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Pyrazinamide (PZA) is an important component of first-line anti-tuberculosis drugs which is converted into ac-
tive form, pyrazinoic acid (POA), by Mycobacterium tuberculosis (MTB) pncA gene encoded, pyrazinamidase
(PZase). Mutations in pncA are detected in N70% of PZA resistant isolates but, noticeably, not in all. In this
study, we selected 18 PZA-resistant but wild type pncA (pncAWT) MTB isolates. Drug susceptibility testing
(DST) of all the isolates were repeated at the critical concentration of PZA drug. All these PZA-resistance but
pncAWT isolates were subjected to RpsA sequencing. Fifteen different mutations were identified in eleven iso-
lates, where seven were present in a conserved region including, Ser324Phe, Glu325Lys, Gly341Arg. As the mo-
lecularmechanismof resistance behind these variants has not been reported earlier,we have performedmultiple
analysis to unveil the mechanisms of resistance behind mutations S324F, E325K, and G341R. The mutant and
wild type RpsA structures were subjected to comprehensive computational molecular dynamic simulations at
50 ns. Root mean square deviation (RMSD), Root mean square fluctuation (RMSF), and Gibbs free energy of mu-
tants were analyzed in comparison with wild type. Docking score of wild type-RpsA has been found to be max-
imum, showing a strong binding affinity in comparisonwithmutants. Pocket volume, RMSD and RMSF have also
been found to be altered, whereas total energy, folding effect (radius of gyration) and shape complimentarily
analysis showed that variants S324F, E325K, and G341R have been playing a significant role behind PZA-
resistance. The study offers valuable information for better management of drug resistance tuberculosis.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Pyrazinamide (PZA) is a first-line drug used in combination with ri-
fampin and isoniazid that kills persister bacilli, and was found to be ef-
fective in shortening the duration of TB therapy [1,2]. The prodrug is
converted into an active state, pyrazinoic acid (POA), byMycobacterium
tuberculosis (MTB) pyrazinamidase (PZase) encoded by pncA. The major
targets of POA that have so far been identified are ribosomal protein S1
(RpsA), which is involved in trans-translation, and aspartate
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decarboxylase (panD), which is involved in ATP synthesis [3,4]. Shi
et al., confirmed POA binds with RpsA, disrupting the formation of the
RpsA–tmRNA complex [5], while POA is unable to bind mutant RpsA
that results in POA resistance. Deleting Alanine (RpsAΔA438) at the C-
terminal showed PZA resistance and lack of binding to RpsA inMycobac-
terium smegmatis. Shi et al., concluded that the C-terminal region of
RpsA is the interaction site of POA as it interferes with the transfer-
messenger RNA (tmRNA) complex formation during initiation of
translation.

In bacteria, Escherichia coli, encoded RpsA there are six S1 domains,
whereas MTB has four S1 domains [6]. The first two domains interact
and are involved in ribosomal binding and the last twomay be involved
to bind RNA (Salah et al., 2009). Bycroft et al., identified some conserved
amino acids, Phe307, Phe310, His322, Asp352, and Arg357 as RNA bind-
ing sites [7]. Yang et al., demonstrated that residues 292–363 forming
the fourth S1 domain is highly conserved and fully capable of interac-
tion with POA in mycobacterial species. Mutations at the C-terminus
of MTB RpsA (MtRpsACTD) may alter interactionswith POA in the fourth
S1 domain, leading to conformational changes in the POA binding site
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Table 1
Mutations in RpsA gene in PZA resistant pncAWT isolates [8].

SNO Nucleotide
Position

Codon
No.

Codon
Change

Amino Acid
Change

Frequency
(No. of
strains)

1 76delA 26 ATA Ile26FRAME 1
2 220G N A 74 GTC N ATC Val74Ile 1
3 278A N G 93 AAG N

AGG
Lys93Arg 1

4 618G N A 206 TTG N TTA Leu206Leu 2
5 636A N C 212 CGA N CGC Arg212Arg 2
6 830A N G 277 AAG N

AGG
Lys277Arg 1

7 971C N T 324 TCC N TTC Ser324Phe 1
8 973G N A 325 GAGNAAG Glu325Lys 3
9 1021G N C 341 GGC N CGC Gly341Arg 1
10 1024G N A 342 GAC N AAC Asp342Asn 4
11 1027G N A 343 GAC N AAC Asp343Asn 6
12 1030G N C 344 GCG N CCG Ala344Pro 6
13 1051A N T 351 ATC N TTC Ile351Phe 3
14 1108A N C 370 ACC N CCC Thr370Pro 1
15 1207 T N G 403 TGG N

GGG
Trp403Gly 1
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resulting drug resistance [2]. Two POA molecules form a complex
through Lys303, Phe307, Phe310 and Arg357making hydrogen and hy-
drophobic interactions that are essential for tmRNA bindings [2,5].

Here we analyzed the molecular mechanism behind the resistance
due to mutations Ser324Phe, Glu325Lys, Gly341Arg present in the
conserved region of RpsA. In our previous study [8], these mutations
were detected in the rpsA gene of PZA-resistance containing a WT
pncA gene. Here, we have addressed the conformational changes
that resulted from mutations Ser324Phe, Glu325Lys, and Gly341Arg
that may be very helpful in understanding the mechanism behind re-
sistance. We performed the molecular dynamic simulations including
interactions of POA with wild type and mutant RpsA to improve un-
derstanding and management of drug resistance leading to novel
drug design.
Fig. 2. Superimposition of wild type-RpsA (green) and mutant. (a) Structure of MTB RpsA and
E325K, and G341R and wild type-RpsA. (A) Superimposition of wild type before and after sim
2. Material and Methods

2.1. Study Samples

As described in our previous findings [8], we collected 18 samples
from the Provincial Tuberculosis Reference Laboratory (PTRL) that
were previously identified as PZA resistance (PZA R) but pncAWT. PTRL
is the only central reference laboratory of Khyber Pakhtunkhwa (KPK)
province, receiving samples for drug susceptibility testing.
2.2. Drug Susceptibility Testing (DST)

Drug susceptibility testing was performed using the automated
BACTEC MGIT 960 system. Mycobacterium tuberculosis strain ATCC
25618 / H37Rv and Mycobacterium bovis was used as negative and
positive controls respectively. Growth at a critical concentration of
PZA (100 μg/ml) was considered to indicate PZA-resistance.
2.3. DNA Extraction, PCR Amplification and Sequencing

PZA resistant samples were subjected for genomic DNA extraction
using the sonication method. [9,10]. The fragments containing RpsA
(1544-bp fragment, including the entire RpsA open reading region,
81 bp of the downstream sequence, 17 bp of the upstream sequence)
were amplified using the following previously reported primers:
RpsA-F (5′CGGAGCAACCCAACAATA-3′), RpsA-R (5′-GTGGACAGCAA
CGACT TC-3′) [11]. Each 50-μl PCR reaction contained 0.1 μl of each
DNTs, 3 μl MgCl2, 5 μl PCR buffer, 0.8 μl Taq (New England Biolabs,
UK)), 1 μl each forward and reverse primers, 34.8 μl molecular grade
water and 4 μl of genomic DNA. The PCR conditions were set as, 5 min
at 94 °C for the denaturation step; 30 cycles of 30 s, 30 s at 56 °C, and
72 °C for 1 min; an extension step at 72 °C for 5 min as previously de-
scribed. The PCR product was analyzed using 6 Applied Biosystems
3730xl (Macrogen, Korea).
POA binding residues 303, 307, 310, and 357. (b, c, d) Superimposition of mutant S324F,
ulation. (B,C,D) Superimposition of mutants before and after simulation.



Table 2
Docking score and pocket volume of wild and mutant RpsA.

Protein PatchDock score Volume (Å)

Wild type 2352 499.310
S324F 2068 110.424
E325K 1864 501.522
G341R 1952 563.383
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2.4. DNA Sequence Analysis

To find mutations behind PZA-resistance, the sequence data were
loaded into Mutation Surveyor V5.0.1 and compared with RpsA
(Rv1630) from the RefSeq (NC_000962.3) database of NCBI.

2.5. Homology Modeling of Mutants of RpsA and Generation of Ligand

A three dimensional structure of MTB RpsA [2] (PDB ID 4NNK) was
retrieved from the Brookhaven Raster Display (BRAD) protein data
bank (PDB) [12]. Prior to further analysis of RpsA structure, all the
water of crystallization was removed. Mutant structure of RpsA was
not available in PDB, hence we created mutations at locations,
Ser324Phe, Glu325Lys, Gly341Arg using PYMOL [13]. Themutant struc-
tures were validated through Ramachandran Plot [14].

The drug POA was retrieved from PubChem (PubChem CID: 1047)
[15] and energyminimization was carried inMolecular Operation Envi-
ronment (MOE) using MMFF94X forcefield [16,17].

2.6. Molecular Docking between RpsA Proteins and the Ligand

Protein was prepared using proteins preparation option in MOE. In-
correct hydrogen atoms were corrected while selenomethionines were
changed into methionine. Shape complementarity of protein and drug
was measured in the form of score using PatchDock server [18]. This
process is also known as geometric matching, is a methodwhere recep-
tor and ligand features, likemolecular surface is compared to find them
dockable. Intermolecular interfaces are a typical phenomenon in biolog-
ical systems where molecular complexes exhibit high shape comple-
mentarity to interact. Ligand and receptor shape complementarity at
the interface of their complexes is a logical practice andwouldwork sat-
isfactorily in re-docking. Proteins often undergo conformational
changes in order to create a highly complementary interfacewhen asso-
ciating with a drug [19,20]. The geometric score of the mutant in com-
parison with the wild type were analyzed. Pocket volumes of wild
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Fig. 1.Mutant model validati
type and mutant RpsA were compared through CastP server [21].
RpsA-POA interactions were analyzed using Ligplot as described in ear-
lier studies [22,23].

2.7. Molecular Dynamics Simulation (MD)

MD simulationwas run on all the complexes using AMBERwhile the
PRODRG web server was used to generate the topology of ligand. A
cubic box of 1.5 nm was solvated with each complex using a simple
point charge (spc) water model [24]. Sodium and chloride ions were
added into the cubic box to neutralize the systems. These ions hadmax-
imum electrostatic potential replacing the water molecules. Energy
minimization was done for 100,000 cycles using the steepest descent
algorithm.

Equilibration was carried out with constant temperature, constant
volume (NVT) ensemble at 300 K followed by constant temperature,
constant pressure (NPT) ensemble for 300 K and 1 bar pressure with
each for 100 ps. The Berendsen thermostat method was used for tem-
perature [25] while pressure was maintained constant by Parrinello–
Rahman barostat [26]. Bond length was rectified with Linear constraint
solver (LINCS) algorithm [27].

2.8. Principal Component Analysis

Principal Component Analysis (PCA) of a MD simulation was per-
formed on the mass-weighted cartesian coordinates. Internal motion
of the system was obtained by removing the overall rotation and its
translation from the trajectory. PCA is carried with long time dynamics
by recognizing low modes in proteins [28,29]. PCA reduces and sim-
plifies the complicated movement in long trajectory generated during
MD simulation [30–32]. A transformed set of variables z1, z2…, zp called
principal components (PCs) were generated during PCA. Energies of
sets of macromolecule conformations is described by Free Energy Land-
scape (FEL) [33,34] . The first two components called PC1 and PC2 give
the trajectories on initial two principal components of motion.

2.9. The Gibbs Free Energy

The available energy often called Gibbs free energy (G) (Sugita &
Kitao, 1998) was plotted against wild type-RpsA. The G is minimized
at constant pressure and temperature to chemical equilibrium state of
system. It is a thermodynamic potential at constant temperature and
pressure, where reduction in G is an essential state for the freedom of
processes.
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Fig. 4.RMSDofwild type andmutants RpsA. RpsA(WT); ribosomal protein S1 (RpsA)wild type had retained RMSD from28 ns to 45ns anddropped at 46 to 50 ns. RpsAmutant S324F RMSD
seems to be inconsistent as it to be rose at 50 ns. RpsAmutant E325K also had an increased RMSD at 50 ns. RpsAmutant G341R RMSD is higher at the start at 0 ns and seems to be a little
consistent but no further drop in value was seen at 50 ns.

Fig. 3. Wild type and mutants RpsA interaction with POA. MTB RpsA domain organization. The boxes denote S1 domains. MTBCTD residues number (285–481) wild type protein
formed two H-bonds and four hydrophobic with two POA molecules. Mutants S324F and E325K had fewer hydrogen and hydrophobic bonds, except for mutant G341R, which has
three hydrogen bonds but only two hydrophobic interactions.
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Fig. 5. RMSF of wild type and mutant RpsA. RpsA(WT); ribosomal protein S1 (RpsA) wild type had higher fluctuation in residues from 380 to 415. Mutant S324F had high fluctuation in
residues 340–358 and 380–418. Mutant E325K exhibited higher fluctuation at residues 340–355 and 380–415. Mutant G341R had more flexibility at residues 320–360 and 385–400.
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3. Results

Drug susceptibility results show that all the samples were PZA R. Of
18 PZAR isolates, 11 (61%) isolates harbored fifteen differentmutations,
whereas seven PZA R isolates were RpsAWT (Table 1). Mutations,
Ser324Phe, Glu325Lys, Gly341Arg, Asp342Asn, Asp343Asn, Ala344Pro,
and Ile351Phe were detected in the conserved region (292–363) of
the RpsA gene (Table 1). To explore the molecular mechanism behind
resistance, the first three conserved region mutations (S324F, E325K,
Fig. 6. Radius of gyration of wild type andmutant RpsA. A constant Rg value shows no change in
and G341R) were subjected to MD simulation at 50 ns. We have
detected significant changes in structure and activity of RpsAdue tomu-
tations S324F, E325K, and G341R. The overall result showed a signifi-
cant effect of mutant on the RpsA activity. (See Fig. 2.)

3.1. Binding Pocket Volume and Shape Complementarity

Shape complementarity score of wild type was found maximum
(2352) in comparison with mutants (Table 2). Pocket volume of wild
folding duringMD simulation. Mutants RpsA S324F, E325K and G341R remains unstable.



Fig. 7. PCA of wild type and mutant RpsA. Mutants RpsA S324F, E325K and G341Rcovered a large area showing a scattered type of motion on PC1 and PC2 Gibbs free energy.
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type and mutants were compared through CastP server. The mutants,
S324F, E325K, and G341R have a binding pocket volume of 110.424 Å,
501.522 Å, and 563.383 Å seems deviated from wild type, 499.310 Å.
This increase or decrease in binding pocket volume may affect the
firm interaction of protein with drug. These findings clarify the effect
of mutations on RpsA activity.
Fig. 8. Gibbs free energyofwild type andmutant RpsA.Wild typehas a significantGFE differen
more stable in comparison to mutants.
3.2. Model Validation and Proteins-Ligand Interactions

The majority of the residues of mutant structure were found in a
favorable region (Fig. 1). Number of hydrogen and hydrophobic interac-
tions are important in protein activity. Overall the residues Arg357,
Phe309, Gly319, leu320, Ala287, Ileu358, Asp352, Asp350, Ser359,
Leu353, Phe307, Phe310, Glu318, and Lys303were found to be involved
cewith that ofmutants as indicated by the peak color of plot. The peak color of wild type is



Fig. 9. Distance matrix of wild type and mutant RpsA. The average distance of wild type and POA is constant. Mutants G341R, S324F and E325K exhibited a high degree of fluctuation.
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in hydrogen and hydrophobic interactions. Wild type protein formed
two H-bonds and four hydrophobic with POA. Mutants S324F and
E325K had fewer hydrogen and hydrophobic interactions, as shown in
figure (Fig. 6).

3.3. Protein and Drug Trajectory

A molecular dynamics simulation was run for 50 ns on high perfor-
mance compunting of the RpsA complexwith drug.Wild type structure
attained a root mean square deviation (RMSD) of 2.0 Å, 4.8 Å and 1.8 Å
at 0 ns, 23 ns, and 50 ns respectively to attain the stability. The mutatnt
S324F showed a deviation and attained the RMSD value of 2.1 Å, 1.2 Å,
and 4.2 Å at 0 ns, 28 ns and 40 ns respectively, but at 50 ns it attained
some stability (3.8 Å). Mutant E325K attained the RMSD between 1.1
Å and 4.8 Å at 9 ns and 45 ns repectively. However, at 50 ns the final
RMSD was found to be 3.4 Å, slightly higher than wild type. The RMSD
values of G341R were found to be between 1.2 Å and 4.0 at 10 ns and
25 ns repectively. The RMSD seemed to be stable after 35 ns with a
final value of 3.2 Å at 50 ns. The deviation in the mutant seemed to be
low, but the final value of wild type at 50 ns was found to be lower ini-
tially but higher than mutants after some time (Fig. 4).

Fluctuations inmutant S324F, E325K, and G341R residues were a lit-
tle high in comparison with wild type- RpsA. Wild type exhibit RMSF of
0.3–3.8 Å. These fluctuations appeared to be present in between resi-
dues 358–400, whereas mutant S324F exhibited 0.4-9 Å where
Fig. 10. Total estimated energy of wild type and mutatnt RpsA. Total enegy measured for
the wild type was significantly higher compared to mutants G341R, S324F and E325K.
fluctuation was observed between residues 358–434. Mutant E325K
has a RMSF value between 0.7 Å and 4.7 Å and exhibited fluctuations
in residues 358–434. Mutation at position G341R exhibited fluctuation
in between 0.8 and 5.2 Å in which fluctuation was observed in residues
355–434. The RMSF value for S324F, E325K, and G341R demonstrated a
higher flexibility, resulting in low affinity for POA. Residues of the con-
served area forming the fourth S1 domain may be altered in RpsA
(Fig. 5).

3.4. Radius of Gyration (Rg)

The degree of compactness and folding can bemeasured through ra-
dius of gyration (Rg), plotted against time. The graphs showed a varia-
tion between mutants and wild type-RpsA (Fig. 6). Mutant seemed to
bemore flexible and deviated compared towild type protein. Variations
with respect to time represent changes in folding and stability while a
constant Rg value shows no change in folding during MD simulation.
The plot in Fig. 3 demonstrated a degree of variation in mutants
S324F, E325K, and G341R in compared to wild type. Wild type RpsA
has a stable Rg value between 18.0 Å and 19 Å after 25 ns but the Rg
values of mutants continuously increased during the whole simulation
period.

3.5. Essential Dynamics of Mutants and Wild Type-RpsA Analysis

Principle component analysis of wild typee and mutants were plot-
ted (Fig. 7). Wild-type RpsA showed a cluster type of motion covering
an area on PC1 between−188 and 140, PC2,−125 and 144, while mu-
tants exhibited a more dispersed type of motion except E325K. S324F
exhibited motion along PC1, −144 and 144, PC2, −125 and 150
(Fig. 4). However, E325K was found to be less scattered between PC1
and PC2 at−144 and 140,−75 and 75 respectively. The area of motion
covered by mutant G341R along PC1 is −116 and 174, and − 75 and
125 along PC2.

The relative stability of wild type and mutants can be measured by
Gibbs free energy (GFE) which is the amount of work a closed system
useswhen exchanging heat andworkwith the surroundings. The differ-
ences in Gibbs free energy values of wild type and RpsAmutants S324F,
E325K, and G341R showed that mutants may alter the stability of RpsA.
Wild type had a significant GFE difference with that of mutants as indi-
cated by the peak color in the plot (Fig. 8). The peak color in both states
of the wild type is more stable compared to the mutants.
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The distance matrix of drug and RpsA were found to be highly devi-
ated. The average distance was found constant throughout the simula-
tion, however mutants exhibited a high degree of fluctuation (Fig. 9).

The total enegymeasured for thewild-RpsAwas significantly higher
in compared to mutants. The wild type has a maximum total estimated
energy of N940 kj/mol as compared with mutants throughout simula-
tion as shown in Fig. 7. The total estimated energy of mutants G341R,
S324F and E325K was measured as 880kj/mol, 937kj/mol and, 940kj/
mol respectiviely.
4. Discussion

The emergence of first and second-line drug resistance is a major
hurdle towards WHO global end TB strategy 2020. A better insight
into drug resistance mechanisms is needed for better management
and success of global TB erradication programs. PZA is a key first-line
drug that kills subpopulations of non-replicated MTB. Previous studies
reported that resistance to PZA develops due to mutations in pncA, but
resistance may also develop due to mutations in ribosomal protein S1
(RpsA) and aspartate decarboxylase (panD) genes [8,35–37]. In our re-
cent study, we reported some novel mutations in the RpsA gene present
in PZA resistance isolates from Khyber Pakhtunkhwa, Pakistan, but the
molecular mechanism behind these mutants is still to be explored.
The current study provides insights into PZA resistance owing to RpsA
mutations present in the conserved region associated with PZA resis-
tance through in silico approaches. Evolutionarily conserved residues
are crucial for the protein's structure and function [43]. Thus, mutations
in cases of disease and resistance have been frequently found to affect
conserved and surrounding sites, leading to destabilization or a loss of
function [38].

Mutations in target proteins often affect flexibility and deviation,
andmake themaweak target for interactionwith drugs.Molecularflex-
ibility and stability fluctuations were detected from RMSF and RMSD
values. Stability is an important property in increasing function and ac-
tivity of biomolecules [39]. Increases in residues flexibilty of proteins
may have effects on protein activity, often measured by RMSF. We
found that RMSD and RMSF values of mutants S324F, E325K, and
G341R were higher than wild type, affecting function and activity.
These findings support the earlier studies on mutants W68R, W68G
and K96R [22,40,41] (Fig. 1). Changes in protein stability, flexibility,
and total energy of biomolecules have been exposed to cause loss of
thermodynamic stability and protein folding [42]. The total energy of
mutants may also be significantly different due to destabilization in
folding and deviations (Fig. 10).

Degree of compactness (a ratio of the accessible surface area of a
protein to the surface area of the ideal sphere of the same volume)
and folding stability was plotted against time. This degree is often mea-
sured through Radius of gyration (Rg) (Fig. 5). A stable Rg value in the
simulaton period signifies the proteins folding stability, while variations
in Rg suggest folding instability [43,44]. These results support the find-
ings of Yoon et al., that mutation may have a folding effect on proteins
[45]. We found a stable Rg for wild-type RpsA compared to mutants
(Fig. 6), where the Rg values consistantly increased, even at 50 ns, dur-
ing the entire simulation. This may be due to the abberant folding of
mutant proteins. Besides folding, the pocket volume of wild type is
considerd optimum as any deformation may lead to inhibited drug
interaction.

A drug-binding pocket is one of themost important features of resis-
tance and is related to size and shape of proteins [46]. Vats et al., ex-
plored the insight mechanism behind PZA resistance due to the K96R
mutation, where cavity volume was significantly higher in mutants in
than wild type. Binding affinity of protein to PZA may also be affected
due to changes in binding pockets [41,47]. In the current study, pocket
volume and shape complementarity score were found to be signifi-
cantly different between wild type and mutants (Table 1). These
findings suggest that resistance to POA, targeting RpsA may further be
assessed from such observations.

The primary forces in protein-ligand interactions are hydrogen
bonds, alongwith van derWaals and electrostatic forces [39]. Hydrogen
and hydrophobic interactions play a key role in the three dimenstional
structure of proteins, especially antibodies and enzymes.We report dif-
ferences in hydrogen bonding between wild-type protein and mutants
S324F, E325K, and G341R, that still offer most interactions in protein
folding, stability and molecular recognition. Hydrogen bonds support
the core, which is comprised of α-helix and β-sheet [48–50]. Both of
these interactions were found greater in wild-type proteins compared
with mutants. In the current study seven PZA R isolates were found as
pncA, rpsA, and panD wild type. The possible role in resistance may be
played by efflux proteins as described in a recent study [51]. The quan-
titative role of the efflux needs to be explored for better management of
resistant TB.

In conclusion, wemeasured the effect of our novel mutations S324F,
E325K, and G341R, and compared rpsA gene sequences in PZA-resistant
MTB isolates with the activity of RpsA. These muations change the total
energy, flexibility, stabilty and also the fluctuation of amino acid
resisdues of RpsA, thereby affecting the interactionswith POA. Stable in-
teraction of drug and target is also altered due to changes in the volume
of pocket of mutants S324F, E325K, and G341R, compared with wild
type-RpsA (585.736 Å). Further, hydrogen bonding in interaction site
residues and deviation and fluctuation also appeared to be affected.
The overall analysis supports that mutations of RspA gene have certain
roles in mediating PZA-resistance in pncAwild-type isolates. This is the
first study of such kind where interaction between clinical mutants of
RspA and POA are presented to our knowledge.
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