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A B S T R A C T

Accurate particulate matter 2.5 (PM2.5) prediction plays a crucial role in the accurate management of air pollution
and prevention of respiratory diseases. However, PM2.5, as a nonlinear time series with great volatility, is difficult
to achieve accurate prediction. In this paper, a hybrid autoregressive integrated moving average (ARIMA) model
is proposed based on the Augmented Dickey-Fuller test (ADF root test) of annual PM2.5 data, thus demonstrating
the necessity of first-order difference. The new method of using integrated akaike information criterion (AIC) and
improved grid search (GS) methods is proposed to avoid the bias caused by using AIC alone to determine the order
because the data are not exactly normally distributed. The comprehensive evaluation coefficient (CEC) is used to
select the optimal parameter structure of the prediction model by considering multiple evaluation perspectives.
The entropy value of the decomposed series is obtained by using range entropy A (RangeEn_A), and the series is
reconstructed according to the entropy value, and finally the reconstructed series is predicted. We used Beijing
PM2.5 data for validation and the results showed that the new hybrid ARIMA model improved values of RMSE
99.23%, MAE 99.20%, R2 118.61%, TIC 99.28%, NMAE 98.71%, NMSE 99.97%, OPC 43.13%, MOPC 98.43%
and CEC 99.25% compared with the traditional ARIMA model. The results show that the method does greatly
improve the prediction performance and provides a convincing tool for policy formulation and governance.
1. Introduction

Air pollution is one of the major problems threatening public health at
this stage. A report by the World Health Organization (WHO) states that
(World Health, 2016; World Health Organization. Regional Office for,
2002, 2003): More and more national air quality monitoring networks
are measuring and monitoring PM2.5, which reflects that the number of
urban air pollution events are increasing worldwide, and there is a
growing awareness of the health effects at the same time. Approximately
more than 80% of citizens in cities where the air quality environment is
monitored are susceptible to air quality levels that exceed the WHO
guideline limit values.

In recent years, urban air quality levels have received widespread
attention, and there are increasing calls to treat and control air pollutants
such as particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides
(NOX), ozone (O3), and carbon monoxide (CO) (Dai et al., 2019; Tang
7 November 2022; Accepted 1 D
evier Ltd. This is an open access a
et al., 2019). It is no exaggeration to say that the development of heavy
industries, the massive consumption of fossil fuels, the increase in ur-
banization, the dramatic increase in private transport ownership, agri-
cultural activities such as straw burning, and several other activities have
contributed directly or indirectly to the global air pollution problem (Guo
et al., 2021; Vohra et al., 2021; Wen et al., 2020). The Chinese govern-
ment also attaches great importance to the prevention and control of air
pollution. Great efforts have been made in controlling pollutant emis-
sions and dust control, promoting the construction of desulfurization and
denitrification, developing green transportation, and strengthening
motor vehicle exhaust emission control (Huang et al., 2019; Zhang et al.,
2020).

Particulate matter (PM) has received more attention as the most
hazardous component of air pollution. Among them, respirable particu-
late matter (PM10) refers to particulate matter suspended in the air with
an aerodynamic equivalent diameter �10 μm (Chen et al., 2017). In
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contrast, fine particulate matter (PM2.5) refers to particulate matter with
an aerodynamic equivalent diameter less than or equal to 2.5 μm in
ambient air, which can be suspended in the air for a longer period of time
(Cheng et al., 2019). Compared with PM10, PM2.5 has a smaller particle
size, larger area, stronger activity, and is easily accompanied by toxic and
harmful substances, and has a longer residence time and long transport
distance in the atmosphere, thus having a greater impact on human
health and atmospheric environmental quality (Cobbold et al., 2022;
Zhou et al., 2021). Many scholars and experts have also contributed to air
pollution control and haze management by finding that: atmospheric
stability, geographical structure and meteorological conditions have
significant effects on the distribution of aerosols in the air (Feng et al.,
2015; Yang et al., 2022a; Zhang et al., 2020). PM2.5 concentration pre-
diction is currently recognized at home and abroad as the most critical
pollutant for determining PM2.5 concentration prediction is currently
recognized as the most critical pollutant for determining urban air quality
in China and abroad.

Meanwhile, during the 2019 coronavirus disease pandemic, Sharma
et al. performed a statistical analysis through particulate matter con-
centrations measured in urban centers recorded during the quarantine
period. The results revealed a significant reduction in harmful airborne
particulate matter and a general improvement in air quality (Sharma
et al., 2020). This study strongly illustrates the close relationship be-
tween air quality, especially PM2.5, and human activities, but also the
difficulty of prediction due to the uncertainty of human activities.
Therefore, creating accurate and concise mathematical models to deal
with different PM2.5 series variations and fluctuation states in different
study areas will help to accurately predict PM2.5 quality.

Many different mathematical and statistical and mathematical
models predict air pollution particulate matter. These prediction
methods for linear and nonlinear data include: weather research and
forecasting (WRF) model (Kong et al., 2021; Yang et al., 2021); regional
atmospheric environment modeling system (RegAEMS) (Wang et al.,
2012); extreme learning machine (ELM) model (Du et al., 2020; Wang
et al., 2017a); artificial neural networks (ANN) (Biancofiore et al., 2017;
Catalano et al., 2016); long short-termmemory (LSTM) (Wen et al., 2019;
Zhao et al., 2019); support vector machine (SVM) (Su�arez S�anchez et al.,
2011; Tian et al., 2022); recurrent neural network (RNN) (Belavadi et al.,
2020); autoregressive integrated moving average model (ARIMA)
(Theerthagiri, 2022; Zafra et al., 2017; Zhang et al., 2018).

Since the regression integrated moving average model was first pro-
posed by Box and Jenkins in 1976, it has become a very mature theory of
time series forecasting models after decades of development. It uses the
existing prior values in the time series to try to forecast the future of the
series (Box et al., 2015). Typically, time series on daily, monthly and
quarterly scales are generated from components involving certain trends
and seasonal variations. Numerous researchers have carried out predic-
tive forecasting and analytical work on various types of complex time
series using ARIMA models. Ning studied sediments with non-ho
mogeneity, complex flow paths and fluid phase behavior to predict the
production of unconventional reservoirs. The study data starts with the
representative oil production data from a well located in an unconven-
tional reservoir in the Denver-Julesburg (DJ) Basin. The results show that
ARIMA and LSTM outperform Prophet. Also ARIMA is robust in pre-
dicting the oil production rate of wells across the DJ Basin (Ning et al.,
2022). Sun constructed multiple historical ARIMA models using publicly
available 2019 coronavirus disease data from Alberta, Canada. A method
to modify the ARIMA model to accommodate heteroscedasticity time
series was proposed by calculating the mean of the differences between
predicted and corresponding actual values and their 95% confidence
intervals (Sun, 2021). K€arner used ARIMA to compare the long-term
temporal variability of top-of-atmosphere total solar irradiance (TSI)
and surface air temperature series, demonstrating the dependence of
various climate series on short-term fluctuations in TSI (K€arner, 2009).
Arora and Keshari used a combination of the adaptive neuro-fuzzy
2

inference system (ANFIS) and the ARIMA model to obtain reaeration
coefficients that measure the interaction between the air-water interface
at each sampling location in the river. The results showed significant
improvement of the integrated ANFIS-ARIMA model in predicting the
reaeration coefficients (Arora and Keshari, 2021). These studies
demonstrate the effectiveness of ARIMA models in improving the accu-
racy of time series forecasting.

In order to continuously improve the prediction accuracy, some
scholars have tried to apply multiple algorithms to form a hybrid ARIMA
model for PM2.5 time series prediction. Alada�g performed monthly pre-
diction of PM10 concentration in Erzurum, Turkey, using appropriate
coefficients selected by ARIMA for modeling. The results proved that the
hybrid WT-ARIMA model based on wavelet transform has accurate pre-
diction ability than the traditional ARIMAmodel for particulate pollution
(Alada�g, 2021). Wang proposed a new hybrid Garch method integrating
ARIMA and SVM for individual forecasting models with more reliable
and accurate forecasting capability (Wang et al., 2017b).

However, most of the current research has focused on how to form a
hybrid prediction model by multiple algorithms, and there is no discus-
sion on the effectiveness and applicability of the model sizing method of
the ARIMA model itself, and very few scholars have provided a suitable
sizing method for the ARIMAmodel that takes into account the simplicity
and accuracy of the model.

This study is an analysis of daily 1-km PM2.5 data in China for 2018
estimated using an adaptive time modeling framework of satellite data
and ground monitoring measurements (He et al., 2021), and the results
are shown in Figure 1. The analysis found that PM2.5 pollution is more
serious in Xinjiang as well as in the Beijing-Tianjin-Hebei region, which is
the capital economic circle of China and has an important political and
economic status. And Beijing is located in the core of the region, and the
study is of great significance. Several scholars have conducted studies
from the perspective of environmental assessment. For example, Wang
et al. investigated the superimposed compound growth relationship be-
tween high moisture content of water vapor transport and PM2.5 and O3
pollution (Wang et al., 2022). Dong elucidated the sustainable develop-
ment of air quality in Beijing, and analyzed PM2.5 exposure in terms of
the multi-scale spatial and temporal characteristics of PM2.5 concentra-
tion and exposure risk intensity (Dong et al., 2022). Yang et al. combined
linear mixed effect (LME) and geographically weighted regression (GWR)
models to propose a two-stage statistical regression model with 1 km
spatial resolution of aerosol optical thickness (AOD), meteorological
variables and land use parameters as predictors to predict daily
near-surface PM2.5 concentrations in the Beijing-Tianjin-Hebei region
from 2013-2017 (Yang et al., 2022b). Therefore, the daily PM2.5 data
(2953) obtained by the Environmental Protection Administration for
Beijing from January 1, 2014 to January 31, 2022 were chosen as the
study object to create the model when 66% were used as the training set
and 34% as the test set.

To the best of our knowledge, traditional time series models usually
use Akaike information criterion (AIC) and Bayesian Information Crite-
rion (BIC) criterion to fix the order (Akhter et al., 2020), and there is no
study that combines AIC and other algorithms to explore the ARIMA
model's suitable order. As a complement to the previous studies, this
paper proposes a new hybrid method, which includes a combination of
AIC and grid search algorithm results for ARIMAmodel order fixing and a
hybrid prediction method based on seasonal decomposition, for pre-
dicting PM2.5 concentration changes in Beijing. In addition, a compre-
hensive evaluation coefficient (CEC) is proposed for a more reasonable
and comprehensive assessment of the prediction performance of the
developed model by combining various error analysis indicators. Finally,
it is believed that this study can be used as a guide for implementing
various environmental regulations to control particulate matter pollution
and provide technical reference for production and governmental deci-
sion making, which is crucial for accurate air pollution control and pre-
vention of respiratory diseases.



Figure 1. Location of Beijing in the study area and PM2.5 distribution nephogram.
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2. Methodology

2.1. Autoregressive integrated moving average model

2.1.1. Wold's decomposition and autocorrelation
The basic theorem of time series analysis, the Wold's decomposition,

states that for each weakly smooth, purely nondeterministic stochastic
process, xt � μ can be written as a linear combination (or linear filter) of
a series of uncorrelated random variables (Mills, 2019). “Purely
nondeterministic” means that any deterministic component can be
subtracted from xt � μ. For example some components can be perfectly
predicted from their own past values. The linear filter is represented as
follows [Eq. (1)].
3

xt � μ ¼ at þ ψ1at�1 þ ψ2at�2 þ… ¼
X∞

ψ jat�j;ψ0 ¼ 1 (1)

j¼0

where atðt¼ 0;�1;�2;…Þ are a series of uncorrelated random variables,
which are drawn by Eq. (2) and Eq. (3) from the fixed distribution with:

EðatÞ¼ 0;VðatÞ¼ E
�
a2t
�¼ σ2＜∞ (2)

Covðat ; at�kÞ¼Eðat ; at�kÞ¼0; for all k 6¼ 0 (3)

Such a sequence is called a white noise sequence, and can sometimes
be innovatively represented as at � WNð0;σ2Þ. The coefficients in Eq. (1)
are called ψ � weights.
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Process of the model autocorrelation in xt is described with Eq. (4)
and Eq. (5) as follows：

EðxtÞ¼ μ (4)

γ0 ¼VðxtÞ¼ Eðxt � μÞ2 ¼ σ2 þψ2
1σ

2 þψ2
2σ

2 þ…¼ σ2
X∞
j¼0

ψ2
j (5)

By substituting the results of the white noise sequence Eðat�iat�jÞ ¼
0ði 6¼ jÞ, we can obtain Eq. (6):

γk ¼Eðxt � μÞðxt�k � μÞ¼ σ2ð1 �ψk þψ1ψkþ1 þψ2ψkþ2 þ…Þ¼ σ2
X∞
j¼0

ψ jψ jþk

(6)

Combining Eq. (5) and Eq. (6), which indicates Eq. (7).

ρk ¼

P∞
j¼0

ψ jψ jþkP∞
j¼0

ψ2
j

(7)

If ψ � weights are assumed to be absolutely summable, then for an
infinite number of weights there is

P∞
j¼0

��ψ j

�� < ∞, in which case the
representation of the linear filter converges. The above condition is also
equivalent to the assumption that xt is smooth and allmoments are
guaranteed to exist and are independent of time, especially the variance
of xt and γ0 is finite.

2.1.2. Autoregressive model
Taking μ ¼ 0 without losing the generality of the problem, while

letting ψ j ¼ ϕj, then Eq. (1) can be written as [Eq. (8)]:

xt ¼ at þϕðat�1 þϕat�2 þ…Þ¼ϕxt�1 þ at (8)

For Eq. (8) introducing the lag operator B, the lag expression can be
described as [Eq. (9)]:

xt ¼ð1� ϕBÞ�1at ¼
�
1þϕBþϕ2B2 þ…

�
at (9)

The above linear filter converges at jϕj＜1 and is known as the sta-
tionarity condition.

2.1.3. Autoregressive integrated moving average model (ARIMA)
The inclusion of the nonsmooth autoregressive operator ϕðBÞ, ϕðBÞ ¼

0 with d unit roots like Eq. (10), in the previous model is effective for
describing nonsmooth seasonal series.

ϕðBÞxt ¼ θðBÞat ¼ϕðBÞð1� BÞdxt (10)

where ϕðBÞ is the smooth autoregressive operator. Taking the difference
operator r ¼ 1� B then for d � 1;rdxt ¼ rdxt we have Eq. (11):

θðBÞat ¼ϕðBÞrdxt ¼ cðBÞωt (11)

where ωt ¼ rdxt .
Tt ¼

8>>>>>>>>>><>>>>>>>>>>:

xt�ðf�1
2 Þ þ xt�ðf�1

2 Þþ1 þ…þ xtþðf�1
2 Þ�1 þ xtþðf�1

2 Þ
f

; f ¼ 2kþ 1; t 2
�
f þ 1
2

; l�

0:5xt�ðf2Þ þ xt�ðf2Þþ1 þ…þ xtþðf2Þ�1 þ xtþðf2Þ
f

; f ¼ 2k; t 2
�
f
2
þ 1; l�

4

Reversing Eq. (11) yields can give Eq. (12).

xt ¼ Sdωt (12)

where S is defined according to Eq. (13) and Eq. (14) by the following
infinite sum operator.

Sxt ¼
Xt

h¼�∞

xh ¼
�
1þBþB2 þ…

�
xt ¼ð1� BÞ�1xt ¼r�1xt (13)

S2xt ¼Sxt þSxt�1þSxt�2þ…¼
Xt

I¼�∞

Xt

h¼�∞

xh¼
�
1þ2Bþ3B2þ…

�
xt (14)
Since the infinite sumoperatorS¼ ð1�BÞ�1 involved in the infinite sum
does not converge, it cannot be used to define a nonsmooth ARIMA process
in a practical process. A reasonable solution is to consider an infinite sum
operator instead (Box et al., 2015), and for any positive integer m, the
infinite sum operator Sm , Sð2Þm can be expressed as Eq. (15) and Eq. (16):

Sm ¼ �
1þBþB2 þ…þBm�1�¼ 1� Bm

1� B
(15)

Sð2Þm ¼
Xm�1

j¼0

Xm�1

i¼j

Bi ¼ �
1þ 2Bþ3B2 þ…þmBm�1�¼ 1� Bm �mBmð1� BÞ

ð1� BÞ2

(16)

Thus the relationship between the first-order differential ARIMAmodel
and its corresponding smooth ARMA process can be expressed in terms of
values up to a certain initial time point k＜t in the past, such as Eq. (17).

xt ¼ St�k

1� Bt�kωt ¼ 1
1� Bt�k ðωt þωt�1 þωkþ1Þ (17)

2.2. Seasonal decomposition

The basic theorem of time series analysis called Wold's decomposition,
states that every weakly smooth, purely uncertain stochastic process can be
written as a linear combination of a sequence of uncorrelated random
variables (Mills, 2019). So seasonal decomposition models are divided into
additive model and multiplicative model，the additive and multiplicative
model can be described separately as follows [Eq. (18) and Eq. (19)]：

Y ½t� ¼T½t� þ S½t� þ R½t� (18)

Y ½t� ¼T½t�*S½t�*R½t� (19)

where T½t� is the trend term, S½t� is the seasonal term, and R½t� is the re-
sidual term. The idea of additive decompositionmodel andmultiplicative
decomposition model is similar, and the following is an example of ad-
ditive model, which is divided into 3 parts.

2.2.1. Trend item decomposition
The trend term is decomposed using the centralized moving mean

method, and expressed by Eq. (20) separately for both cases of odd and
even time series frequencies f.
f � 1
2

�
; k 2 Z

f
2

�
; k 2 Z

(20)
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where t is the trend term, f is the time frequency series rate, and l is the
time series length.

2.2.2. Seasonal cycle term decomposition and residual
The original time series is used to subtract the trend term, and the

values at the same frequency in each period are averaged to obtain the
seasonal term Sti, which can be represented by Eq. (21) and Eq. (22).

Si ¼ xi � Ti (21)

Sti ¼
Pn
i¼0

S1þi*f

f
; t 2 ð1; f Þ; n¼max ðn; nf � lÞ (22)

Center the seasonal term, and the centered seasonal term St is
described by Eq. (23).

S½t� ¼ St � St (23)

The resulting residual term is given as follows [Eq. (24)].
Figure 2. The flowchart of the hybr

5

R½t� ¼Y½t� � T½t� þ S½t� (24)
2.3. Grid search (GS) algorithm

The GS algorithm is an algorithm that exhausts the specified param-
eters and obtains the optimal parameters by cross-validating the pa-
rameters in the evaluation function (Abbaszadeh et al., 2022). The
algorithm arranges the parameters into combinations to form a grid and
calculates the corresponding parameters by traversal to obtain the
optimal combination of parameters (Chang et al., 2022).

3. The hybrid ARIMA model

3.1. Sequence stationarity testing

To check the stability, an important feature of a time series, the
augmented Dickey-Fuller (ADF) unit root test created with laged values
of a series is used (Kębłowski and Welfe, 2004). An autoregressive pro-
cess is called a unit root when the coefficient of the lag term is 1. When a
id ARIMA prediction algorithm.



Table 1. The error evaluation criteria for comparing ARIMA models with
different parameter structures.

Criteria Definition Formula

RMSE Root Mean Square Error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðYi � Y

0
iÞ
2

r
MAE Mean Absolute Error 1

n

Xn

i¼1

��Yi � Y
0
i

��
R2 Nash-Sutcliffe Efficiency

Coefficient 1�
Pn

i¼1ðYi � Y
0
i Þ

2Pn
i¼1ðYi � YiÞ2

TIC Theil Inequality
Coefficient

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðYi � Y

0
iÞ
2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Yi

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Y

0
i
2

r
NMAE Normalized Mean

Absolute Error
1
n

Xn

i¼1

��Yi � Y 0
i

��ffiffiffiffiffiffiffiffiffiffiffiffiffi
Yi �Y 0

i

q
NMSE Normalized Mean Square

Error
1
n

Xn

i¼1

ðYi � Y 0
i Þ

2

Yi �Y 0
i

OPC Orientational Prediction
Coefficient

1
n

Xn

i¼1
Pt

MOPC Median Orientational
Prediction Coefficient

1
n

Xn

i¼1
ðQi � Q

0
i Þ
2

CEC Comprehensive
evaluation coefficient

0.1*(RMSE þ MAE)þ0.2*(TIC þ NMAE þ
NMSE)þ0.3*((1-OPC)þMDPC)þ(1-R2)

Notes: Yi and Y
0
i are the actual and predicted values of this time series in time

period i. n is the number of testing datasets. p is the number of characteristic

variables. Pt ¼


1;
0;

ðYiþ1 � YiÞðY 0
iþ1 � YiÞ � 0

otherwise
, Qi ¼



1;
0;

ðYiþ1 � YiÞ � 0
otherwise ,

Q
0
i ¼



1;
0;

Y
0
iþ1 � Y

0
i Þ � 0

otherwise
.
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unit root exists, any error in the residual series does not decay with
increasing sample size and the relationship between the independent and
dependent variables is deceptive. Such a regression is also called a
pseudo-regression, where the effect of residuals in the model is perma-
nent and the process is random walk (Matsumoto et al., 2011). And the
ADF root test can be used to determine the existence of unit root. The
original hypothesis H0 has a unit root, and if the significance test statistic
obtained is less than three confidence values of (10%, 5%, 1%), then the
original hypothesis is rejected with (90%,95%,99%) certainty relative to
(Bisaglia and Procidano, 2002). If the series is smooth then there is no
unit root, otherwise there is a unit root.

In ARIMA (p,d,q), the traditional approach for model sizing is to
consider the autocorrelation function (ACF) and partial autocorrelation
function (PACF) to select the p and q values (Zhou et al., 2022). And then,
based on the determined parameters, the Akaike information criteria
(AIC) is used to determine the order from both prediction accuracy and
model simplicity (Snipes and Taylor, 2014; Taddy, 2019). Where a
smaller AIC value indicates better overall predictive performance of the
model. The formula for calculating the AIC of the model is described as
follows.

AIC¼2k� 2 ln ðbLÞ (25)

where k is the number of estimated parameters in the model, bL is the
maximum value of the likelihood function for the corresponding ARIMA
model. The first part of Figure 2 shows the flow chart of sequence sta-
tionarity testing.

3.2. Integrated AIC and improved GS fixed-order methods

Normal distribution has a wide range of applications in production
life and scientific experiments, and the probability distribution of many
random variables can be described by normal distribution. The current
Akaike information criteria (AIC) fixing process for finding the maximum
likelihood estimate is mostly done by defaulting the probability density
function of the data to the probability density function of the normal
distribution, thus listing the log-likelihood function and finally finding
the AIC value (Çankaya and Korbel, 2018). In contrast, the traditional

AIC fixed-order method is implemented by AIC ¼ 2k� 2 lnðbLÞ, where L̂
is maximum value of the likelihood function for the corresponding
ARIMA model. Therefore, the use of AIC for ARIMA model sizing is not
entirely accurate and appropriate when the data are not exactly normally
distributed.

In order to determine the distribution of PM2.5 data in Beijing, the
Shapiro-Wilk (S–W) test (Zeng et al., 2019) and the Kolmogorov-Smirnov
(K–S) test (Zhang and Cheng, 2004) were used. The results of the data
normality test showed that the S–W test statistic was 0.782 and the K–S
test statistic was 0.162, with a significance P-value of 0.000***, which
was significant, so the original hypothesis was rejected, i.e., the data did
not satisfy a perfectly normal distribution. However, the normal graph of
Beijing PM2.5 data shows a bell shape (high in the middle and low at both
ends), which indicates that the data are not absolutely normal, but
basically acceptable as a normal distribution. Thus, the premise of using
the normal distribution probability density function (PDF) to find the
maximum likelihood estimate and then using this value to find the AIC
for model sizing is basically satisfied.

However, as mentioned above, since the data do not exactly conform
to the normal distribution, the AIC order method based on the normal
distribution of the data has some errors. Therefore, this paper proposes
an integrated AIC and improved GS fixed-order methods. Improved grid
search (GS) algorithm is based on the ARIMA traversal parameters (p,d,q)
and adds the MSE of the posterior value when the traversal in order is
greater than the previous value, the group traversal of this parameter is
terminated and the next group traversal is performed. This improved GS
6

algorithm can reduce the computational effort and time to some extent
without affecting the accuracy of the results.

The specific process of the fixed-order algorithm with integrated AIC
and improved GS methods is as follows: (1) calculate the fixed-order
results using the AIC criterion and GS search, respectively; (2) subtract
a constant term H0 from each value in the calculated result series, where
H0 ¼ ��ðminni¼1ðHiÞÞ. This step can simplify the calculation and reduce
the error, and also does not result in too small coefficient of variation (Cv)
(Zhan et al., 2022); (3) Let m ¼ Hi � H0ði¼ 1; 2;…; nÞn ¼ Hmax � Hmin to
obtain Pi ¼ m

n 	 100%. From this, the values of PAICi and PGSi for each
order of ARIMA model are obtained; (4) the integrated fixed-order value
Pintegrated is obtained, where Pintegrated ¼ α	 PAICi þ PGSi, where is the in-
tegrated regulator of Beijing PM2.5 sequence. Part 2 of Figure 2 shows the
flow chart of fixed-order methods with ARIMA model.

3.3. Sequence seasonal decomposition and reconstruction

The Beijing PM2.5 series data were decomposed into trend, seasonal,
and residual terms using the traditional seasonal decomposition method.
And after that, the complexity and confusion degree of each sub-item
were calculated using RangeEn_A (Omidvarnia et al., 2018). Based on
the RangeEn_A values, the decomposed sequence subterms with similar
RangeEn_A values are divided into two classes for additive and multi-
plicative reconfiguration to obtain two new sequences. Part 3 of Figure 2
shows the flow chart of the sequence seasonal decomposition and
reconfiguration process.

3.4. Identifying the optimal individual model structure

Comprehensive evaluation coefficient (CEC) is based on different
evaluation perspectives, including the accuracy of the predicted data
compared with the original data, the predicted data, and whether the
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predicted data are consistent with the change in the same direction as the
actual data. Multiple independent evaluation indexes are constructed in a
weighted form to comprehensively evaluate the model's Beijing PM2.5
prediction capability. Table 1 shows the model evaluation indicators and
their calculation methods. their calculation methods.

As shown in Table 1, the accuracy between the actual and predicted
values of a single model is determined by the comprehensive evaluation
coefficient (CEC). The advantage of this index is that the CEC compre-
hensive evaluation coefficient is proposed by considering the error,
fitting accuracy, and prediction direction through the single indexes of
RMSE, MAE, R2, TIC, NMAE, NMSE, OPC and MOPC. The last part of
Figure 2 shows the process to identifying the optimal individual model
structure.

4. Empirical study

In this section, we perform an example validation using the proposed
method and the hybrid ARIMA model, computed using the Jupyter
Notebook application, programmed in Python 3.9.0, and all experiments
run on an NVIDIA GeForce GTX 1650 GPU.

4.1. Study area and available data

Beijing is located at the northwest edge of the North China Plain,
between 39
280～41
030 N latitude and 115
250～117
350 E longitude.
Since the 21st century, through the treatment of coal-fired boilers, the
clean-up of civil fuels, industrial restructuring and other measures,
Beijing has achieved remarkable results in the treatment of air pollu-
tion: the annual average concentration of sulfur dioxide dropped by
93.3%; in the past five years, the annual average concentration of PM2.5
dropped from 89.5 μg=cm3 in 2013 to 58 μg=cm3 with a 35% decrease.
In 2020, Beijing's annual average PM2.5 concentration dropped to
"30þ" for the first time, at 38 μg=cm3, down 57.5% compared to 2013.
The number of heavily polluted days in Beijing decreases significantly,
with 10 heavily polluted days in 2020, a decrease of 48 days or 82.8%
from 2013.

4.2. Data description

In this paper, daily Beijing PM2.5 data obtained from the Environ-
mental Protection Administration. Beijing haze PM2.5 (2953 in total)
from January 1, 2014 to January 31, 2022 was selected as the dataset
for the practical validation of the proposed hybrid ARIMA model. 66%
of the collected data were classified as the training set and the
remaining 34% were classified as the test set to validate the perfor-
mance of the model. Figure 3 shows the characteristics of the Beijing
PM2.5 time series dataset.
Figure 3. Details informati
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4.3. Analysis of substantiation results

4.3.1. ADF unit root test for sequence stationarity
In this paper, we use Augmented Dickey-Fuller (ADF) root test to test

the Beijing PM2.5 time series year by year based on our unique
perspective and find that although the ADF root test results for the overall
data show smoothness, the annual year test results indicate that the data
are not always smooth.

As shown in Table 2, the Test Statistic of the overall data is -5.183468,
which is much smaller than the Critical Value (1%, 5%, 10%) of
(�3.432608, -2.862538, -2.567301), while the p-value of 0.00001 is
much smaller than 0.05. Therefore, the overall PM2.5 sequence data is
judged as a smooth sequence.

However, since the Beijing PM2.5 time series has a clear temporal
significance. The overall data has a seasonal frequency with a period of
365 days. Therefore, when conducting the ADF unit root test, the autolag
is selected based on the AIC value, and the Lags used will be automati-
cally selected in the ADF root test according to the characteristics of the
PM2.5 time series data in Beijing year by year, with a suitable lag term k.
The results are shown in Table 3, the Test Statistic for 2017 is -1.58076,
which is greater than the Critical Value (10%) of -2.57115, while the p-
value is 0.493252 greater than 0.05, so the original hypothesis is rejected
and the series is not smooth; the Test Statistic for 2021 is - 1.81452,
which is greater than the Critical Value (10%) of -2.57147, while the p-
value is 0.373280 is greater than 0.05, so the original hypothesis is
rejected and the series is also unstable. Meanwhile, the Test Statistic for
2022 is -3.02662 which is smaller than the Critical Value (5%, 10%)
(�2.96407, -2.62117), but larger than the Critical Value (1%) of
-3.66992. Therefore, there is 99% probability to reject the original hy-
pothesis and the data is still can be considered non-stationary.

Combining the above ADF root test results, first-order differencing of
the data was considered to reduce the irregular fluctuations among the
data.

4.3.2. Individual AIC and improved GS method results
The results of the Akaike information criteria (AIC) definite order are

shown in Figure 4.
From the results in Figure 4, it can be seen that for the original un-

differentiated series, the minimum AIC value is 29876.4 and the ARIMA
final parameter sizing result is (8,0,1). For the first-order differential
sequence, the minimum AIC value is 29857.5, and the ARIMA final
parameter fixing order result is (8,1,2). Therefore, the AIC value of the
series after the first-order differencing has a significant reduction of 18.9,
which indicates that the differencing effectively reduces the volatility
between the data and is beneficial to the accurate prediction of the
ARIMAmodel. It also proves the necessity of the above year-by-year ADF
root test for the data.
on of the Beijing area.



Table 2. ADF unit root test results of overall data.

Statistics Value

Test Statistic -5.183468

p-value 0.00001

#Lags Used 28

Number of Observations Used 2899

Critical Value (1%) -3.432608

Critical Value (5%) -2.862538

Critical Value (10%) -2.567301
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The smoothness test of the year-by-year PM2.5 series in Beijing
identified the unsteadiness of some of the data, and the first-order dif-
ference greatly reduced the large volatility of this part of the data, which
is the reason why the AIC value of ARIMA (8,1,2) decreased by 18.9
compared with that of ARIMA (8,0,1).

Figure 5 shows the results of the improved GSmethod, and we plotted
a four-dimensional image to show it. Where (x,y,z) represent ARIMA
(p,d,q) respectively, and the color shades of the circles indicate the MSE
values after searching by grid search. As for the untraversed parameter in
the improved GS method, the MSE predicted by this parameter model is
greater than the MSE that has been traversed, so it is not calculated to
save time r arithmetic power.

From Figure 5 it can be seen that the final parameter fixing order
result of the GS method ARIMA is (6,1,2) and the MSE value is 544.403.
Table 3. ADF unit root test results of annual data.

2014 2015 2016 2017

Test Statistic -6.52431 -10.64571 -11.36423 -1.580

p-value 1.02E-08 4.80E-19 9.31E-21 0.4932

#Lags Used 4 1 1 10

Number of Observations Used 360 363 363 353

Critical Value (1%) -3.44865 -3.44849 -3.44849 -3.449

Critical Value (5%) -2.86960 -2.86954 -2.86954 -2.869

Critical Value (10%) -2.57107 -2.57103 -2.57103 -2.571

Figure 4. Results of AIC criterion with original sequ
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4.3.3. Integrated AIC and improved GS order determination results
Following the algorithm proposed in Section 3.3, PAICi and PGSi for

each order of ARIMA model are calculated as shown in Tables 4 and 5
below respectively.

From Table 4 ðPAICiÞmin ¼ 0:026%, the model order is (8,1,2); Table 5
ðPGSiÞmin ¼ 0:038%, the model order is (6,1,2); thus, we can find Pintegrated,
where Pintegrated ¼ α	 PAICi þ PGSi. The experimental test of Beijing PM2.5

data from January 1, 2014 to January 31, 2022, α¼ 0.02 is chosen as the
integrated regulator of Beijing. Then the calculation results of Pintegrated
are shown in Table 6.

From Table 6 ðPintegratedÞmin ¼ 0:057%, so by this method, the final
order of ARIMA model is fixed as (6,1,2).

4.3.4. Sequence seasonal decomposition and reconstruction results
The traditional time series seasonal decomposition is used, and the

multiplicative and additive decomposition are performed separately for
the original PM2.5 in Beijing, while the frequency is specified as a quarter
of time, i.e., 90 days is a frequency.

For the multiplicative and additive models decomposed trend, sea-
sonal and residual calculated RangeEn_A (Omidvarnia et al., 2018). The
results are shown in Table 7.

� As shown in Table 8. For the multiplicative and additive model
decomposition, the RangeEn_A values of the trend terms are both
0.0263. Since for data prediction, the reconstructed sequence with
the minimum RangeEn_A value is the key determinant of the PM2.5
time series, the trend term is used as the reconstruction sequence 1
2018 2019 2020 2021 2022

76 -10.74573 -10.80132 -10.01065 -1.81452 -3.02662

52 2.74E-19 2.01E-19 1.78E-17 0.373280 0.032482

1 1 1 17 0

358 363 364 329 30

01 -3.44875 -3.44849 -3.44844 -3.45038 -3.66992

76 -2.86965 -2.86954 -2.86951 -2.87037 -2.96407

15 -2.57109 -2.57103 -2.57102 -2.57147 -2.62117

ence undifferentiated and first-order difference.



Figure 6. The seasonal decomposition of the multiplicative model results with 90 frequency.

Figure 7. The seasonal decomposition of the additive model results with 90 frequency.

Figure 5. Results of MSE values for the GS method.
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Table 5. PGSi value for each order of ARIMA model.

GS q\p 0 1 2 3 4 5 6 7 8 9 10

0 14.168% 14.539% 9.892% 8.134% 5.773% 5.216% 4.854% 4.842% 3.887% 2.977% 2.483%

1 15.054% 3.384% 0.343% 0.329% 0.300% 0.247% 0.171% 0.103% 0.166% 0.219% 0.220%

2 3.241% 0.390% 0.281% 0.187% 0.174% 0.160% 0.038% 0.077% 0.064% 0.147% 0.229%

Table 6. The results of Pintegrated value for integrated AIC and improved GS algorithm.

Pintegrated q\p 0 1 2 3 4 5 6 7 8 9 10

0 15.075% 15.437% 10.556% 8.695% 6.215% 5.626% 5.220% 5.157% 4.147% 3.195% 2.691%

1 15.936% 3.530% 0.363% 0.350% 0.321% 0.269% 0.189% 0.121% 0.187% 0.240% 0.241%

2 3.399% 0.413% 0.301% 0.206% 0.195% 0.182% 0.057% 0.098% 0.065% 0.149% 0.252%

Table 4. PAICi value for each order of ARIMA model.

AIC q\p 0 1 2 3 4 5 6 7 8 9 10

0 45.354% 44.878% 33.209% 28.023% 22.107% 20.493% 18.298% 15.753% 13.009% 10.905% 10.413%

1 44.136% 7.309% 0.966% 1.041% 1.074% 1.100% 0.887% 0.931% 1.046% 1.062% 1.055%

2 7.909% 1.149% 1.028% 0.946% 1.022% 1.099% 0.956% 1.047% 0.026% 0.105% 1.144%

Table 8. Range entropy (RangeEn_A) of reconstructed sequence and its specific
value.
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and the seasonal and residual as the reconstruction sequence 2. The
seasonal and noise terms are thus removed from the original data in
reconstruction sequence 1, and only the low RangeEn_A values are
retained. trend term.

� The Haze PM2.5 sequence can not be separated from human produc-
tion life. From the perspective of haze formation, polluting emissions
from the operation of heavy industrial enterprises, exhaust emissions
from automobiles, and dust from coal-fired power generation are all
important causes of haze. The Chinese government attaches great
importance to the management of the air environment. It is also easy
to find from the observed and trend terms in Figures 6 and 7 that since
the peak of PM2.5 series index value in Beijing in 2016, it has been
showing a fluctuating downward trend since then. It is very encour-
aging that the environment we live in is becoming better and better
while taking into account the development.

4.3.5. Hybrid prediction model error test results
To test the proposed hybrid ARIMA model and integrated AIC and

improved GS fixed-order methods, several performance evaluation met-
rics were compared, but judging the merit of the model cannot be
determined simply based on a single evaluation metric. Here, the effec-
tiveness of the model is chosen to be determined based on the minimum
value of CEC, which includes RMSE, MAE, R2, TIC, NMAE, NMSE, OPC
and MOPC. Among them, RMSE and MAE are tested for extreme errors
and prediction outliers; R2 responds to the degree of fit of the prediction
model; TIC, NMAE and NMSE determine the accuracy of the model built;
OPC and MOPC ensure the consistency between the predicted and the
actual direction of change of PM2.5 series. The above indicators are
combined by weighting to form the Comprehensive evaluation coeffi-
cient (CEC), which selects the best structure for each model.

The original ARIMA best model parameter structure and the corre-
sponding performance evaluation coefficients are given in Table 9, with
the ARmodel listed as a comparison. The performance evaluationmetrics
corresponding to the optimal model parameters for the hybrid ARIMA
and AR models are given in Table 10.
Table 7. Range entropy (RangeEn_A) of all items via multiplicative and additive
decomposition.

Trend Seasonal Residual

Multiplicative model 0.0263 0.7974 0.8206

Additive model 0.0263 0.8314 0.7734
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From Table 9, it can be seen that the highest prediction accuracy is
achieved in the ARIMA model when the parameters are fixed-order
ARIMA (6,1,2). In comparison, the highest prediction accuracy of the
AR model is achieved with the parameter fixed order AR (5). However,
the CEC value of ARIMA (6,1,2) is 5.0546 which is 0.0384 lower than
that of AR (5) which is 5.0930, so ARIMA has higher prediction perfor-
mance. This result also validates our proposed integrated AIC and
improved GS fixed-order algorithm, and the result shows that it is
consistent with the actual computational results.

For the AR and ARIMA models with the best prediction performance
in Table 9, multiplicative and additive model decomposition and
reconstitution. were performed for the reconstructed sequences, and the
results are shown in Figure 6 and Figure 7. The hybrid ARIMA model has
a substantially higher prediction performance compared to The predic-
tion results of the Hybrid ARIMA model are substantially better than the
original ARIMA model, but the results of the additive model are better
than the multiplicative model.

Among all AR models, the AR (5)-additive model has the best pre-
diction performance. Compared with the AR (5) model which has the
best performance in the original model, the RMSE improves 97.91%,
MAE improves 98.82%, R2 improves 119.68%, TIC improves 98.06%,
NMAE improves 98.30%, NMSE improves 99.86% CEC metrics improved
by 98.45%.

Among all ARIMA models, the ARIMA (6,1,2)-add model has the best
prediction performance. Compared with the ARIMA (6,1,2) model,
which has the best performance in the original model, RMSE improves by
99.23%, MAE improves by 99.20%, R2 improves by 118.61%, TIC im-
proves by 99.28%, NMAE improves by ARIMA model has better perfor-
mance than AR model in terms of prediction accuracy, directional
prediction accuracy and model fit.
Serial
number

Multiplicative model Additive model

Reconstruction
sequence

1 Trend Trend

2 Seasonal	Residual Seasonal þ
Residual

RangeEn_A 1 0.0263 0.0263

2 0.6543 1.6048



Table 9. Prediction results and calculation errors of original AR and ARIMA model.

Method RMSE MAE R2 TIC NMAE NMSE DPC MDPC CEC

AR1 24.0701 16.7683 0.4226 0.2693 0.5576 0.5979 0.6546 0.4799 5.1938

AR2 25.1531 17.3064 0.3694 0.3100 0.6573 0.9634 0.5944 0.4528 5.5202

AR3 24.6325 16.9609 0.3953 0.2990 0.6144 0.7571 0.6185 0.4578 5.3500

AR4 24.9545 17.1675 0.3794 0.3057 0.6351 0.8794 0.6024 0.4608 5.4544

AR5 23.3822 16.7117 0.4551 0.2629 0.5835 0.6677 0.6747 0.4608 5.0930

AR6 24.3858 16.7992 0.4073 0.2941 0.6020 0.7083 0.6235 0.4669 5.2851

AR7 24.5058 16.8831 0.4015 0.2968 0.6148 0.7818 0.6175 0.4669 5.3309

AR8 24.3449 16.7657 0.4093 0.2931 0.5976 0.6926 0.6285 0.4649 5.2693

AR9 24.1695 16.6348 0.4178 0.2892 0.5860 0.6605 0.6365 0.4639 5.2180

ARIMA012 24.0473 17.1153 0.4237 0.2718 0.5821 0.6357 0.6898 0.4618 5.2221

ARIMA112 23.4120 16.6435 0.4537 0.2615 0.5644 0.6053 0.6918 0.4669 5.0706

ARIMA212 23.3873 16.6179 0.4549 0.2613 0.5662 0.6179 0.6817 0.4608 5.0685

ARIMA312 23.3662 16.6133 0.4558 0.2610 0.5654 0.6116 0.6898 0.4629 5.0616

ARIMA412 23.3633 16.6159 0.4560 0.2609 0.5658 0.6154 0.6837 0.4608 5.0635

ARIMA512 23.3601 16.6195 0.4561 0.2609 0.5661 0.6146 0.6847 0.4629 5.0636

ARIMA522 24.6440 17.2345 0.3947 0.2660 0.5983 0.7170 0.6245 0.4839 5.3672

ARIMA612 23.3324 16.6021 0.4574 0.2605 0.5641 0.6057 0.6928 0.4679 5.0546

ARIMA712 23.3413 16.6140 0.4570 0.2606 0.5647 0.6065 0.6888 0.4618 5.0568

ARIMA812 23.3383 16.6152 0.4571 0.2606 0.5648 0.6072 0.6898 0.4639 5.0570

ARIMA822 24.4062 17.1962 0.4063 0.2663 0.5827 0.6708 0.6406 0.4829 5.3106

ARIMA912 23.3571 16.6235 0.4563 0.2608 0.5648 0.6071 0.6918 0.4649 5.0603

Table 10. Prediction results and calculation errors of hybrid ARIMA model.

RMSE MAE R2 TIC NMAE NMSE DPC MDPC CEC

AR5-mul 0.54774 0.18987 0.99970 0.00571 0.00537 0.00015 0.98738 0.00946 0.08293

ARIMA612-mul 0.21101 0.12583 0.99996 0.00220 0.00373 0.00002 0.99159 0.00736 0.03965

AR5-add 0.48789 0.19704 0.99976 0.00509 0.00990 0.00091 0.98738 0.01157 0.07916

ARIMA612-add 0.17950 0.13244 0.99997 0.00187 0.00730 0.00019 0.99159 0.00736 0.03783

Figure 8. Comparison of AR (5)-add and AR (5) model predicted value and actual value.
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Figure 9. Comparison of ARIMA (6,1,2)-add and ARIMA (6,1,2) model predicted value and actual value.

L. Zhao et al. Heliyon 8 (2022) e12239
4.4. Hybrid ARIMA predictive analysis

In the last section, the six models with better prediction performance,
AR (5), AR (5)-mul and AR (5)-add model; ARIMA (6,1,2), ARIMA
(6,1,2)-mul and ARIMA (6,1,2)-add, are focused on. For the above 6
methods plotted images to explore the prediction accuracy and the
variation of the prediction residuals of the whole PM2.5 time series. And
the following 2 conclusions were obtained.

(1) As in subsection 4.3.5, we selected AR (5)-add, ARIMA (6,1,2)-add
with the best prediction performance to compare with AR (5),
ARIMA (6,1,2) with the best original prediction, where since the
seasonal decomposition was set at a frequency of 90 for one
quarter, the prediction accuracy after The results are shown in
Figures 8 and 9.
Figure 10. Residual variation diagram fo
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The results show that for both the AR (5)-add and ARIMA (6,1,2)-add
models, the test set fits better. However, for the AR (5) and ARIMA
(6,1,2) models, the fit of the test set is slightly worse. Among them, the
worst prediction is done for the days when PM2.5 is 125 or higher con-
centration, which indicates that the traditional AR and ARIMA models
cannot complete a good fit and prediction for the time series with large
volatility and unusually extreme (very large or very small) series data.
Both Figures 8 and 9 present such characteristics, but with the additive
model, it is able to solve these two problems well and perform better
regression and prediction of the series.

(2) The residuals of the six models with good prediction performance
are plotted for the whole process of the test set, and the results are
shown in Figure 10. It is obvious that the residuals of the tradi-
tional AR and ARIMAmodel are about 60 times more than those of
r the whole process of model test set.
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the hybrid ARIMA model, and they are more evenly distributed
throughout the test set predictions. However, for the hybrid
ARIMA model using decomposed and reconstructed sequences,
the residuals are larger mainly at the beginning of the prediction
period (about the first 30 days), after which the prediction re-
siduals increase slightly at the peak of PM2.5 in 2016 (the serial
number in the figure is about 300), except for which the predic-
tion errors are extremely low for the whole process.

Also the blue and red color bars are longer compared to green and
black, which is especially evident in the reduced plot for the first 30 days
indicated by the arrow. This indicates that the ARIMAmodel outperforms
the AR model in both multiplicative decomposition and additive
decomposition.

4.5. Stability analysis and robustness check

The stability of the model is verified by plotting the scatter density of
the full test set for the six models with good prediction performance and
deriving the linear fit function as a comparison. Taylor plots are then
plotted in order to further complete the robustness check.

Firstly, for the scatter density plot, the color of the points represents
the density of the aggregated points, with red being the densest and blue
being the sparsest, and the value of the right color bar indicates the
normalized result of the point density. The advantage of normalized re-
sults is that data with different amounts of data can be represented by the
same colorbar, for example, in this paper, the original data test set N ¼
996, due to seasonal decomposition, hybrid ARIMA model test set N ¼
951, but they share a colorbar. red solid line and black dashed line are
linear fitted regression line and y ¼ x reference line, respectively. The
number of data N, the commonly usedmodel accuracy evaluationmetrics
R2 and RMSE, and our proposed comprehensive evaluation coefficient
(CEC) are labeled in the upper left corner of the figure.

From Figure 11, all four hybrid ARIMAmodels predict better than the
traditional ARIMA model according to the scatter plot distribution and
Figure 11. Correlation between the original and pre
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the linear fitting function. From the scatter density case, it can be seen
that the data are concentrated at 25 μg/m3. By comparison, the ARIMA
(6,1,2)-addmodel predicts the best results, where R2¼ 0.99997, RMSE¼
0.18, CEC ¼ 0.03783, and the fitting function is Prediction ¼
1.00004*Original-0.002.

Further analysis shows that only the slope of the ARIMA (6,1,2)-add
model fit function is greater than 1. This indicates that the magnitude of
most of the predicted values of this model exceeds the true value, but the
slope of the fit function of all the remaining methods is less than 1.
Combining the results in Figures 8 and 9: the traditional AR and ARIMA
model fits poorly for data with large series volatility and abnormal ex-
tremes (very large or very small). There is a great improvement in the
degree of fit of the hybrid ARIMA model, but most of the predicted data
are still smaller than the true value. Only the ARIMA (6,1,2)-add model
has the ability to make most of the predicted values exceed the true
values, and it can achieve the up and down fluctuation of the predicted
values with the true values as the center.

Taylor diagrams are then plotted to assess the robustness of the
proposedmodel. Taylor diagrams are used to evaluate the accuracy of the
model, and common Taylor diagram accuracy indicators are correlation
coefficient R, standard deviation STD, and central root mean squared
error (cRMSE) E

0
(Taylor, 2001). According to the literature, E

0
is

calculated as.

E' ¼
(
1
n

Xn

i¼1

�ðXi � XiÞ �
�
X '

i � X '
i

� �2 )1=2

(26)

where Xi and X
0
i are the true and predicted values of the time series

respectively; n is the number of data in the test set.
Figure 12 presents the Taylor plot for the model comparison. The

colored scatter in the Taylor plot represents the model, the blue radial
line represents the correlation coefficient R, the gray solid line represents
the standard deviation, and the green dashed line represents the central
root mean square error (cRMSE). The advantage is the ability to use 3
dicted PM2.5 index via scatter density diagram.



Figure 12. Taylor plots of original and hybrid ARIMA prediction models.
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metrics to show the model accuracy. For the bottom right corner to zoom
in, again from the figure it can be observed that the ARIMA (6,1,2)-add
model has the best prediction performance and is closest to the Original
point. Meanwhile, the results of the four models predicted by the hybrid
ARIMA model are extremely close to the original data, which indicates
that the prediction accuracy is significantly improved by using the sea-
sonal decomposition, while the use of multiplicative or additive
decomposition only slightly improves the prediction accuracy, which
laterally reflects that the model has high stability.

4.6. Comparison with existing work

It will be very important to compare our improved model with the
work of others, and in this paper we have chosen to compare and discuss
the research paper by Shahriar et al. by presenting and comparing the
accuracy of the models provided by both papers in a tabular format
(Shahriar et al., 2021). The comparison results are shown in Table 11.

As mentioned in Table 11, In order to ensure the consistency of the
data for the comparison, we have chosen the evaluation indicators RMSE,
MAE and R2 that are common in our work. The models with the best
accuracy indicators for each city were bolded, namely the CatBoost
Table 11. Comparison of model accuracy results against peer workers.

Sources Regions Models RMSE MAE R2

Work of
Shahriar et al.

Dhaka ARIMA-ANN 11.96000 6.78000 0.93000

ARIMA-SVM 14.03000 8.51000 0.91000

DT 12.27000 6.74000 0.88000

CatBoost 11.41000 5.82000 0.95000

Narayanganj ARIMA-ANN 12.86000 7.64000 0.90000

ARIMA-SVM 13.97000 8.31000 0.89000

DT 13.07000 7.95000 0.89000

CatBoost 12.56000 6.97000 0.92000

Gazipur ARIMA-ANN 12.34000 7.69000 0.91000

ARIMA-SVM 12.68000 7.23000 0.89000

DT 14.21000 7.97000 0.87000

CatBoost 12.07000 5.72000 0.94000

Our works Beijing AR5 23.38220 16.71170 0.45510

ARIMA612 23.33240 16.60210 0.45740

AR5-mul 0.54774 0.18987 0.99970

ARIMA612-
mul

0.21101 0.12583 0.99996

AR5-add 0.48789 0.19704 0.99976

ARIMA612-
add

0.17950 0.13244 0.99997
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model for Dhaka, Narayanganj and Gazipur and the ARIMA612-add
model for Beijing.

We found that Shahriar et al.'s CatBoost model does not differ much in
prediction for different city datasets. The best accuracy index is the
CatBoost model for Dhaka, with RMSE, MAE and R2 values of 11.41000,
5.82000 and 0.95000 respectively, which is larger than that of our works.
The ARIMA612-add model with integrated AIC and improved GS fixed-
order methods and seasonal decomposition had RMSE, MAE and R2

values of 0.17950, 0.13244, and 0.99997 respectively. comparison with
the peer workers study, the algorithm and model we propose in this
paper have even better performance.

5. Conclusion

In this study, a new hybrid ARIMA model is developed for predicting
the daily average PM2.5 concentration in Beijing. The data used in this
study include eight years of historical time series from January 1, 2013 to
January 31, 2022, of which 66% are classified as the training set and 34%
are classified as the test set.

The hybrid ARIMA model proposed in this paper has four important
innovations: (1) The ADF root test based on the annual PM2.5 data is used
to obtain the overall data smoothly, but some of the data are not smooth,
so there is a need for the first-order difference. (2) The integrated AIC and
improved GS methods are used to jointly determine the order, which
avoids the bias caused by using AIC alone to determine the order because
the data are not exactly normally distributed. The traditional AR and
ARIMA models are also discussed for prediction. (3) The optimal AR and
ARIMA model is selected by using the comprehensive evaluation coef-
ficient (CEC), which is a comprehensive evaluation of a single evaluation
index, to verify the accuracy and feasibility of the ranking method. (4)
Finally, the original sequence is decomposed using seasonal decompo-
sition and the entropy value of the decomposed sequence is obtained
using RangeEn_A, which is reconstructed according to the size of the
entropy value. Furthermore, the reconstructed sequence is used for pre-
diction, in order to compare the original optimal AR and ARIMAmodel to
evaluate the improvement of the hybrid ARIMA model in prediction
performance.

The hybrid ARIMA model proposed in this paper has four important
innovations: (1) The ADF root test based on the annual PM2.5 data is used
to obtain the overall data smoothly, but some of the data are not smooth,
so there is a need for the first-order difference. (2) The integrated AIC and
improved GS methods are used to jointly determine the order, which
avoids the bias caused by using AIC alone to determine the order because
the data are not exactly normally distributed. The traditional AR and
ARIMA models are also discussed for prediction. (3) The optimal AR and
ARIMA model is selected by using the comprehensive evaluation
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coefficient (CEC), which is a comprehensive evaluation of a single eval-
uation index, to verify the accuracy and feasibility of the rankingmethod.
(4) Finally, the original sequence is decomposed using seasonal decom-
position and the entropy value of the decomposed sequence is obtained
using RangeEn_A, and the reconstruction is carried out according to the
entropy value magnitude. And the reconstructed sequence is used for
prediction, and the original optimal AR and ARIMA model are compared
to evaluate the improvement of the hybrid ARIMA model in prediction
performance.

Compared with the ARIMA model, the proposed hybrid ARIMA
(including ARIMA-add and ARIMA-mul) model has better prediction
performance. Among them, the ARIMA-add model is the most advanced,
which has the ability to make most of the predicted values exceed the
true values and can achieve up and down fluctuations of the predicted
values centered on the true values. In addition, we also conducted a
stability analysis and robustness check, and the results show that the
prediction accuracy is substantially improved by using the seasonal
decomposition.

In summary, the validation results show that the new hybrid ARIMA
model has good prediction performance. 99.23% improvement in RMSE,
99.20% improvement in MAE, 118.61% improvement in R2, 99.28%
improvement in TIC, 98.71% improvement in NMAE, 99.97% improve-
ment in NMSE, and 43.13% improvement in OPC, The CEC index is
improved by 99.25%. Both in prediction accuracy, directional prediction
accuracy and model fit are substantially improved compared with the
traditional ARIMA model. The method can be applied as a convincing
analysis and prediction tool in practical fields. The derived PM2.5 is
beneficial to the formulation of relevant regulatory policies to reduce
regional air pollution levels and provide practical protection for people's
life and health. However, PM2.5 largely depends on many factors, such as
vehicle emissions, building construction and industrial activity intensity.
Therefore, there are still some research questions that need further study.
The model can also attach some external influences, such as sulfur di-
oxide index, nitrogen dioxide index and industrial exhaust emissions in
the area, to improve the prediction performance.
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