
entropy

Article

SAMLDroid: A Static Taint Analysis and Machine Learning
Combined High-Accuracy Method for Identifying Android
Apps with Location Privacy Leakage Risks

Guangwu Hu 1 , Bin Zhang 2,*, Xi Xiao 2,3 , Weizhe Zhang 2,4, Long Liao 1, Ying Zhou 2 and Xia Yan 1

����������
�������

Citation: Hu, G.; Zhang, B.; Xiao, X.;

Zhang, W.; Liao, L.; Zhou, Y.; Yan, X.

SAMLDroid: A Static Taint Analysis

and Machine Learning Combined

High-Accuracy Method for

Identifying Android Apps with

Location Privacy Leakage Risks.

Entropy 2021, 23, 1489. https://

doi.org/10.3390/e23111489

Academic Editor: Boris Ryabko

Received: 27 September 2021

Accepted: 7 November 2021

Published: 10 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computers, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
hugw@sziit.edu.cn (G.H.); liaolong@sziit.edu.cn (L.L.); yanxia@sziit.edu.cn (X.Y.)

2 Peng Cheng National Laboratory, Department of New Networks, Shenzhen 518000, China;
xiaox@sz.tsinghua.edu.cn (X.X.); wzzhang@hit.edu.cn (W.Z.); zhou.ying@pcl.ac.cn (Y.Z.)

3 Information Technology Division, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
4 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
* Correspondence: bin.zhang@pcl.ac.cn; Tel.: +86-755-86975847

Abstract: Insecure applications (apps) are increasingly used to steal users’ location information for
illegal purposes, which has aroused great concern in recent years. Although the existing methods,
i.e., static and dynamic taint analysis, have shown great merit for identifying such apps, which
mainly rely on statically analyzing source code or dynamically monitoring the location data flow,
identification accuracy is still under research, since the analysis results contain a certain false positive
or true negative rate. In order to improve the accuracy and reduce the misjudging rate in the process
of vetting suspicious apps, this paper proposes SAMLDroid, a combined method of static code
analysis and machine learning for identifying Android apps with location privacy leakage, which
can effectively improve the identification rate compared with existing methods. SAMLDroid first
uses static analysis to scrutinize source code to investigate apps with location acquiring intentions.
Then it exploits a well-trained classifier and integrates an app’s multiple features to dynamically
analyze the pattern and deliver the final verdict about the app’s property. Finally, it is proved by
conducting experiments, that the accuracy rate of SAMLDroid is up to 98.4%, which is nearly 20%
higher than Apparecium.

Keywords: android; machine learning; static taint analysis; dynamic taint analysis; location
privacy protection

1. Introduction

Recently, with the rise of the mobile internet, location sharing has become an essential
and important service, i.e., locating, location sharing, navigation, and finding nearby
points of interest (PoIs). According to the survey this study conducted on 20 mobile social
applications (apps), e.g., WeChat, Twitter, WhatsApp, Sina Weibo, all involve users’ location
sharing or retrieving operations. Although location-based services (LBS) provide great
convenience to mobile social network users, location privacy leakage has also aroused great
concern because of its potential risks. With users’ geographic location data, perpetrators
can not only make precision marketing, but also carry out a variety of attacks, such as
long-term statistical attacks, regional statistical attacks, and even personal safety threats.

From the aspect of terminals, the location privacy leakage mainly refers to mobile
apps containing backdoors or rogue designs that can be used to obtain a user’s location
information without their permission, and bypass the operational system’s security check,
so that these apps can send out privacy data via different means, for example, log files,
short message service (SMS), and socket communication. In fact, currently a large portion
of mobile apps request location access permission from users upon installation. Once

Entropy 2021, 23, 1489. https://doi.org/10.3390/e23111489 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3947-9998
https://orcid.org/0000-0003-1521-9542
https://doi.org/10.3390/e23111489
https://doi.org/10.3390/e23111489
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111489
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111489?type=check_update&version=2

Entropy 2021, 23, 1489 2 of 15

permission is granted, these apps arbitrarily utilize users’ location data without their
permission. For users, it is hard to know how these apps will deal with their location data,
the purposes it will be used for, and who has the privilege to access it.

Existing methods for detecting such malicious apps or malwares with location leakage
risks can be divided into two types: static taint analysis and dynamic behavior analysis.
Static taint analysis decompiles an app’s source code and analyzes features from the code,
e.g., function call sequences and location information flows, which can facilitate detection
methods to determine whether the app has a location leakage risk, or not. Dynamic
behavior analysis simulates users’ behavior and monitors app reactions in runtime, and
can be used to analyze the location data flow from location-retrieving APIs. Although
these two methods both have merit, they share a common defect in that they contain a
portion of misjudging rate, since some malwares stealthily utilize users’ location data to
imitate patterns of behavior similar to normal apps. Moreover, some malwares employ
elusion techniques, e.g., dynamic code loading, encryption and native code exploit, to
avoid detection. Therefore, it is challenging to distinguish malwares from normal apps,
with a high recognition rate.

In order to improve the identification accuracy for malwares with location privacy
leakage, this paper proposes SAMLDroid, a combined method of static taint analysis and
machine learning for Android platforms. As opposed to existing methods, static code
analysis is adopted not only for the merit of fast speed, but also to bring machine learning
techniques into the dynamic analysis phase in order to lower the misjudging rate. Briefly,
SAMLDroid first uses static taint analysis to scrutinize the target app’s source code and
check for the existence of a data flow from the location data, by retrieving APIs from those
sent out of the terminals. If it detects this, the app will be transferred to the second phase
for dynamic behavior inspection, and the classifier will output the final verdict. Random
forest (RF) algorithm was chosen as the classifier, from six candidate machine learning
algorithms, and trained with a large number of app samples. Finally, the well-trained
classifier outputs a binary result (0 or 1) which indicates that the target app is benign or
malicious. The great merit in this method is that it dramatically decreases the misjudging
rate compared with existing static or dynamic analysis methods.

The main contributions of this paper are as follows:

(1) The SAMLDroid method, that combines static taint analysis and machine learning to
examine whether Android apps have location leakage risks or not, improves upon
the deficiency of either static or dynamic analysis with regard to false positive or true
negative misjudging rates;

(2) The design of a high-accuracy classifier model that takes apps’ multi-dimensional
features into account and adopts the Bayesian network which includes six machine
learning algorithms as well as six indicators, to evaluate their performance and
choose the best indicator for final evaluation. To the best of the authors’ knowledge,
SAMLDroid is the first attempt to use diverse features to train the classifier and
evaluate the best indicator for the final verdict;

(3) A series of experiments were conducted on a large dataset containing 24,997 app
samples. They resulted in showing that the accuracy of SAMLDroid reaches up to
98.4%, which is nearly 20% higher than Apparecium.

This remaining paper is organized as follows: In Section 2, related work is summa-
rized to offer readers a quick understanding about this subject. In Section 3, the system
architecture and its components are elaborated. The method is evaluated in Section 4.
Finally, Section 5 concludes the paper and suggests future lines of research.

2. Related Work

In view of the great hazard of location leakage risks with insecure apps, many merito-
rious solutions have been proposed, which mainly focus on three aspects: mobile client
side, server side and the communication protocol design between them. On the server
side, researchers have solved this problem mainly from the aspect of concealing/confusing

Entropy 2021, 23, 1489 3 of 15

location data (e.g., mixed area [1,2]) and mixing the relationship between users and their
locations (e.g., k-anonymous [3,4]), while the protocol design has addressed this problem
through concepts of encrypting sensitive location data [5] or protecting location query
protocol [6]. However, on the client side, researchers have mainly focused on how to
distinguish malicious apps from benign apps since they all need to invoke location-related
APIs to achieve their purposes, which can be categorized into two types: static analysis
and dynamic analysis for Android package (APK) files.

2.1. Static Analysis

Static analysis or static taint analysis generally decompiles APK files and analyzes
the behavior features based on the decompiled source code. The highly focused features,
such as function call sequences and information flows, help to determine the apps’ features.
Specifically, this method or related tool usually first defines the source (where APIs access
location data) and sink points (where APIs send location data out of the system). Then
it analyzes the source code and examines whether there is a sensitive data flow from the
source to the sink points. Relying on this result, users can label the target apps as benign or
malicious. Much effort has been made, with meritorious results, based on this idea.

Androguard [7] is a basic static taint analysis tool from Google, which can be used to
analyze the control flows in APK files and determine whether there is a data stream from
the source to the sink points. Similarly, by tracking privacy-getting and privacy-sending
actions, Flowdroid [8] traces target apps’ status in every key step and models all transitive
relationships in the entire lifecycle, being the first comprehensive static analysis tool based
on context, location data flows and app’s lifecycle. Meanwhile, to achieve a highly accurate
analysis result, Brox [9] presents an inter-procedural data flow analysis framework which
integrates flow sensitive, context-sensitive and inter-procedural techniques together, to
perform taint analysis. In addition, Brox comprehensively defines a classified algorithm
to evaluate potential privacy-leaking actions, which achieves the purpose of classification
speed-up.

To evade the detection means mentioned above, some apps exploit Android inter-
component communication (ICC) to illegally retrieve location privacy, because the sensitive
data exchanged across components are hardly able to be detected. In order to check such
rogue apps, Amandroid [10] and IccTA [11] differentiate vicious privacy leakage actions
among the legal information exchange by tracking both control and data flows across
different apps’ components and designing a comprehensive assessment algorithm with
various benchmarks. Compared with normal static taint analysis methods, more covert
leakage actions can be detected. For example, IccTA’s experiment showed the detection
of 2395 ICC leaks in 337 apps in a set of 15,000 Google Play apps stores. Furthermore,
Iccchecker [12] leveraged the context information triggered by sensitive behaviors and
set up a classification algorithm with multiple benchmarks, identifying four apps with
ICC-based privacy leakage actions among 168 Google Play apps (2.3%) and 31 malwares
from 49 samples (63.3%).

In addition, StubDroid [13] proposed the first automated classification method for
precisely and efficiently inferring malwares by automatically constructing app summaries.
DroidSafe [14] designed a comprehensive, accurate, and precise classification model for
Android apps detection. Lastly, Apparecium [15] provided the authors of this study with
intense inspiration in terms of static stain analysis, by revealing all possible data flows
from arbitrary data sources to sinks.

2.2. Dynamic Analysis

As opposed to static analysis that only examines apps’ source code to find privacy
leakage clues, dynamic analysis simulates users’ behavior and monitors apps’ reactions
to reveal data flows from all sources and evaluate privacy leakage under apps’ running
situations. Compared with static analysis, dynamic analysis can achieve more precise

Entropy 2021, 23, 1489 4 of 15

results since it can simulate many real scenarios. However, the disadvantage is a much
higher cost in computing and resource consumption.

As the classic representative, TaintDroid [16] achieves this purpose by monitoring
app status in a virtual Android running environment. Further, as the extension version of
TaintDroid, QuantDroid [17] achieves the same purpose by monitoring the information
leakage rate and stopping the app when it reaches a designated threshold. Additionally,
it conducts dynamic taint tagging and builds an information flow graph to dynamically
examine flows between sources and sinks. Meanwhile, MADAM [18] detects and stops
malicious behaviors by monitoring behaviors in both apps and users, and creates features
at four levels: kernel, application, user and package.

2.3. Hybrid Analysis

In the static and dynamic behavior hybrid detection methods, Monet [19] combined
“runtime” behaviors with “static structures” to exploit malware properties, and showed
that the runtime behaviors of a malware’s scoring functions were similar within a malware
family. As a result, a behavior pattern in a malware family can be summarized. Lastly, the
DeepFlow [20] proposal used FlowDroid as its basis and extracted all data flows from arbi-
trary sensitive sources to sinks. At the same time, it also applied dynamic Bayesian network
(DBN) to analyze the high-level features, which achieved good classification results.

In summary, static analysis is fast and efficient because it only needs to analyze apps’
source code. Even though dynamic analysis is much more precise, it is time and resource
consuming since it relies on simulator or analog equipment to simulate user behavior and
monitor apps’ reactions in runtime. Nevertheless, both share a common defect in that they
contain a relatively high misjudging rate.

3. System Descriptions

In order to improve the recognition rate for identifying malwares with location privacy
leakage risks and consider the pros and cons of the static and dynamic taint analysis
methods, a novel method, SAMLDroid, is proposed. It combines static and dynamic
analysis and involves machine learning techniques in the dynamic analysis phase to meet
high-accuracy recognition rate requirements.

3.1. System Overview

Although location privacy leakage brings huge risks to users, users can hardly perceive
the rogue behaviors of stealthy GPS data. This is because they have similar patterns to
normal apps that provide LBS, such as news apps that push local news to certain people
within an area, and music apps that push users to a nearby user list that may have the
same interests. Therefore, the challenge here is how to distinguish malwares from benign
apps in terms of behavior patterns. The main difference between the patterns is the way in
which location data are acquired and sent out, and even though the existing methods of
static source code analysis and dynamic behavior analysis have made contributions, there
is still a large scope for improvement.

In consideration of the pros and cons of the static and dynamic taint methods, the
proposed system joins these methods, with a division of the whole process into two phases.
Briefly, the first static analysis phase takes charge of analyzing target apps from a code level,
so that an initial judgment can be made regarding whether the app has location acquiring
intentions, or not. In this stage, suspicious apps can be effectively identified and allocated
a reference as to whether the apps are suspicious or not. However, since the static analysis
still contains a certain misjudging rate, for further examination, a second phase of dynamic
analysis is employed. As opposed to the traditional method that only checks the presence
of data flow between sources to sinks within the apps’ running time, this study proposes
to employ a machine learning-based idea to build a classifier model and train it to generate
a more precise verdict, in the second phase. More specifically, in the first phase, the system
uses the static taint method to analyze the APK file’s source code and discover whether

Entropy 2021, 23, 1489 5 of 15

there is a data flow from the location acquiring source APIs (Loc_Source) to data sent out
APIs (Out_Sink). If it does, the system will hand it over to the second phase (dynamic
analysis phase) for further examination. Once suspicious apps enter the second phase, the
system exploits the prepared classifier to analyze the apps’ dynamic actions and declare
its final prediction with a high accuracy rate. However, before this, there is a classifier
preparation phase, which employs multiple machine learning algorithms trained with a
large, labeled dataset (malware and benign apps). In order to choose the best algorithm for
the classifier, multiple indicators are also established as benchmarks and compared. The
whole system process diagram is shown in Figure 1, and each process will be elaborated in
detail in the following subsection.

Entropy 2021, 23, 1489 5 of 16

fied and allocated a reference as to whether the apps are suspicious or not. However,
since the static analysis still contains a certain misjudging rate, for further examination, a
second phase of dynamic analysis is employed. As opposed to the traditional method
that only checks the presence of data flow between sources to sinks within the apps’
running time, this study proposes to employ a machine learning-based idea to build a
classifier model and train it to generate a more precise verdict, in the second phase. More
specifically, in the first phase, the system uses the static taint method to analyze the APK
file’s source code and discover whether there is a data flow from the location acquiring
source APIs (Loc_Source) to data sent out APIs (Out_Sink). If it does, the system will
hand it over to the second phase (dynamic analysis phase) for further examination. Once
suspicious apps enter the second phase, the system exploits the prepared classifier to
analyze the apps’ dynamic actions and declare its final prediction with a high accuracy
rate. However, before this, there is a classifier preparation phase, which employs multi-
ple machine learning algorithms trained with a large, labeled dataset (malware and be-
nign apps). In order to choose the best algorithm for the classifier, multiple indicators are
also established as benchmarks and compared. The whole system process diagram is
shown in Figure 1, and each process will be elaborated in detail in the following subsec-
tion.

Figure 1. System process diagram.

3.2. Static Analysis Phase
The purpose of this phase is to undertake an initial examination to target apps

through the static taint analysis algorithm. For apps with positive results, the system
transfers them to the dynamic procedures for further inspection. The static taint analysis
algorithm aims to check whether there is a data flow from GPS acquiring APIs
(Loc_Source) to the APIs of location data sent outside the terminal (Out_Sink), defined as
Loc_Source and Out_Sink, respectively. Loc_Source refers to the API that acquires the
user’s location information from the system, such as the latitude or longitude of the us-
er’s location, while Out_Sink represents the API that sends the data to the outside system,
such as saving logs, sending text messages, and socket connections.

Table 1 lists the Android APIs and their methods/events that belong under the def-
inition of Loc_Source, which involves the retrieval of a user’s location data.

Meanwhile, 20 Android APIs that fit the definition of Out_Sink were also investi-
gated, as shown in Table 2. These APIs can be divided into three categories: logging,
short message service and socket connection. A malware needs to invoke some of these
categories to send GPS data out of smart devices.

In order to examine the situation of the existing data flows from Loc_Resource to
Out_Sink APIs, the Androguard [7] tool for static code analysis is utilized after the target

Figure 1. System process diagram.

3.2. Static Analysis Phase

The purpose of this phase is to undertake an initial examination to target apps through
the static taint analysis algorithm. For apps with positive results, the system transfers them
to the dynamic procedures for further inspection. The static taint analysis algorithm aims
to check whether there is a data flow from GPS acquiring APIs (Loc_Source) to the APIs of
location data sent outside the terminal (Out_Sink), defined as Loc_Source and Out_Sink,
respectively. Loc_Source refers to the API that acquires the user’s location information
from the system, such as the latitude or longitude of the user’s location, while Out_Sink
represents the API that sends the data to the outside system, such as saving logs, sending
text messages, and socket connections.

Table 1 lists the Android APIs and their methods/events that belong under the
definition of Loc_Source, which involves the retrieval of a user’s location data.

Table 1. The location-acquired APIs and their methods (Loc_Source API list).

ID APIs Methods or Events

1 Landroid/location/Location getLatitude()
2 Landroid/location/Location getLongitude()
3 Landroid/location/LocationListener onLocationChanged()
4 Landroid/location/LocationManager getLastKnownLocation()
5 Landroid/telephony/gsm/GsmCellLocation getLac()
6 Ljava/util/Calendar getTimeZone()
7 Ljava/util/Locale getCountry()
8 Landroid/telephony/TelephonyManager getCellLocation()

Meanwhile, 20 Android APIs that fit the definition of Out_Sink were also investigated,
as shown in Table 2. These APIs can be divided into three categories: logging, short message

Entropy 2021, 23, 1489 6 of 15

service and socket connection. A malware needs to invoke some of these categories to send
GPS data out of smart devices.

Table 2. The location data-sending-related APIs (Out_Sink API list).

ID APIs Methods or Events

1 Landroid/os/Handler sendMessage()
2 Landroid/telephony/SmsManager sendDataMessage()
3 Landroid/telephony/SmsManager sendMultipartTextMessage()
4 Landroid/telephony/SmsManager sendTextMessage()
5 Landroid/util/Log d()
6 Landroid/util/Log e()
7 Landroid/util/Log i()
8 Landroid/util/Log v()
9 Landroid/util/Log w()
10 Landroid/util/Log wtf()
11 Ljava/io/FileOutputStream write()
12 Ljava/io/OutputStream write()
13 Ljava/io/Writer write()
14 Ljava/net/Socket connect()
15 Ljava/net/URLConnection setRequestProperty()
16 Ljava/net/URL init()
17 Ljava/net/URL set()
18 Lorg/apache/http/client/HttpClient execute()
19 Lorg/apache/http/impl/client/DefaultHttpClient execute()
20 Lorg/apache/http/message/BasicNameValuePair init()

In order to examine the situation of the existing data flows from Loc_Resource to
Out_Sink APIs, the Androguard [7] tool for static code analysis is utilized after the target
APK file is decompiled. Specifically, the two modules androgexf.py and apkviewer.py are
mainly used to generate the function call graphs and instruction level call graphs. With
these graphs, all the connections between the two lists can be quickly found. Once the
graphs show any paths from Loc_Source to Out_Sink, the classifiers conduct a further
examination. Otherwise, it is assured that the target is clear since it does not involve any of
the location data leakage behaviors.

3.3. Dynamic Analysis Phase

In the dynamic examination phase, to improve the accuracy of classification, a classifier
model was first built based on machine learning technique. Specifically, it contained five
procedures, which were: (1) sample dataset preparing; (2) feature selection; (3) feature
extraction; (4) classifier selection; (5) establishing classifier evaluation benchmarks.

3.3.1. Preparing Sample Dataset

For the purpose of the classifier’s training and testing, the sample dataset was pre-
pared, sourced from ADM [21,22] and Androzoo [23,24]. ADM is a comprehensive dataset
that contains confirmed malwares and benign apps, from which parts of malwares with
location leakage risks were extracted as bad app samples. Parts of good apps were also
employed from the Androzoo dataset. The two parts together formed the sample dataset.

3.3.2. Features Selection

After the sample dataset was prepared, the next step was to extract their features so
that the system could feed those features into the classifier for training. It was a critical
step since good feature selection criteria helps to train the classifier more sufficiently.
However, the criteria largely rely on researchers’ experience, and classifiers with different
purposes usually have different criteria. In order to establish a comprehensive feature
extraction criteria, inspired by previous studies, the following 10 features in apps were
mainly considered:

Entropy 2021, 23, 1489 7 of 15

(1) The number of APIs invoked. This reflects the comprehensiveness of an app since
complex functions or modules usually need to invoke many APIs. In other words,
when an app contains multiple modules and invokes many APIs, it indirectly states
that the app is produced by a large company rather than a small one for a special
purpose;

(2) The number of API types. This indicates that an app has invoked the number of
distinct types of APIs, which has the same purpose as the previous criterion;

(3) The number of geography-related API. This depicts that an app invokes the num-
ber of APIs that involve geography operation (defined as Loc_API), such as speed,
direction, longitude, and latitude. If an app calls for more Loc_APIs, it is likely that
the app is providing LBSs rather than stealing GPS data;

(4) The number of Loc_API types. This indicates that an app has invoked the number of
distinct types of geography-related APIs, which reflects the diversity of Loc_API called;

(5) The number of Loc_Source API. This feature evaluates the number of invoked APIs
that belong to Loc_Source list in Table 1. The more Loc_Source APIs invoked, the
more likely it is that the apps gathering user information are being used for normal
service (benign app) or malicious purposes (insecure app);

(6) The number of Out_Sink API. This feature reveals the number of invoked APIs that
belong to the Out_Sink list in Table 2 (e.g., network, system, and SMS). The more
Out_Sink APIs calls, the higher probability that the app sends data out of the device;

(7) The number of data flows from the Loc_Source to the Out_Sink. Data flow or
connection between Loc_Source to Out_Sink indicates that the app has a behavior
of sending GPS data out of the terminal, which should draw much attention. If the
number of this kind of data flow is high, it confirms that large amounts of location
data have been transmitted;

(8) The number of services. Service is a resident thread for facilitating apps to process
data in the background. Usually, malwares tend to utilize the service thread to quietly
collect users’ information so that users hardly know how much location information
has been obtained;

(9) The number of keywords. Generally, most programmers tend to use services/function/
interface/method related keywords to name their apps, which inspired the authors of
this study to estimate apps’ intentions by counting specific keywords. In real privacy
leakage situations, the keywords are summarized into ten highly focused categories,
such as navigation, social network, tourism, news, games, and shopping. Categories
and their related keywords are listed in Table 3;

(10) The size of APK files. To some extent, the size of an APK file indicates the app’s
complexity. If the size is large, it may reflect that the app has multiple modules or
contains a large number of resources to fulfill many tasks. Conversely, malware
usually slims itself as much as possible to encourage people to download and install
it, and make it easier to be duplicated into larger premises.

3.3.3. Feature Extraction

After defining the features above, Apktool.jar was utilized to decompile the APK
file, which is a mature decompiling tool provided by Google. The process generates
smali files, resources and configuration files, and related directories, because the smali
file is the source code file under the Android platform with Dalvik as running the virtual
machine. After that, Python and regular expression were used to analyze the source
code file with the above-mentioned extraction features. For example, the number of APIs
was calculated by thoroughly analyzing all of the smali, res/values/strings.xml, and
AndroidMainfest.xml files. Nevertheless, it was still necessary to refer to the API mapping
relationships between the Android API name-list and those in the smali language, since
API names in smali files are not exactly the same as those on the Android API list, however,
there is a mapping relationship between them. In the next step, these features are exploited
to train the classifier.

Entropy 2021, 23, 1489 8 of 15

Table 3. The keywords list.

ID APIs Keywords in the Source Code

1 Navigation Navigation, map, GPS

2 Social Social, communication, social, make friends, marriage,
community, chat

3 System tools
Root, landscaping, root, file management, optimization,

energy saving, system, wifi, typewriting, download, cloud
disk, system, tool, mailbox, email, browser

4 Multi-Media
Media, video, camera, photo, picture, live, TV, site, web,

film, television, wallpaper, retouching, bell, radio, e-books,
KTV, song, books

5 Education Education, learning, curriculum, letters, English,
backwords, examination, office

6 Finance Economic, bank, lottery, driving test, payment, stock, bank,
finance, investment, insurance

7 Tourism Travel, traffic, aircraft, train, bus, translation, ticket

8 News News, bulletin, wall bulletin, stop-press news, newsflash,
information

9 Game Entertainment, music, game, Mobile Games, cartoons,
sports, gaming

10 Shopping Consumption, takeout, takeaway, shopping, group buying,
car rental, electricity

3.3.4. Classifier Algorithms Selection

As different machine learning algorithms have different merits, it is hard to know
which is the best in this scenario. Therefore, six machine learning models were listed
and various metrics (See Section 4.2) were adopted to evaluate their performance, to
choose the best model to output a high-accuracy result. The six classification algorithms
were: (1) Bayesian network [25]; (2) decision tree [26] (in this decision tree-based classi-
fier, entropies ID3, C4.5 and C5.0 were used); (3) Adaboost [27]; (4) random forest [28];
(5) support vector machine (SVM) [29]; (6) neural network [30].

3.3.5. Classification Result

After extracting the above features from the test app, they were fed into the classifiers
for training purposes. Then the trained classifiers were able to produce a binary or float
result for unknown apps by inputting its features into the classifier. There are only two
outputs: positive (1) or negative (0). The positive result indicates that the malware is
confirmed; while the negative result indicates that the target app is benign. As the float
result output by neural networks falls into the range of [0, 1], the result of the range [0.5, 1]
(positive) is considered as malware, while the rest are identified as benign.

4. Evaluation

In this section, the machine learning candidates described above are tested to discern
which is the best model, and the methods are compared with Apparecium to show the
proposal’s advancement.

4.1. Dataset and Classifier Implementation

In order to train and test classifiers’ performance, a dataset was prepared consisted of
12,434 malwares with location disclosure risks and 12,563 benign apps. In this dataset, with
a total of 24,997 apps, the malware part was derived from the AMD dataset [22], while the
benign part was derived from the Androzoo dataset [24]. Further, 6217 malwares and 6282
normal apps were randomly selected into the training dataset, while the remaining 6217
malwares and 6281 normal apps were categorized into the test dataset.

Entropy 2021, 23, 1489 9 of 15

As to the implementation of the six classifiers’ algorithms, the WEKA tool (version 3.8)
was employed, which provided dozens of open source machine learning algorithms. Specif-
ically, BayesNet, J48, AdaboostM1, random forest, LibSVM and Multilayer-Perceptron
algorithms in WEKA tools were utilized to implement the corresponding six classifiers of
Bayesian Network, decision tree, Adaboost, RF, SVM and neural network.

4.2. Evaluation Benchmarks

In order to quantitatively assess the classification algorithms’ performance, six bench-
marks were provided, namely: true positive rate (TPR), false positive rate (FPR), precision,
accuracy, F-measure, and Matthews correlation coefficient (MCC). The detailed definitions
are as follows:

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

precision =
TP

TP + FP
(3)

accuracy =
TP + TN

TP + FP + TN + FN
(4)

F − Measure =
2 ∗ precision ∗ TPR

precision + TPR
(5)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(6)

In the above definition, TP (true positive) and TN (true negative) indicates that the app
has been correctly classified as a benign app or malware, respectively. FN (false negative)
indicates that a malware is misclassified as normal. On the contrary, FP (false positive)
indicates that a normal app is misclassified as malicious. Further, TPR in Formula (1)
evaluates the classifier’s performance in the correct classification rate. This value is closer
to 1, thus proving the better performance. On the contrary, FPR in Formula (2) depicts the
classifier’s incorrect classification rate. When this value is closer to 0, the better performance
is identified. Moreover, precision evaluates the authenticity in the classifier’s prediction
results, while accuracy evaluates the ability of the classifier in correctly identifying apps.
The value ranges in both precision and accuracy are between (0, 1), and when their values
are closer to 1, the better performance of the classifier is demonstrated. In a different
manner, F-measure is a weighted harmonic average of precision and TPR. The higher
value of F-measure proves better classification performance. Lastly, MCC is similar to the
correlation coefficient, and its value range is (−1, 1). Certainly, the closer the MCC value is
to 1, the better performance of the classifier is confirmed.

4.3. Malware Classification Result

First of all, the 6127 malware classifications were tested with the six classifier algo-
rithms. The test result is shown in Table 4, from which it can be seen that RF achieved
the best performance, while the decision tree, SVM, and neural network output achieved
nearly equal results. The Bayesian network and Adaboost performed worse than the other
four algorithms.

Entropy 2021, 23, 1489 10 of 15

Table 4. The identification results of 6127 malware with 6 classifiers.

ML Models Malware
Number

Correct
Classification

Incorrect
Classification

Correct
Classification Rate

Bayesian
network 6217 5840 377 93.94%

Decision tree 6217 6061 156 97.49%
Adaboost 6217 5957 260 95.82%

Random forest 6217 6157 60 99.03%
SVM 6217 6050 167 97.31%

Neural network 6217 6019 138 96.82%

According to the results in Table 4, TPR, FPR, precision and accuracy were calculated
for the six classifiers, as shown in Figure 2. It was observed that the highest accuracy
was achieved by RF with a 99% accuracy rate on average, while the lowest accuracy was
realized by the Bayesian network with a 93.9% accuracy rate.

Entropy 2021, 23, 1489 11 of 16

Table 4. The identification results of 6127 malware with 6 classifiers.

ML Models Malware
Number

Correct Classi-
fication

Incorrect Clas-
sification

Correct Classifi-
cation Rate

Bayesian network 6217 5840 377 93.94%

Decision tree 6217 6061 156 97.49%

Adaboost 6217 5957 260 95.82%

Random forest 6217 6157 60 99.03%

SVM 6217 6050 167 97.31%

Neural network 6217 6019 138 96.82%

According to the results in Table 4, TPR, FPR, precision and accuracy were calcu-
lated for the six classifiers, as shown in Figure 2. It was observed that the highest accu-
racy was achieved by RF with a 99% accuracy rate on average, while the lowest accuracy
was realized by the Bayesian network with a 93.9% accuracy rate.

Figure 2. The results of malware classification for the six classifiers.

4.4. Normal Apps Classification Result
The same test method was also applied to the 6281 normal apps, and the classifica-

tion results are shown in Table 5. Compared with Table 4, it can be seen that the best re-
sult was achieved by RF with a 97.7% accuracy rate.

Figure 2. The results of malware classification for the six classifiers.

4.4. Normal Apps Classification Result

The same test method was also applied to the 6281 normal apps, and the classification
results are shown in Table 5. Compared with Table 4, it can be seen that the best result was
achieved by RF with a 97.7% accuracy rate.

Entropy 2021, 23, 1489 11 of 15

Table 5. The identification results of 6127 normal apps with 6 classifiers.

ML Models Normal App
Number

Correct
Classification

Incorrect
Classification

Correct
Classification Rate

Bayesian
network 6281 5802 497 92.37%

Decision tree 6281 6053 228 96.37%
Adaboost 6281 5461 820 86.94%

Random forest 6281 6137 144 97.7%
SVM 6281 6085 196 96.88%

Neural network 6281 5968 313 95.02%

Similarly, the TPR, FPR, precision and accuracy rates were calculated for the six
classifiers according to the results in Table 5, which are shown in Figure 3. From this figure,
it was observed that RF also achieved the best performance, while Adaboost received
fluctuating results scattered in the four indicators.

Entropy 2021, 23, 1489 12 of 16

Table 5. The identification results of 6127 normal apps with 6 classifiers.

ML Models Normal App
Number

Correct Classifica-
tion

Incorrect Clas-
sification

Correct Classi-
fication Rate

Bayesian network 6281 5802 497 92.37%

Decision tree 6281 6053 228 96.37%

Adaboost 6281 5461 820 86.94%

Random forest 6281 6137 144 97.7%

SVM 6281 6085 196 96.88%

Neural network 6281 5968 313 95.02%

Similarly, the TPR, FPR, precision and accuracy rates were calculated for the six
classifiers according to the results in Table 5, which are shown in Figure 3. From this
figure, it was observed that RF also achieved the best performance, while Adaboost re-
ceived fluctuating results scattered in the four indicators.

Figure 3. The results of normal app classification for the 6 classifiers.

Consequently, based on the results in Tables 4 and 5, a comprehensive evaluation
was performed for all six classifiers to select the best, as shown in Table 6. Note that the
receiver operating characteristic (ROC) refers to the curve that uses TPR as the ordinate
and FPR as the abscissa. Thus, the ROC area indicates the area between the ROC curve
and the FPR axis, which proves the overall classification accuracy. The closer the ROC
area is to 1, the better classification effect of the classifier is proved. Table 6 and Figure 4
confirm that RF outperformed the other five classifiers with excellent results in all items,
and achieved a 98.4% accuracy rate on average.

Figure 3. The results of normal app classification for the 6 classifiers.

Consequently, based on the results in Tables 4 and 5, a comprehensive evaluation was
performed for all six classifiers to select the best, as shown in Table 6. Note that the receiver
operating characteristic (ROC) refers to the curve that uses TPR as the ordinate and FPR as
the abscissa. Thus, the ROC area indicates the area between the ROC curve and the FPR
axis, which proves the overall classification accuracy. The closer the ROC area is to 1, the
better classification effect of the classifier is proved. Table 6 and Figure 4 confirm that RF
outperformed the other five classifiers with excellent results in all items, and achieved a
98.4% accuracy rate on average.

Entropy 2021, 23, 1489 12 of 15

Table 6. The performance of the six ML models with different metrics.

ML Models TPR FPR Precision Accuracy F-Measure MCC Roc Area

Bayesian
network 0.932 0.068 0.932 0.932 0.932 0.863 0.982

Decision tree 0.969 0.031 0.969 0.969 0.969 0.939 0.970
Adaboost 0.914 0.086 0.917 0.914 0.913 0.831 0.963
Random

forest 0.984 0.016 0.984 0.984 0.984 0.967 0.998

SVM 0.971 0.029 0.971 0.971 0.971 0.942 0.971
Neural

network 0.964 0.036 0.964 0.964 0.964 0.928 0.986

Entropy 2021, 23, 1489 13 of 16

Table 6. The performance of the six ML models with different metrics.

ML
Models TPR FPR Precision Accuracy F-Measur

e MCC Roc Area

Bayesian
network

0.932 0.068 0.932 0.932 0.932 0.863 0.982

Decision
tree

0.969 0.031 0.969 0.969 0.969 0.939 0.970

Adaboost 0.914 0.086 0.917 0.914 0.913 0.831 0.963

Random
forest

0.984 0.016 0.984 0.984 0.984 0.967 0.998

SVM 0.971 0.029 0.971 0.971 0.971 0.942 0.971

Neural
network

0.964 0.036 0.964 0.964 0.964 0.928 0.986

Figure 4. The performance of the 6 ML models with different metrics.

4.5. Comparison with Classic Schemes
In order to prove the advanced performance of this proposal, Apparecium was re-

implemented and the proposal methods compared with six metrics, as shown in Figure 5.
The results confirmed that the proposal achieved the highest overall classification effects,
up to 98.4%, on average. Its performance was about 20% higher than Apparecium in the
items of FPR, precision, accuracy, F-measure, MCC and ROC area.

Figure 4. The performance of the 6 ML models with different metrics.

4.5. Comparison with Classic Schemes

In order to prove the advanced performance of this proposal, Apparecium was reim-
plemented and the proposal methods compared with six metrics, as shown in Figure 5.
The results confirmed that the proposal achieved the highest overall classification effects,
up to 98.4%, on average. Its performance was about 20% higher than Apparecium in the
items of FPR, precision, accuracy, F-measure, MCC and ROC area.

Entropy 2021, 23, 1489 13 of 15Entropy 2021, 23, 1489 14 of 16

Figure 5. The comparison between this proposal and Apparecium.

5. Conclusions
Nowadays, mobile apps with location services are thriving and the problem of lo-

cation privacy leaks emerges significantly, posing a great threat to mobile social network
users. However, traditional methods including either static code analysis or dynamic
behavior analysis have failed to identify malwares with a high accuracy. In order to im-
prove the identification accuracy for apps with location privacy leakage risks, this paper
proposed a combined static analysis and machine learning method for the Android
platform, SAMLDroid. Briefly, SAMLDroid first uses static code analysis to scrutinize
target apps’ source code and undertake a fast and preliminary examination to check for
the existence of a data path from location data retrieving APIs to data sending-out APIs.
If suspicious, SAMLDroid then uses machine-learning to conduct a behavior level ex-
amination to output a precise result. Meanwhile, the selection of the best classifier was
undertaken by a thorough evaluation using six well defined indicators, which confirmed
that RF had the best performance. Eventually, it was proven that the SAMLDroid method
possessed higher accuracy in apps classification, namely, up to 98.4%, surpassing the
accuracy of Apparecium by nearly 20%. However, not every data flow was monitored
regarding GPS data or analysis of the action pattern in the app running state, because
more accuracy incurs larger cost. Future research plans are to integrate more features to
improve accuracy.

Author Contributions: Conceptualization, G.H., B.Z., X.X.; methodology, G.H., B.Z., X.X.; valida-
tion, X.X.; investigation, Y.Z.; resources, L.L.; data curation, G.H.; writing—original draft prepara-
tion, G.H., B.Z., X.X.; writing—review and editing, G.H., X.Y.; supervision, W.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Figure 5. The comparison between this proposal and Apparecium.

5. Conclusions

Nowadays, mobile apps with location services are thriving and the problem of location
privacy leaks emerges significantly, posing a great threat to mobile social network users.
However, traditional methods including either static code analysis or dynamic behavior
analysis have failed to identify malwares with a high accuracy. In order to improve the
identification accuracy for apps with location privacy leakage risks, this paper proposed a
combined static analysis and machine learning method for the Android platform, SAML-
Droid. Briefly, SAMLDroid first uses static code analysis to scrutinize target apps’ source
code and undertake a fast and preliminary examination to check for the existence of a data
path from location data retrieving APIs to data sending-out APIs. If suspicious, SAML-
Droid then uses machine-learning to conduct a behavior level examination to output a
precise result. Meanwhile, the selection of the best classifier was undertaken by a thorough
evaluation using six well defined indicators, which confirmed that RF had the best perfor-
mance. Eventually, it was proven that the SAMLDroid method possessed higher accuracy
in apps classification, namely, up to 98.4%, surpassing the accuracy of Apparecium by
nearly 20%. However, not every data flow was monitored regarding GPS data or analysis
of the action pattern in the app running state, because more accuracy incurs larger cost.
Future research plans are to integrate more features to improve accuracy.

Author Contributions: Conceptualization, G.H., B.Z. and X.X.; methodology, G.H., B.Z. and X.X.;
validation, X.X.; investigation, Y.Z.; resources, L.L.; data curation, G.H.; writing—original draft
preparation, G.H., B.Z. and X.X.; writing—review and editing, G.H. and X.Y.; supervision, W.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Entropy 2021, 23, 1489 14 of 15

Acknowledgments: This work was supported in part by the National Natural Science Foundation of
China (61972219), the Research and Development Program of Shenzhen (JCYJ20190813174403598,
SGDX20190918101201696), the National Key Research and Development Program of China (2018YFB-
1800601), the Overseas Research Cooperation Fund of Tsinghua Shenzhen International Graduate
School (HW2021013), the College-Enterprise Collaboration Project of Shenzhen Institute of Informa-
tion Technology (11400-2021-010201-010199), the Key Scientific Research Platforms and Projects of
Ordinary Universities in Guangdong Province(2021ZDZX4070), the PengCheng National Labora-
tory Project (PCL2021A02), and the Guangdong Major Project of Basic and Applied Basic Research
(2019B030302002).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beresford, R.A.; Stajano, F. Mix zones: User privacy in location-aware services. Pervasive Computing and Communications

Workshops, 2004. In Proceedings of the Second IEEE Annual Conference on IEEE, Orlando, FL, USA, 14–17 March 2004.
2. Khoshgozaran, A.; Shahabi, C. Blind evaluation of nearest neighbor queries using space transformation to preserve location

privacy. In International Symposium on Spatial and Temporal Databases; Springer: Berlin/Heidelberg, Germany, 2007.
3. Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2002, 10, 557–570.

[CrossRef]
4. Joseph, M.; Choudhury, R.R. Hiding stars with fireworks: Location privacy through camouflage. In Proceedings of the 15th

Annual International Conference on Mobile Computing and Networking, Beijing, China, 20–25 September 2009.
5. Brij, G.; Agrawal, D.P.; Yamaguchi, S. (Eds.) Handbook of Research on Modern Cryptographic Solutions for Computer and Cyber Security;

IGI Global: Hershey, PA, USA, 2016.
6. Jiang, R.; Lu, R.; Choo, K.-K.R. Achieving high performance and privacy-preserving query over encrypted multidimensional big

metering data. Future Gener. Comput. Syst. 2018, 78, 392–401. [CrossRef]
7. Anthony, D. Androguard. 2011. Available online: https://github.com/androguard/androguard (accessed on 20 September

2021).
8. Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Traon, Y.E.; Octeau, D.; McDaniel, P. Flowdroid: Precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. ACM Sigplan Not. 2014, 49, 259–269. [CrossRef]
9. Ma, S.; Tang, Z.; Xiao, Q.; Liu, J.; Duong, T.T.; Lin, X.; Zhu, H. Detecting GPS information leakage in Android applications. In

Proceedings of the Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013.
10. Fengguo, W.; Roy, S.; Ou, X. Amandroid: A precise and general inter-component data flow analysis framework for security

vetting of android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, 3–7 November 2014.

11. Li, L.; Bartel, A.; Bissyandé, T.F.; Klein, J.; Le Traon, Y.; Arzt, S.; Rasthofer, S.; Bodden, E.; Octeau, D.; McDaniel, P. Iccta: Detecting
inter-component privacy leaks in android apps. In Proceedings of the 37th International Conference on Software Engineering,
Florence, Italy, 16–24 May 2015; Volume 1.

12. Zhang, D.; Guo, Y.; Guo, D.; Wang, R.; Yu, G. Contextual approach for identifying malicious Inter-Component privacy leaks
in Android apps. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6
July 2017.

13. Steven, A.; Bodden, E. StubDroid: Automatic inference of precise data-flow summaries for the android framework. In Proceedings
of the 38th IEEE/ACM International Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22 May 2016.

14. Gordon, M.I.; Kim, D.; Perkins, J.H.; Gilham, L.; Nguyen, N.; Rinard, M.C. Information Flow Analysis of Android Applications
in DroidSafe. In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 8–11
February 2015.

15. Titze, D.; Schütte, J. Apparecium: Revealing data flows in android applications. In Proceedings of the 29th International
Conference on Advanced Information Networking and Applications, Gwangiu, Korea, 24–27 March 2015.

16. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.; Cox, P.L.; Jung, J.; McDaniel, P.; Sheth, A.N. TaintDroid: An information-flow
tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 2014, 32, 5. [CrossRef]

17. Markmann, T.; Gessner, D.; Westhoff, D. QuantDroid: Quantitative approach towards mitigating privilege escalation on
Android. In Proceedings of the IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013;
pp. 2144–2149.

18. Saracino, A.; Sgandurra, D.; Dini, G.; Martinelli, F. Madam: Effective and efficient behavior-based android malware detection and
prevention. IEEE Trans. Dependable Secure Comput. 2018, 15, 83–97. [CrossRef]

19. Sun, M.; Li, X.; Lui, J.C.; Ma, R.T.; Liang, Z. Monet: A user-oriented behavior-based malware variants detection system for
android. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1103–1112. [CrossRef]

20. Zhu, D.; Jin, H.; Yang, Y.; Wu, D.; Chen, W. DeepFlow: Deep learning-based malware detection by mining Android application for
abnormal usage of sensitive data. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Heraklion,
Greece, 3–6 July 2017; pp. 438–443.

http://doi.org/10.1142/S0218488502001648
http://doi.org/10.1016/j.future.2016.05.005
https://github.com/androguard/androguard
http://doi.org/10.1145/2666356.2594299
http://doi.org/10.1145/2619091
http://doi.org/10.1109/TDSC.2016.2536605
http://doi.org/10.1109/TIFS.2016.2646641

Entropy 2021, 23, 1489 15 of 15

21. Wei, F.; Li, Y.; Roy, S.; Ou, X.; Zhou, W. Deep ground truth analysis of current Android malware. In Proceedings of the
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Bonn, Germany, 6–7 July 2017;
Springer: Cham, Switzerland, 2017.

22. Android Malware Dataset. Available online: http://amd.arguslab.org/ (accessed on 20 September 2021).
23. Allix, K.; Bissyandé, T.F.; Klein, J.; Traon, Y.L. Androzoo: Collecting millions of android apps for the research community. In

Proceedings of the 13th International Conference on Mining Software Repositories, Austin, TX, USA, 14–15 May 2016.
24. Androzoo. Available online: https://androzoo.uni.lu/ (accessed on 20 September 2021).
25. Bayesian Network. Available online: https://en.wikipedia.org/wiki/Bayesian_network (accessed on 20 September 2021).
26. Decision Tree. Available online: https://en.wikipedia.org/wiki/Decision_tree (accessed on 20 September 2021).
27. Adaboost. Available online: https://en.wikipedia.org/wiki/AdaBoost (accessed on 20 September 2021).
28. Random Forest. Available online: https://en.wikipedia.org/wiki/Random_forest (accessed on 20 September 2021).
29. Support Vector Machine. Available online: https://en.wikipedia.org/wiki/Support-vector_machine (accessed on 20

September 2021).
30. Neural Network. Available online: https://en.wikipedia.org/wiki/Neural_network (accessed on 20 September 2021).

http://amd.arguslab.org/
https://androzoo.uni.lu/
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Neural_network

	Introduction
	Related Work
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis

	System Descriptions
	System Overview
	Static Analysis Phase
	Dynamic Analysis Phase
	Preparing Sample Dataset
	Features Selection
	Feature Extraction
	Classifier Algorithms Selection
	Classification Result

	Evaluation
	Dataset and Classifier Implementation
	Evaluation Benchmarks
	Malware Classification Result
	Normal Apps Classification Result
	Comparison with Classic Schemes

	Conclusions
	References

