 1—figure supplement 1A), it is possible that our 
task also engaged flow-parsing mechanisms to some extent.

We have recently demonstrated flow parsing in macaque monkeys (Peltier et al., 2020), including 
the observation that optic flow in one visual hemi-field can influence perception of object direction in 
the opposite hemi-field, as demonstrated previously in humans (Warren and Rushton, 2009b). These 
observations imply a global contribution to flow parsing, as might be implemented through feedback 
from the dorsal subdivision of the medial superior temporal area (MSTd) (Layton and Fajen, 2016b; 
Layton and Fajen, 2020). Indeed, in ongoing work, we have observed that flow parsing modulates 
responses of MT neurons (unpublished). In contrast, the mechanism described here can be computed 
locally within each portion of the visual field. Thus, we can speculate that the current findings and flow 
parsing involve distinct neural mechanisms in area MT.

Our findings establish the first direct (albeit correlational) evidence for a neural mechanism that is 
involved in perceptual dissociation of object and self-motion. However, the broader problem is more 
complex, as it is also necessary to flexibly compensate for self-motion to compute object motion in 
different coordinate frames, such as head-centered or world-centered reference frames (Fajen et al., 
2013; Sasaki et al., 2020). Some of these computations are likely to also rely on non-visual signals 
including vestibular signals about self-motion (Fajen and Matthis, 2013; Fajen et al., 2013; Dokka 
et al., 2015a; Dokka et al., 2015b; Sasaki et al., 2017; Dokka et al., 2019; Sasaki et al., 2020). 
Thus, the mechanism proposed here is one part of a larger set of neural computations that remain to 
be fully understood.

Functional roles of area MT and computational roles of opposite cells
Area MT has traditionally been considered to hold a retinotopic representation of retinal image 
motion. Many studies still make this assumption, despite the fact that MT is known to be modulated 
by attention (Treue and Maunsell, 1996; Treue and Maunsell, 1999; Martínez-Trujillo and Treue, 
2002; Womelsdorf et al., 2008; Lee and Maunsell, 2010), eye movements (Newsome et al., 1988; 
Bremmer et al., 1997; Inaba et al., 2007; Chukoskie and Movshon, 2009; Nadler et al., 2009; 
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Inaba et al., 2011; Kim et al., 2017), and stimulus expectation (Schlack and Albright, 2007). Our 
previous work has shown that MT neurons integrate retinal image motion with smooth eye movement 
(Nadler et al., 2008; Nadler et al., 2009) and global background motion (Kim et al., 2015a) signals 
to compute depth from motion parallax. In addition, most MT neurons are well known to be tuned 
for binocular disparity (Maunsell and Van Essen, 1983; DeAngelis and Newsome, 1999; DeAngelis 
and Uka, 2003). Recent studies (Nadler et al., 2013; Kim et al., 2015a) revealed the existence of 
many MT neurons that have mismatched depth tuning for motion parallax and binocular disparity 
cues. Such neurons would presumably not be useful for cue integration in depth perception, and their 
functional role has thus far remained unclear. In the present study, we demonstrate that such ‘oppo-
site’ neurons provide valuable signals for detecting object motion during self-motion by selectively 
responding to local inconsistencies between binocular disparity and motion parallax cues. Thus, our 
findings provide novel evidence that the functional roles of MT go well beyond representing retinal 
image motion; they suggest that some MT neurons play fundamental roles in helping to infer the 
origins, or causes, of retinal image motion.

Our findings have parallels to the potential function of neurons in area MSTd and the ventral 
intraparietal (VIP) area that have mismatched heading tuning for visual and vestibular cues (Gu et al., 
2006; Gu et al., 2008; Chen et al., 2011; Chen et al., 2013). Studies of cue integration and cue 
re-weighting in heading perception have demonstrated that activity of congruent cells can account 
for behavioral performance (Gu et al., 2008; Fetsch et al., 2011), but the functional role of opposite 
cells remained unclear from those studies. More recent work has suggested that opposite neurons 
may play a role in helping parse the retinal image into signals related to self-motion and object motion 
(Kim et al., 2016b; Sasaki et al., 2017), although they did not link opposite cell activity to a relevant 
behavior. Thus, mismatched tuning, whether unisensory or multisensory, may be a common motif for 
performing computations that involve parsing sensory signals into components that reflect different 
causes in the world (Zhang et al., 2019a).

More generally, the parsing of retinal image motion into components related to object motion 
and self-motion is a causal inference problem (Körding et al., 2007; Shams and Beierholm, 2010; 
French and DeAngelis, 2020), and recent psychophysical work in humans has demonstrated that 
perception of heading in the presence of object motion follows predictions of a Bayesian causal 
inference model (Dokka et al., 2019). While the neural mechanisms of causal inference are still 
largely unknown (but see Fang et al., 2019), recent computational work has suggested that the 
relative activity of congruent and opposite cells may provide a critical signal for carrying out causal 
inference operations (Zhang et al., 2019b; Rideaux et al., 2021). By providing an empirical link 
between the activity of opposite cells and detection of object motion during self-motion, our 
results provide novel evidence for a sensory substrate that may be used to perform causal infer-
ence in the domain of object motion and self-motion perception. Elucidating the neural substrates 
and mechanisms of causal inference regarding object motion is the topic of ongoing studies in our 
laboratories.

Materials and methods
Subjects and surgery
Two male monkeys (macaca mulatta, 8–12 kg) participated in these experiments. Standard aseptic 
surgical procedures under gas anesthesia were performed to implant a head restraint device. A Delrin 
(Dupont) ring was attached to the skull using a combination of dental acrylic, bone screws, and tita-
nium inverted T-bolts (see Gu et al., 2006 for details). To monitor eye movements using the magnetic 
search coil technique, a scleral coil was implanted under the conjunctiva of one eye.

A recording grid made of Delrin was affixed inside the ring using dental acrylic. The grid 
(2×4×0.5  cm) contains a dense array of holes spaced 0.8  mm apart. Under anesthesia and using 
sterile technique, small burr holes (~0.5 mm diameter) were drilled vertically through the recording 
grid to allow the penetration of microelectrodes into the brain via a transdural guide tube. All surgical 
procedures and experimental protocols were approved by University Committee on Animal Resources 
at the University of Rochester.

https://doi.org/10.7554/eLife.74971
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Experimental apparatus
In each experimental session, animals were seated in a custom-built primate chair that was secured 
to a six degree-of-freedom motion platform (MOOG 6DOF2000E). The motion platform was used 
to generate passive body translation along an axis in the fronto-parallel plane, and the trajectory of 
the platform was controlled in real time at 60 Hz over a dedicated Ethernet link (see Gu et al., 2006 
for details). A field coil frame (C-N-C engineering) was mounted on top of the motion platform to 
measure eye movements.

Visual stimuli were rear-projected onto a 60×60 cm tangent screen using a stereoscopic projector 
(Christie Digital Mirage S+3 K) which was also mounted on the motion platform (Gu et al., 2006). The 
display screen was attached to the front side of the field coil frame. To restrict the animal’s field of view 
to visual stimuli displayed on the tangent screen, the sides and top of the field coil frame were covered 
with matte black enclosures. Viewed from a distance of ~30 cm, the display subtended ~90°×90° of 
visual angle.

To generate accurate visual simulations of the animal’s movement through a virtual environment, 
an OpenGL camera was placed at the location of one eye, and the camera moved precisely according 
to the movement trajectory of the platform. Since the motion platform has its own dynamics, we 
characterized the transfer function of the motion platform, as described previously (Gu et al., 2006), 
and we generated visual stimuli according to the predicted motion of the platform. To account for a 
delay between the command signal and the actual movement of the platform, we adjusted a delay 
parameter to synchronize visual motion with platform movement. Synchronization was confirmed by 
presenting a world-fixed target in the virtual environment and superimposing a small spot by a room-
mounted laser pointer while the platform is in motion (Gu et al., 2006).

Electrophysiological recordings
We recorded extracellular single unit activity using single-contact tungsten microelectrodes (FHC Inc) 
having a typical impedance of 1–3 MΩ. The electrode was loaded into a transdural guide tube and 
was manipulated with a hydraulic micro-manipulator (Narishige). The voltage signal was amplified and 
filtered (1 kHz–6 kHz) using conventional hardware (BAK Electronics). Single unit spikes were detected 
using a window discriminator (BAK Electronics), whose output was time stamped with 1 ms resolution.

Eye position signals were digitized at 1 kHz, then digitally filtered and down sampled to 200 Hz 
(TEMPO, Reflective Computing). The raw voltage signal from the microelectrode was digitized and 
recorded to disk at 25 kHz using a Power1401 data acquisition system (Cambridge Electronic Design). 
If necessary, single units were re-sorted off-line using a template-based method (Spike2, Cambridge 
Electronic Design).

The location of area MT was initially identified in each animal through analysis of structural MRI 
scans, which were segmented, flattened, and registered with a standard macaque atlas using CARET 
software (Van Essen et  al., 2001). The position of area MT in the posterior bank of the superior 
temporal sulcus (STS) was then projected onto the horizontal plane, and grid holes around the projec-
tion area were explored systematically in mapping experiments. In addition to the MRI scans, the 
physiological properties of neurons and the patterns of gray matter and white matter encountered 
along electrode penetrations provided essential evidence for identifying MT. In a typical electrode 
penetration through the STS that encounters area MT, we first encounter neurons with large RFs and 
visual motion sensitivity (as expected for area MSTd). This is typically followed by a very quiet region 
as the electrode passes through the lumen of the STS, and then area MT is the next region of gray 
matter. As expected from previous studies, RFs of MT neurons are much smaller than those in MSTd 
(Komatsu and Wurtz, 1988) and some MT neurons exhibit strong surround suppression (DeAngelis 
and Uka, 2003) which is typically not seen in MSTd. Confirming a putative localization of the elec-
trode to MT, we observed gradual changes in the preferred direction, preferred disparity, and RF loca-
tion of multiunit activity, consistent with those described previously (Albright et al., 1984; DeAngelis 
and Newsome, 1999).

Visual stimuli
Visual stimuli were generated by a custom-written C++ program using the OpenGL 3D graphics 
library (Kim, 2013, https://github.com/hkim09/MoogDots_2013) and were displayed using a 
hardware-accelerated OpenGL graphics card (NVIDIA Quadro FX 1700). The location of the OpenGL 
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camera was matched to the location of the animal’s eye, and images were generated using perspec-
tive projection. We calibrated the display such that the virtual environment had the same spatial scale 
as the physical space through which the platform moved the animal. To view stimuli stereoscopically, 
animals wore anaglyphic glasses with red and green filters (Kodak Wratten 2 Nos. 29 and 61, respec-
tively). The crosstalk between eyes was measured using a photometer and found to be very small 
(0.3% for the green filter and 0.1% for the red filter).

Stimulus to measure depth tuning from motion parallax
We used an established procedure to generate random-dot stimuli to measure depth tuning from 
motion parallax (Nadler et al., 2008). A circular aperture having slightly greater (~10%) diameter than 
optimal size was located over the center of the RF of the neuron under study. The position of each 
dot in the image plane was generated by independently choosing random horizontal and vertical 
locations within the aperture. To present stimuli such that they appear to lie in depth at a specific 
equivalent disparity, the set of random dots within the circular aperture was ray-traced onto a cylinder 
corresponding to the desired equivalent disparity, as described in detail previously (Nadler et al., 
2008). This ray-tracing procedure ensured that the size, location, and density of the random dot patch 
were constant across simulated depths. Size and occlusion cues were eliminated by rendering trans-
parent dots with a constant retinal size (0.39 deg). Critically, this procedure removed pictorial depth 
cues and rendered the visual stimulus depth-sign ambiguous, thus requiring interaction of retinal 
object motion with either extra-retinal signals (Nadler et al., 2009) or global visual motion cues (Kim 
et al., 2015a) that specify eye rotation relative to the scene.

The above description assumes lateral translation of the observer in the horizontal plane. In our 
experiments, animals were translated along an axis in the fronto-parallel plane (i.e. a vertical plane 
that includes the interaural axis and is parallel to the plane of the display screen) that was aligned with 
the preferred-null axis of the neuron under study (to elicit robust responses). In this case, we rotated 
the virtual stimulus cylinder about the naso-occipital axis (normal to the display screen) such that the 
axis of translation of the observer was always orthogonal to the long axis of the cylinder. This ensures 
that dots having the same equivalent disparities produce the same retinal speeds regardless of the 
axis of observer translation (Nadler et al., 2008).

Stimulus for object detection task
Visual stimuli for the main task consisted of a dynamic target object (which could be either moving 
or stationary in the world), one or three stationary objects (distractors), and a cloud of background 
dots that appeared outside of a central masked region (Figure 1—figure supplement 1, Video 1). 
Background dots were masked out of this central region around the target and distractor objects to 
avoid having the background dots directly stimulate the RF of the neuron under study. The two-object 
version of the task (one dynamic target and one stationary distractor) was used in all neural recording 
experiments, whereas the four-object task (one dynamic target and three stationary distractors) was 
used during training and in some behavioral control experiments.

For the two-object task, one object was located in the center of the RF of the neuron under study, 
and the other object was presented on the opposite side of the fixation target (180 deg apart) at the 
same eccentricity (Figure 1A, B). For the four-object task, one object was centered on the RF, and the 
other three objects were distributed equally (90 deg apart) around the fixation target at equal eccen-
tricities. To present each object at the same retinal position regardless of its depth, the positions of 
objects were initially determined in screen coordinates and then were ray-traced onto surfaces in the 
simulated environment (Figure 1—figure supplement 1B, left).

Each object was rendered as a square-shaped ‘plate’ of random dots (density: 1.1 dots/deg2) and 
was displayed binocularly as a red-green anaglyph. The retinal size of dots was constant (0.15 deg) 
regardless of object depth, such that dot size was not a depth cue. The target and distractor objects 
were all of the same retinal size (which was tailored to the RF of the neuron under study) regardless 
of their location in depth, such that the image size of objects was also not a depth cue. Thus, the only 
reliable cues to object depth were binocular disparity and motion parallax.

Dynamic target objects had two independent depth parameters, one based on binocular disparity 
(dBD) and the other based on motion parallax (dMP). The left-eye and right-eye half-images of the 
dynamic object were rendered based on the depth defined by binocular disparity, dBD. We then 
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computed the image motion of the dynamic object during translation of the monkey such that it had 
motion parallax that was consistent with a different depth, dMP. Based on the predicted trajectory 
of the camera on each video frame, we ray-traced the position of the dynamic object (at dMP) onto 
the depth plane defined by binocular disparity, dBD (Figure 1—figure supplement 1B, right). This 
procedure ensures that the dynamic object had a particular difference in depth (ΔDepth, in equiva-
lent disparity units) specified by (dMP – dBD), but that it was not possible to detect the dynamic object 
solely based on its relative motion in the scene (Figure 1—figure supplement 2). In other words, 
when viewed monocularly, the image motion of the dynamic object would be consistent with that of a 
stationary object at dMP. When viewed binocularly, if ΔDepth ≠ 0, the dynamic object’s image motion 
would not be consistent with its depth specified by disparity, dBD.

Experimental protocol
Preliminary measurements
After isolating the action potential of a single neuron, the RF was explored manually using a small 
(typically 2–3 deg) patch of random dots. The direction, speed, position, and binocular disparity of 
the random-dot patch were manipulated using a computer mouse, and instantaneous firing rates were 
plotted on a display interface that represents the spatial location of the patch in visual space and the 
stimulus velocity in a direction-speed space. This procedure was used to estimate the location and size 
of the RF as well as to estimate the neuron’s preferences for direction, speed, and binocular disparity.

After these qualitative tests, we measured the direction, speed, binocular disparity, and size tuning 
of each neuron using quantitative protocols (DeAngelis and Uka, 2003). Each of these measure-
ments was performed in a separate block of trials, and each distinct stimulus was repeated 3–5 times. 
Direction tuning was measured with random dots that moved in eight different directions separated 
by 45  deg. Speed tuning was measured, at the preferred direction, with random dot stimuli that 
moved at speeds of 0, 0.5, 1, 2, 4, 8, 16, and 32 deg/s. The stimuli in our main task contained speeds 
of motion that were <7 deg/s. If a neuron gave very little response (<5 spk/s) to these slow speeds, 
the neuron was not studied further. Next, the spatial profile of the RF was measured by presenting a 
patch of random dots at all locations on a 4×4 grid that covered the RF. The height and width of the 
grid were 1.5–2.5 times larger than the estimated RF size, and each small patch was approximately 
¼ the size of the RF. Responses were fitted by a 2D Gaussian function to estimate the center location 
and size of the RF. To measure binocular disparity tuning, a random dot stereogram was presented 
at binocular disparities ranging from –2 deg to +2 deg in steps of 0.5 deg. For this disparity tuning 
measurement, dots moved in the neuron’s preferred direction and speed. Finally, size tuning was 
measured with random-dot patches having diameters of 0.5, 1, 2, 4, 8, 16, and 32 deg.

Depth tuning from motion parallax was then measured as described previously (Nadler et  al., 
2008; Nadler et al., 2013). Dots were presented monocularly and were rendered at one of nine simu-
lated depths based on their motion (–2 deg to +2 deg of equivalent disparity in steps of 0.5 deg), in 
addition to the null condition in which only the fixation target was presented. Each distinct stimulus 
was repeated 6–10 times. During measurement of depth tuning from motion parallax, animals under-
went passive whole-body translation which followed a modified sinusoidal trajectory along an axis in 
the fronto-parallel plane (Figure 1—figure supplement 1C). To smooth the onset and offset, the 2 s 
sinusoidal trajectory was multiplied by a Gaussian function that was exponentiated to a large power 
as follows:
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where t0=1.0 s, σ=0.92, and n=22. On half of the trials, platform movement started toward the 
neuron’s preferred direction. On the other half, motion started toward the neuron’s null direction 
(Figure 1—figure supplement 1C). During body translation, animals were required to maintain fixa-
tion on a world-fixed target, which required a compensatory smooth eye movement in the direction 
opposite to head movement.

Moving object detection task
We presented one dynamic (i.e. moving) object and one (or three) stationary object(s) while the animal 
experienced the modified sinusoidal lateral motion as described above. The animal was trained to 
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identify the dynamic object by making a saccadic eye movement to it (Figure 1A). At the beginning 
of each trial, the fixation target first appeared at the center of the screen. After the animal established 
fixation for 0.2 s, the dynamic object, stationary object(s), and background cloud of dots appeared 
and began to move as the animal was translated sinusoidally for 2.1 s (see Video 1). Because the 
fixation target was world-fixed, translation of the animal required a counter-active smooth eye move-
ment to maintain visual fixation. An electronic window around the fixation target was used to monitor 
and enforce pursuit accuracy. The initial size of the target window was 3–4  deg, and it shrank to 
2.1–2.8 deg after 250 ms of translation. This allowed the animal a brief period of time to initiate 
pursuit and execute a catch-up saccade to arrive on target. At the end of visual stimulation, both the 
fixation target and the visual stimuli disappeared and a choice target (0.4 deg in diameter) appeared 
at the center location of each object. The animal then attempted to make a saccadic eye movement 
to the location of the dynamic object and received a liquid reward (0.2–0.4 ml) for correct answers.

Based on the preliminary tests described above, we set the axis of translation within the fronto-
parallel plane to align with the preferred-null axis of the neuron under study. In the main detec-
tion task, we systematically varied the depth discrepancy (ΔDepth) between disparity and motion 
parallax cues for the dynamic object to manipulate task difficulty (Figure 1—figure supplement 
1B). ΔDepth is defined as the difference between depths specified by motion parallax and binoc-
ular disparity cues, (dMP – dBD). Different values of ΔDepth were applied to the dynamic object 
around a fixed ‘pedestal depth’ (red line, Figure 1—figure supplement 1B). For the vast majority of 
recording sessions, the pedestal depth was fixed at –0.45 deg (103/106 sessions), although it devi-
ated from this value slightly in a few early experiments. We elected to use a fixed pedestal depth 
such that all neurons were tested with the same stimulus values, thereby allowing for decoding 
analyses (described below). The pedestal depth was chosen as the average midpoint between the 
preferred depths obtained from tuning curves for disparity and motion parallax, based on data from 
a previous study (Nadler et al., 2013). We used the following ΔDepth values: −1.53, –0.57, –0.21, 
0, 0.21, 0.57, and 1.53 deg. Stationary objects were presented at one of seven possible depths 
(–1.6 deg to +1.6 deg in steps of 0.4 deg). The vast majority of recording sessions were conducted 
using these ‘standard’ pedestal depth, ΔDepth, and stationary depth values (101/106 sessions). 
Thus, the maximum range of depths of dynamic objects (–1.215 to +0.315 deg) was well within the 
range of depths for stationary objects, which ensured that the animals could not perform the task 
solely based on depth outliers (either in binocular disparity or motion parallax). The identity of each 
object (dynamic/stationary) and its depth values were chosen from the above ranges randomly on 
each trial. Each ΔDepth value of the dynamic object was repeated at least 14 times (mean: 35 and 
SD: 9.6).

For three sessions, a monkey performed the object detection task without binocular disparity cues 
in a fraction of trials (Figure 1—figure supplement 2, monocular condition). In this control condition, 
the visual stimulus (except for the fixation point) was displayed to only one eye in 16% of trials, while 
the rest of the task structure remained the same. Monocular conditions were presented in a small 
percentage of trials in order not to frustrate the animal, given that performance was poor on these 
monocular trials.

Animal training procedure
Although the object detection task is conceptually simple, it required extensive behavioral training, 
involving a number of steps. Here, we outline a series of operant conditioning steps required to 
teach animals to perform the task. Following basic chair training and habituation to the laboratory, 
animals were trained to maintain visual fixation on a target during sinusoidal translation of the motion 
platform.

Once smooth eye movements tracked the fixation target with pursuit gains approaching 0.9, we 
initially trained animals to detect a moving object without any self-motion, such that any motion 
of an object on the display resulted from object motion relative to the scene. After fixation, four 
objects appeared on the display and only one of them moved sinusoidally along a horizontal trajec-
tory for 2.1 s. In the early stages of this training, a saccade target appeared only at the location of the 
moving object. Subsequently, we introduced a fraction of trials in which saccade targets appeared 
at the locations of all four objects, and we gradually increased the proportion of these trials. During 
this phase of training, the depths of the objects, as defined solely by binocular disparity since there 
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was no self-motion, were randomly drawn from a uniform distribution spanning the range from –1.6 
to +1.6 deg, to help animals generalize the task.

Once animals performed the task well in the absence of self-motion, we began to introduce small 
amounts of sinusoidal self-motion, which induced subtle retinal image motion of all objects. During 
the initial stages of this training period, the dynamic object had a large motion amplitude such that 
it was quite salient relative to the motion of stationary objects that was due to self-motion. As the 
animals became accustomed to performing the task during self-motion, we gradually increased the 
magnitude of self-motion (up to 2.8 cm) and decreased the motion amplitude of the dynamic object. 
Once the retinal motion amplitude of the dynamic object became comparable to that of stationary 
objects, we began to introduce a depth discrepancy between disparity and motion parallax (ΔDepth). 
That is, the motion trajectory of the dynamic object began to follow that of an object at a different 
depth, dMP (Figure 1—figure supplement 1B, right). We used a staircase procedure to train animals 
over a range of values of ΔDepth. During this phase of training, we interleaved three different pedestal 
depths (–0.51 deg, 0 deg, and 0.51 deg) to help animals generalize the task, and we randomly chose 
the depths of the three stationary objects from the range –1.6 to +1.6 deg.

Once we observed stable ‘v-shaped’ psychometric functions for all three pedestal depths over a 
span of more than 10 days (e.g. Figure 1—figure supplement 3A, B), we transitioned to the final 
stimulus configuration for recording experiments. To keep the number of stimulus conditions manage-
able for recording, this configuration included one pedestal depth and two objects (one dynamic and 
one stationary). Following recording experiments, we revisited the more general version of the task 
involving four objects and three pedestal depths to make sure that behavioral performance did not 
reflect any change in strategy (e.g. Figure 1—figure supplement 3C).

Data analyses
Regression analysis of behavior
We used multinomial regression to assess the relative contributions of dBD, dMP, and ΔDepth to percep-
tual decisions. If animals perform the task primarily based on the discrepancy between disparity and 
motion parallax cues to depth, we expect to see a much greater contribution of ΔDepth relative to 
dBD and dMP. For each possible choice location, i, (i.e. a chosen location or a not-chosen location), we 
performed the following regression:
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where j denotes the locations of objects on the screen, and N is the total number of objects (two 
or four). Once beta values were obtained, we averaged betas across the two (or four) possible choice 
locations and also averaged betas across the two (or 12) not chosen locations (Figure 1D, Figure 1—
figure supplement 3D, E).

We also quantified the proportion of fits that produced significant values of each beta coefficient 
(Figure 1E). The number of beta values significantly different from zero (alpha = 0.05) were summed 
across locations (two or four) and across sessions. The results were then divided by the total number of 
beta values (2 * number of valid sessions or 4 * number of valid sessions, respectively). For not-chosen 
objects in the four-object task, the number of significant fits were summed across three locations and 
then divided by 12 * number of valid sessions.

Depth-sign tuning and discrimination index
Average firing rates during stimulus presentation were plotted as a function of simulated depth 
(Figure 2A–C) to construct depth tuning curves. To quantify the relative strength of neural responses 
to near and far depths defined by binocular disparity or motion parallax, we computed a DSDI from 
each tuning curve (Nadler et al., 2008; Nadler et al., 2009).
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For each pair of depths symmetrical around zero (for example, ±2 deg), the difference in mean 
response between far (Rfar) and near (Rnear) depths was computed relative to response variability (σavg, 
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the average SD of responses to the two depths). This quantity was then averaged across the four 
pairs of depth magnitudes to obtain the DSDI (–1<DSDI<+1). Near-preferring neurons have negative 
DSDI values, whereas far-preferring neurons have positive DSDI values. Statistical significance of DSDI 
values was evaluated using a permutation test in which DSDI values were computed 1000 times after 
shuffling responses across depths. If the measured DSDI value is negative, the p value is the propor-
tion of shuffled DSDIs less than the measured DSDI value. If the measured DSDI is positive, the p value 
is the proportion of DSDIs greater than the measured DSDI value.

Depth sign discrimination index for dynamic object tuning
Average firing rates during stimulus presentation were plotted as a function of depth difference 
(Figure 2D–F) to construct dynamic object tuning curves. To quantify the relative strength of neural 
responses to negative and positive values of ΔDepth, we computed a DSDI metric for the dynamic 
object responses (DSDIdyn) as follows:
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For each pair of ΔDepth values symmetrical around zero (e.g. ±1.53 deg), the difference in mean 
response between positive (Rpos) and negative (Rneg) ΔDepth was computed relative to response vari-
ability (σavg, the average SD of responses to the two ΔDepth values). This quantity was then averaged 
across the three pairs of ΔDepth values to obtain DSDIdyn (–1<DSDIdyn<+1).

Depth tuning congruency
Congruency of depth tuning curves obtained by manipulating binocular disparity and motion parallax 
cues was quantified using a correlation coefficient. The Pearson correlation was computed between 
the two cues using the average responses across nine depths (−2 to 2 deg in steps of 0.5 deg) for each 
cue; this coefficient is noted as RMP_BD (Figure 3B). Neurons were classified as ‘congruent’ or ‘opposite’ 
if their value of RMP_BD was significantly greater or less than zero, respectively.

Neurometric performance
We used an ideal observer analysis to measure how reliably single neurons can signal whether an 
object is dynamic or stationary. For each value of ΔDepth, the distribution of firing rates across trials 
was sorted into two groups according to the type of object in the RF (dynamic vs. stationary). An ROC 
curve was computed from the pair of response distributions for each ΔDepth (Britten et al., 1992), 
and performance of the ideal observer was defined as the area under the ROC curve. ROC areas were 
then plotted as a function of ΔDepth to construct a neurometric function (Figure 5B, E). To obtain a 
single measure of NP, we then averaged the ROC areas across non-zero values of ΔDepth to obtain a 
single metric for each neuron. This average ROC area will be >0.5 if a neuron responds preferentially 
to dynamic objects overall and <0.5 if it responds preferentially to stationary objects overall.

Detection probability
DP is a measure of the relationship between neural responses and perceptual decisions in a detec-
tion task (Bosking and Maunsell, 2011) and is similar to the choice probability metric (Britten et al., 
1996). The procedure for computing DP is analogous to the ROC analysis described above, except 
that responses are sorted into two groups according to the animal’s perceptual decision (dynamic vs. 
stationary object in the RF). To eliminate any contamination from stimulus effects, only ambiguous 
trials (ΔDepth = 0) were used to compute DP (Figure 4). A permutation test was used to determine 
whether each DP value was significantly different from the chance level of 0.5 (Uka and DeAngelis, 
2004).

Decoding analyses
We constructed an optimal linear decoder to detect moving objects based on simulated responses 
from a population of 97 model neurons. Model neurons correspond to the dominant subset of 
recorded neurons for which data were collected under identical stimulus conditions, thus allowing 
us to construct pseudo-population responses. We randomly selected 100,000  samples of stimulus 

https://doi.org/10.7554/eLife.74971
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conditions from the datasets with replacement (16 unique stimulus conditions within the RF). The 
mean and SD of measured responses to each stimulus condition were then used to generate simu-
lated responses according to the following equation (Shadlen et al., 1996; Cohen and Newsome, 
2009; Gu et al., 2014):

	﻿‍ Response = µ + Q × rrand × σ‍� (4)

where µ and σ are vectors of means and SDs of the population across stimulus conditions, ‍rrand‍ is 
a vector of standard normal deviates (MATLAB ‘normrnd’ function with zero mean and unity standard 
deviation), and Q is the square root of the correlation matrix. The correlation matrix was modeled such 
that pairs of neurons with similar NP values have stronger correlated noise, and pairs of neurons with 
dissimilar NP values show weaker correlated noise:

	﻿‍
r_noisei,j = 1.1 ×

(
0.5 −

√��NPi − NPj
��)

‍� (5)

where ‍NPi‍ is the neurometric performance of neuron i. This generated noise correlations (0.15±0.17, 
mean ± SD) of roughly similar strength to those observed in empirical studies of MT neurons (Zohary 
et al., 1994; Huang and Lisberger, 2009).

Total trials were divided into training (90%) and test (10%) sets. A linear decoder was trained to clas-
sify whether the stimulus in the RF was a dynamic or stationary object based on population responses 
in the training set. We used linear discriminant analysis (MATLAB ‘classify’ function) to determine the 
weights of the decoder. Ambiguous trials (ΔDepth = 0) were excluded from the training set.

The test set was used to validate performance of the decoder. A DPpred was computed for each 
neuron in the model in the same way we computed DP from the empirical data, except that the 
decoder’s ‘choice’ for each trial was used instead of the monkey’s behavioral choice. Specifically, 
responses to ambiguous stimuli (ΔDepth = 0) in the test set were sorted according to the decoder’s 
output (dynamic vs. stationary object prediction).

Time course of choice-related responses
Spikes in the ambiguous trials (ΔDepth = 0) were aligned to stimulus onset, compiled into peri-
stimulus time histograms, and then smoothed using a 150 ms boxcar window. Trials were first sorted 
by the phase of self-motion (phase 0 or phase 180), and then sorted by the animal’s choice (whether 
the animal chose an object within the RF or not). Average responses were z-scored using a session-
wide mean and SD. We plotted the mean and SE of the z-scored responses, as well as the difference 
in z-scored responses between choices (Figure 4—figure supplement 1). For each phase, we tested 
whether the median responses for the two choices at each time point were significantly different or 
not (alpha = 0.05, Wilcoxon signed-rank test).

Neuron samples and selection criteria
We analyzed data from a total of 123 single units (53 neurons from M1 across 73 recording sessions 
and 70 neurons from M2 across 82 recording sessions) for which we completed the basic tuning 
measurements, including tuning for direction, speed, RF position, size, depth from binocular disparity, 
and depth from motion parallax. Among these, we completed the object detection task for 106 
neurons (47 from M1 and 59 from M2). This set of 106 neurons constitutes the sample for the single 
neuron analyses of Figure 3. Except for two neurons, 104 of these 106 neurons were tested using a 
standard set of ΔDepth values, including zero (47 from M1 and 57 from M2).

To compute detection probability, we analyzed a subset of these 104 neurons for which the monkey 
made at least five choices in favor of both target locations when ΔDepth = 0 (92 neurons, 39 from 
M1 and 53 from M2). For population decoding (Figure 6), we required that each dataset contain 
responses to objects at all of the standard depth values for the stationary object. Three neurons were 
excluded because they were tested with slightly different stationary depth values, and four neurons 
were excluded because they did not have responses to stationary objects at all of the standard depth 
values (which can occur because the depths of stationary objects were chosen randomly from the 
standard values in each trial). Thus, with these exclusions, 97 neurons contributed to the population 
decoding analysis (45 from M1 and 52 from M2).

https://doi.org/10.7554/eLife.74971


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kim et al. eLife 2022;11:e74971. DOI: https://doi.org/10.7554/eLife.74971 � 24 of 28

Acknowledgements
We thank Johnny Wen for programming assistance, as well as Swati Shimpi, Emily Murphy, and Dina 
Graf for assistance with training animals. This work was supported by NEI R01 grant EY013644, NINDS 
U19 grant NS118246, and by an NEI Core grant (EY001319).

Additional information

Funding

Funder Grant reference number Author

National Eye Institute EY013644 Gregory C DeAngelis

National Institute of 
Neurological Disorders 
and Stroke

NS118246 Dora E Angelaki
Gregory C DeAngelis

National Eye Institute EY001319 Gregory C DeAngelis

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
HyungGoo R Kim, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, 
Software, Visualization, Writing – original draft, Writing – review and editing; Dora E Angelaki, 
Conceptualization, Writing – review and editing; Gregory C DeAngelis, Conceptualization, Funding 
acquisition, Project administration, Supervision, Validation, Writing – original draft, Writing – review 
and editing

Author ORCIDs
HyungGoo R Kim ‍ ‍http://orcid.org/0000-0002-9106-4960
Dora E Angelaki ‍ ‍http://orcid.org/0000-0002-9650-8962
Gregory C DeAngelis ‍ ‍http://orcid.org/0000-0002-1635-1273

Ethics
All surgical procedures and experimental protocols were approved by the University Committee on 
Animal Resources at the University of Rochester (#100682) and were performed in accordance with 
the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Insti-
tutes of Health.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.74971.sa1
Author response https://doi.org/10.7554/eLife.74971.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
Data have been made available on Figshare: https://doi.org/10.6084/m9.figshare.19783624.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

HyungGoo K, 
Angelaki ED, 
DeAngelis GC

2022 A neural mechanism for 
detecting object motion 
during self-motion

https://​doi.​org/​10.​
6084/​m9.​figshare.​
19783624

figshare, 10.6084/
m9.figshare.19783624

https://doi.org/10.7554/eLife.74971
http://orcid.org/0000-0002-9106-4960
http://orcid.org/0000-0002-9650-8962
http://orcid.org/0000-0002-1635-1273
https://doi.org/10.7554/eLife.74971.sa1
https://doi.org/10.7554/eLife.74971.sa2
https://doi.org/10.6084/m9.figshare.19783624
https://doi.org/10.6084/m9.figshare.19783624
https://doi.org/10.6084/m9.figshare.19783624
https://doi.org/10.6084/m9.figshare.19783624


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kim et al. eLife 2022;11:e74971. DOI: https://doi.org/10.7554/eLife.74971 � 25 of 28

References
Albright TD, Desimone R, Gross CG. 1984. Columnar organization of directionally selective cells in visual area 

MT of the macaque. Journal of Neurophysiology 51:16–31. DOI: https://doi.org/10.1152/jn.1984.51.1.16, 
PMID: 6693933

Bosking WH, Maunsell JHR. 2011. Effects of stimulus direction on the correlation between behavior and single 
units in area MT during a motion detection task. The Journal of Neuroscience 31:8230–8238. DOI: https://doi.​
org/10.1523/JNEUROSCI.0126-11.2011, PMID: 21632944

Bremmer F, Ilg UJ, Thiele A, Distler C, Hoffmann KP. 1997. Eye position effects in monkey cortex. I. Visual and 
pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology 77:944–961. DOI: https://​
doi.org/10.1152/jn.1997.77.2.944, PMID: 9065860

Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992. The analysis of visual motion: a comparison of 
neuronal and psychophysical performance. The Journal of Neuroscience 12:4745–4765 PMID: 1464765., 

Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. 1996. A relationship between behavioral 
choice and the visual responses of neurons in macaque MT. Visual Neuroscience 13:87–100. DOI: https://doi.​
org/10.1017/s095252380000715x, PMID: 8730992

Chen A, DeAngelis GC, Angelaki DE. 2011. Representation of vestibular and visual cues to self-motion in ventral 
intraparietal cortex. The Journal of Neuroscience 31:12036–12052. DOI: https://doi.org/10.1523/JNEUROSCI.​
0395-11.2011, PMID: 21849564

Chen A, DeAngelis GC, Angelaki DE. 2013. Functional specializations of the ventral intraparietal area for 
multisensory heading discrimination. The Journal of Neuroscience 33:3567–3581. DOI: https://doi.org/10.​
1523/JNEUROSCI.4522-12.2013, PMID: 23426684

Chukoskie L, Movshon JA. 2009. Modulation of visual signals in macaque MT and MST neurons during pursuit 
eye movement. Journal of Neurophysiology 102:3225–3233. DOI: https://doi.org/10.1152/jn.90692.2008, 
PMID: 19776359

Cohen MR, Newsome WT. 2009. Estimates of the contribution of single neurons to perception depend on 
timescale and noise correlation. The Journal of Neuroscience 29:6635–6648. DOI: https://doi.org/10.1523/​
JNEUROSCI.5179-08.2009, PMID: 19458234

DeAngelis GC, Newsome WT. 1999. Organization of disparity-selective neurons in macaque area MT. The 
Journal of Neuroscience 19:1398–1415 PMID: 9952417., 

DeAngelis GC, Uka T. 2003. Coding of horizontal disparity and velocity by MT neurons in the alert macaque. 
Journal of Neurophysiology 89:1094–1111. DOI: https://doi.org/10.1152/jn.00717.2002, PMID: 12574483

Dokka K, DeAngelis GC, Angelaki DE. 2015a. Multisensory Integration of Visual and Vestibular Signals Improves 
Heading Discrimination in the Presence of a Moving Object. The Journal of Neuroscience 35:13599–13607. 
DOI: https://doi.org/10.1523/JNEUROSCI.2267-15.2015

Dokka K, MacNeilage PR, DeAngelis GC, Angelaki DE. 2015b. Multisensory Self-Motion Compensation 
During Object Trajectory Judgments. Cerebral Cortex 25:619–630. DOI: https://doi.org/10.1093/cercor/​
bht247

Dokka K, Park H, Jansen M, DeAngelis GC, Angelaki DE. 2019. Causal inference accounts for heading 
perception in the presence of object motion. PNAS 116:9060–9065. DOI: https://doi.org/10.1073/pnas.​
1820373116, PMID: 30996126

Fajen BR, Matthis JS. 2013. Visual and non-visual contributions to the perception of object motion during 
self-motion. PLOS ONE 8:e55446. DOI: https://doi.org/10.1371/journal.pone.0055446, PMID: 23408983

Fajen BR, Parade MS, Matthis JS. 2013. Humans perceive object motion in world coordinates during obstacle 
avoidance. Journal of Vision 13:25. DOI: https://doi.org/10.1167/13.8.25, PMID: 23887048

Fang W, Li J, Qi G, Li S, Sigman M, Wang L. 2019. Statistical inference of body representation in the macaque 
brain. PNAS 116:20151–20157. DOI: https://doi.org/10.1073/pnas.1902334116, PMID: 31481617

Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE. 2011. Neural correlates of reliability-based cue weighting 
during multisensory integration. Nature Neuroscience 15:146–154. DOI: https://doi.org/10.1038/nn.2983, 
PMID: 22101645

Foulkes AJ, Rushton SK, Warren PA. 2013. Flow parsing and heading perception show similar dependence on 
quality and quantity of optic flow. Frontiers in Behavioral Neuroscience 7:49. DOI: https://doi.org/10.3389/​
fnbeh.2013.00049, PMID: 23801945

French RL, DeAngelis GC. 2020. Multisensory neural processing: from cue integration to causal inference. 
Current Opinion in Physiology 16:8–13. DOI: https://doi.org/10.1016/j.cophys.2020.04.004, PMID: 32968701

Gibson EJ, Gibson JJ, Smith OW, Flock H. 1959. Motion parallax as a determinant of perceived depth. Journal 
of Experimental Psychology 58:40–51. DOI: https://doi.org/10.1037/h0043883, PMID: 13664883

Goncalves NR, Welchman AE. 2017. “What Not” Detectors Help the Brain See in Depth. Current Biology 
27:1403-1412.. DOI: https://doi.org/10.1016/j.cub.2017.03.074

Gu Y, Watkins PV, Angelaki DE, DeAngelis GC. 2006. Visual and nonvisual contributions to three-dimensional 
heading selectivity in the medial superior temporal area. The Journal of Neuroscience 26:73–85. DOI: https://​
doi.org/10.1523/JNEUROSCI.2356-05.2006, PMID: 16399674

Gu Y, Angelaki DE, DeAngelis GC. 2008. Neural correlates of multisensory cue integration in macaque MSTd. 
Nature Neuroscience 11:1201–1210. DOI: https://doi.org/10.1038/nn.2191, PMID: 18776893

Gu Y, Angelaki DE, DeAngelis GC. 2014. Contribution of correlated noise and selective decoding to choice 
probability measurements in extrastriate visual cortex. eLife 3:e670. DOI: https://doi.org/10.7554/eLife.02670, 
PMID: 24986734

https://doi.org/10.7554/eLife.74971
https://doi.org/10.1152/jn.1984.51.1.16
http://www.ncbi.nlm.nih.gov/pubmed/6693933
https://doi.org/10.1523/JNEUROSCI.0126-11.2011
https://doi.org/10.1523/JNEUROSCI.0126-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21632944
https://doi.org/10.1152/jn.1997.77.2.944
https://doi.org/10.1152/jn.1997.77.2.944
http://www.ncbi.nlm.nih.gov/pubmed/9065860
http://www.ncbi.nlm.nih.gov/pubmed/1464765
https://doi.org/10.1017/s095252380000715x
https://doi.org/10.1017/s095252380000715x
http://www.ncbi.nlm.nih.gov/pubmed/8730992
https://doi.org/10.1523/JNEUROSCI.0395-11.2011
https://doi.org/10.1523/JNEUROSCI.0395-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21849564
https://doi.org/10.1523/JNEUROSCI.4522-12.2013
https://doi.org/10.1523/JNEUROSCI.4522-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23426684
https://doi.org/10.1152/jn.90692.2008
http://www.ncbi.nlm.nih.gov/pubmed/19776359
https://doi.org/10.1523/JNEUROSCI.5179-08.2009
https://doi.org/10.1523/JNEUROSCI.5179-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19458234
http://www.ncbi.nlm.nih.gov/pubmed/9952417
https://doi.org/10.1152/jn.00717.2002
http://www.ncbi.nlm.nih.gov/pubmed/12574483
https://doi.org/10.1523/JNEUROSCI.2267-15.2015
https://doi.org/10.1093/cercor/bht247
https://doi.org/10.1093/cercor/bht247
https://doi.org/10.1073/pnas.1820373116
https://doi.org/10.1073/pnas.1820373116
http://www.ncbi.nlm.nih.gov/pubmed/30996126
https://doi.org/10.1371/journal.pone.0055446
http://www.ncbi.nlm.nih.gov/pubmed/23408983
https://doi.org/10.1167/13.8.25
http://www.ncbi.nlm.nih.gov/pubmed/23887048
https://doi.org/10.1073/pnas.1902334116
http://www.ncbi.nlm.nih.gov/pubmed/31481617
https://doi.org/10.1038/nn.2983
http://www.ncbi.nlm.nih.gov/pubmed/22101645
https://doi.org/10.3389/fnbeh.2013.00049
https://doi.org/10.3389/fnbeh.2013.00049
http://www.ncbi.nlm.nih.gov/pubmed/23801945
https://doi.org/10.1016/j.cophys.2020.04.004
http://www.ncbi.nlm.nih.gov/pubmed/32968701
https://doi.org/10.1037/h0043883
http://www.ncbi.nlm.nih.gov/pubmed/13664883
https://doi.org/10.1016/j.cub.2017.03.074
https://doi.org/10.1523/JNEUROSCI.2356-05.2006
https://doi.org/10.1523/JNEUROSCI.2356-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16399674
https://doi.org/10.1038/nn.2191
http://www.ncbi.nlm.nih.gov/pubmed/18776893
https://doi.org/10.7554/eLife.02670
http://www.ncbi.nlm.nih.gov/pubmed/24986734


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kim et al. eLife 2022;11:e74971. DOI: https://doi.org/10.7554/eLife.74971 � 26 of 28

Haefner RM, Gerwinn S, Macke JH, Bethge M. 2013. Inferring decoding strategies from choice probabilities in 
the presence of correlated variability. Nature Neuroscience 16:235–242. DOI: https://doi.org/10.1038/nn.3309, 
PMID: 23313912

Huang X, Lisberger SG. 2009. Noise correlations in cortical area MT and their potential impact on trial-by-trial 
variation in the direction and speed of smooth-pursuit eye movements. Journal of Neurophysiology 101:3012–
3030. DOI: https://doi.org/10.1152/jn.00010.2009, PMID: 19321645

Inaba N, Shinomoto S, Yamane S, Takemura A, Kawano K. 2007. MST neurons code for visual motion in space 
independent of pursuit eye movements. Journal of Neurophysiology 97:3473–3483. DOI: https://doi.org/10.​
1152/jn.01054.2006, PMID: 17329625

Inaba N, Miura K, Kawano K. 2011. Direction and speed tuning to visual motion in cortical areas MT and MSTd 
during smooth pursuit eye movements. Journal of Neurophysiology 105:1531–1545. DOI: https://doi.org/10.​
1152/jn.00511.2010, PMID: 21273314

Kim HR. 2013. MoogDots_2013, GitHub. 688db8e. GitHub. https://github.com/hkim09/MoogDots_2013
Kim HR, Angelaki DE, DeAngelis GC. 2015a. A Functional Link between MT Neurons and Depth Perception 

Based on Motion Parallax. Journal of Neuroscience 35:2766–2777. DOI: https://doi.org/10.1523/JNEUROSCI.​
3134-14.2015

Kim HR, Angelaki DE, DeAngelis GC. 2015b. A novel role for visual perspective cues in the neural computation 
of depth. Nature Neuroscience 18:129–137. DOI: https://doi.org/10.1038/nn.3889

Kim HR, Angelaki DE, DeAngelis GC. 2016a. The neural basis of depth perception from motion parallax. 
Philosophical Transactions of the Royal Society B 371:20150256. DOI: https://doi.org/10.1098/rstb.2015.0256

Kim HR, Pitkow X, Angelaki DE, DeAngelis GC. 2016b. A simple approach to ignoring irrelevant variables by 
population decoding based on multisensory neurons. Journal of Neurophysiology 116:1449–1467. DOI: 
https://doi.org/10.1152/jn.00005.2016

Kim HR, Angelaki DE, DeAngelis GC. 2017. Gain Modulation as a Mechanism for Coding Depth from Motion 
Parallax in Macaque Area MT. The Journal of Neuroscience 37:8180–8197. DOI: https://doi.org/10.1523/​
JNEUROSCI.0393-17.2017, PMID: 28739582

Koenderink JJ, van Doorn AJ. 1987. Facts on optic flow. Biological Cybernetics 56:247–254. DOI: https://doi.​
org/10.1007/BF00365219, PMID: 3607100

Komatsu H, Wurtz RH. 1988. Localization and Visual Properties of Neurons. Journal of Neurophysiol 60:580–603. 
DOI: https://doi.org/10.1152/jn.1988.60.2.580, PMID: 3171643

Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L. 2007. Causal inference in multisensory 
perception. PLOS ONE 2:e943. DOI: https://doi.org/10.1371/journal.pone.0000943, PMID: 17895984

Layton OW, Fajen BR. 2016a. A Neural Model of MST and MT Explains Perceived Object Motion during 
Self-Motion. The Journal of Neuroscience 36:8093–8102. DOI: https://doi.org/10.1523/JNEUROSCI.4593-15.​
2016, PMID: 27488630

Layton OW, Fajen BR. 2016b. The temporal dynamics of heading perception in the presence of moving objects. 
Journal of Neurophysiology 115:286–300. DOI: https://doi.org/10.1152/jn.00866.2015, PMID: 26510765

Layton OW, Niehorster DC. 2019. A model of how depth facilitates scene-relative object motion perception. 
PLOS Computational Biology 15:e1007397. DOI: https://doi.org/10.1371/journal.pcbi.1007397, PMID: 
31725723

Layton OW, Fajen BR. 2020. Computational Mechanisms for Perceptual Stability using Disparity and Motion 
Parallax. The Journal of Neuroscience 40:996–1014. DOI: https://doi.org/10.1523/JNEUROSCI.0036-19.2019, 
PMID: 31699889

Lee J, Maunsell JHR. 2010. Attentional modulation of MT neurons with single or multiple stimuli in their 
receptive fields. The Journal of Neuroscience 30:3058–3066. DOI: https://doi.org/10.1523/JNEUROSCI.​
3766-09.2010, PMID: 20181602

Martínez-Trujillo J, Treue S. 2002. Attentional modulation strength in cortical area MT depends on stimulus 
contrast. Neuron 35:365–370. DOI: https://doi.org/10.1016/s0896-6273(02)00778-x, PMID: 12160753

Maunsell JH, Van Essen DC. 1983. Functional properties of neurons in middle temporal visual area of the 
macaque monkey. II. Binocular Interactions and Sensitivity to Binocular Disparity. J Neurophysiol 49:1148–
1167. DOI: https://doi.org/10.1152/jn.1983.49.5.1148, PMID: 6864243

Nadler JW, Angelaki DE, DeAngelis GC. 2008. A neural representation of depth from motion parallax in 
macaque visual cortex. Nature 452:642–645. DOI: https://doi.org/10.1038/nature06814, PMID: 18344979

Nadler JW, Nawrot M, Angelaki DE, DeAngelis GC. 2009. MT neurons combine visual motion with a smooth eye 
movement signal to code depth-sign from motion parallax. Neuron 63:523–532. DOI: https://doi.org/10.1016/​
j.neuron.2009.07.029, PMID: 19709633

Nadler JW, Barbash D, Kim HR, Shimpi S, Angelaki DE, DeAngelis GC. 2013. Joint representation of depth from 
motion parallax and binocular disparity cues in macaque area MT. The Journal of Neuroscience 33:14061–
14074. DOI: https://doi.org/10.1523/JNEUROSCI.0251-13.2013, PMID: 23986242

Newsome WT, Wurtz RH, Komatsu H. 1988. Relation of cortical areas MT and MST to pursuit eye movements. II. 
Differentiation of Retinal from Extraretinal Inputs. J Neurophysiol 60:604–620. DOI: https://doi.org/10.1152/jn.​
1988.60.2.604, PMID: 3171644

Niehorster DC, Li L. 2017. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During 
Self-Motion. I-Perception 8:204166951770820. DOI: https://doi.org/10.1177/2041669517708206, PMID: 
28567272

Peltier NE, Angelaki DE, DeAngelis GC. 2020. Optic flow parsing in the macaque monkey. Journal of Vision 
20:8. DOI: https://doi.org/10.1167/jov.20.10.8, PMID: 33016983

https://doi.org/10.7554/eLife.74971
https://doi.org/10.1038/nn.3309
http://www.ncbi.nlm.nih.gov/pubmed/23313912
https://doi.org/10.1152/jn.00010.2009
http://www.ncbi.nlm.nih.gov/pubmed/19321645
https://doi.org/10.1152/jn.01054.2006
https://doi.org/10.1152/jn.01054.2006
http://www.ncbi.nlm.nih.gov/pubmed/17329625
https://doi.org/10.1152/jn.00511.2010
https://doi.org/10.1152/jn.00511.2010
http://www.ncbi.nlm.nih.gov/pubmed/21273314
https://github.com/hkim09/MoogDots_2013
https://doi.org/10.1523/JNEUROSCI.3134-14.2015
https://doi.org/10.1523/JNEUROSCI.3134-14.2015
https://doi.org/10.1038/nn.3889
https://doi.org/10.1098/rstb.2015.0256
https://doi.org/10.1152/jn.00005.2016
https://doi.org/10.1523/JNEUROSCI.0393-17.2017
https://doi.org/10.1523/JNEUROSCI.0393-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28739582
https://doi.org/10.1007/BF00365219
https://doi.org/10.1007/BF00365219
http://www.ncbi.nlm.nih.gov/pubmed/3607100
https://doi.org/10.1152/jn.1988.60.2.580
http://www.ncbi.nlm.nih.gov/pubmed/3171643
https://doi.org/10.1371/journal.pone.0000943
http://www.ncbi.nlm.nih.gov/pubmed/17895984
https://doi.org/10.1523/JNEUROSCI.4593-15.2016
https://doi.org/10.1523/JNEUROSCI.4593-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27488630
https://doi.org/10.1152/jn.00866.2015
http://www.ncbi.nlm.nih.gov/pubmed/26510765
https://doi.org/10.1371/journal.pcbi.1007397
http://www.ncbi.nlm.nih.gov/pubmed/31725723
https://doi.org/10.1523/JNEUROSCI.0036-19.2019
http://www.ncbi.nlm.nih.gov/pubmed/31699889
https://doi.org/10.1523/JNEUROSCI.3766-09.2010
https://doi.org/10.1523/JNEUROSCI.3766-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20181602
https://doi.org/10.1016/s0896-6273(02)00778-x
http://www.ncbi.nlm.nih.gov/pubmed/12160753
https://doi.org/10.1152/jn.1983.49.5.1148
http://www.ncbi.nlm.nih.gov/pubmed/6864243
https://doi.org/10.1038/nature06814
http://www.ncbi.nlm.nih.gov/pubmed/18344979
https://doi.org/10.1016/j.neuron.2009.07.029
https://doi.org/10.1016/j.neuron.2009.07.029
http://www.ncbi.nlm.nih.gov/pubmed/19709633
https://doi.org/10.1523/JNEUROSCI.0251-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23986242
https://doi.org/10.1152/jn.1988.60.2.604
https://doi.org/10.1152/jn.1988.60.2.604
http://www.ncbi.nlm.nih.gov/pubmed/3171644
https://doi.org/10.1177/2041669517708206
http://www.ncbi.nlm.nih.gov/pubmed/28567272
https://doi.org/10.1167/jov.20.10.8
http://www.ncbi.nlm.nih.gov/pubmed/33016983


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kim et al. eLife 2022;11:e74971. DOI: https://doi.org/10.7554/eLife.74971 � 27 of 28

Pitkow X, Liu S, Angelaki DE, DeAngelis GC, Pouget A. 2015. How Can Single Sensory Neurons Predict 
Behavior? Neuron 87:411–423. DOI: https://doi.org/10.1016/j.neuron.2015.06.033, PMID: 26182422

Rideaux R, Storrs KR, Maiello G, Welchman AE. 2021. How multisensory neurons solve causal inference. PNAS 
118:e2106235118. DOI: https://doi.org/10.1073/pnas.2106235118, PMID: 34349023

Royden CS, Connors EM. 2010. The detection of moving objects by moving observers. Vision Research 50:1014–
1024. DOI: https://doi.org/10.1016/j.visres.2010.03.008, PMID: 20304002

Royden CS, Moore KD. 2012. Use of speed cues in the detection of moving objects by moving observers. Vision 
Research 59:17–24. DOI: https://doi.org/10.1016/j.visres.2012.02.006, PMID: 22406544

Royden CS, Holloway MA. 2014. Detecting moving objects in an optic flow field using direction- and speed-
tuned operators. Vision Research 98:14–25. DOI: https://doi.org/10.1016/j.visres.2014.02.009, PMID: 
24607912

Royden CS, Sannicandro SE, Webber LM. 2015. Detection of moving objects using motion- and stereo-tuned 
operators. Journal of Vision 15:21. DOI: https://doi.org/10.1167/15.8.21, PMID: 26129859

Royden CS, Parsons D, Travatello J. 2016. The effect of monocular depth cues on the detection of moving 
objects by moving observers. Vision Research 124:7–14. DOI: https://doi.org/10.1016/j.visres.2016.05.002, 
PMID: 27264029

Rushton SK, Warren PA. 2005. Moving observers, relative retinal motion and the detection of object movement. 
Current Biology 15:R542–R543. DOI: https://doi.org/10.1016/j.cub.2005.07.020, PMID: 16051158

Rushton SK, Bradshaw MF, Warren PA. 2007. The pop out of scene-relative object movement against retinal 
motion due to self-movement. Cognition 105:237–245. DOI: https://doi.org/10.1016/j.cognition.2006.09.004, 
PMID: 17069787

Rushton SK, Niehorster DC, Warren PA, Li L. 2018. The Primary Role of Flow Processing in the Identification of 
Scene-Relative Object Movement. The Journal of Neuroscience 38:1737–1743. DOI: https://doi.org/10.1523/​
JNEUROSCI.3530-16.2017, PMID: 29229707

Sasaki R, Angelaki DE, DeAngelis GC. 2017. Dissociation of Self-Motion and Object Motion by Linear Population 
Decoding That Approximates Marginalization. The Journal of Neuroscience 37:11204–11219. DOI: https://doi.​
org/10.1523/JNEUROSCI.1177-17.2017, PMID: 29030435

Sasaki R, Angelaki DE, DeAngelis GC. 2019. Processing of object motion and self-motion in the lateral 
subdivision of the medial superior temporal area in macaques. Journal of Neurophysiology 121:1207–1221. 
DOI: https://doi.org/10.1152/jn.00497.2018, PMID: 30699042

Sasaki R, Anzai A, Angelaki DE, DeAngelis GC. 2020. Flexible coding of object motion in multiple reference 
frames by parietal cortex neurons. Nature Neuroscience 23:1004–1015. DOI: https://doi.org/10.1038/
s41593-​020-0656-0, PMID: 32541964

Schlack A, Albright TD. 2007. Remembering visual motion: neural correlates of associative plasticity and motion 
recall in cortical area MT. Neuron 53:881–890. DOI: https://doi.org/10.1016/j.neuron.2007.02.028, PMID: 
17359922

Shadlen MN, Britten KH, Newsome WT, Movshon JA. 1996. A computational analysis of the relationship 
between neuronal and behavioral responses to visual motion. The Journal of Neuroscience 16:1486–1510. 
DOI: https://doi.org/10.1523/JNEUROSCI.16-04-01486.1996, PMID: 8778300

Shams L, Beierholm UR. 2010. Causal inference in perception. Trends in Cognitive Sciences 14:425–432. DOI: 
https://doi.org/10.1016/j.tics.2010.07.001, PMID: 20705502

Treue S, Maunsell JH. 1996. Attentional modulation of visual motion processing in cortical areas MT and MST. 
Nature 382:539–541. DOI: https://doi.org/10.1038/382539a0, PMID: 8700227

Treue S, Maunsell JH. 1999. Effects of attention on the processing of motion in macaque middle temporal and 
medial superior temporal visual cortical areas. The Journal of Neuroscience 19:7591–7602. DOI: https://doi.​
org/10.1523/JNEUROSCI.19-17-07591.1999, PMID: 10460265

Uka T, DeAngelis GC. 2004. Contribution of area MT to stereoscopic depth perception: choice-related response 
modulations reflect task strategy. Neuron 42:297–310. DOI: https://doi.org/10.1016/s0896-6273(04)00186-2, 
PMID: 15091344

Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH. 2001. An integrated software suite for 
surface-based analyses of cerebral cortex. Journal of the American Medical Informatics Association 8:443–459. 
DOI: https://doi.org/10.1136/jamia.2001.0080443, PMID: 11522765

Warren PA, Rushton SK. 2007. Perception of object trajectory: parsing retinal motion into self and object 
movement components. Journal of Vision 7:2. DOI: https://doi.org/10.1167/7.11.2, PMID: 17997657

Warren PA, Rushton SK. 2008. Evidence for flow-parsing in radial flow displays. Vision Research 48:655–663. 
DOI: https://doi.org/10.1016/j.visres.2007.10.023, PMID: 18243274

Warren PA, Rushton SK. 2009a. Optic flow processing for the assessment of object movement during ego 
movement. Current Biology 19:1555–1560. DOI: https://doi.org/10.1016/j.cub.2009.07.057, PMID: 19699091

Warren PA, Rushton SK. 2009b. Perception of scene-relative object movement: Optic flow parsing and the 
contribution of monocular depth cues. Vision Research 49:1406–1419. DOI: https://doi.org/10.1016/j.visres.​
2009.01.016, PMID: 19480063

Warren PA, Rushton SK, Foulkes AJ. 2012. Does optic flow parsing depend on prior estimation of heading? 
Journal of Vision 12:8. DOI: https://doi.org/10.1167/12.11.8, PMID: 23064244

Womelsdorf T, Anton-Erxleben K, Treue S. 2008. Receptive field shift and shrinkage in macaque middle 
temporal area through attentional gain modulation. The Journal of Neuroscience 28:8934–8944. DOI: https://​
doi.org/10.1523/JNEUROSCI.4030-07.2008, PMID: 18768687

https://doi.org/10.7554/eLife.74971
https://doi.org/10.1016/j.neuron.2015.06.033
http://www.ncbi.nlm.nih.gov/pubmed/26182422
https://doi.org/10.1073/pnas.2106235118
http://www.ncbi.nlm.nih.gov/pubmed/34349023
https://doi.org/10.1016/j.visres.2010.03.008
http://www.ncbi.nlm.nih.gov/pubmed/20304002
https://doi.org/10.1016/j.visres.2012.02.006
http://www.ncbi.nlm.nih.gov/pubmed/22406544
https://doi.org/10.1016/j.visres.2014.02.009
http://www.ncbi.nlm.nih.gov/pubmed/24607912
https://doi.org/10.1167/15.8.21
http://www.ncbi.nlm.nih.gov/pubmed/26129859
https://doi.org/10.1016/j.visres.2016.05.002
http://www.ncbi.nlm.nih.gov/pubmed/27264029
https://doi.org/10.1016/j.cub.2005.07.020
http://www.ncbi.nlm.nih.gov/pubmed/16051158
https://doi.org/10.1016/j.cognition.2006.09.004
http://www.ncbi.nlm.nih.gov/pubmed/17069787
https://doi.org/10.1523/JNEUROSCI.3530-16.2017
https://doi.org/10.1523/JNEUROSCI.3530-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/29229707
https://doi.org/10.1523/JNEUROSCI.1177-17.2017
https://doi.org/10.1523/JNEUROSCI.1177-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29030435
https://doi.org/10.1152/jn.00497.2018
http://www.ncbi.nlm.nih.gov/pubmed/30699042
https://doi.org/10.1038/s41593-020-0656-0
https://doi.org/10.1038/s41593-020-0656-0
http://www.ncbi.nlm.nih.gov/pubmed/32541964
https://doi.org/10.1016/j.neuron.2007.02.028
http://www.ncbi.nlm.nih.gov/pubmed/17359922
https://doi.org/10.1523/JNEUROSCI.16-04-01486.1996
http://www.ncbi.nlm.nih.gov/pubmed/8778300
https://doi.org/10.1016/j.tics.2010.07.001
http://www.ncbi.nlm.nih.gov/pubmed/20705502
https://doi.org/10.1038/382539a0
http://www.ncbi.nlm.nih.gov/pubmed/8700227
https://doi.org/10.1523/JNEUROSCI.19-17-07591.1999
https://doi.org/10.1523/JNEUROSCI.19-17-07591.1999
http://www.ncbi.nlm.nih.gov/pubmed/10460265
https://doi.org/10.1016/s0896-6273(04)00186-2
http://www.ncbi.nlm.nih.gov/pubmed/15091344
https://doi.org/10.1136/jamia.2001.0080443
http://www.ncbi.nlm.nih.gov/pubmed/11522765
https://doi.org/10.1167/7.11.2
http://www.ncbi.nlm.nih.gov/pubmed/17997657
https://doi.org/10.1016/j.visres.2007.10.023
http://www.ncbi.nlm.nih.gov/pubmed/18243274
https://doi.org/10.1016/j.cub.2009.07.057
http://www.ncbi.nlm.nih.gov/pubmed/19699091
https://doi.org/10.1016/j.visres.2009.01.016
https://doi.org/10.1016/j.visres.2009.01.016
http://www.ncbi.nlm.nih.gov/pubmed/19480063
https://doi.org/10.1167/12.11.8
http://www.ncbi.nlm.nih.gov/pubmed/23064244
https://doi.org/10.1523/JNEUROSCI.4030-07.2008
https://doi.org/10.1523/JNEUROSCI.4030-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18768687


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kim et al. eLife 2022;11:e74971. DOI: https://doi.org/10.7554/eLife.74971 � 28 of 28

Zhang WH, Wang H, Chen A, Gu Y, Lee TS, Wong KM, Wu S. 2019a. Complementary congruent and opposite 
neurons achieve concurrent multisensory integration and segregation. eLife 8:e43753. DOI: https://doi.org/10.​
7554/eLife.43753, PMID: 31120416

Zhang W, Wu S, Doiron B, Lee TS. 2019b. A normative theory for causal inference and Bayes factor computation 
in neural circuits. NeurIPS 32:3804–3813.

Zohary E, Shadlen MN, Newsome WT. 1994. Correlated neuronal discharge rate and its implications for 
psychophysical performance. Nature 370:140–143. DOI: https://doi.org/10.1038/370140a0, PMID: 8022482

https://doi.org/10.7554/eLife.74971
https://doi.org/10.7554/eLife.43753
https://doi.org/10.7554/eLife.43753
http://www.ncbi.nlm.nih.gov/pubmed/31120416
https://doi.org/10.1038/370140a0
http://www.ncbi.nlm.nih.gov/pubmed/8022482

	A neural mechanism for detecting object motion during self-­motion
	Editor's evaluation
	Introduction
	Results
	Stimulus configuration and behavioral task
	Congruency of depth preferences and responses to dynamic objects
	Correlation with perceptual decisions
	Decoding model

	Discussion
	Comparison to other types of mechanisms for detecting object motion
	Relationship to flow-parsing mechanism for computing scene-relative object motion
	Functional roles of area MT and computational roles of opposite cells

	Materials and methods
	Subjects and surgery
	Experimental apparatus
	Electrophysiological recordings
	Visual stimuli
	Stimulus to measure depth tuning from motion parallax
	Stimulus for object detection task

	Experimental protocol
	Preliminary measurements
	Moving object detection task

	Animal training procedure
	Data analyses
	Regression analysis of behavior
	Depth-sign tuning and discrimination index
	Depth sign discrimination index for dynamic object tuning
	Depth tuning congruency
	Neurometric performance
	Detection probability
	Decoding analyses
	Time course of choice-related responses
	Neuron samples and selection criteria


	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


