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Introduction: Infant HIV-1-infection is associated with high morbidity and mortality if

antiretroviral treatment (ART) is not initiated promptly. We characterized development of

circulating T follicular helper cells (cTfh) and their relationship to naïve/memory B cell

subsets in a cohort of neonates initiating ART within the first week of life.

Methods: Infants were diagnosed within 48 hours of birth and started ART as

soon as possible. The frequency and phenotype of cTfh and B cells were analyzed

at enrollment (birth−19days) and at 4, 12, and 72 weeks of age in blood of 27

HIV-1-intrauterine-infected and 25 HIV-1 exposed uninfected (HEU) infants as part of a

study in Johannesburg, South Africa. cTfh cells were divided into Tfh1, Tfh2, and Tfh17

subsets. B cell phenotypes were defined as naïve, resting memory, activated memory

and tissue-like memory cells.

Results: HIV-1-infected infants had higher frequencies of cTfh cells than HEU infants up

to 12 weeks of age and these cTfh cells were polarized toward the Tfh1 subset. Higher

frequencies of Tfh1 and lower frequencies of Tfh2 and Tfh17 correlated with lower CD4+

T cell percentages. Lower frequencies of resting memory, with corresponding higher

frequencies of activated memory B cells, were observed with HIV-1 infection. Importantly,

dysregulations in B cell, but not cTfh cell, subsets were normalized by 72 weeks.
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Conclusion: Very early ART initiation in HIV-1-infected infants normalizes B cell subsets

but does not fully normalize perturbations in cTfh cell subsets which remain Tfh1 polarized

at 72 weeks. It remains to be determined if very early ART improves vaccine antibody

responses despite the cTfh and B cell perturbations observed over the time course of

this study.

Keywords: cTfh, B cells, infants, HIV-1, early antiretroviral therapy

INTRODUCTION

There is overwhelming consensus regarding the importance of
starting antiretroviral therapy (ART) in HIV-1-infected infants
as soon as they are diagnosed given the rapid disease progression
and high mortality observed without treatment (1, 2). Initiation
of ART at younger ages in perinatally-infected infants has also
consistently been shown to reduce the size of the viral reservoir
(3–6). Sporadic cases of early-treated infants who display
relatively long periods of viral control after ART interruption
added further hopes that early initiation of ART may protect
crucial immune function (7, 8).

T follicular helper cells (Tfh) are a specialized subset
of CXCR5-expressing CD4+ T cells that are crucial in the
maintenance and proliferation of B cells in the germinal centers
(GC) of lymphoid tissues (9). Tfh cells play a complex role in
HIV-1 infection. They are highly permissive to HIV-1 infection
and serve as a major reservoir for HIV (10, 11), while also being
associated with broadly-neutralizing HIV antibody responses
(12, 13). CXCR5+ CD4+ T cells found in peripheral blood,
termed circulating Tfh (cTfh) cells (14–16), can be used as a
surrogate marker for GC Tfh cells.

In healthy individuals, the majority of the B cells are naïve or
resting memory B cells. However, skewing of the composition
of the B cell pool occurs during HIV-1 infection. Proportions
of activated memory B cells and tissue-like memory B cells
are expanded in HIV-1-infected individuals, as are immature
transitional B cells, while proportions of resting memory B cells
are depleted [reviewed in Moir and Fauci (17)].

The immune system of infants is still developing and the
composition and phenotype of cTfh cells and B cell subsets
differs from that in adults, thus impacting the immune response
(18, 19). Perturbations in Tfh and B cell subsets have been
found inHIV-1-infected children despite ART (20–25). However,
earlier ART initiation and lower viral load was associated with
reduction in some of the perturbations (20, 21, 23–26). Previous
studies to evaluate the impact of ART on the restoration of Tfh
and B cells have not included infants starting ART very soon
after birth, where the potential to improve outcomes is greater.
The aim of this study was to determine if very early ART can
preserve normal Tfh/B cell development. Phenotypic changes in
cTfh and B cell subsets were examined over time, from birth
through 72 weeks of age, among HIV-1 intrauterine-infected
infants initiating ART soon after birth and were compared
to a cohort of HIV-1 exposed uninfected (HEU) infants, also
followed from birth, at the same clinical site in Johannesburg,
South Africa.

MATERIALS AND METHODS

Study Participants
Twenty-seven HIV-1-infected infants diagnosed within 48 h of
birth and 25 HEU infants born to HIV-1-infected mothers but
testing negative within 48 h of birth were enrolled and followed
prospectively to at least 72 weeks of age. These infants were
enrolled as part of the Latency and Early Neonatal Provision
of Antiretroviral Drugs (LEOPARD) study at Rahima Moosa
Mother and Child Hospital in Johannesburg, South Africa.
Samples were collected between 31 August 2015 and 25 June
2018. HIV-1-infected infants were started on ART (zidovudine,
lamivudine and nevirapine) as soon as possible (0–7 days)
and were followed on sustained ART (27). The frequency and
phenotype of cTfh and B cells were analyzed at enrollment (as
close to birth as possible; all <19 days of birth) and at 4, 12, and
72 weeks of age.

Plasma Viral Load and CD4 Counts
Plasma HIV viral loads and CD4+ T cell counts and percentages
were measured at enrollment and at 72 weeks. Viral load was
measured using the COBAS R© AmpliPrep/COBAS R© TaqMan R©

HIV-1 test, version 2.0 (Roche Molecular Systems, Inc.,
Branchburg, NJ) with a limit of detection of 20 copies/ml. CD4+
T cell counts and percentages were measured using the Trucount
method (BD Biosciences, San Jose, CA).

Flow Cytometry
EDTA-anticoagulated whole blood samples were stained within
6 h of collection. Briefly, 100 µl of whole blood was stained
with CD8 PerCP (SK1), CD4 FITC (SK3), CD3 APC-H7
(SK7), CD20 APC (2H7), PD-1 BV786 (EH12.1), CCR6 BV711
(11A9), inducible costimulator (ICOS) BV650 (DX29), CD21
BV421 (B-ly4), CD45RA PE-Cy7 (HI100), CD27 PE-CF594
(M-T271) (BD Biosciences, CA), CXCR3 BV510 (G025H7)
(Biolegend, San Diego, CA), and CXCR5 PE (MU5UBEE)
(eBioscience, San Diego, CA) for 15min, after which red blood
cells were lysed with FACS lysing solution (BD Biosciences),
washed and resuspended in FACSflow and acquired on a
four laser BD LSRFortessaTM X-20 Special Order Research
Product (BD Biosciences, San Jose, CA) within 4 h. CS&T
beads and mid-range Rainbow Fluorescent Particles (both BD
Biosciences) were run before sample acquisition. Compensation
was performed for each experiment using BDTM CompBeads
(BD Biosciences). Samples were analyzed using FlowJo software
version 9.9.6.
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TABLE 1 | Characteristics of HIV-exposed uninfected (HEU) and HIV-1-infected infants.

HEU (n = 25) HIV-1-infected (n = 27) P

Sex (male/female; n) 12/13 14/13 1

Delivery (Vaginal/cesarean; n) 23/2 19/8 0.08

Birth weight (g), median (range) 3,090 (2,360–3,780) 2,960 (1,490–4,150) 0.3

Gestational age (≥37 weeks/<37 weeks; n) 24/1 24/3 0.6

Infant prophylaxis

None 0 2 0.49

Nevirapine, n (%)

Yes 25 (100%) 25 (93%)

No 0 2 (7%)

Zidovudine, n (%)

Yes 1 (4%) 1 (3.7%)

No 20 (80%) 26 (96.3%)

Unknown 4 0

Age at ART initiation (≤48 h/48 h −7 days; n) NA 21/6

Ever breastfed (yes/no, n) 19/6 23/4 0.49

Enrollment age (≤48 h/5 −19 days; n) 21/3 19/8 0.18

Baseline viral load (HIV log10 RNA copies/ml), median (range) NA 4.2 (1.3-6.4)

72 week HIV viral load (copies/ml), n (%)

<50 NA 13 (86.7%)

<51–1,000 NA 1 (6.7%)

>1,000 NA 1 (6.7%)

Baseline CD4+ T cell count (cells/µl), median (range) ND 2,111 (1157–3904)

72 week CD4+ T cell count (cells/µl), median (range) ND 2,917 (1432–3695)

Baseline % CD4+ T cells, median (range) ND 43.58 (22.09–67.16)

72 week % CD4+ T cells, median (range) ND 32.65 (23.95–38.05)

Number of infants at 4/12/72 weeks 23/22/15 24/23/15

Maternal ART during pregnancy, n (%) 25 (100) 22 (81) 0.052

Maternal ART category, n (%)

ART started before pregnancy and continued 6 (24%) 3 (11.1%)

ART started during pregnancy, <12 weeks 2 (8%) 8 (29.6%)

ART started during pregnancy, >12 weeks 17 (68%) 10 (37%)

ART started during pregnancy, unknown time 0 1 (3.7%)

Maternal CD4+ T cell count close to delivery (cells/µl), median (range) 479 (10–935) 366 (38–1129) P = 0.167

Maternal HIV log10 RNA copies/ml close to delivery, median (range) 1.5 (1.3–5.66) 4.5 (1.3–5.75) P = 0.0005

NA, not applicable; ND, not done; ART, antiretroviral therapy; h, hours.

Statistical Analyses
Baseline characteristics were analyzed with descriptive statistics
and compared between groups with Fisher’s exact test for
categorical variables and Mann-Whitney U non-parametric test
for continuous variables.

For analysis for cell subsets, we conducted cross-sectional
analyses withMann-Whitney U tests to compare subsets between
groups at enrollment, 4, 12, and 72 weeks. Fourteen cell
subsets were analyzed at four timepoints. Multiple comparison
adjustment was performed using Benjamini–Hochberg (BH)
procedure controlling the false discovery rate (FDR) at level 0.05
(28). For longitudinal analysis, generalized estimating equations
(GEE) were used to test for the age trend within each group.

Spearman correlation coefficients were used to describe
associations between cTfh and B cell subsets and markers of

HIV disease severity (CD4+ T cell percentage and viral load) at
enrollment and 72 weeks and between cTfh and B cell subsets
at enrollment, 4, 12, and 72 weeks. Statistical analyses were
performed using R version 3.6.3 (R Core Team, 2020) and STATA
version 12.1 (StataCorp., 2011).

RESULTS

Characteristics of the Study Population
Characteristics of the study population are presented in Table 1.
All of the HEU infants and 25 of the 27 HIV-1-infected infants
received nevirapine prophylaxis. One HEU infant and one HIV-
1-infected infant additionally received zidovudine prophylaxis.
All infants were started on cotrimoxazole prophylaxis from 6
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weeks of age. One HIV-1-infected infant died at 89 days of age
and one HEU infant at 25 days of age, with a number of infants
lost to follow-up. CD4+ T cell counts were available for 24 of the
27 infants at enrollment and for all 15 infants at 72 weeks. HIV
viral loads were available for all of the infants at enrollment and at
72 weeks. There was a strong positive correlation between infant
and maternal viral load at enrollment (r = 0.746, P < 0.001), but
this was lost at 72 weeks.

Differences Between HIV-1-Infected and
HEU Infants Occur Mainly in the First 12
Weeks
We tested for differences in cell subsets between HIV-1-infected
and HEU infants at enrollment, and 4, 12 and 72 weeks. Fourteen
cell subsets (cTfh, Tfh1, Tfh2, Tfh17, quiescent Tfh, activated
Tfh, naïve B cells, resting memory B cells, activated memory B
cells, tissue-like memory B cells and CD4+ICOS+, CD4+PD-
1+, CD8+ICOS-1+ and CD8+PD-1+ T cells) were analyzed
at 4 timepoints (56 comparisons). After FDR adjustment,
16/56 comparisons were significant. Eight of these were at
enrollment, three at 4 weeks, four at 12 weeks, and one
at 72 weeks.

Memory cTfh Cells Are Higher in Early Life
in HIV-1-Infected Infants
In this study, cTfh cells were defined as CD27+CD45RA-CD4+
T cells that express CXCR5 (Figure 1A). Frequencies of cTfh
cells increased with increasing age in both groups. cTfh cells
were, however, higher in the HIV-1-infected than HEU infants
at enrollment (median 0.26 vs. 0.15%) and 12 weeks (median 2.02
vs. 1.35%) but by 72 weeks of age, these differences were no longer
evident (median 6.49 vs. 6.07%) (Figure 1B).

We next investigated whether the higher frequencies of cTfh
cells in HIV-1-infected infants observed here were due to higher
frequencies of CD27+CD45RA-CD4+ memory T cells in the
HIV-1-infected compared to the HEU infants. We found no
difference in frequencies of parental CD27+CD45RA-CD4+
memory T cells between the two groups of infants suggesting that
the expansions of cTfh cells up to 12 weeks in the HIV-1-infected
infants was not the result of alterations in the parental population
(Figure 1B).

No significant associations with CD4+ T cell percentage
or HIV viral load at enrollment or 72 weeks were observed
(Supplementary Figure 1).

cTfh Cells Are Polarized Toward a Tfh1
Phenotype in HIV-1-Infected Infants
Having observed an expansion in cTfh cells in early life in HIV-
1-infected infants, we next analyzed the phenotype of these cells
in more detail. cTfh cells were divided into functionally distinct
subsets that share features of Th1, Th2, and Th17 cells. Tfh1, Tfh2,
and Tfh17 subsets were identified based on differential expression
of CXCR3 and CCR6 (29) (Figure 2A).

A higher frequency of Tfh1 cells was observed in HIV-1-
infected compared to HEU infants at all time points, but most
markedly at enrollment (median 44.6 vs 12%) (Figures 2B,C).

Age trends differed between HIV-1-infected and HEU infants.
There was a steady increase in the cTfh1 subset with increasing
age in HEU infants. In contrast, in the HIV-1-infected infants,
there was an initial decline in the frequency of Tfh1 cells
from enrollment to 4 weeks, followed by increases thereafter
(Figure 2C).

A lower frequency of Tfh2 cells was observed in HIV-1-
infected compared to HEU infants at enrollment (median 44.2
vs. 81%) with no differences noted at older ages (Figure 2C).
Frequencies of this subset decreased with age in both groups.
However, the age-decline was less pronounced in HIV-1-infected
infants who started at lower levels (Figure 2C).

Frequencies of Tfh17 cells were similar in HIV-1-infected
compared to HEU infants at enrollment (median 3.29 vs. 3.49%)
but were lower in HIV-1-infected infants at 4 weeks (median 12.4
vs. 19.1%) and later. A striking increase in the frequency of Tfh17
cells from enrollment to 4 weeks was observed for both groups
(Figure 2C).

In HIV-1-infected infants at enrollment, higher frequencies of
Tfh1 cells were associated with lower CD4+ T cell percentages,
whereas higher frequencies of Tfh2 cells and Tfh17 cells were
associated with higher CD4+ T cell percentages. At 72 weeks, the
associations were reversed with positive and negative correlations
observed between Tfh1 and Tfh2 cells, respectively and CD4+ T
cell percentages at this time (Figure 2D). No associations were
observed between Tfh1, Tfh2 or Tfh17 cells and HIV viral load at
enrollment or at 72 weeks (Supplementary Figure 2).

Collectively, these results show that cTfh cells from HIV-1-
infected early treated infants remain polarized toward a Tfh1
phenotype at 72 weeks.

Frequencies of PD-1 Expressing cTfh Cells
Are Higher in HIV-1-Infected Infants
CXCR5+PD-1+ICOS+ Tfh cells express high levels of the
proliferation marker, Ki67, suggesting that they are an activated
subset of cells, whereas both PD1+ICOS- and PD1-ICOS- cTfh
cells do not express Ki67, suggesting quiescence (30) (Figure 3A).
ICOS-PD-1- cTfh cells declined from enrollment to 4 weeks and
then increased to 72 weeks. ICOS-PD-1+ cTfh cells increased
with age up to 12 weeks and declined by 72 weeks, while
PD-1+ICOS+ cTfh cells increased at 4 weeks, and continued
declining up to 72 weeks in both groups (Figure 3B).

Frequencies of ICOS-PD-1- cells were significantly lower
(median 24.4 vs. 60.8%), whereas frequencies of both PD-
1 expressing cTfh cells were significantly higher in HIV-1-
infected compared to HEU infants at enrollment (ICOS-PD-
1+ median 31 vs. 16%, ICOS+PD-1+ median 29.2 vs. 12.5%).
This difference was maintained to 12 weeks for both subsets of
quiescent cTfh cells, but not for activated cTfh cells. Importantly,
by 72 weeks of age, the frequencies of both quiescent and
activated cTfh cells were comparable to those observed in HEU
infants (Figure 3B).

At enrollment, ICOS-PD-1- and ICOS-PD-1+ cTfh cells
correlated positively and negatively, respectively with the
percentage of CD4+T cells. Surprisingly, ICOS-PD-1+ cTfh cells
also correlated negatively with viral load (Figure 3C).
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FIGURE 1 | cTfh cells are increased in HIV-1-infected infants in early life. (A) Pseudocolor plots showing representative gating of cTfh cells. Singlets are identified

using FSC-H against FSC-A followed by gating on CD3+ T cells. CD3+ T cells are further gated on low SSC-A vs low FSC-A. Subsequently, CD27+CD45RA-

memory T cells are gated from CD4+ T cells and cTfh cells are identified by CXCR5 expression. (B) Frequencies of cTfh cells (left) and CD27+CD45RA- CD4+ T cells

(right) in HEU and HIV-1-infected infants at enrollment, 4, 12, and 72 weeks. Each symbol represents an infant. Horizontal lines and error bars represent the median,

25 and 75th percentiles. The significant P-values are shown.

Frequencies of Resting Memory B Cells
Are Lower and Activated Memory B Cells
Are Higher in HIV-1-Infected Infants
B cells can be divided into naïve, resting memory, activated
memory and tissue-like memory subsets based on their

differential expression of CD21 and CD27 (Figure 4A). Naïve

B cells constitute the largest B cell subset (∼80%), followed by

tissue-like memory B cells, resting memory and then activated

memory B cells (∼1–3%) (Figure 4B).
Each B cell subset displayed a distinctive age-related trajectory

that was consistent regardless of infant HIV status. Naïve B
cells declined from enrollment to 4 weeks and then returned
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FIGURE 2 | Frequencies of Tfh1 cells are increased and frequencies of Tfh2 and Tfh17 cells are decreased in HIV-1-infected infants. (A) A pseudocolor plot showing

cTfh cells that have been subdivided into Tfh1, Tfh2 and Tfh17 subsets based on their CXCR3 and CCR6 expression. (B) The distribution of Tfh1 (blue), Tfh2 (red),

(Continued)
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FIGURE 2 | Tfh17 (green), and the other Tfh subsets (purple) within total cTfh cells. Areas represent the medians of frequencies. (C) Frequencies of Tfh1, Tfh2, and

Tfh17 subsets of total cTfh cells in HEU and HIV-1-infected infants at enrollment, 4, 12, and 72 weeks. Each symbol represents an infant. Horizontal lines and error

bars represent the median, 25 and 75th percentiles. Significant P-values are shown. (D) Correlations between frequencies of Tfh1, Tfh2, and Tfh17 cells with % CD4+

T cells at enrollment and 72 weeks in HIV-1-infected infants. Lines are calculated using simple linear regression. Spearman rho (r) values and P-values are shown.

FIGURE 3 | Frequencies of PD-1 expressing cTfh cells are increased in HIV-1-infected infants. (A) A pseudocolor plot showing cTfh cells that have been further

subdivided into two quiescent subsets (ICOS-PD-1- and ICOS-PD-1+) and an activated subset (ICOS+PD-1+) based on their ICOS and PD-1 expression. (B)

Frequencies of quiescent and activated cTfh cells in HEU and HIV-1-infected infants at enrollment, 4, 12, and 72 weeks. Each symbol represents an infant. Horizontal

lines and error bars represent the median, 25 and 75th percentiles. Significant P-values are shown. (C) Correlations between frequencies of quiescent (ICOS-PD-1-

and ICOS-PD-1+) cTfh cells and % CD4+ T cells and between ICOS-PD-1+ cTfh cells and HIV viral load (log10 copies/ml) in HIV-1-infected infants at enrollment.

Lines are calculated using simple linear regression. Spearman rho (r) values and P-values are shown.
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FIGURE 4 | Frequencies of B cell subsets are altered in HIV-1-infected infants. (A) Pseudocolor plots showing representative gating of B cell subsets. Singlets are

identified using FSC-H against FSC-A. B cells are identified by CD20 gating of CD3- cells, followed by gating on low SSC-A vs. low FSC-A. B cell subsets

(Continued)
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FIGURE 4 | are subdivided into naïve (N), resting memory (RM), activated memory (AM), and tissue-like memory (TLM) B cells based on their CD27 and CD21

expression. (B) The distribution of N (blue), RM (red), AM (green), and TLM (purple) within total CD20+ B cells in HEU and HIV-1-infected infants at enrollment, 4, 12,

and 72 weeks. Areas represent the medians of percentages. (C) Frequencies of naive, resting memory, activated memory and tissue-like memory B cells in HEU and

HIV-1-infected infants at enrollment, 4, 12, and 72 weeks. Each symbol represents an infant. Horizontal lines and error bars represent the median, 25 and 75th

percentiles. Significant P-values are shown. (D) Correlation between frequencies of resting memory (RM) B cells and % CD4+ T cells at enrollment in HIV-1-infected

infants. Lines are calculated using simple linear regression. Spearman rho (r) values and P-values are shown.

to baseline levels at 12 and 72 weeks. Resting memory B cells
declined from enrollment to 12 weeks and increased at 72 weeks.
At enrollment, HIV-1-infected infants had lower frequencies of
resting memory B cells than HEU infants (median 1.66 vs. 4.12%)
but by 4 weeks of age, these differences were no longer apparent.
Activated memory B cells were reasonably stable through 12
weeks and increased at 72 weeks with higher levels in HIV-1-
infected infants at 4 weeks (median 1.43 vs. 0.87%). Tissue-like
memory B cells increased from enrollment to 4 weeks and then
returned to baseline levels at 12 and 72 weeks. All B cell subsets
were normalized by 72 weeks of age (Figure 4C).

Higher frequencies of resting memory B cells were associated
with a trend toward higher CD4+ T cell percentage in HIV-1-
infected infants at enrollment (Figure 4D). No associations were
observed between B cell subsets and HIV viral load at enrollment
or at 72 weeks.

HIV-1 Infection Alters Relationships
Between cTfh and B Cell Subsets
Tfh cells are critical in B cell differentiation (9) and the
frequencies of cTfh cells have been associated with the quality
of B cell responses (12, 13, 21, 31). Figure 5 shows associations
between cTfh, Tfh1, Tfh2, Tfh17, quiescent and activated cTfh
cells and B cell subsets. Interestingly, in the HEU infants
(Figure 5A), associations between frequencies of Tfh and B
cell subsets occurred at 4 and 12 weeks of age, whereas in
the HIV-1-infected infants (Figure 5B) they occurred almost
exclusively at birth and 4 weeks. Additionally, in the HEU infants,
significant associations were found between Tfh cells and all
B cell subsets with the exception of the activated memory B
cell subset. However, in the HIV-1-infected infants, two thirds
of the associations were found with activated memory B cells.
cTfh (enrollment: r = 0.503, P = 0.008), Tfh1 (enrollment: r =
0.501, P = 0.008 and 4 weeks: r = 0.519, P = 0.009), ICOS-
PD-1+ (enrollment: r = 0.624, P = 0.0005) and ICOS+PD-1+
(enrollment: r = 0.483, P = 0.011 and 4 weeks: r = 0.620, P =

0.001) correlated positively and Tfh2 (enrollment: r = −0.548, P
= 0.003 and 4 weeks: r = −0.450, P = 0.0273) and ICOS-PD-1-
(enrollment: r = −0.657, P = 0.0002 and 4 weeks: r = −0.475,
P = 0.019) correlated negatively with activated memory B cells.
Only one significant association was observed at 72 weeks. This
may be as a result of normalization of the frequencies of Tfh and
B cell subsets and/or reduced sample numbers at 72 weeks.

DISCUSSION

This study was undertaken to gain insights into whether very
early initiation of ART in intrauterine HIV-1-infected infants
would prevent the HIV-1 related perturbations in cTfh and

B cell subsets that have been observed in HIV-1-infected children
despite treatment (20, 21, 23, 25, 26). We found HIV-associated
perturbations in both cTfh and B cell subsets even among these
very early treated children. An increased frequency of cTfh cells,
with skewing toward a predominance of Tfh1 cells, over Tfh2 and
Tfh17 cells, was observed. Additionally, we observed decreased
frequencies of resting memory and increased frequencies of
activated memory B cells. Of significance is that, by 72 weeks,
the frequencies of the B cell subsets in the HIV-1-infected
infants were comparable to those in the HEU infants, whereas
alterations in cTfh cell subsets were still observed at the end of
the study period.

In this study, skewing of cTfh and B cell subsets was already
evident at enrollment. Although the timing of intrauterine
infection cannot be established and is likely to be quite late
in pregnancy (32), our data show that this early infection is
sufficient to lead to perturbations in cTfh and B cell subsets that
could be detected at enrollment. With early ART, by 72 weeks
of age, only the Tfh1 cell subset had not normalized compared
to that observed in HEU infants. Almost all the early-treated
infants (93%) had HIV viral loads <100 copies/ml at 72 weeks,
supporting the inference that the observed normalization of the
frequencies of the B cell subsets is as a result of very early and
sustained ART.

As far as we are aware, this is the first longitudinal study
evaluating age-related changes in cTfh cell subsets in early life
in any population. There are also, to our knowledge, no studies
analyzing cTfh cell subsets in HIV-1-infected infants shortly after
birth, prior to ART initiation, with longitudinal follow-up. Other
studies have compared children with chronic infection by high
or low viraemia (20, 21, 25), or children who are on ART to
those not on ART (23). Here, we found that the frequency of cTfh
cells is increased in HIV-1-infected compared to HEU children,
contrasting with previous reports (20, 21, 23, 25). However,
these previous studies were performed in older children, with
wide age ranges (1–17 years) and with later ART initiation.
Importantly, children who started ART earlier were found to
have higher cTfh cells than those who started later and these
cTfh frequencies increased with ART duration (23). Upon greater
scrutiny of cell subsets which constitute cTfh cells, we observed
higher frequencies of Tfh1 cells and lower frequencies of Tfh2
and Tfh17 cells in HIV-1-infected compared to HEU infants
before the initiation of ART. Following sustained ART through
to 72 weeks of age, there was normalization in the frequencies
of these cell subsets with the exception of Tfh1 cells which
remained significantly increased compared to HEU infants. We
are unaware of studies analyzing Tfh1, Tfh2, and Tfh17 subsets in
infants, but our findings are in agreement with a study of acute
HIV-1 infection in adults which found increased frequencies of
Tfh1 and Tfh2 cells and decreased frequencies of Tfh1-17 and
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FIGURE 5 | Associations between B and cTfh cells. Correlations between naïve (N), resting memory (RM), activated memory (AM), and tissue-like (TLM) memory B

cells and cTfh, Tfh1, Tfh2 and Tfh17 subsets and quiescent (ICOS-PD-1- and ICOS-PD-1+) and activated (ICOS+PD-1+) Tfh cells in (A) HEU infants and (B)

HIV-1-infected and at enrollment, 4, 12, and 72 weeks. ***P < 0.001, **P < 0.01, *P < 0.05.

Tfh17 cells compared to uninfected adults (33). Our findings
are also consistent with a study of chronic HIV-1 infection in
adults which found Tfh1 skewing of Gag-specific cTfh cells which
was maintained for at least 3 years after ART initiation (34).
We further found that, in early life, elevated Tfh1 cell subsets
were associated with lower percentages of CD4+ T cells and
with skewing of B cells toward more activated and terminally
differentiated subsets. Strikingly, Tfh1, Tfh2, and Tfh17 cells
each showed opposite relationships with percentage of CD4+ T
cells at enrollment compared to 72 weeks. A more normalized
response by 72 weeks was characterized by reduced inter-
individual variability for both Tfh1 and Tfh2 subsets compared
to enrollment, a median frequency of Tfh1 subsets which did
not differ between enrollment and 72 weeks, while the frequency
of Tfh2 subsets declined, and an age dependent decrease in the
percentage of CD4+ T cells from enrollment to 72 weeks. We
were unable to ascertain if these same relationships are also
evident among HEU infants as CD4+ T cell percentage data was
not available. However, by 72 weeks CD4+ T cell percentages
of the HIV-1-infected infants were similar to reference ranges
available for healthy uninfected children (35–37), suggesting
that these relationships would also likely be maintained in the
HEU infants.

The role of CXCR3+ Tfh1 and CXCR3- Tfh2 and Tfh17
subsets with respect to humoral immunity is not clear cut.
In vitro studies have shown that CXCR3- cTfh cells were
efficient in inducing naïve B cells to undergo isotype switching
and in promoting immunoglobulin secretion (12, 29, 38),
whereas CXCR3+ cTfh cells were deficient in providing help
to naïve B cells but were able to help memory B cells (39).
In HIV-1 progressors, circulating CXCR5+CXCR3-PD-1+ Tfh
cells correlated with development of HIV-1-specific neutralizing
antibodies (12) and similarly, in HIV-1-infected children (IQR
6.6–8.9 years), CXCR5+CXCR3-PD-1+ cTfh cells correlated with
the breadth of neutralizing antibodies (40). However, in HIV-
1 controllers, CXCR5+CXCR3+PD-1low CD4+ T cells were
associated with increased HIV-1 neutralizing antibody breadth
(41) and in acute HIV infection, frequencies of CXCR3+
Tfh1 cells correlated positively with p24 plasma IgG titers
at 1 year post infection (33). Moreover, the frequencies of
CXCR3+ cTfh cells positively correlated with neutralizing
antibody responses in HCV-infected individuals (42). Therefore,
the role of CXCR3- and CXCR3+ cTfh subsets in the
development of protective antibody responses may be situation
dependent. Thus, the impact of Tfh1 polarization observed in
the very young infants in our study, on the development of

Frontiers in Pediatrics | www.frontiersin.org 10 April 2021 | Volume 9 | Article 618191

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Shalekoff et al. cTfh/B Cells in HIV-1-Infected Infants

HIV-1-specific neutralizing antibodies, is unknown and requires
further investigation.

We found a decreased frequency of ICOS-PD-1- cTfh cells
with a concomitant increased frequency of ICOS-PD-1+ and
ICOS+PD-1+ expressing cTfh cells in early life in HIV-1-
infected compared to HEU infants. This is consistent with
one study (23) and not with another (21). ICOS+PD-1+ cTfh
cells express the lowest levels of CCR7, ICOS-PD-1+ express
intermediate levels and ICOS-PD-1- cTfh cells express the
highest levels (43). As an increase in CXCR5 together with
decrease in CCR7 is needed for cTfh cells to migrate into B
cell follicles (44), differing levels of CCR7 expression may reflect
differing capacities of these cell subsets to traffic to B cell follicles.
It is, therefore, possible that in these infants, in early life, there
is an altered capacity of cTfh cells to traffic to B cell follicles.
Similarly to findings from previous studies in adults (45) and
children (23), we found increased PD-1 expression in HIV-1-
infected infants correlated with lower percentages of CD4+ T
cells. This may possibly be due to PD-1-induced exhaustion and
apoptosis of CD4+ T cells. However, markers such as CD57 to
define senescence were not included in this study. Additionally,
it has been shown that PD-1+ cTfh cells are highly permissive to
HIV-1 and that they contribute to HIV reservoirs in individuals
treated with ART (11). The fact that PD-1+ cTfh cells correlated
inversely with both the percentage of CD4+ T cells and with
viral load is unexpected. We hypothesize that this paradoxical
findingmay be due to effects of maternal ART. In the same cohort
overall, we observed a strong relationship between maternal viral
load at delivery and infant viral load pre-ART (46). Thus, the
impact of maternal ART on infant viral load may make infant
viral load a weak marker of disease progression. Since pre-ART
infant CD4+ T cell percentage is not similarly affected, this
is a more informative marker of disease severity regardless of
maternal ART.

Our finding of decreased frequencies of resting memory
and increased frequencies of activated memory B cells in
HIV-1-infected compared to HEU infants confirms results from
other studies (21, 23, 24). Importantly, ART initiation, rapidly
restored resting memory cells to normal levels by 4 weeks
of age despite lower levels at enrollment in HIV-1-infected
infants. Interestingly, the expansion of frequencies of cTfh, Tfh1,
ICOS-PD-1+, and ICOS+PD-1+ cells at enrollment and Tfh1
and ICOS+PD-1+ cells at 4 weeks correlated positively with
activated memory B cells suggesting a role for cTfh cells in
the skewing of B cell differentiation toward a more activated
phenotype. An important strength of our study compared to
other studies in children, with the exception of one (26), is that
our study is longitudinal. Furthermore, the precise age-matching
and narrow age range of participants in our study prevents
confounding by age. Thus, very early ART, in this study, appears
to have minimized HIV-related B cell perturbations and adds to
the growing body of evidence on the impact of ART, at the earliest
stages of infection, in children (26, 47) and in adults (29), on the
preservation of the integrity of the humoral immune response.

It is unlikely that the early dysregulations of cTfh and B cells
as observed in this study would have negative implications for
vaccine responses in early life, as studies of later administration

of ART do not support this. A South African study evaluated the
immunogenicity of the combined diphtheria, tetanus, pertussis
and the monovalent HBV vaccines given at 6, 10, and 14 weeks
of age in HIV-1-infected infants initiated on ART 4 days prior
to the first vaccination and in a deferred ART group (48).
Although HIV-1-infected children had lower geometric mean
concentrations of vaccine-specific antibodies, the proportion
of HIV-1-infected children, whether in the early or deferred
treatment group, had seroprotective responses similar to those
in uninfected infants at 1 month after the third dose of vaccine.
Additionally, an Italian study found that children initiating ART
within the first year of life developed and maintained protective
antibody levels to measles and tetanus vaccination (47). Together
these results suggest the preservation of the vaccine humoral
responses as a result of early ART initiation. Whether very early
ART might improve some vaccines-specific responses remains to
be established.

The limitations of this study include the fact that we did not
include HIV-1 unexposed uninfected (HUU) infants due to the
difficulty of justifying blood draws in HUU infants. We cannot
assume that maternal HIV-1-infection has no influence on cTfh
and B cells in HEU infants, and comparison with HUU infants
would inform this question. However, HEU infants remain an
informative control group for HIV-1-infected infants by virtue
of being born to HIV-1-infected mothers—thus many factors are
common to both groups e.g., passive transfer of maternal HIV
antibodies and maternal ART exposure. Phenotypic differences
have been found in T cell subsets between HEU and HUU
children due to exposure to HIV-1 and/or to ART (49). However,
studies comparing the frequencies of B cell subsets, either found
no difference in the frequencies any of the subsets studied
(50) or reduced frequencies of only resting memory B cells in
HEU compared to HUU children (51). Another limitation is
that we did not adjust P-values for multiple comparisons when
correlations of cTfh and B cell subsets with markers of disease
progression were analyzed, or when we looked for associations
between cTfh and B cell subsets. The longitudinal follow-up of
infants, at four different timepoints, resulted in a large number of
comparisons. Therefore, multiple comparison adjustment could
potentially result in important associations being overlooked.
Other limitations include some variation in enrollment age, the
smaller sample size at 72 weeks due to loss to follow up, and the
long interval between the sampling at 12 and 72 weeks. There
are also limitations in the use of cTfh cells as surrogate markers
of GC Tfh cells. Although CXCR5 is constitutively expressed
on cTfh, CXCR5 expression is not limited to cTfh cells and is
transiently expressed by recently activated CD4+ T cells (52).
Further, cTfh cells differ from bona fide GC Tfh cells in that
they express low levels of transcription factor B cell lymphoma
6 (Bcl-6) (39, 53), the Tfh lineage-defining transcription factor
(54–56). Moreover, analyses performed on peripheral blood may
not accurately reflect what is happening in the germinal centers
and lymphoid tissue.

Our findings add to the current body of knowledge of cTfh
and B cell subsets in children living with HIV. Very early ART
initiation, has allowed for almost normal development of B cell
subsets and as well as improvement in the perturbations of cTfh
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cell subsets. These findings support recent guidelines for routine
birth testing and immediate ART initiation in HIV-1-infected
infants.Whether the altered polarization of the cTfh cell subsets is
restored to that observed in HEU infants, with a longer duration
of ART, remains to be established. To what extent the polarization
of the cTfh cells toward the Tfh1 cell subset impacts on the
immune response to HIV-1 as well as persistence of the HIV
reservoir is unknown and merits further investigation.
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