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Metabolic alterations are critical events in cancers, which often contribute to tumor
pathophysiology. While aerobic glycolysis is a known characteristic of cancer-related
metabolism, recent studies have shed light onmitochondria-related metabolic pathways in
cancer biology, including oxidative phosphorylation (OXPHOS), amino acid and lipid
metabolism, nucleic acid metabolism, and redox regulation. Breast cancer is the most
common cancer in women; thus, elucidation of breast cancer-related metabolic alteration
will help to develop cancer drugs for many patients. We here aim to define the contribution
of mitochondrial metabolism to breast cancer biology. The relevance of OXPHOS in breast
cancer has been recently defined by the discovery of COX7RP, which promotes
mitochondrial respiratory supercomplex assembly and glutamine metabolism: the latter
is also shown to promote nucleic acid and fatty acid biosynthesis as well as ROS defense
regulation. In this context, the estrogen-related receptor (ERR) family nuclear receptors
and collaborating coactivators peroxisome proliferator-activated receptor-γ coactivator-1
(PGC-1) are essential transcriptional regulators for both energy production and cancer-
related metabolism. Summarizing recent findings of mitochondrial metabolism in breast
cancer, this review will aim to provide a clue for the development of alternative clinical
management by modulating the activities of responsible molecules involved in disease-
specific metabolic alterations.
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INTRODUCTION

Breast cancer is the leading cause of cancer-related deaths in women worldwide (Sung et al., 2021).
Most breast cancers express specific hormone receptors (HRs) for estrogen (estrogen receptor α,
ERα) and progesterone (progesterone receptor, PR), and some cancers exhibit human epidermal
growth factor receptor 2 (HER2)/erb-b2 receptor tyrosine kinase 2 (ERBB2) gene amplification or
overexpression. These HR- and HER2-positive cancers can be treated by endocrine and anti-HER2
therapies, respectively; nevertheless, acquired resistance often develops during therapy (Jordan, 2009;
Chien, 2020). Many factors have been clarified as key regulators for endocrine resistance, including
estrogen receptor, serine/threonine- and tyrosine-protein kinases, cell cycle regulators, recently well-
characterized cancer stem-like cells, and tumor microenvironment. Nevertheless, the issue of
acquired endocrine resistance remains to be conquered in clinic. Triple-negative breast cancer
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(TNBC) is a subtype that lacks ERα, PR, and HER-2 expressions,
and its standardized treatment remains to be established. While
recent therapeutic agents have improved patient prognosis, such
as cyclin-dependent kinase 4/6 inhibitors for HR-positive, HER2-
negative, advanced breast cancer (Gao et al., 2020) or poly-ADP-
ribose polymerase (PARP) and immune check-point inhibitors
for TNBC (Vagia et al., 2020), the development of alternative
diagnostic and therapeutic options targeting “cancer’s fuel” may
provide novel powerful tools to eradicate breast cancer by its
metabolic dependencies and vulnerability. Here we discuss
mitochondrial contribution to metabolic alterations in breast
cancer cells focusing on recent findings regarding OXPHOS
and mitochondrial respiratory supercomplexes. Mitochondrial
respiratory supercomplexes are super molecular complexes
formed of the assembly of respiratory complexes I, III, and IV,
and have a role on efficient energy production. Notably, COX7RP
is demonstrated to stimulate the assembly of mitochondrial
respiratory supercomplexes and associated with breast cancer.
To propose the signaling pathway as a therapeutic target for
mitochondrial metabolic alteration, we also discuss that the
estrogen-related receptor (ERR) family nuclear receptors and
collaborating coactivators peroxisome proliferator-activated
receptor-γ coactivator-1 (PGC-1) function as regulatory factors
for OXPHOS and mitochondrial respiratory function.

ALTEREDMETABOLIC DEPENDENCIES OF
ENERGY PRODUCTION IN BREAST
CANCER
Cancer cells undergo metabolic changes that allow them to meet
the energy demands required for enhanced proliferation and
other aspects of malignancy. Many studies have indicated that
metabolic pathways including glycolysis, oxidative
phosphorylation (OXPHOS), the tricarboxylic acid (TCA)
cycle, amino acid and lipid metabolism, and regulation of
reactive oxygen species (ROS) are reprogrammed in cancer
cells (Sobanski et al., 2021). The best-known metabolic
abnormality in cancer cells is aerobic glycolysis, or the
Warburg effect, which is described as the increased uptake of
glucose and the conversion of glucose to lactate even in the
presence of oxygen. Elevated aerobic glycolysis is beneficial for
the growth of tumor cells under a hypoxic environment (Fantin
et al., 2006) as well as for the synthesis of macromolecules such as
nucleic acids (Lunt and Vander Heiden, 2011). The acidic
extracellular microenvironment due to lactate production
enhances the growth and invasion of cancer cells (Gatenby
and Gillies, 2008). Although aerobic glycolysis has been
observed in a variety of cancers, most cancer cells use both
aerobic glycolysis and mitochondrial OXPHOS to generate
ATP molecules. In terms of breast cancer cells, MCF-7 (HR-
positive), SKBR3 (HER2-positive), and MDA-MB-231 (TNBC)
depend on glycolysis to fulfil up to 25, 50, and 75% of their ATP
requirements, respectively (Wu et al., 2016; Louie et al., 2020),
suggesting that the dependencies of energy production may differ
among breast cancer phenotypes, as well as genotypes. While
hypoxic cancer microenvironments usually increase glucose

consumption and glycolysis in tumor cells, cancers with
unaffected mitochondria exert OXPHOS to efficiently produce
ATP (Gwangwa et al., 2018).

ROS production especially during OXPHOS facilitates tumor
progression in one aspect, such as by repressing tumor suppressor
phosphatase and tensin homolog (PTEN) activity and
subsequently enhancing phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt) pathway (Gorrini et al., 2013). Vice
versa, the upregulation of ROS promotes genomic instability
that results in cell death in another aspect, thus the
elimination of ROS is also important for cancer cell survival
by increasing ROS scavengers (Hecht et al., 2016). Mitochondria
uptake glutamine to convert it to glutamate, and subsequently to
TCA intermediate α-ketoglutarate (α-KG), a major anaplerotic
pathway mediated by mitochondria (Martínez-Reyes and
Chandel, 2020). The glutamine metabolism also produces
glutathione, which functions as an antioxidant to eliminate
ROS. Therefore, the metabolic cross-talk and balance between
glycolysis, the TCA cycle, OXPHOS, and ROS production are key
determinants for cancer phenotype and biology.

OXPHOS AND MITOCHONDRIAL
RESPIRATORY GENES CONTRIBUTE TO
BREAST CANCER BIOLOGY
As described above, OXPHOS plays a role in the pathophysiology
of cancers including breast cancer (Zu and Guppy, 2004; Vaupel
and Mayer, 2012; Ippolito et al., 2016; Ashton et al., 2018; Ikeda
et al., 2019; Schöpf, et al., 2020; Takayama et al., 2020; Becherini
et al., 2021). In fact, overexpression of mitochondrial OXPHOS-
related proteins including cytochrome c oxidase subunit 4
(COX4) has been identified in breast cancer cells (Calderón-
González et al., 2015). Notably, mitochondrial respiratory
complex activity, detected by staining frozen sections of breast
cancer tissues, indicated that OXPHOS is upregulated in cancer
cells (Whitaker-Menezes et al., 2011). Several reports indicate
that in breast cancer, OXPHOS is regulated by multiple
mechanisms such as expression/assembly of subunits of
mitochondrial respiratory complexes and formation of
mitochondrial respiratory supercomplexes (Table 1).
Dysfunctional OXPHOS may also be linked to alterations in
mitochondrial morphology or fission/fusion. Mitochondrial
voltage-dependent anion channel 1 (VDAC1), which is often
overexpressed in breast cancers, regulates the expression of
enzymes involved in OXPHOS (Arif et al., 2018). Elevated
expression of the mitochondrial protein translation (MPT)
pathway genes, leading to an increase in the level of the
mitochondria-encoded OXPHOS subunit COX2, has been
identified in retinoblastoma tumor-suppressor gene (RB1)-
deficient TNBC cells (Jones et al., 2016). MicroRNA miR-663
targets the mitochondrial respiratory complex III assembly factor
ubiquinol-cytochrome c reductase complex assembly factor 2
(UQCC2) transcript and regulates breast cancer cell
proliferation (Carden et al., 2017). Under energy stress
conditions, breast cancer cells survive due to enhanced
respiratory complex assembly and OXPHOS, which is
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associated with protein kinase A (PKA)-mediated mitochondrial
elongation (Li et al., 2017). Tumor necrosis factor receptor-
associated protein 1 (TRAP1) regulates mitochondrial aerobic
respiration and mitochondrial fusion, thereby triggering tubular
networks, which are involved in oncogenesis in MDA-MB-231
and MCF-7 cells (Zhang et al., 2015).

Mitochondrial respiratory complexes (i.e., complexes I, III,
and IV) form macromolecular assemblies called supercomplexes
in the inner mitochondrial membrane. Our group and others
have recently revealed that cytochrome c oxidase subunit 7a-
related polypeptide (COX7RP)/COX7A2L/SCAF1, which was
originally identified as an estrogen-responsive gene, stimulates
the mitochondrial respiratory supercomplex assembly (Ikeda
et al., 2013; Lapuente-Brun et al., 2013; Williams et al., 2016).
Although the precise role of the supercomplex has not been
elucidated, the supercomplex formation is assumed to facilitate
full activity of the mitochondrial respiratory chain and efficient
ATP production in MCF-7 cells (Ikeda et al., 2019). COX7RP
overexpression is found in breast cancers and shows a correlation
with poor survival of patients with breast cancer. In MCF-7 cells,
estrogen-induced COX7RP mediates upregulation of
mitochondrial respiration and ATP production, leading to
estrogen-dependent cell growth. Moreover, COX7RP
overexpression contributes to a hypoxia tolerance phenotype
in MCF-7 cells through increasing respiratory supercomplex

assembly and oxygen consumption, and decreasing ROS levels
even in hypoxia. Metabolomic analysis reveals that COX7RP
modulates the steady-state levels of TCA cycle intermediates,
including higher levels of oncometabolites such as fumaric acid
and succinic acid in hypoxia (Yang et al., 2013). This metabolic
alteration can be caused by upregulated production of succinic
acid and malic acid from glutamine, suggesting partial use of the
half part of TCA cycle. Glutamine metabolism fuels the TCA
cycle, nucleic acid and fatty acid biosynthesis, and redox
regulation in cancer progression (Kodama et al., 2020).
COX7RP also mediates breast cancer cell proliferation and
invasion under thapsigargin treatment, suggesting a role in
stress-inducible metabolic regulation (Zhang et al., 2016).

In breast cancer progression, the tumor microenvironment
plays a critical role via promoting inflammation that can
modulate mitochondrial function and metabolism. In
particular, TNF-α is a pro-inflammatory cytokine secreted by
tumor-associated macrophages and cancer cells themselves. It is
recently reported that TNF-α decreases the amount and activity
of mitochondrial respiratory supercomplex containing complex I
and complex IV more potently in TNBC MDA-MB-231 cells
compared to ER-positive MCF-7 cells, suggesting that TNF-α
regulates the growth of relatively aggressive breast cancer cells by
modulating formation and function of mitochondrial respiratory
supercomplexes (Shinde et al., 2021). It is also possible to

TABLE 1 | Regulation of mitochondrial respiratory supercomplex and oxidative phosphorylation (OXPHOS) in breast cancer cells.

Key
factor

Function Regulation/mechanism Cells or tissues Ref

Used
for the analysis

COX7RP Oncogenic Mitochondrial respiratory supercomplex assembly MDA-MB-231 Ikeda et al.
(2019)

TNF-α Oncogenic Decrease of mitochondrial respiratory supercomplex assembly MCF-7 Shinde et al.
(2021)

RB1 Tumor-
suppressive

Downregulation of mitochondria encoded OXPHOS subunits, COX2, through
decreasing the expression of MPT genes

BT549, HCC 1937, MCF-7, MDA-
MB-231

Jones et al.
(2016)

miR-663 Tumor-
suppressive

Downregulation of the complex III assembly factor, UQCC2 MCF-7, MDA-MB-231 Carden et al.
(2017)

PKA Oncogenic Mitochondrial elongation under low nutrient conditions and switching from
glycolysis to OXPHOS

MCF-7, MDA-MB-231 Li et al. (2017)

TRAP1 Oncogenic Maintenance of mitochondrial respiration MCF-7, MDA-MB-231 Zhang et al.
(2015)

VDAC1 Oncogenic Regulation of the expression of the TCA cycle and OXPHOS enzymes MDA-MB-231 Arif et al. (2018)
SIRT6 Oncogenic Upregulation of OXPHOS subunit genes, such as COX5B, NDUFB8, and

UQCRFS1, and AMPK activity
MCF-7, MDA-MB-231, MMTV-PyMT
mammary tumors

Becherini et al.
(2021)

ERRα Oncogenic Regulation of IDH1, MDH2, OGDH involved in the TCA cycle and NDUFA1,
NDUFB5, and COX8A in mitochondrial respiratory chain

BT474, MCF-7, SKBR3 Deblois et al.
(2009)
Vernier et al.
(2020b)

ERRγ Oncogenic Regulation of some enzymes IDH3A, OGDH, SUCLG1 involved in the TCA
cycle and NDUFAF4, NDUFB5, COX8A in mitochondrial respiratory chain

BT474, MDA-MB-231, SKBR3 Tiraby et al.
(2011)
Vernier et al.
(2020b)

AMPK, AMP-activated protein kinase; ATP5F1B, ATP synthase F1 subunit beta; COX2, cytochrome c oxidase subunit 2; COX5B, cytochrome c oxidase subunit 5B; COX7RP,
cytochrome c oxigenase subunit 7A-related protein;COX8A, cytochrome c oxidase subunit 8A; CypD, cyclophilin D; ERRα, estrogen-related receptor α; ERRγ, estrogen-related receptor
γ; IDH1, isocitrate dehydrogenase 1; IDH3A, isocitrate dehydrogenase 3A; MDH2, malate dehydrogenase 2; MPT, mitochondrial protein translation; NDUFA1, NADH:ubiquinone
oxidoreductase subunit A1; NDUFAF4, NADH:ubiquinone oxidoreductase complex assembly factor 4; NDUFB5, NADH:ubiquinone oxidoreductase subunit B5; NDUFB8, NADH:
ubiquinone oxidoreductase subunit B8;OGDH, oxoglutarate dehydrogenase; PKA, protein kinase A; RB1, Retinoblastoma 1; SIRT6, sirtuin 6; SUCLG1, succinate-CoA ligase GDP/ADP-
forming subunit alpha; TNBC, triple negative breast cancer; TNF-α, tumor necrosis factor α; TRAP1, tumor necrosis factor (TNF) receptor associated protein 1; UQCC2, ubiquinol-
cytochrome c reductase complex assembly factor 2; UQCRFS1, ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1; VDAC1, voltage-dependent anion channel 1.
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speculate that TNF-α effects on the estrogen-responsive breast
cancer cells through signaling pathways other than the
mitochondrial respiratory supercomplex formation and
metabolism. Taking together with our previous report, in
which estrogen-responsive COX7RP stimulates mitochondrial
respiratory supercomplex assembly and has a critical role on
estrogen-responsiveMCF-7 cells (Ikeda et al., 2019), estrogen and
TNF-α can coordinately regulate metabolic adaptation of breast
cancer cells in a cell-context- and a microenvironment-
dependent manner. Furthermore, it is also notable that a
mitochondrially targeted agent deferoxamine, an inhibitor of
iron-sulfur [Fe-S] cluster/heme biogenesis, suppresses tumor
growth and metastasis both in MCF-7 and MDA-MB-231 cells
thorough a decrease in mitochondrial respiratory supercomplex
assembly (Sandoval-Acuña et al., 2021), indicating that the
respiratory supercomplex assembly is a promising therapeutic
target for breast cancer cells.

Consistent with our findings (Ikeda et al., 2019), a recent
report also revealed that COX7RP facilitates the formation of
mitochondrial respiratory supercomplexes and retention of
respiratory activity in pancreatic cancer cells even in hypoxic
condition leading to a phenotype resistant for hypoxia
(Hollinshead et al., 2020). In addition, COX7RP
overexpression is associated with poor prognosis of patients
with hepatocellular carcinoma and COX7RP promotes the
growth and metastasis of HCC through the induction of cell
cycle progression and epithelial to mesenchymal transition
(Wang et al., 2020). These findings suggest that COX7RP can
regulate tumorigenesis in various types of cancers.

ERRS AND PGC-1S ARE KEY
TRANSCRIPTIONAL REGULATORS IN
ENERGY PRODUCTION AND RELATED TO
BREAST CANCER

As described in the previous section, mitochondrial OXPHOS
and respiratory supercomplex assembly are involved in cancer-
associated metabolic alteration and energy production.
Therefore, elucidation of regulators for OXPHOS and
mitochondrial respiratory supercomplex assembly will provide
a possible target(s) for breast cancer therapy as well as clarifying
the signaling pathway. While the precise transcriptional
regulation of OXPHOS-related genes in breast cancers remains
to be elucidated in clinical breast cancer tissues, it will be useful to
review the clinical relevance of OXPHOS-related transcriptional
factors in breast cancers, particularly that of the estrogen-related
receptor (ERR) family nuclear receptors and collaborating
coactivators peroxisome proliferator-activated receptor-γ
coactivator-1 (PGC-1).

In terms of the metabolic pathways of energy production,
ERRs and PGC-1 are essential transcriptional regulators for
mitochondrial biogenesis, energy production, and cancer-
related metabolism. ERRs are orphan nuclear receptors that
have the sequence similarity with ERα but no endogenous
ligands and constitutively exhibit transcriptional activity.

Instead of an endogenous ligand, PGC-1α and PGC-1β can
function as protein ligands for ERRs and play important roles
in metabolic reprogramming (Kamei et al., 2003; Skrzypczak
et al., 2013; Vernier and Giguère 2021).

ERRs and their protein ligands PGC-1s have clinical
relevance in breast cancer. High expression of ERRα
(Suzuki et al., 2004) or PGC-1α (LeBleu et al., 2014) was
correlated with poor prognosis of patients with breast cancer.
Positive correlation of ERRα with ERBB2/HER2 mRNA levels
(Ariazi et al., 2002) and amplified in breast cancer-1 (AIB1)
protein levels (Heck et al., 2009) were observed in breast
tumors. Recently, ERRα is revealed as a poor prognostic factor
in patients with TNBC (Ye et al., 2020; Danza et al., 2021).
ERRα (Fradet et al., 2011) and PGC-1α (LeBleu et al., 2014;
Andrzejewski et al., 2017) are further associated with
metastases in breast cancer patients.

ERRγ and its putative target expression is likely associated
with worse prognosis in tamoxifen-treated ER-positive and
chemotherapy-treated ER-negative breast cancer patients
(Heckler et al., 2014; Madhavan et al., 2015). ERRγ may
promote tamoxifen resistance, although its role in cell
proliferation remains controversial (Riggins et al., 2008; Ijichi
et al., 2011; Tiraby et al., 2011; Heckler et al., 2014).

ERRβ is rather assumed as a better prognostic factor as an
inverse correlation between the mRNA expression with the
prognosis of TNBC patients (Krishna et al., 2018; Fernandez
et al., 2020). ERRβmay inhibit ERα activities (Tanida et al., 2015),
or attenuate the cell cycle progression (Krishna et al., 2018).

ERR/PGC-1-MEDIATED METABOLIC
REPROGRAMMING IN BREAST CANCER

Figure 1 shows schematic diagram of mitochondrial
respiratory supercomplex assembly by COX7RP and
metabolism by ERRs (Giguère, 2008; Misawa and Inoue,
2015). ERRs regulate the expression of enzymes involved in
the TCA cycle as well as the mitochondrial respiratory chain
complex subunits to modulate mitochondrial respiration
activity (Stein et al., 2008; Deblois et al., 2009; Tiraby
et al., 2011; Vernier et al., 2020b). In MCF-7 cells,
introduction of a customized PGC-1α that selectively binds
to and activates ERRs causes upregulation of IDH3A, a
subunit of isocitrate dehydrogenase three which catalyzes
isocitrate to α-ketoglutarate as part of the TCA cycle (Stein
et al., 2008). Genome-wide screening of direct ERRα target
genes in breast cancer cells (MCF-7 and SKBr3) identified
NDUFA1 and NDUFB5, both of which are subunits of the
mitochondrial respiratory complex I (Deblois et al., 2009).
The paper also reported that ATP5B, a subunit of
mitochondrial ATP synthase, is also regulated by ERRα.
Through the investigation of ROS homeostasis in breast
cancer BT474 cells, ERRα and ERRγ are revealed to
modulate expression of genes in TCA cycle including
SDHB and ACO2, and glutamine/glutathione metabolism
including GLS (Vernier et al., 2020b). Interestingly, ERRα
is implicated in cholesterol-induced metabolic
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reprogramming in breast cancer cells through the regulation
of OXPHOS genes including NDUFB7, ATP5L, and COX5B
in MDA-MB-231, MCF-7, and TNBC-PDX cells (Ghanbari
et al., 2021).

Because ERRs also exert various functions in a broad range
of metabolic pathways, ERR-dependent non-mitochondrial
pathways can also be potential therapeutic targets in breast
cancer management. For example, ERRα and ERRγ increase
the expression of glycolytic genes in cooperation with PGC-
1α/β and upregulate glycolysis in MCF-7 and T47D breast
cancer cells (Cai et al., 2013). ERRs also interact with hypoxia-
inducible factor (HIF)-1/2 to promote transcription of HIF
target genes, including glycolytic genes such as pyruvate
dehydrogenase kinase 1 (PDK1) and phosphoglycerate
kinase 1 (PGK1) (Ao et al., 2008). In addition, ERRα has
been suggested to regulate mitochondrial pyruvate transport.
ERRα inhibition downregulates mitochondrial pyruvate
carrier 1 (MPC1), which impairs pyruvate transport into
the mitochondria (Park et al., 2019). Moreover, ERRα and
PGC-1α regulate the expression of genes involved in the folate
cycle (Audet-Walsh et al., 2016) and the methionine cycle
(Vernier et al., 2020a). Furthermore, ERRα, ERRγ, and PGC-
1α regulate the enzymes involved in glutamine metabolism in
HER2-positive breast cancer cells (McGuirk et al., 2013;
Deblois et al., 2016; Vernier et al., 2020b), which is
implicated in resistance to the HER2 inhibitor lapatinib (Li
et al., 2020; Vernier et al., 2020b). A recent study showed that
ERRα and ERRγmodulate ROS homeostasis, and that ERRγ is
associated with resistance to paclitaxel, an anticancer drug
that induces ROS. Inhibition of ERRγ by the selective inverse

agonist GSK5182 increases sensitivity of organoids generated
from TNBC patient-derived xenografts to paclitaxel (Vernier
et al., 2020b). Furthermore, ERRα-PGC-1α/β signaling
pathway plays an important role in promoting resistance to
doxorubicin and epirubicin in MCF-7 cells (McGuirk et al.,
2021). Namely, PGC-1α and ERRα are upregulated in
doxorubicin- and/or epirubicin-resistant cells generated
from MCF-7, leading to the enrichment of these
transcription factors at the promoters of genes that
contribute to glutathione metabolism, oxidative response,
and drug efflux, whereas the knockdown of PGC-1α/β
impairs the cell growth and survival.

Regulation of mitochondrial respiration by ERRs affects
the stemness of breast cancer cells. Cancer cells that possess
self-renewal ability and multi-lineage differentiation are
called cancer stem-like cells (CSCs) or tumor-initiating
stem-like cells (TICs), which play an essential role in the
growth, recurrence, and heterogeneity of tumors (Clegg et al.,
2020; van Schie and van Amerongen, 2020). A previous study
has shown that treatment with XCT790, an inhibitor of the
ERRα-PGC-1α/β signaling pathway, reduces the anoikis
resistance of CD44high/CD24low MCF-7 cells that represent
the CSC sub-population (De Luca et al., 2015). In addition,
XCT790 treatment suppresses mammosphere formation by
MCF-7 cells, which reflects stem cell activity. XCT790 inhibits
mitochondrial respiration, and treatment with the
mitochondrial cofactor acetyl-L-carnitine (ALCAR) rescues
the decrease in mammosphere formation induced by XCT790,
thereby suggesting that mitochondrial respiratory activity is
important for the survival and propagation of CSCs.

FIGURE 1 | Regulation of mitochondrial respiratory supercomplex assembly by COX7RP and metabolism by ERRs. COX7RP functions as a promoting factor for
mitochondrial respiratory supercomplex assembly, leading to efficient ATP production. Metabolic pathways reported to be promoted by ERRs in breast cancer cells are
also indicated with the representative target genes. COX7RP, cytochrome c oxidase subunit 7a related polypeptide; α-KG, α-ketoglutarate; G6P, glucose-6-phosphate;
GSH, the reduced glutathione; GSSG, glutathione disulfide; MPC, mitochondrial pyruvate carrier protein; THF, tetrahydrofolate; PKM2, pyruvate kinase; ENO1,
enolase 1; MTHFD1, methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; AHCY, adenosylhomocysteinase; MPC1,
mitochondrial pyruvate carrier 1; NDUFA1, ubiquinone oxidoreductase subunit A1; NDUFB5, ubiquinone oxidoreductase subunit B5; COX5B, cytochrome c oxidase
subunit 5B; ATP5B, ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit; IDH3A, isocitrate dehydrogenase (NAD(+)) three catalytic subunit alpha;
ACO2, aconitase 2; SDHB, succinate dehydrogenase complex flavoprotein subunit B; GLS, glutaminase.
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CONCLUSION

This review summarizes the pathophysiological relevance of
mitochondrial metabolism in breast cancer. In particular,
metabolic dependencies on OXPHOS and TCA cycle are paid
attention in tumors including breast cancer, as exemplified by the
function of mitochondrial respiratory supercomplex assembly
factor COX7RP. In metabolic alterations, transcriptional factors
ERRs and their coactivators PGC-1s contribute to breast cancer
progression and metastasis by modulating the transcription of
their targets including OXPHOS-related genes and oncogenic
genes, such as ERBB2 and MYC. As ERRs and PGC-1s are
necessary factors in metabolic alterations as well as in early
developmental stages and cancer stemness, the inhibition of
ERR/PGC-1 pathway efficiently represses CSC proliferation
and will be expected to be applied to clinical management for
therapy-refractory cancers. Nevertheless, ERRs and PGC-1s are
initially essential transcription factors in normal tissues with high
energy demands, thus further studies may enable to develop

selective inhibitors for ERR/PGC-1 pathway in cancers
minimizing side effects on normal tissues.
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