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SUMMARY

Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active regulatory regions associatedwith

gene expression. Although the Tip60 complex is proposed to acetylate H2A.Z, functional studies sug-

gest additional enzymes are involved. Here, we show that p300 acetylates H2A.Z at multiple lysines.

In contrast, we found that although Tip60 does not efficiently acetylate H2A.Z in vitro, genetic inhibi-

tion of Tip60 reduces H2A.Zac in cells. Importantly, we found that interaction between the p300-bro-

modomain andH4 acetylation (H4ac) enhances p300-driven H2A.Zac. Indeed, H2A.Zac andH4ac show

high genomic overlap, especially at active promoters. We also reveal unique chromatin features and

transcriptional states at enhancers correlating with co-occurrence or exclusivity of H4ac and H2A.Zac.

We propose that differential H4 and H2A.Z acetylation signatures can also define the enhancer state.

In conclusion, we show both Tip60 and p300 contribute to H2A.Zac and reveal molecular mechanisms

of writer/reader crosstalk between H2A.Z and H4 acetylation through p300.
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INTRODUCTION

Histone variants replace core histones to perform a variety of specialized functions (Kamakaka and Biggins,

2005) and, as canonical histones, are prone to posttranslational modifications (PTMs). H2A.Z is an evolu-

tionarily conserved histone variant of the canonical histone H2A, which shares �60% identity in amino

acid sequence (reviewed in Zlatanova and Thakar, 2008). H2A.Z has been implicated in many diverse

and potentially opposing functions, including regulation of gene transcription, where H2A.Z has been

associated with active, poised, or inactive gene expression. The contrasting roles of H2A.Z are associated

with different PTMs, including lysine acetylation, monoubiquitination, and methylation (reviewed in Sevilla

and Binda, 2014) (Colino-Sanguino et al., 2016).

Acetylated H2A.Z (H2A.Zac) is associated with active transcription (Bruce et al., 2005; Halley et al., 2010;

Millar et al., 2006; Valdes-Mora et al., 2012) and promotes nucleosome destabilization and an open chro-

matin conformation (Ishibashi et al., 2009). In mammals, lysines 4, 7, and 11 (K4, K7, K11) in the H2A.Z N-ter-

minal tail are the most frequently acetylated residues (Ishibashi et al., 2009). Genome-wide studies based

on H2A.Zac ChIP on-chip or ChIP-seq in different cell types and organisms have revealed that the acety-

lated H2A.Z forms are primarily restricted to genomic regulatory regions, such as promoters and enhancers

(Bruce et al., 2005; Brunelle et al., 2015; Hu et al., 2013; Ku et al., 2012; Millar et al., 2006; Valdes-Mora et al.,

2017; Valdes-Mora et al., 2012). We and others have shown that H2A.Zac is associated with aberrant gene

expression in prostate (Dryhurst et al., 2012; Valdes-Mora et al., 2012) and breast cancer (Bellucci et al.,

2013; Dalvai et al., 2012, 2013). Recently, we found that increased H2A.Zac levels correlate with poor prog-

nosis in prostate cancer patients and demonstrated a pro-oncogenic role for H2A.Zac through the ectopic

activation of cancer-related enhancers (Valdes-Mora et al., 2017). Collectively, these data suggest that in-

hibition of H2A.Z acetylation may be a therapeutic strategy for treating prostate cancer. However, the mo-

lecular mechanisms and key players responsible for the acetylation of H2A.Z are not fully understood.

Histone lysine acetylation is catalyzed by lysine acetyltransferases (KATs). In mammalian cells, nine nuclear

KATs have been identified, fromwhich three—Tip60, CREB binding protein (CBP), and E1A binding protein

p300 (p300) —can acetylate canonical histones (Ito et al., 2000; Jeong et al., 2011). In the budding yeast

Saccharomyces cerevisiae, the lysine acetyltransferase NuA4, considered the orthologue of Tip60 (Doyon

et al., 2004), is reported to acetylate Htz1, the yeast orthologue of H2A.Z (Altaf et al., 2010; Keogh et al.,

2006; Millar et al., 2006). Indeed, studies in mammalian cells have suggested a link between H2A.Zac
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and the Tip60 complex in locus-specific experiments (Dalvai et al., 2012, 2013; Giaimo et al., 2018) and by

immunoprecipitation of the Tip60 complex followed by KAT assays with recombinant H2A.Z (Ito et al.,

2018). However, other studies showed that H2A.Zac was independent of Tip60 inhibition at locus-specific

sites (Bellucci et al., 2013; Narkaj et al., 2018) and in the context of DNA repair (Semer et al., 2019), suggest-

ing that other KATs may also be responsible for H2A.Zac.

CBP and p300 (also known as CREBBP or KAT3A and EP300 or KAT3B, respectively) are highly homologous

proteins that comprise a unique KAT family and are often referred to interchangeably. p300/CBP is a tran-

scriptional co-activator and catalyses lysine 27 acetylation of histone H3 (H3K27ac) at promoters and en-

hancers (Creyghton et al., 2010; Hilton et al., 2015). p300/CBP is a multifunctional protein that acts as

both a ‘‘writer’’ and a ‘‘reader’’ of lysine acetylation through its KAT domain and bromodomain (BD),

respectively (Dancy and Cole, 2015; Zeng et al., 2008). p300/CBP is a promiscuous KAT that can acetylate

all four canonical histones (Weinert et al., 2018). However, p300/CBP’s ability to acetylate and/or interact

with H2A.Z has not been critically evaluated.

In this study, we have interrogated two of the most likely KAT candidates for the acetylation of H2A.Zac:

Tip60 and p300/CBP. Here, we provide in vitro evidence, with peptide and recombinant nucleosome sub-

strates, that Tip60 does not efficiently acetylate H2A.Z. In contrast, we demonstrate that p300 can acetylate

H2A.Z at multiple lysine residues, both in vitro and in human cells, and H2A.Zac is enhanced by p300 BD-

mediated H4ac reader activity. In support of this mechanism, we find a high degree of genomic overlap

between H2A.Zac and H4ac at active regulatory regions, preferentially at active promoters. However, at

enhancers, we find that H2A.Zac and H4ac nucleosome occupancy is differentially associated with distinct

chromatin features and the transcriptional activity of the genomic region. Overall, our findings suggest that

in addition to Tip60, p300/CBP is also required for H2A.Z acetylation, providing new insights for the mod-

ulation of H2A.Zac pro-oncogenic activity in prostate cancer.
RESULTS

p300 Acetylates H2A.Z In Vitro

To test whether our putative KAT candidates acetylated H2A.Z, we performed in vitro lysine acetyltransfer-

ase assays with recombinant Tip60 and p300 (Figures S1A and S1B). As substrates, we used biotinylated

peptides corresponding to the first 19 amino acids of H2A.Z (Figure 1A) and observed acetylation rates

by measuring radioactive acetyl group incorporation (Figure 1B). As a negative control, we used an

H2A.Z peptide containing themost commonly acetylated lysines (K4, K7, and K11) (Hu et al., 2013; Ishibashi

et al., 2009). For positive controls, known substrates for each KAT were used, including an H4 N-terminal

peptide for Tip60 (Kimura and Horikoshi, 1998) and an H3 peptide flanking H3K27 for p300 (Jin et al.,

2011). Recombinant Tip60 rapidly acetylated the positive control H4 peptide. However, H2A.Z only showed

a slight increase in acetylation signal compared with the negative control H2A.ZK4acK7acK11ac (Figure 1B,

upper panel and Figure S1C). These data suggest that H2A.Z peptides are not optimal substrates for re-

combinant Tip60. In contrast, recombinant p300 (catalytic domain plus BD) (Figure S1A), which shares

82% of protein domain identity with CBP, acetylated H2A.Z peptides at a similar rate to its most appreci-

ated histone substrate, H3K27 (Figure 1B, bottom panel). We confirmed this activity with full-length recom-

binant p300 (Figure S1D). p300 activity toward peptide substrates of H2A.Z isoform 2 (Dryhurst et al., 2009)

was similar to isoform 1 (referred herein as H2A.Z) (Figures S1E and S1F).

H2A.Z-containing nucleosomes have slightly different biophysical properties than those containing canon-

ical H2A, including an extended acidic path on the nucleosome surface (Suto et al., 2000), which may affect

the interactions with KAT domains. To confirm our peptide results on more physiologically relevant sub-

strates, we performed in vitro KAT assays using recombinant mononucleosome substrates (Figures 1C

and 1D). Reactions were separated by gel electrophoresis and incorporation of tritiated acetyl groups

was detected using autoradiography, allowing deconvolution of which histones were acetylated. Consis-

tent with our peptide results, recombinant Tip60 acetylated H4 in both canonical and H2A.Z-1-containing

nucleosomes (Figure 1C); however, no acetylation of H2A.Z was detected. Moreover, we found Tip60 au-

toacetylation, which positively regulates Tip60 catalytic activity (Yang et al., 2012), suggesting that the re-

combinant Tip60 is functionally active. In contrast, p300 acetylated all histones in the canonical nucleo-

somes after 30 min of incubation (Figure 1D), as previously reported (Ogryzko et al., 1996; Schiltz et al.,

1999). Notably, p300 also acetylated all histones in the H2A.Z-1- and H2A.Z-2-containing nucleosomes,

including both H2A.Z isoforms (Figure 1D). Canonical nucleosomes were a slightly better substrate than
774 iScience 21, 773–788, November 22, 2019



Figure 1. H2A.Z Is a Substrate for p300 In Vitro Assays

(A) H2A.Z-1 N-terminal amino acid sequence for the peptides used in panel (B). All lysines that can be acetylated are shown in red.

(B) In-solution H3-Acetyl-CoA (AcCoA) assays measuring Tip60 (top) and p300 (bottom) activity as a function of time on the following histone peptide

substrates: un-acetylated H2A.Z (peptide spans from amino acid 1–19, H2A.Z-1 (1-19)) and the tri-acetylated H2AZ at lysines 4, 7, and 11 (1–19)

(H2A.Z-1 (1-19)K4acK7acK11ac) were used for both Tip60 and p300 assays. As controls we used H4 (1–23) and acetylated H4 at lysines 5, 8, 12, and 16 (1–23)

(H4(1-23)K5acK8acK12acK16ac) for Tip60 and H3 (15–34) and acetylated H3 at lysine 27 peptides (15–34) (H3(15-34)K27ac) for p300. Data points are presented

as mean count per minute (cpm). Error bars represent the standard deviation (SD) from two measurements.

(C) Coomassie staining (left) and H3 fluorography (right) of recombinant canonical nucleosomes (canonical nuc) and homotypic H2A.Z-1 nucleosomes

(H2A.Z-1 nuc) incubated with Tip60 in the presence or absence of H3-AcCoA for 12 h. White bands in the autoradiography are the overlayed molecular

weight markers shown in the Coomassie staining. Representative image of two replicates.

(D) H3 fluorography (top) and Coomassie staining (bottom) of recombinant canonical nucleosomes (canonical nuc) and homotypic H2A.Z-1 and H2A.Z-2

nucleosomes (H2A.Z-1/H2A.Z-2 nuc) incubated with p300 in the presence or absence of H3-AcCoA for 30 min. Representative image of two replicates.

(E) In-solution H3-AcCoA KAT assays measuring p300 activity as a function of time on nucleosome substrates, as indicated. Data points are presented as

mean count per minute (cpm). Error bars represent the SD from two measurements.

(F) Percentage of area under the mass spectrometry (MS) peak of unacetylated, one acetylated lysine (mono-ac), two acetylated lysines (di-ac), three

acetylated lysines (tri-ac), or four acetylated lysines (tetra-ac) from H2A.Z peptides at increasing p300 incubation time points, 0, 4, 8, 16, 32, and 64 min (raw

data are displayed in Figure S2.). Data are represented as mean �/+ SD of two independent replicates.

See also Figures S1 and S2.
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variant-containing nucleosomes, but no differences were found in the acetylation rates between nucleo-

somes containing H2A.Z-1 and H2A.Z-2 isoforms (Figure 1E).

Mass spectrometry data from human cells have shown that H2A.Zac is found most commonly as a tri-acet-

ylated form, with lysines 4, 7, and 11 (K4, K7 and K11) carrying acetyl groups (Hu et al., 2013; Ishibashi et al.,

2009). To determine whether p300 acetylates these residues, we used mass spectrometry to map acetyla-

tion sites on H2A.Z N-terminal peptide after reaction with p300 (Figures 1F and S2A). By four minutes, 90%

of all peptides were acetylated, and unacetylated peptides were not detectable in the subsequent time

points. Mono-acetylated (mono-ac) peptides were only present after 4, 8, or 16 min, and the proportion

decreased by half over the time course (63.6%, 36.9%, and 17.8%, respectively). In contrast, tetra-acetylated

peptides were detected (14.4% and 21.1%) at the longest time points (32 and 64 min). TandemMS analysis

showed that all lysines on the N-terminus of H2A.Z (K4, K7, K11, K13, and K15) could be acetylated by p300,

but K4 and K7 were preferred (Figure S2B).

In summary, we provide biochemical evidence that the lysine acetyltransferase Tip60 alone is not sufficient

to acetylate H2A.Z. In contrast, we show that p300 on its own rapidly acetylates both H2A.Z peptides and

H2A.Z-containing nucleosomes at multiple N-terminal lysines.
Inhibition of p300 and Tip60 Decreases H2A.Zac

To determine whether p300 and Tip60 acetylate H2A.Z in cells, we used A-485, a recently developed and

highly selective and potent inhibitor for p300/CBP KAT domains (Lasko et al., 2017) (Figure 2A), as well as

genetic inhibition of Tip60, p300, and CBP by siRNA in two human cancer cell lines (LNCaP and HCT116)

(Figures 2B and 2C). We isolated chromatin fractions from all conditions and performedWestern blot anal-

ysis. To test changes in H2A.Z acetylation, we used three antibodies against different H2A.Z acetylation

forms: H2A.Ztri-ac (K4, K7 and K11), H2A.ZK4ac, and H2A.ZK7ac. We characterized the antibody substrate

affinity by peptide microarray, as previously described (Rothbart et al., 2012a). We found that H2A.Ztri-ac

specifically recognizes the tri-acetylated form of H2A.Z; H2A.ZK4ac binds to substrates that contain H2A.Z-

K4ac but does not distinguish between degrees of acetylation, whereas H2A.ZK7ac binds exclusively to

mono-acetylated H2A.Z at K7 (Figure S3).

Using these antibodies, we found that cells treated with A-485 had a strong and consistent dose-depen-

dent reduction of the positive control H3K27ac between cell lines, whereas the less specific substrate,

H4tetraAc, did not show a clear reduction (Figure 2A). Signal from the H2A.Ztri-ac antibody did not

show a significant reduction in either of the cell lines, whereas H2A.ZK4ac and H2A.ZK7ac showed a clear

dose-dependent decrease. At 10 mM concentration of A-485, the mono-acetylated H2A.Z antibodies

showed an average reduction of 67% and 92% in LNCaP and HCT116 cells, respectively. No clear differ-

ences were detected between the reduction of H2A.ZK4ac and H2A.ZK7ac. These data suggest that inhi-

bition of p300/CBP by A-485 preferentially reduces H2A.ZK4ac and H2A.ZK7ac mono-acetylated forms.

There are currently no selective Tip60 inhibitors commercially available. Therefore, we performed siRNA

knockdown (KD) experiments to investigate the effects on H2A.Zac (Figures 2B and 2C). Tip60 mRNA levels

were reduced by 87% and protein abundance by 80% following Tip60 KD (Figures 2B and 2C). H2A.Zac was

significantly reduced after Tip60 KD, 58% for the triAc, 45% for K4ac, and 79% for K7ac (Figure 2C), as pre-

viously reported in Tip60 conditional knockout experiments (Li et al., 2019). We found that the tetra-acet-

ylated form of H4 was reduced by 64%, in line with our cell-free assays. We also performed siRNA exper-

iments for the double p300/CBP KD and a triple p300/CBP/Tip60 KD. Even though the mRNA levels of

p300 and CBP in the double KD were moderately decreased (�50% and 32%, respectively, Figure 2B),

the positive control H3K27ac was reduced by 92% (Figure 2C), suggesting the HAT inhibition was enough

to detect changes in the histone acetylation profile. Interestingly, Tip60 mRNA levels increased by two-fold

after p300/CBP KD but this did not translate to a significant change of Tip60 protein level (Figure 2B). The

double p300/CBP KD reduced all H2A.Zac forms to a similar ratio as the Tip60 KD (Figure 2C). However,

the triple KD of CBP, p300 and Tip60 showed a greater reduction of H2A.Z acetylation in comparison to

the single Tip60 or p300/CBP KDs (Figures 2B and 2C). Interestingly, K7 acetylation was the most reduced

in all KD combinations, with 97% reduction in the triple KD.

A recent resource paper mapped the p300 acetylome in mammals using quantitative mass spectrometry

after genetic or chemical modulation of p300 activity (Weinert et al., 2018). We analyzed this H2A.Z
776 iScience 21, 773–788, November 22, 2019



Figure 2. Inhibition of Tip60 and p300 Decrease H2A.Z Acetylation in Cancer Cell Lines

(A) Western blot analysis of chromatin purified extracts from LNCaP and HCT116 cells treated with A-485 for 24 h at increasing concentrations (0.08, 0.4, 2,

and 10 mM). The compound A-486, an inactive analog of A-485, was also used as negative control. The figure shows a representative image of two biological

replicates (top) and densitometry quantification (bottom). Densitometry quantification of histone acetylation abundance is shown at the bottom, and it is

represented as the relative amount to DMSO control in logarithmic scale. H2A.Z acetylation forms were normalized to total H2A.Z; H3K27ac and H4ac were

normalized to H4. Data are represented as mean and SD (n = 2). Student’s t-test was performed to compare each condition to DMSO. *p value<0.05,

**p value<0.01, ***p value<0.001.

(B) Quantification of the knockdown (KD) levels of the siRNA experiments by mRNA expression (left panel) and protein abundance of TIP60 (right panel).

Cells were transfected with a pool of four siRNAs for Tip60 and CBP and three siRNAs for p300 (See Table S3 for siRNA sequences). The pools were then

combined accordingly for the double p300/CBP KD and triple p300/CBP/Tip60 KD. mRNA expression of Tip60, p300, and CBP was measured by real-time

qPCR in cells transfected with Tip60, p300, and CBP siRNAs (left). mRNA levels of all conditions were calculated relative to untargeted siRNA control

(scramble). Data are represented as mean and SD (n = 2), and Student’s t-test was performed to compare each condition to scramble. Densitometry

quantification of each Tip60 band was normalized to the loading control H4 and relative to scramble, and it is represented as logarithmic scale. The mean

relative abundance of each band and SD was plotted and Student’s t-test was performed to compare each condition to scramble. *p value<0.05, **p

value<0.01, ***p value<0.001. Find list of siRNA and primer sequences in Tables S3 and S4, respectively.

(C) Western blot analysis of the chromatin fractions from LNCaP cells transfected with the scramble control (Scrble) Tip60 siRNA (siTIP60), p300, and CBP

siRNAs (sip300/CBP) or p300, CBP, and Tip60 siRNAs (sip300/CBP/TIP60). The figure shows a representative image of at least two biological replicates (top)

and densitometry quantification (bottom). Histone acetylation abundance was measured by densitometry and calculated relative to the scramble control.

iScience 21, 773–788, November 22, 2019 777



Figure 2. Continued

Data are represented as mean and SD (n = 2 or more). The graph is shown in a logarithmic scale, and Student’s t-test was performed to compare each

condition to scramble. *p value<0.05, **p value<0.01, ***p value<0.001.

(D) Weinert et al.’s acetylome mass spectrometry data after CBP/p300 perturbations, including double knockout of p300 and CBP genes (KO, dark blue) and

chemical inhibition with A-485 (A-485, yellow) and compound-R (Cmpd-R, light blue) in mouse embryonic fibroblasts cells. Kasumi-1 cells, a human acute

myeloid leukemia cell line, were treated with compound-R (red). Log2 SILAC normalized ratios for each detectable acetylation site of H2A.Z-1 and H2A.Z-2

isoforms were plotted. SILAC normalized ratios were calculated as explained in Weinert et al. (2018). The peptides containing K4ac are identical between

isoforms, and therefore, they were analyzed as one. Error bars represent standard error of three independent replicates when available.

See also Figure S3 and Tables S1, S3, and S4.
acetylation data and confirmed our in vitro and in-cell results (Figure 2D). Consistently, H2A.Z acetylation at

lysines K4, K7, K11, and K13 was reduced after chemical inhibition of p300 KAT activity in both MEFs and

Kasumi-1 cell lines (Figure 2D). The greatest effect was observed in the p300/CBP double knockout. Taken

together, these data strongly support the conclusion that p300/CBP is a major KAT for H2A.Z in cells. We

found that although Tip60 can modulate acetylation levels of H2A.Zac, it is not the sole KAT for H2A.Z and

that p300/CBP is also essential for the acetylation of H2A.Z (Figure 6A).
Interaction of p300 BD with H4ac Promotes p300-mediated H2A.Z Acetylation In Vitro

Previous studies have shown that p300 BD binds H4ac, thereby acting as a reader of histone acetylation

(Delvecchio et al., 2013; Nguyen et al., 2014). Interestingly, there is high sequence homology

between H4 and H2A.Z at their N-termini (Figure S4A), where the spacing of the lysines follow the same

KAc(X)2–3KAc pattern, in which X represents any amino acid, which is reported to have the strongest

p300 BD binding (Delvecchio et al., 2013). We questioned whether the p300 BDwas also capable of reading

H2A.Zac. Using histone peptide arrays printed with approximately 260 uniquely modified histone peptides

(Cornett et al., 2016), including major single and combinatorial acetylations on all four core histones and

the variant H2A.Z (see Table S1), we revealed that p300 BD binds exclusively to H4-acetylated peptides

(Figures 3A and S4B). No binding was measured for acetylated H2A.Z or any other acetylated histone

peptide in the library.

A feedforward mechanism of p300-dependent H3K27 acetylation through BD recruitment to H4ac has

been previously proposed (Nguyen et al., 2014). Indeed, in our in vitro KAT assays, the rate of p300 acet-

ylation on nucleosomes pre-installed with H4ac was faster than unmodified nucleosomes (Figure 3B). Thus,

we hypothesized that the p300 BD interaction with H4ac may also enhance H2A.Z acetylation. To test this

hypothesis, we first performed a time course radioactive KAT assay with recombinant p300 and H2A.Z-con-

taining nucleosome substrates (Figure 3C). As expected, we observed time-dependent acetylation on all

nucleosomal histones. Notably, H2A.Z acetylation trailed H4 acetylation in this time course.

We next used the p300 BD inhibitor, CBP30 (Conery et al., 2016; Hammitzsch et al., 2015), to further ques-

tion whether p300 BD activity impacts H2A.Z acetylation. Using the same peptide array approach, we vali-

dated that CBP30 completely blocks the p300 BD from binding to H4-acetylated peptides (Figures 3D,

S4C, and S4D). We performed in vitro KAT assays in the presence and absence of CBP30 using recombinant

canonical, H2A.Z-containing, and H4ac-containing nucleosomes. Inhibition of the p300 BD resulted in

decreased acetylation of all histones, including histone H2A.Z (Figure 3E). To further validate that BD

recruitment enhances p300-mediated H2A.Z acetylation, we treated HCT116 cells with CBP30 for 24 h us-

ing a concentration range (1–10uM), recommended by Conery et al., 2016 (Figure 3F). We observed a

reduction in H3K27ac levels, as previously reported (Raisner et al., 2018). Notably, there was also a decrease

in H2A.Zac levels, where H2A.ZK7ac showed a striking reduction of up to 90%. Taken together, these data

suggest that acetylation of H2A.Z by p300 is enhanced upon recruitment to H4-acetylated nucleosomes via

the p300 BD.
H2A.Zac and H4K5ac Co-occur at Promoter Regions

We next sought to determine whether H2A.Zac- and H4ac-marked nucleosomes co-exist in the chromatin.

To address this, we determined the genomic distribution of both marks using publicly available ChIP-seq

data for H2A.Zac and H4K5ac in LNCaP cells (Table S2). The specificity of both antibodies was characterized

with histone peptide arrays (Rothbart et al., 2012a; Dickson et al., 2016) (Figure S3A for H2A.Ztri-ac and

http://www.histoneantibodies.com/ for H4K5ac). As previously reported (Rothbart et al., 2012b, 2015),

the H4K5ac antibody bound preferentially to H4 peptides that also have acetylation at other sites forming
778 iScience 21, 773–788, November 22, 2019
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Figure 3. Bromodomain Binding to H4-Acetylated Tail Enhances H2A.Z Acetylation

(A) Heatmap showing p300 BD binding preference for H2A.Z and H4 peptides from histone peptide microarray analysis. Scalebar shows the color key to the

relative intensity, normalized to the peptide with the highest raw signal (H4K5acK8acK12acK16ac). Data are represented as mean normalized signal (n = 6).

Array 1 was used for this experiment. The complete list of peptides included in the histone peptide microarray is in Table S1.

(B) H3 fluorography (top) and Coomassie staining (bottom) of H2A canonical nucleosomes (canonical nuc) or H4K5acK8acK12acK16ac pre-marked canonical

nucleosomes (H4ac-canonical nuc) incubated with p300 over time (0, 2, 4, 8, and 16 min). Representative image of two experiments. The right plot shows the

quantification of the acetylated band density corresponding to H2A/H2B/H3 in the canonical nucleosome and H4ac-canonical nucleosome over time.
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Figure 3. Continued

(C) H3 fluorography (top) and Coomassie staining (bottom) of H2A.Z-1 nucleosomes incubated with p300 over time (0, 2, 4, 8, 16, 32, and 64 min). The right

plot shows the density quantificatification of H2B/H3, H2A.Z, and H4 acetylated bands over time.

(D) Heatmap showing p300 BD binding preference for H2A.Z and H4 peptides in the presence or absence of CBP30 inhibitor from histone peptide

microarray analysis. DMSO was used as vehicle control. Scalebar shows the color key to the relative intensity, normalized to the IgG positive control of each

array. Data are represented as mean normalized signal (n = 6). Array 1 was used for this experiment. The complete list of peptides included in the histone

peptide microarray is in Table S1.

(E) H3 fluorography (top) and Coomassie staining (bottom) of canonical, H2A.Z-1 and H4K5acK8acK12acK16ac modified canonical nucleosomes incubated

with p300 in the presence of CBP30 or DMSO as indicated.

(F) Western blot analysis of HCT116 cells treated with CBP30 for 24 h at increasing concentrations (1, 2.5, 5, and 10 mM). Representative image of at least two

biological replicates (top) and densitometry quantification represented in logarithmic scale (bottom). Protein abundance was calculated relative to DMSO

control, and data are represented as mean and SD (n = 2). Student’s t-test was performed to compare each condition to DMSO. *p value<0.05, **p

value<0.01, ***p value<0.001.

See also Figure S4 and Table S1.
di-, tri-, and tetra-acetylation states. Thus, we considered H4K5ac ChIP-seq data as reporting on H4 N-ter-

minal tail poly-acetylation (referred to herein as H4ac), a signature consistent with the binding activity of

p300 BD (Figure 3A).

We first investigated the co-occurrence of H2A.Zac and H4ac ChIP-seq peaks genome-wide and found a

significant overlap, with 51.8% of H2A.Zac peaks coinciding with H4ac (Figure 4A). To consider the pre-

dicted functional properties, we used ChromHMM (Ernst and Kellis, 2012) to demarcate six different

genomic regulatory regions based on the information from six chromatin marks (Figure S5A and Table

S2). We found that H4ac had a similar functional distribution pattern as H2A.Zac (Valdes-Mora et al.,

2017), where it was significantly enriched at promoters and enhancers and depleted at polycomb and tran-

scribed regions (Figure S5B). To address whether the epigenetic context impacts the coexistence of

H2A.Zac and H4ac, we also performed ChromHMM analysis of the overlapping marked peaks (23,904 re-

gions, called common peaks) and unique marked peaks for H2A.Zac or H4ac (20,876 and 15,460 regions,

called H2A.Zac- or H4ac-unique peaks, respectively) (Figure 4B). We found that the common peaks were

most significantly located at active promoters: 51.64% of the common peaks (Figure 4B, upper panel)

and 68.74% of all active promoters (Figure 4C). In contrast, the uniquely marked regions were more prev-

alent at enhancers (Figure 4B, middle and bottom panels), where most of the H2A.Zac-unique peaks

occurred at active enhancer regions (Figure 4B, middle panel), whereas H4ac-unique peaks were mostly

enriched at poised enhancers (Figure 4B, bottom panel). However, at distal regulatory regions, we

observed that both common and unique regions were present in different proportions (Figure 4D), sug-

gesting a dynamic interplay of these two marks.
Epigenetic Characteristics of Enhancers with Differential Distribution of H2A.Zac and H4ac

In order to further define the patterns of H2A.Zac- and H4ac-marked nucleosomes at enhancers, we exam-

ined different epigenetic features at these regions, including H2A.Z, p300, and H3K27ac, DNAmethylation,

and chromatin accessibility (Table S2). ChIP-seq data was split by H2A.Zac and H4ac signatures and or-

dered by H2A.Zac intensity at both poised and active enhancers (Figure 4E). Notably, we found that en-

hancers lacking H2A.Zac were not enriched for total H2A.Z, suggesting that enhancers with an H4ac-unique

signature are also void of H2A.Z. Second, in agreement with a p300 BD-mediated recruitment mechanism

proposed by this study and others (Conery et al., 2016; Manning et al., 2001), p300 showed differential oc-

cupancy between groups at both active and poised enhancers; in particular, the group lacking H4ac

showed less p300 occupancy. Finally, H3K27ac, a histone PTM signature characteristic of active enhancers,

did not show differential distribution between the groups, although H3K27ac intensity correlated with

H2A.Zac signal. These data suggest a common pattern of acetylation of H3K27ac and H2A.Zac that may

be established by p300.

We next used Nucleosome Occupancy and Methylation sequencing (NOMe-seq) data to study DNA

methylation and chromatin accessibility at these enhancer sites (Kelly et al., 2012). We found that

H2A.Zac-unique enhancers had less DNA methylation and were more accessible than the average of all

active and poised enhancers. In contrast, H4ac-unique active and poised enhancers had more methylation

and were less accessible (Figure 4F). Enhancers carrying both H2A.Zac and H4ac had similar levels of DNA

methylation and accessibility as the average enhancers. In summary, we found that enhancers with differ-

ential H2A.Zac and H4ac signatures are associated with distinct epigenetic features (Figure 6B).
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Figure 4. Crosstalk and Genomic Localization of H2A.Zac and H4K5ac

(A) Genomic overlap of all H2A.Zac and H4ac ChIP-seq peaks. Minimum overlap equals 1bp (left panel). Observed vs expected logarithmic fold enrichment

graphs using Genomic Association Test (GAT) of H2AZ.ac over H4ac and reversely (right panel). *p value< 0.0001.

(B) GAT of H2AZ.ac and H4ac ChIP-seq peaks and ChromHMM regions in LNCaP cells. The three groups examined are H2A.Zac and H4K5ac common peaks,

H2A.Zac-unique peaks, and H4K5ac-unique peaks. Pie charts representing the percentage of marked peaks falling in each ChromHMM state (left panel).

Observed vs expected log-fold enrichment graphs (right panel). *p < 0.0001.

(C and D) Heatmaps showing H2A.Zac and H4ac presence across active promoters (n = 12,770) (C) and active enhancer (n = 27,898) and poised enhancers

(n = 17,354) (D). Heatmaps are divided into the same three groups than panel B and order based on H2A.Zac intensity from top to bottom. ChIP-seq signal is

centered at the TSS in active promoters and at the DNAseI midpoint in enhancers. The scale bars show the color key of the ChIP-seq intensity (counts per

million mapped reads, CPM). The same scale is used for each ChIP-seq across all regulatory regions.

(E) Heatmaps showing H2A.Z, p300, and H3K27ac enrichment across active enhancers (left) and poised enhancers (right). Heatmaps are divided, ordered,

and centered similarly to panel (D).

(F) Nucleosome occupancy and methylation sequencing (NOMe-seq) plots representing the average DNA methylation (0–1) and chromatin accessibility

(1 minus GpCmethylation ratio) ratios across active (left hand side) and poised enhancers (right hand side) divided into the same three groups than panel (B).

The average of all active and poised enhancers is also included.

See also Figure S5 and Table S2.
Acetylation Dynamics between H2A.Z and H4 at Enhancers Is Associated with Transcription

Elongation

Chromatin accessibility and DNA methylation are indicative of enhancer activity (Valdes-Mora et al., 2017).

To characterize the functional status of each enhancer H4/H2A.Z acetylation signature, we examined RNA

polymerase II (RNApolII) recruitment and enhancer RNA (eRNA) production (Kim et al., 2010) as additional

markers of enhancer function (Table S2). Figure 5A shows RNApolII ChIP-seq signal and Global Run-on

sequencing (GRO-seq) data across active and poised enhancers. eRNA production is measured as the bidi-

rectional RNA expression detected by GRO-seq around the DNAseI midpoint. Despite no major differ-

ences between H2A.Zac/H4ac signatures in eRNA production and the presence of RNAPolII flanking DNA-

seI sites, we did reveal evidence of differential transcription across the entire 4kb region plotted

(Figure 5A). H2A.Zac-unique enhancers had less regional transcriptional activity than the other two groups

(common and H4ac-unique) in both active and poised enhancers.

To confirm that the observed transcription signal at expanded enhancers was due to transcription elonga-

tion, we grouped the enhancers according to their location inside or outside genes and compared their

proportion with the rest of the enhancers (Figure 5B). A higher proportion of H4ac-unique enhancers

were located at intragenic regions. H2A.Zac-unique active enhancers did not show differential localisation,

whereas H2A.Zac-unique poised enhancers showed a higher presence at intergenic regions (Figure 5B).

Common enhancers had similar inter/intragenic distribution to all detectable active and poised enhancers.

We also found that genes with H2A.Zac-unique enhancers had significantly lower transcription compared

with all genes containing either active or poised enhancers, whereas H4ac-unique enhancers were mostly

present at highly expressed genes (Figure 5C). Moreover, the nascent RNA profiles measured by GROseq

at intragenic enhancers validated the gene expression pattern (Figures 5D and S5C).

Taken together, these results demonstrate a particular H2A.Zac and H4ac pattern, or enhancer code, that

correlates with their genomic localization (inter or intragenic), regional transcriptional activity, chromatin

features (p300, chromatin accessibility), and DNA methylation (Figure 6B).
DISCUSSION

A key step to understanding histone PTM function is the characterization of the enzymes and effector pro-

teins that write, erase, and read these marks. Although much progress has been made identifying the core

histone PTM modifiers (Voss and Thomas, 2018), the specific enzymes that target histone variants PTMs

have not been well studied. In particular, the KATs responsible for acetylation of H2A.Z in mammals are still

unresolved. Here, we report that in addition to Tip60, p300 is able to acetylate the histone variant H2A.Z

and that p300-dependent H2A.Z acetylation is enhanced through BD recognition of H4ac.

Unlike Tip60, p300 has not been described to interact with H2A.Z (Choi et al., 2009; Link et al., 2018; Obri

et al., 2014; Vardabasso et al., 2015), as it potentially follows a hit-and-run kinetic mechanism (Liu et al.,

2008). Tip60, however, has been described as the KAT candidate responsible for acetylation of H2A.Z

(Corujo and Buschbeck, 2018; Giaimo et al., 2019; Sevilla and Binda, 2014). Tip60 is part of a larger com-

plex, involved in H2A.Z histone exchange (Altaf et al., 2010; Cai et al., 2003; Keogh et al., 2006; Kusch
782 iScience 21, 773–788, November 22, 2019



iScience 21, 773–788, November 22, 2019 783



Figure 5. Transcription Elongation Influences H2A.Zac and H4K5ac Landscape at Enhancers

(A) Heatmaps showing phosphoserine 5 RNA polymerase II (RNAPolII) ChIP-seq and global run-on sequencing (GRO-seq) signal across active and poised

enhancers. The three groups examined are H2A.Zac and H4ac overlapping peaks (Common, yellow), H2A.Zac-unique peaks (H2A.Zac-unique, light blue), and

H4ac-unique peaks (H4ac-unique, dark blue) at active (left) and poised (right) enhancers that are at least 2kb away from any TSS. Heatmaps are ordered based on

H2A.Zac intensity from top to bottom. The scale bars show the color key of the ChIP-seq and GRO-seq intensities (counts per million mapped reads, CPM).

(B) Bar plots showing the proportion of intragenic (black) and intergenic (gray) active and poised enhancers in each H2A.Zac/H4ac group. The red dashed

line marks the proportion of intergenic and intragenic enhancers found in all active and poised enhancers.

(C) Box plots comparing gene expression as logarithmic transcripts per million (logTPM) measured by RNA-seq of the genes contained on each intragenic

active (left) or poised enhancers for each H2A.Zac/H4ac group and all the genes containing at least one enhancer (gray box plot).

(D) Bidirectional enhancer RNAs (eRNAs) profile plots (plus, red, and negative, blue-strands) of GROseq data around intragenic and intergenic active

enhancers (top) and poised enhancers (bottom) of the H2A.Zac/H4ac groups. The plots show one representative replicate out of four. Profiles are centered at

the DNAse I midpoint.

See also Figure S5.
et al., 2004), which makes it difficult to assess whether Tip60 alone is able to acetylate H2A.Z. In fact, our

in vitro results show that Tip60 acetylates peptide and nucleosomal H4 but does not efficiently acetylate

H2A.Z. However, we and others (Dalvai et al., 2012; Li et al., 2019) found that genetic inhibition of Tip60

decreases H2A.Zac levels, suggesting that Tip60, in its cellular context, facilitates H2A.Z acetylation. Of

note, complete knockout of Tip60 does not abolish H2A.Zac (Li et al., 2019), and other reports found that

acetylation of H2A.Z was independent of Tip60 at some locus-specific promoter (Bellucci et al., 2013;

Semer et al., 2019), supporting our finding that p300/CBP is also required for the acetylation of

H2A.Z. Based on our new data, we propose a model whereby acetylation of H2A.Z is the result of a

sequential cascade initiated by Tip60-mediated acetylation of H4, leading to the recruitment of p300

via its BD to acetylate H2A.Z. Alternatively, Tip60 and p300/CBP may acetylate H2A.Z directly through

independent pathways (Figure 6A).

We provide biochemical evidence that the presence of acetylated H4 in the nucleosome can have impact

on p300-mediated acetylation of H2A.Z, suggesting that these two marks are co-localized. It was previ-

ously shown by immunoprecipitation that H2A.Z nucleosomes are enriched for H4ac (Draker et al.,

2012; Myers et al., 2006). Based on our analysis of ChIP-seq data, we found that H2A.Zac and H4ac co-

occurred predominantly at promoters and enhancers. However, at a third of all enhancers, these marks

did not co-occur. After dissecting the epigenetic features of each sub-group of enhancers, we propose

a dynamic mechanism for enhancer activation through three states of activity (Figure 6B): poised,

poised-active, and active. Each state has a preferential H4ac/H2A.Zac combination that would initiate

from H4ac-marked nucleosomes at poised enhancers that enables the recruitment of p300 through its

BD. This may trigger H2A.Z acetylation through p300 in a poised/active state and deacetylation of H4

in a fully enhancer-activated state.

Additionally, we also find different transcriptional features of each state. H2A.Zac-unique enhancers are en-

riched at intergenic regions or within lowly expressed genes; conversely, H4ac-unique enhancers are pre-

sent in intragenic regions and are associated with highly transcribed genes, whereas common enhancers

are characterized by an intermediate state regarding transcription elongation. The lack of H2A.Zac at intra-

genic enhancers of highly expressed genes could be due to the previously reported active removal of

H2A.Z at gene bodies during transcription elongation (Hardy et al., 2009; Lashgari et al., 2017). It is there-

fore interesting to note that H2A.Zac-marked active enhancers are not present within the gene they acti-

vate, as transcription elongation of the gene would remove H2A.Z from the enhancer, suggesting that

H2A.Zac enhancers are likely acting as trans-regulatory elements. In this regard, a recent study showed

that functionally active intragenic enhancers can attenuate transcription of the host gene (Cinghu et al.,

2017), supporting our observation.

In contrast, the lack of H4ac at H2A.Zac-unique enhancers is less clear. Genome-widemapping of KATs and

lysine deacetylases (KDACs) have shown that both enzyme families are targeted to active genes and corre-

late with transcription levels (Wang et al., 2009), which suggests a high turnover rate of histone acetylation

at highly transcribed genes compared with lowly transcribed genes or intergenic regions. Weinert et al.

data reported a higher deacetylation rate of H4 compared with H2A.Z (Weinert et al., 2018). We, therefore,

propose that these different kinetics could partially explain the lack of H4ac at these H2A.Zac regions. How-

ever, we cannot rule out that p300 and Tip60 are able to acetylate H2A.Z without the presence of H4ac at

these particular sites.
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Figure 6. Model Figure of H2A.Z Acetylation Writing Mechanism

(A) Proposed models for Tip60- and p300-mediated acetylation of H2A.Z. (1) Sequential cascade: Tip60 acetylates H4, which drives recruitment of p300 and

acetylation of H2A.Z. (2) Independent mechanisms: Tip60 directly targets acetylation of H2A.Z potentially during histone exchange and p300 acetylates

H2A.Z at the chromatin to maintain nucleosomal acetylation.

(B) The combinatorial subgroups of H2A.Zac and H4ac at enhancers are snapshot of a dynamic mechanism for enhancer activation through three states:

poised, poised-active, and active.
Collectively, we demonstrate that p300/CBP, complementary to Tip60, are essential KATs for the acetyla-

tion of H2A.Z, answering the long-standing question of what enzymes are responsible for this important

modification. We reveal a mechanism of histone PTM crosstalk and define an enhancer code based on

the patterning of H4ac and H2A.Zac. Both p300 and H2A.Z have been implicated in many human cancers

(reviewed in Iyer et al., 2004; Vardabasso et al., 2014); therefore, this study provides p300 as an additional

target for H2A.Zac-based chromatin therapy in cancer.
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Limitations of the Study

In this study we demonstrate that p300-BD interaction with H4ac enhances H2A.Z acetylation using an in-

hibitor of p300 BD. However, we were not able to directly compare p300-mediated acetylation in a nucle-

osomal context with pre-installed H4ac/H2A.Z nucleosomes due to the technical difficulty in generating re-

combinant H4ac/H2A.Z combinatorial nucleosomes in vitro. Additionally, we found that H2A.Zac levels are

reduced after inhibition of both Tip60 and p300, but we were unable in this study to determine if the mech-

anism that results in H2A.Zac involves a sequential cascade through H4ac or occurs through independent

pathways. Future studies will focus on resolving the interplay and order of events that are associated with

Tip60 and p300 in driving the acetylation of H2A.Z.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figures 
 

 
Figure S1. Extended data for in vitro assays and explanatory diagrams. Related to 
Figure 1. (A) p300 domain structure map and length information of the recombinant p300 
enzymes used. (B) Coomassie staining of recombinant Tip60 and p300 catalytic domain used 
for the KAT assays. (C) In-solution H3-Acetyl-CoA (AcCoA) assays measuring Tip60 activity 
as a function of time on the un-acetylated H2A.Z peptide (amino acid 1-19, H2A.Z-1 (1-19) and 
the tri-acetylated H2AZ at lysines 4, 7 and 11 (H2A.Z-1 (1-19)K4acK7acK11ac). Same data as 
Figure 1B is shown but the scale of the y-axis has been adjusted to lower numbers to 
appreciate the discrete changes in H2A.Z acetylation. Data points are presented as counts 
per minute (cpm). Error bars represent the standard deviation from two measurements. (D) 
In-solution H3-AcCoA KAT assays measuring full length p300 activity on the listed histone 
peptide substrates after 30 minutes of H3-AcCoA incubation. Data points are presented as 
counts per minute (cpm). Error bars represent the standard deviation from two 
measurements. (E) Fluorescence assay measuring p300 activity on the listed histone peptide 
substrates after 15min incubation with Acetyl-CoA. Data points are presented as fluorescence 
units (FU). Error bars represent the standard deviation from two measurements. (F) Amino 
acid sequence of the isoforms H2A.Z-1 and H2A.Z-2 N-terminal peptides. 
 
  



	
Figure S2. Mass spectrum of H2A.Z acetylated peptides. Related to Figure 1F (A) Time-
course mass spectrometry (MS) analysis of p300-H2A.Z peptide reactions from Figure 1B. 
(B) Tandem-MS analysis of the mono and di-acetyl products at 4 and 8 minutes, respectively.  
  



	
Figure S3. Antibody validation using histone peptide microarray. Related to Figure 2. 
Bar plots representing histone peptide microarrays hybridized with (A) H2A.Z K4acK7ack11ac 
antibody (ab18262), (B) H2A.ZK4ac (ab214725) and (C) H2A.ZK7ac (ab214730). Data are 
represented as mean +/- SEM (n=6). The inlet in Figure 3C shows the double band detected 
with the H2A.ZK7ac antibody by western blot imaging. For comparison, we also show images 



from total H2A.Z and H4. The signal intensity of two arrays was averaged and normalized to 
the peptide with the strongest signal in each array. Array 2 was used for those experiments 
See list of peptides in Supplemental Table 1.  
 
  



	
Figure S4. Pair-wise alignment and extended representation of histone peptide array 
experiments. Related to Figure 3. (A) Pairwise sequence alignment using the Smith-
Waterman algorithm of H2A.Z-1 and H4. Matching amino acids have a mark-up line between 
them and the grey area delineates the matching lysines at the N-terminus. (B) Heatmap 
showing p300 BD binding to all acetylated histone peptides on the peptide microarray. The 
scalebar shows the color key of the relative intensity normalized to the peptide with the 
highest signal (H4K5acK8acK12acK16ac). Data are represented as mean normalized signal 
(n=6) (C) Scatterplots showing histone peptide microarray raw signal of each peptide 
hybridized with p300 BD in the presence of CBP30 inhibitor or the vehicle control, DMSO 
(outset). Comparison of two independent microarray experiments for the p300 BD (inset). 
Data are represented as mean raw signal (n=6). We performed linear regression analysis 
derived from the average of 6 individual peptide spots printed by two different pins in two very 
different locations on the slide and r2 calculation shows the degree of similarity between two 
different subarrays. (D) Representative image of peptide arrays hybridized with p300 
bromodomain in the presence of CBP30 inhibitor or the vehicle control, DMSO. White boxes 



mark peptides bound by p300 bromodomain in the vehicle control and yellow boxes 
demarcate positive controls. The different numbers display the peptides of interest for this 
study. The Array 1 was used for experiments from panel B, C, and D. A complete list of 
peptides included in the histone peptide microarray is in Supplemental Table 1. 
 	



 
 
Figure S5. Extended data for genomic analysis. Related to Figure 4 and 5 (A) Heatmap of 
the ChromHMM state emissions from LNCaP cells. The x axis shows the different histone 
marks used for the partition of the genome in 9 chromatin states using the ChromHMM 
algorithm(Ernst and Kellis, 2012). The emission signal indicates the relative contribution of the 
histone mark in that state. Redundant states were merged into seven states and manually 
annotated by comparison to public ChromHMM states for HMEC cells (Ernst et al., 2011). (B) 
Genomic Association Test (GAT) of H4ac ChIP-seq peaks and ChromHMM regions in LNCaP 
cells. Pie charts representing the percentage of marked peaks falling in each ChromHMM 
state (left panel). Observed vs expected log fold enrichment graphs (right panel). *p< 0.0001. 
(C) Heatmaps showing H2A.Zac, H4ac, RNAPolII ChIP-seq and GRO-seq signal across 
active and poised enhancers further divided into intergenic and intragenic enhancers. Each 
enhancer is divided in three groups: H2A.Zac and H4ac common peaks (Common, yellow), 
H2A.Zac-unique peaks (H2A.Zac-unique, light blue) and H4ac-unique peaks (H4ac-unique, 
dark blue) and ordered based on H2A.Zac signal.  



Supplemental Tables 
 
Table S2: Datasets used in this publication. Related to Figure 4 and 5.  

	

Target Source 
Company 
and Cat # 
Abs 

Accession 

ChIP-seq (H2A.Zac) Valdes-Mora et al. Nature Communications 2017 Abcam 
ab18262 GSE76336 

ChIP-seq (H2A.Z) Valdes-Mora et al. Nature Communications 2017 Active Motif 
Cat #39113 GSE76336 

ChIP-seq (H4K5ac) Wang et al. Nature 2011 Upstate #07-
327 GSE27823 

ChIP-seq (p300) Wang et al. Nature 2011 Santa Cruz 
#C-20 GSE27823 

ChIP-seq (H3K4me3) Bert et al., Cancer Cell 2013 Abcam 
ab8580 GSE38685 

ChIP-seq 
(H3K27me3) Bert et al., Cancer Cell 2013 Millipore #07-

449 GSE38685 

ChIP-seq (H3K4me1) Taberlay et al., Genome Res 2016 Active Motif 
Cat # 39298 GSE73785 

ChIP-seq (H3K27ac) Taberlay et al., Genome Res 2016 Active Motif 
Cat #39133 GSE73785 

ChIP-seq 
(H3K36me3) Valdes-Mora et al. Nature Communications 2017 Abcam 

ab9050 GSE76336 

ChIP-seq (H3ac) Valdes-Mora et al. Nature Communications 2017 Millipore #06-
599 GSE76336 

ChIP-seq (Pol II 
phospho S5) Tan et al., Mol Cell Biol 2012 Abcam, 

ab5131 GSE28264 

NOMe-seq Valdes-Mora et al. Nature Communications 2017  GSE76334 

DNAseI-seq ENCODE  GSE32970 

RNA-seq Taberlay et al., Genome Res 2016  GSE73785 
GRO-seq Puc et al., Cell 2015  GSE63202 

ChromHMM Valdes-Mora et al. Nature Communications 2017  GSE76337 

	 	



	
Table S3. Small interfering RNA (siRNA) sequences. Related to Figure 2. 
	

Gene target Target sequence Cat number 

KAT5 (Tip60) CGUAAGAACAAGAGUUAUU J006301-08 

KAT5 (Tip60) AUGAAUGGGUGACGCAUGA J006301-09 

KAT5 (Tip60) GGACAGCUCUGAUGGAAUA J006301-10 

KAT5 (Tip60) GACCAAGUGUGACCUACGA J006301-11  

EP300 (p300) GGACUACCCUAUCAAGUAA J-003486-11 

EP300 (p300) GUUCAAUAAUGCCUGGUUA J003486-13 

EP300 (p300) CGACAGGGAUGCAGCAACA J003486-13 

CREBBP(CBP) GCACAGCCGUUUACCAUGA J-003477-06 

CREBBP(CBP) UCACCAACGUGCCAAAUAU J-003477-07 

CREBBP(CBP) GGGAUGAAGUCACGGUUUG J-003477-08 

CREBBP(CBP) AAUAGUAACUCUGGCCAUA J-003477-09 
	
* All siRNAs were ON-TARGET plus purchased from Dharmacon. 
	
	 	



Table S4. Primer sequences. Related to Related to Figure 2. 
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
* All primers were purchased from IDT. 
	 	

Gene target Primer sequence 

KAT5_FW (Tip60) GACCTACGACATCCTCCAGG 

KAT5_ RV (Tip60) CAGGTTCTGGGAATAACTCTTGT 

EP300_FW (p300) GCCGAGAATGTGGTGGAAC 

EP300_RV (p300) AGCCAAAATCTGTGCCATCG 

CREBBP_FW (CBP) TGACAGCACAGATTTTGGATCA 

CREBBP_RV (CBP) CGTAGAAGCTCCGACAGTTG 

GAPDH_FW CCACATCGCTCAGACACCAT 

GAPDH_RV ACCAGGCGCCCAATACG 



Transparent Methods 
 
Recombinant protein production 
Bacterial expression constructs for the p300 bromodomain were transformed into Escherichia 
coli BL21(DE3) and grown in LB media (Caisson) at 37°C. When the OD600 (optical density 
at 600 nm) reached 0.6 to 0.8, the temperature was lowered to 16°C, isopropyl-β-d-
thiogalactopyranoside (IPTG) was added (0.5 mM), and incubation was continued overnight 
with shaking. Bacteria were harvested by centrifugation and either frozen at −80°C or used 
immediately. Protein was purified with either glutathione agarose (GE Healthcare) according 
to the manufacturer’s protocol. 
 
In vitro peptide KAT assays 
Reactions (10 µl) containing 1 µg of KAT, 1 µg of peptide substrate, and 1 µCi of H3-AcCoA 
(PerkinElmer) in KAT reaction buffer (50 mM HEPES pH 7.5, 0.05% BSA) were incubated at 
room temperature as indicated. Reactions were stopped by adding trifluoracetic acid to a final 
concentration of 0.5%, neutralized by diluting with 135 µl of 50 mM NaHCO3, and transferred 
to streptavidin-coated FlashPlates (PerkinElmer). Plates were incubated for 15 min, sealed, 
and counted in a MicroBeta2 liquid scintillation counter (PerkinElmer) for 1 min per sample. 
The following KATs were used: Human recombinant p300 catalytic domain (Active Motif 
#31205), p300 full protein (Active Motif, #31124), Tip60 (Cayman Chemicals #10783). 
Histone peptide substrates were synthesized on PTI Symphony automated synthesizer using 
FMOC chemistry solid phase peptide synthesis. Fmoc group deprotection steps (2 x 7 min) 
were performed with 20% piperidine in N,N-dimethylformamide, coupling steps (2 x 20 min) 
were performed with 5 equivalents of  Fmoc-amino acids and HATU coupling reagent, K(Ac) 
residues were introduced using Fmoc-Lys(Ac)-OH. After synthesis the peptides were cleaved 
from the resin by 2h treatment with 2.5% triisopropylsilane, 2.5% water in trifluoroacetic acid 
and precipitated with a cold diethyl ether. After precipitation the peptides were separated by 
centrifugation washed 3 x with cold ether, air dried, dissolved in 50% acetonitrile and 
lyophilized. Crude peptides were purified by a preparative reverse phase HPLC on Waters 
SymmetryShield RP18 column. The purified peptides were characterized using MALDI-TOF 
mass spectrometry and an analytical reverse phase HPLC.  
 
In vitro nucleosomal KAT Assays 
Reactions (10 µl) containing 1 µg of KAT, 1 µg of biotinylated recombinant nucleosome 
(EpiCypher: unmodified #16-006, H2A.Z.1 #16-0014, H2AZ.2 #16-0015, and H4 Tetraacetyl 
#16-0313), and 1 µCi of H3-AcCoA (PerkinElmer) in KAT reaction buffer (50 mM HEPES pH 
7.5, 0.05% BSA) were incubated at room temperature as indicated. Reactions were quenched 
by the addition of SDS loading buffer and resolved by SDS–polyacrylamide gel 
electrophoresis. Following the detection of total protein by Coomassie staining, gels were 
treated with EN3HANCE (PerkinElmer) and dried, and acetylated proteins were detected by 
autoradiography.  
 
Fluorescence KAT assays 
For the fluorescence KAT assay, recombinant human p300 (Active Motif #31205) and a 
commercial histone acetyltransferase kit (Active Motif # 56100) were used according the 
manufacture’s instructions.  
 
Histone peptide microarrays 
Histone peptide microarrays were fabricated by depositing biotinylated histone peptides onto 
streptavidin-coated glass microscope slides using an Aushon 2470 microarray printer. Briefly, 
biotinylated peptides were deposited onto streptavidin-coated glass microscope slides using 
an Aushon 2470 microarray printer. Arrays were blocked for 30 min in cold array hybridization 
buffer (1× PBS pH 7.6, 0.1% Tween-20, 5% BSA (OmniPur, Fraction V) and GST-tagged 
proteins (1 µM) were hybridized to the microarray in a humidified chamber overnight at 4°C. 
Bound protein was labelled with α-GST primary (Sigma #7781) and AlexaFluor 647-
conjugated secondary antibody (Invitrogen #A21245). Microarrays images were collected at 
20 µm resolution using an Innoscan 1100AL microarray scanner (Innopsys). Image 
processing and data analysis was performed using ArrayNinja (Dickson et al., 2016). Each 
unique peptide feature (see Supplementary Table 1 for a full list of peptide features spotted 
on each array) was spotted in triplicate two times per subarray, and values presented are the 



mean of measured signals for these individual peptide spots.	 Background was subtracted 
using reference spots with no peptides. Array data was normalized to the peptide with the 
strongest signal in the array or to an IgG control.	 Peptide arrays are now commercially 
available through EpiCypher (Catalog # 11-4001) 
 
MALDI-TOF-MS analysis of KAT reactions 
For MS experiments, reactions were performed as described above with one exception: H3-
AcCoA was replaced with final concentration of 500µM unlabelled AcCoA. Reactions were 
quenched with 0.5% trifluoroacetic acid at indicated timepoints, cleaned up using Pierce C18 
Spin Columns (#89870), and analyzed by MS. KAT-reacted samples were deposited on a 
MALDI target plate (4 µl per spot) and mixed with 1 µl of matrix solution (α-cyano-4-
hydroxycinnamic acid in 50% acetonitrile). MALDI-TOF-MS and MS/MS (positive ion mode at 
1 kV) spectra were collected using SCIEX TOF/TOF 5800 MALDI MS spectrometer. The 
peptide fragmentation modeling and peak assignments were done using the Peptide 
Sequence Fragmentation Modeling tool (https://omics.pnl.gov/software/molecular-weight-
calculator). 
  
Cell lines, treatments and transfections 
LNCaP prostate cancer cells (Cambrex Bio Science Cat. No. CC-2555) were cultured in 
RPMI 1640 media (Gibco, #11875-093) supplemented with foetal bovine serum (10%, 
hyclone #SH30084.03), 2mM L-glutamine (Gibco, #25030-081) and Penicillin/Streptomysin 
(1%, Gibco, #15070-063). HCT116 colorectal carcinoma cells were gifted by Stephen Baylin 
laboratory and were maintained in McCoy’s 5A media (Gibco, #16600-082) supplemented 
with foetal bovine serum (10%, hyclone #SH30084.03) and Penicillin/Streptomysin (1%, 
Gibco, #15070-063). All cell lines were authenticated by STR profiling (CellBank Australia, 
Westmead, NSW, Australia) and cultured for <6 months after authentication. LNCaP and 
HCT116 cells were seeded at 70% confluence and were treated with A-485 0.08, 0.4, 2 or 
10µM and the compound control A-486 and CBP30 1, 2, 5 and 10 µM for 24h. The untreated 
controls were mocked treated with the equivalent amount of the highest concentration of the 
vehicle used to dissolve the drugs, 100% dimethyl sulfoxide (DMSO). For siRNA transfections 
LNCaP cells were seeded at a density of 775,000 cells per 6cm dish. 24hrs post-seeding cells 
were transfected with 20nM of Dharmacon ON-TARGET plus pooled KAT5 siRNAs, EP300 
and CREBBP siRNAs, or EP300, CREBBP and KAT5 siRNAs (listed in Supplemental Table 
3) and 8µL Dharmafect 2, according to the manufacturer protocol. In parallel we also 
transfected cells with 20nM of Dharmacon ON-TARGET plus pooled Non-targeting siRNA 
(Scramble) as a control. Cells were harvested 72h post-transfection. 
 
Chromatin extraction, western blot and antibodies 
Asynchronously growing LNCaP and HCT116 cells were harvested by trypsinization 24 hr 
after treatment or 72hr after transfection. Pellets were washed once with cold 1x PBS, snap 
frozen in liquid N2 and either processed immediately or stored at −80°C. Cell pellets were 
resuspended in 1x volume CSK buffer (10 mM PIPES pH 7.0, 300 mM sucrose, 100 mM 
NaCl, 3 mM MgCl2, 0.1% Triton X-100 and 1x Complete EDTA-Free protease inhibitor 
cocktail from Roche) and incubated on ice for 1h. 10% of this total fraction was combined with 
an equivalent volume of CSK buffer complemented with Universal Nuclease (Thermo, 
1:5,000). The remaining cell lysate was centrifuged at 1300 x g for 5 min at 4°C. The 
supernatant (soluble fraction) was collected. The chromatin pellet was resuspended in 1x 
volume CSK buffer and kept on ice for 10 min before being spun again at 1300 x g for 5 min 
at 4°C. The supernatant was discarded and the chromatin pellet was solubilized in Universal 
Nuclease-CSK buffer. Each protein fraction was quantified by Bradford Assay (BioRad), and 
7.5 µg of protein from each fraction was resolved by SDS-PAGE, transferred to PVDF 
membrane (Thermo), and probed with the indicated antibodies. H2A.Ztri-ac (Abcam #18262; 
1:500), H2A.ZK4ac (Abcam # 214725; 1:1000), H2A.ZK7ac (Abcam #214730; 1:1000), H2A.Z 
(Abcam #4174; 1:1000), H3k27ac (Active Motif #39133; 1:1000), H4tetra-ac (Millipore #05-
1355;1:2000), H4 (Abcam #10158) and Tip60 (Santa Cruz, #166323, 1:500). 
The specificity of the antibodies used for ChIP-seq is reported at 
http://www.histoneantibodies.com/ 
 
Fiji ImageJ software was used to quantify western blot images following the Gel Analysis 
method outlined in their documentation (Schindelin et al., 2012; Schneider et al., 2012). 



Briefly, band densities were plotted using their Gels commands and area under the curve was 
quantified. Band densities of the protein of interest were divided by a loading control protein 
and further normalized to the control sample. Average and standard error of the mean were 
calculated for replicates using Prism 7 software and Student's t-test pairwise comparison was 
applied. 
 
RNA extraction and real time qPCR 
Total RNA extraction was performed using TRIzol reagent (Life Technologies, #15596018) 
following manufacturer’s instructions. 10µg of extracted RNA were treated with Turbo DNA-
free kit (ThermoFisher Scientific, #AM1907) and complementary DNA (cDNA) generation was 
performed using SuperScript III Reverse Transcriptase (Invitrogen, #18080-044) and random 
hexamer primers (ThermoFisher Scientific #SO142) following manufacturer’s instructions. 
3µL of diluted cDNA(1:10) was added to 7µL of PCR master mix containing, 5µL of Power 
Sybr Green (ThermoFisher Scientific, #4367659), 1µL of each primer set (2µM). Quantitative 
real-time PCR (qRT-PCR) was performed using the ABI-PRISM 7900HT Sequence Detection 
System using the following conditions: 1) 50oC for 2 min; 2) 95oC for 10 min; 3) 40 cycles of 
95oC for 15 sec and 60oC for 1 min. The data is represented as the fold change of mRNA 
gene expression normalized to the endogenous reference Gapdh and relative to the scramble 
condition. The list of all primer sequences used for this manuscript can be found in 
Supplemental Table 4. 
 
Data analysis: 
ChIP-seq reads (see Supplemental Table 2) were mapped to the human genome (hg19) 
using Bowtie (version 1.0.1) (Langmead et al., 2009), allowing up to three mismatches. Non-
uniquely alignable reads were excluded. For H2A.Zac and H4K5ac, broad peaks were called 
using PeakRanger (version 1.16) (Feng et al., 2011), peaks from replicates, when available, 
were combined by taking overlapping regions. 
 
For Chromatin-state discovery and characterization, ChromHMM (Ernst and Kellis, 2012) was 
applied to ChIP aligned reads to partition the genome of LNCaP into 9 chromatin states. The 
following chromatin marks were used: H3K4Me3, H3ac, H3K4Me1, H3K27Me3, H3K36Me 
and H3K27ac (Table x). Redundant states were merged into seven distinct states and 
manually annotated based on the published ChromHMM model for HMEC cells (Ernst et al., 
2011). To calculate the significance of overlap between H4K5ac and H2A.Zac or these two 
marks and ChromHMM states Genomic Association Tester (GAT) (Heger et al., 2013) was 
implemented using 100 permutation.  
 
DeepTools2 was used to visualize ChIP-seq signal (Ramirez et al., 2016; Shen et al., 2014). 
Bigwig files were generated using “bamCoverage” function, reads were extended 300bp and 
normalized based on counts per million mapped read (CPM). Promoter heatmaps were 
centered on the TSS coordinates from RefSeq hg19 and enhancers were centered at DNAseI 
midpoints from ENCODE LNCaP data. Enhancers within 2kb of a TSS were discarded. 
Heatmap bin size was 10bp in a 4000bp window. In some analysis, active and poised 
enhancer bed files were divided into intragenic or intergenic based on their overlap with the 
Gencode transcript annotation (hg19). 
 
NOMe-seq analysis were done as previously described (Statham et al., 2015; Taberlay et al., 
2014; Valdes-Mora et al., 2017); briefly, raw reads were aligned to hg19 using bw-meth 
(Pedersen et al., 2014), PCR duplicates were removed and BisSNP v0.82.2 (Hu et al., 2013) 
was used to obtain methylation status of each WCG and GCH site in each sample. Next, data 
was transformed into a methylation counts and coverage table. To visualize and compare 
NOMe-seq profiles across enhancer groups the “methylationPlotRegion” was implemented 
from aaRon R package. 
 
RNAseq data was processed as previously described (Taberlay et al., 2016), paired-end 
reads were trimmed using TrimGalore (version 0.11.2) and mapped to hg19 using STAR 
(version 2.4.0j)(Dobin et al., 2013). Mapped reads were counted into genes using RSEM 
(v1.3.0) and transcript per million (TPM) normalization was used. Box plots were performed 
using ggplot2 R package.  
 



GRO-seq fastq files were aligned to hg19 using bowtie2 (version 2.2.4). Deeptools was used 
to plot normalized signal (CPM) as heatmaps and reads per bp per as profiles centered at the 
DNAseI midpoints.  
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