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Abstract: Motor imaging (MI) induces recovery and neuroplasticity in neurophysical regulation.
However, a non-negligible portion of users presents insufficient coordination skills of sensorimotor
cortex control. Assessments of the relationship between wakefulness and tasks states are conducted
to foster neurophysiological and mechanistic interpretation in MI-related applications. Thus, to
understand the organization of information processing, measures of functional connectivity are used.
Also, models of neural network regression prediction are becoming popular, These intend to reduce
the need for extracting features manually. However, predicting MI practicing’s neurophysiological
inefficiency raises several problems, like enhancing network regression performance because of
the overfitting risk. Here, to increase the prediction performance, we develop a deep network
regression model that includes three procedures: leave-one-out cross-validation combined with
Monte Carlo dropout layers, subject clustering of MI inefficiency, and transfer learning between
neighboring runs. Validation is performed using functional connectivity predictors extracted from
two electroencephalographic databases acquired in conditions close to real MI applications (150 users),
resulting in a high prediction of pretraining desynchronization and initial training synchronization
with adequate physiological interpretability.

Keywords: motor imagery; BCI inefficiency; functional connectivity; neural regression; media and
information literacy

1. Introduction

Motor imaging (MI) is the dynamic cognitive capability of generating mental move-
ments without executing them. This mental process triggers the neurocognitive mecha-
nisms that underlie voluntary movement planning, similar to how the action is performed
realistically. MI has been proposed as a reliable tool in acquiring new motor skills to
increase sports performance and physical therapy [1–4], in the development of professional
motor skills learning [5], and in improving balance and mobility outcomes in older adults
and children with developmental coordination disorders [6,7], among others. There is suffi-
cient experimental evidence that MI induces recovery and neuroplasticity in neurophysical
regulation as the basis of motor learning [8] and educational fields [9]. Concerning this
aspect, the Media and Information Literacy approach has been proposed by the United
Nations Educational, Scientific, and Cultural Organization (UNESCO) to gather several
vital human development capabilities. In practice, MI tasks are commonly solved from
electroencephalography (EEG) records, which provide noninvasive measures and flexible
portability at a relatively low-cost. However, EEG signals lack a suitable spatial resolu-
tion, not to mention the inter and intra-subject variability regarding the somatosensory
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cortex’s responses. Specifically, there is no consistency in the patterns among different
subjects. Indeed, the variability arises within a session for the same subject because of a
non-stationary, nonlinear, and low signal-to-noise ratio of EEG signals [10]. Together with
frequently used small sample datasets, all of these factors reduce MI systems’ performance
based on EEG [11,12].

An enhanced approach to addressing this EEG data complexity is to conduct multiple
training sessions to refine the modulation of sensorimotor rhythms (SMR). Nonetheless,
the inter-subject variability, together with uncertain long-term effects and the apparent
failure of some individuals to achieve self-regulation, makes a non-negligible portion of
users (between 15% to 30%) develop insufficient coordination skills even after long training
sessions. This inadequate performance of most brain-computer interface (BCI) systems
(BCI inefficiency) poses a challenge in MI research [13]. To address this problem, the BCI
performance model is enhanced in two directions: (i) Developing guidelines in neural
testing set-ups, practice, and instructions to ensure better performance of brain responses;
and (ii) Promoting evaluation tools to forecast the system performance may help identify
the core issue of variability to incorporate compensating actions for the inefficiency when
solving BCI-based tasks. In particular, a calibration strategy can be added, working hand
in hand within the training stage. Therefore, it is possible to adapt the decoding scheme
with an explicit brain pattern [14], highlighting relevant BCI predictors to decrease training
efforts and encourage user-centered MI [15]. To date, several electrophysiological indicators
have been reported to anticipate the MI inefficiency, like the direct assessment of the SMR,
which extracts the power spectral density (PSD) from the resting wakefulness at motor
cortex locations [16]; a measure of the PSD uniformity of the resting-state data using spectral
entropy [17,18]; and the PSD-based estimate to assess the dis/similarity (connectivity) of
EEG signals at different locations in an attempt to understand the interdependency between
functional and structural networks of corresponding cortical brain structures (like spectral
coherence [19,20] or coherence-based correntropy spectral density [21]), among others. To
tackle the influence of artifacts and intertrial/inter-subject amplitude variability, phase-
based relationships (phase synchronization) are more desirable as a functional connectivity
(FC) measure of spatially distributed regions, dynamically interacting in accomplishing
a mental task [22]. It has been proved that the functional connectivity features measured
by the phase lag index (or its weighted version—wPLI and phase-locking value PLV) can
discriminate between different MI tasks [23,24].

Therefore, predicting motor performance from the resting motor-system functional
connectivity can be determined as in [16], showing that the efficient brain reconfiguration
corresponds to a better MI performance [25,26]. Nevertheless, several conditions can
affect their correct estimation and introduce spurious contributions, giving a potentially
distorted measure of the real interactions (termed spurious connectivity) [27]. Thus, FC
estimation is highly time-dependent and fluctuates within multiple timescales, yielding
inter-subject variations that remain a substantial problem [28]. Specifically, the obstacles
related to volume conduction and noise perturbations cause phase synchronization to
incorporate thresholds applied to these FC measures to improve the connection sets’
discriminative ability. However, the threshold selection is generally far from being an
automated procedure for big datasets [29]. Undeterred by the promising evidence, there
is a need to understand the learning mechanisms and the brain network reorganization,
aiming to support the efficiency of BCI systems [30].

As regards the prediction model, several regression methods are available for prog-
nosticating MI accuracy from neurophysiological variables like simple and multiple linear
regression [31,32], stepwise regression [33], kernel regression [34], and (kernel) support
vector machine regression [35], among others. Additionally, there is increasing use of
regression approaches with neural networks that can be applied to the raw EEG data,
simplifying BCI’s design pipelines by removing the need to extract features manually.
However, several aspects degrade the prediction model performance, such as the fact
that FC measures are prone to be influenced by outliers, which are to be removed before
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calculating correlations [36]. Another drawback is the inter-trial variability of MI data (with
a notable increase in subjects having low MI skills), which restricts prediction models with
single-trial EEG data [37]. One more issue influencing the regression model is the user’s
categorization depending on their SMR activity (predictor) and classifier performance (tar-
get response) during the MI runs. Users are frequently adjusted to two partitions (skilled
and non-skilled) divided by a single target value given in advance, as in [38]. Still, as the
number of subjects tested increases, the range of FC changes also rises. The partition-based
method should also be sensitive in detecting predictor differences among subject clus-
ters [39,40]. Therefore, the need for clustering into more partitions becomes more evident,
as shown in [41]. Lastly, the correlation coefficient (reflected in r-squared) is often applied
to assess the prediction shape, while the p-value levels its statistical significance that can
be implemented through several test procedures, as developed in [42]. A common issue
in neural network regression models, trained with small samples in MI studies, is their
fitting to spurious residual variation (overfitting), apart from a controversial interpretation
of p-values [43].

Here, to increase the prediction performance of the baseline linear regression models,
we develop a deep network regression model devoted to prognosticating Motor Imagery
Skills using EEG Functional Connectivity Indicators, appraising three procedures: leave-
one-out cross-validation combined with Monte Carlo dropout layers, subject clustering of
MI inefficiency, and transfer learning connecting neighboring runs. Our approach com-
prises functional connectivity predictors extracted from electroencephalographic signals to
favor the data interpretability. To deal with the risk of overfitting prediction assessments
because of the deep learning framework, we intend to preserve as much information as pos-
sible from the measured scalp potentials. Thus, to reach competitive values of prediction
errors achieved by the leave-one-out cross-validation scheme, we introduce the following
procedures: (i) Monte Carlo dropout layers to decrease the probability that the learned rules
from specific training data cannot be generalized to new observations; (ii) Subject efficiency
clustering to adapt the DNR estimator more effectively to complex EEG measurements
inherent to BCI inefficiency subjects; (iii) For Prediction of Initial-training Synchronization,
transfer learning of the weights inferred at the predecessor run to deal with the few-trial
sets. The validation is performed in two MI databases (150 users) acquired in conditions
close to real MI applications. Obtained results show how our approach can achieve a
high prediction of pretraining desynchronization and initial training synchronization with
adequate physiological interpretability. We further compared the DRN predictor prediction
performance (on average, 0.8) with the results obtained by linear regression models that
are reported, at least for DBI, in the baseline work [44], presenting values of R-squared not
exceeding 0.54.

The rest of the paper is organized as follows: Section 2 briefly discusses the regression
prediction model’s theoretical background. Section 3 describes the experimental set-up,
including both datasets evaluated. Section 4 presents the assessment of Deep Regression
Network performance and discusses the findings obtained to predict pretraining desynchro-
nization and initial training synchronization. Lastly, Section 5 concludes the paper.

2. Methods
2.1. Electrophysiological Predictors Based on Phase Synchronization Relationships

Initially, we consider predictors based on the following two widely-used FC measures
of phase synchronization between every pair of EEG channels xc, xc′ ∈RT (∀c, c′∈C, c 6=c′,
where C ∈ N is the number of channels):

Phase Locking Value (PLV): This phase coherence measure assesses the pairwise
similarity relation based on states’ recurrence density, occurring between electrodes. For
the single-trial analysis, PLV is computed by the following average over a time window [45]:

ν1(c, c′) = |E
{

exp(−j(∆Φ(c, c′; n, t, f ))) : ∀t ∈ T
}
|, ν1(, ) ∈ [0, 1], (1)
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where ∆Φ(c, c′; n, t, f ) ∈ [−π, π] is the instantaneous phase difference computed, at time
instant t for the n-th trial (∀n∈N, where N∈N is the number of EEG trials), and notations
E{·} and | · | stand for expectation operator and magnitude, respectively. Of note, to
preserve physically meaningful, the phase signal must highlight only a given frequency
oscillation f ∈R+. Here, this is achieved utilizing the convolution with a narrow band
complex Morlet wavelet through the continuous wavelet-transform [46].

Weighted Phase Locking Index (wPLI):This indicator quantifies the pairwise phase
difference distribution’s asymmetry by averaging across the trial set. Then, the wPLI is
computed by averaging over the trial ensemble, as follows:

ν2(c, c′) =
|E{={S(c, c′; n, f )} : ∀n∈N}|
E{|={S(c, c′; n, f )}| : ∀n∈N} , ν2(, ) ∈ [0, 1] (2)

where S(c, c′; n, f ) ∈ C is the cross-spectral density based on Morlet wavelets and ={·}
stands for the imaginary part of a complex-valued function. wPLI is assumed to deal with
the presence of volume-conduction, noise, and sample-size bias [47].

2.2. Construction of Brain Graph Predictors

We also consider the predictors that involve a generic approach to characterizing
brain activity using undirected graph theory. These predictors describe complex systems’
properties by quantifying their respective network representations’ topologies. In large-
scale brain networks, the node-set (noted as{ϕr(c)∈R}r∈Z) usually designates brain regions
holding V = C(C − 1)/2 paired (undirected) links. The following weighted network
indexes are extracted from the phase synchronization-based relationships (spatiotemporal
dependences) [48]:

– Strength is a local-scale property that accounts for the number of links connected to
each node, computed as follows:

ϕ1(c) = CE
{

ν(c, c′) : ∀c′ ∈ C, c′ 6= c
}

. (3)

– Clustering Coefficient is a global-scale property that indicates the tendency of a net-
work to form tightly connected neighborhoods, measuring the segregation brain’s ability
for specialized processing within densely interconnected regions, computed as follows:

ϕ2(c) =
1

C2E

{
πc

E{ν̂(c, c′)E{ν̂(c, c′)− 1}} : ∀c ∈ C, c′ 6= c
}

(4)

where the binarized connection value (connection status) ν̂(c, c′)= 1, if ν(c, c′) > 0,
otherwise, ν̂(c, c′)=0. πc∈N is the number of triangles neighboring the c-th node.

2.3. Regression Network Models

Let X∈X (termed predictor) and Y∈Y (response) be a couple of random variables for
which the mutual dependence ∼y∈Y= ξ(x∈X ) is assessed through the approximating func-
tion (termed regressor) ξ :X→Y . Namely, let {xm∈X, ym∈Y : m∈M} be the corresponding
composite observation set, across M∈N subjects, the following optimization framework
allows fixing the regressor as:

w∗ = min
w
E{‖ym − ξ(xm; w)‖2 : ∀m ∈ M}, (5)

where w is an unknown parameter vector fitting the data most closely in terms of the
`2-norm.
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For implementing the data-driven estimator in Equation (5), we employ the Deep
Regression Network (DRN) developed in [49] that jointly extracts and performs the regression
analysis, as follows:

min
w
E
{
‖(ym − (ξ J ◦ ξ J−1 ◦ · · · ◦ ξ1)(xm( f ); w)‖2

2 : ∀m∈M
}

, (6)

where ξ j is the j-th layer (j ∈ J) and ◦ stands for function composition. Notation xm( f )
describes the connectivity predictors extracted in each frequency rhythm f while ym
contains the accuracy response of m-th subject.

3. Experimental Set-Up

The methodology for enhanced prediction of motor imagery skills using functional
connectivity indicators is evaluated under a regression model to predict the bi-class accu-
racy response of subjects, embracing the following stages: (i) Predicting capability estima-
tion of the pre-training desynchronization under a conventional linear regression model,
testing different scenarios of input arrangements to improve the system performance;
(ii) Prediction assessment of the pre-training desynchronization under the data-driven
network regression model; (iii) Enhanced network prediction assessment using leave-one-
out cross-validation combined with Monte Carlo dropout layers and clustering of subject
inefficiency; (iv) Enhanced network regression prediction of initial-training synchronization
with an additional transfer learning procedure.

The pre-training desynchronization assesses the relationship between the bi-class
accuracy response and the electrophysiological indicators extracted from resting wakeful-
ness data. We employ either resting-state or task-negative state before the cue-onset of
the conventional MI trial timing for evaluation purposes. Besides, as the target response,
we compute each subject’s classifier accuracy in distinguishing either MI class using the
short-time sliding feature set extracted by the Common Spatial Patterns (CSP), which
maximizes the class variance. To accurately extract the subject EEG dynamics over time,
the sliding window is adjusted to 2 s, having an overlap of 50%.

On the other hand, the pre-training desynchronization predictor relies on the fact that
the change in neural activity, intentionally evoked by a mental imagery task, shows certain
regularities through training runs or sessions. Accordingly, the pre-training indicator of
neural desynchronization attempts to anticipate the MI responses evoked within every
run’s wakefulness data.

3.1. MI Databases Description and Preprocessing

Giga-DBI: This MI dataset is publicly available at (http://gigadb.org/dataset/100
295, accessde on 30 January 2021). It gathers EEG records from fifty subjects (M = 50),
fixing the well-known 10-10 electrode configuration with C=64 channels. The signal x(c)
comprises T=7 s, at Fs =512 Hz sample frequency. The MI protocol (see Figure 1) starts
with a fixation cross shown on a black screen for 2 s. Further, a cue instruction is displayed
depending on the MI instruction (label), which appears randomly within 3 s. For concrete
testing, the cue asked to imagine moving his fingers, starting from the index finger and
reaching the little one. Afterward, a blank screen is visible at the beginning of a break
period (shown randomly between 6.1 and 6.8 s). Each MI run composes over 20 trials
and a written cognitive quiz [50]. Every subject performed five runs (on average) and a
single-trial resting-state recording, lasting 60 s.

http://gigadb.org/dataset/100295
http://gigadb.org/dataset/100295
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activation function.226

– ξ3: A one-neuron layer with linear activation is used to predict the MI skill value ∼ym∈R.227
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4 brain-connectivity-toolbox.net
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Figure 2. Dolutegravir may inhibit HIV-resistant viruses from becoming archived within the vi-
ral reservoir.

Every raw EEG channel of either database was band-pass filtered in the frequency
range f ∈ [4–40] Hz, covering the sensorimotor rhythms considered (θ, µ, β). Then, the
band-passed EEG data are spatially filtered by a Laplacian filter centered on the selected
electrode to improve the spatial resolution of EEG recordings, avoiding the influence of
noise coming from neighboring channels and thus addressing the volume conduction
problem (This filtering procedure was carried out using Biosig Toolbox that is free available
at http://biosig.sourceforge.net, accessde on 30 January 2021). Further, the electrophysi-
ological indicator set, {ϕr}, based on phase synchronization is extracted using the MNE
package in Python, while the graph predictors are estimated using the Brain Connectivity
Toolbox (brain-connectivity-toolbox.net).

3.2. Deep Network Regressor Set-Up and Performance Evaluation

The proposed Deep Regression Network architecture comprises (see Figure 3):

– IN: We consider two inputs-layer arrangements: multivariate indicator X( f ) ∈
RC×M; f ∈ F (Being C the electrode and links number when using graph indexes and
FC, respectively).

– ξ1: The first dense layer codes the input relevant patterns from phase synchronization
features. Here, we fix the number of neurons as h = p1.5Cq neurons, where p·q
stands for the ceiling operator. A tanh-based activation is employed to reveal non-
linear relationships.

– CT: A concatenate layer is applied to append the resulting feature maps from the set
of patterns extracted in ξ1. In particular, all phase synchronization-based features
(coded as connectivity matrices) are stacked into a single block, sizing hF.

– ξ2: This fully-connected layer aims to preserve the predicted patterns assembled in the
CT layer to fed a linear regressor. The number of neurons is fixed as p0.5hFq. Again,
the tanh is used as activation function.

– ξ3: A one-neuron layer with linear activation is used to predict the MI skill value ∼ym ∈ R.
– DO: This Dropout layer randomly skips neurons according to drop rate. We fix the

drop rate at 0.2 empirically.

https://physionet.org/content/eegmmidb/1.0.0/
https://physionet.org/content/eegmmidb/1.0.0/
http://biosig.sourceforge.net
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IN: X(θ) IN: X(µ) IN: X(β)

ξ1(X(θ)) ξ1(X(µ)) ξ1(X(β))

CT: Concatenate()

ξ2(·)

ξ3(·)

DO: Dropout()

DO: Dropout()

Figure 3. Deep Network Regressor’s architecture.

For measuring the relationship between the response variable and the composite
predictor, we build the set {y∗m, ym}M

m=1, where ∼y∗m ∈ R is computed using our Deep
Learning Regressor following a leave-one-out cross-validation strategy along with the M
subjects. The quantity measures account for the influence to predict the acceptance rate
on the electrodes performed by individuals, namely, for computation of value ∼y∗m, one
individual is picked out as the training set and the remaining ones as the testing set. Then,
the coefficient of determination (noted as R2∈R[0, 1]) is computed. Besides, a p-value is
computed from a two-sided t-test whose null hypothesis is that the regression slope is
zero [44]. It is worth noting that such a hypothesis testing is used, as in state-of-the-art
works [38,44], because our Deep Learning Regressor aims to code the no consistency in
the brain patterns among different subjects to favor a linear dependency between ym and
∼y∗m. Moreover, to provide a comparison with Neural Network-based regression strategies,
the real-valued measures of Mean Absolute Error (MAE), and Root Squared Error (RMSE) are
also assessed, as carried out in [51,52]:

R2 = 1− var{ym− ∼y∗m: ∀m∈M}
var{ym : ∀m∈M} (7)

MAE = E
{
‖ym − ∼y∗m‖1 : ∀m∈M

}
(8)

RMSE = E
{
‖ym − ∼y∗m‖2 : ∀m∈M

}
(9)

where var{·} stands for the variance operator.

4. Results and Discussion
4.1. Baseline Linear Regression of Pre-Training Desynchronization

Here, we consider two scenarios of input predictor arrangements: (i) Matrix indicator,
when computing one individual network vector to reflect the electrode contribution (termed
multichannel); (ii) Vector indicator, holding a single scalar value of FC accomplished by each
subject. For comparison purposes with similar reported works, we analyze two indicator
approaches extracted from each individual: (a) Average that obtains the mean value over
the electrode set, and (b) the channel with the best R-squared (best channel).
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Intending to evaluate the linear regression model, Table 1 displays the values of
R-squared and its significance (namely, p-value), which are calculated using the Sklearn
package in Python. As seen, both indicator approaches, multichannel and average, perform
below the procedure for best channel extraction from the resting-state data regardless of
the brain graph predictor employed. Thus, selecting the best channel allows achieving
higher values of R-squared with lower p-values within the considered frequency rhythms.
In the case of the predictors directly extracted from FC measures, PLV and WPLI, the upper
triangular matrix is vectorized to feed the regression, yielding a performance similar to
the graph indexes. Note that the best channel approach is not reported for PLV and WPLI
because of difficulties in their implementation. Consequently, the above prediction results
show that DBI achieves a poor performance in predicting the pre-training desynchroniza-
tion, at least, using the baseline linear regression. Besides, the DBII collection gives a much
worse prediction than DBI since the former EEG data contain fewer trials (100 vs. 22 per
label), more subjects (105 vs. 50), and was acquired with a much lower sampling frequency
(512 vs. 150 Hz). Still, the importance of considering EEG collections with elevated com-
plexity remains an actual problem since they are more close to the requirements of real
MI applications.

Table 1. Predicting performance of the FC predictors extracted from the resting-state data, employing the matrix indicator,
the average, and the best index computed across the whole channel set. Notation mean stands for the indicator R2 averaged
across the frequency bands. Abbreviation na is not applicable.

DBI DBII

Ω Strenght

[Hz] multichannel average best channel multichannel average best channel
R2 p-val R2 p-val R2 p-val R2 p-val R2 p-val R2 p-val

θ 0.472 >0.01 0.088 0.542 0.322 0.022 0.090 0.360 0.098 0.318 0.223 0.022
µ 0.296 0.036 0.268 0.059 0.382 0.006 0.155 0.113 0.169 0.083 0.355 0.002
βlow 0.069 0.633 0.131 0.361 0.348 0.013 0.032 0.742 0.124 0.206 0.153 0.118
mean 0.279 0.162 0.351 0.092 0.130 0.243

Clustering coefficient

θ 0.180 0.210 0.177 0.217 0.430 0.001 0.205 0.035 0.055 0.573 0.231 0.017
µ 0.178 0.215 0.295 0.037 0.363 0.009 0.139 0.154 0.150 0.124 0.387 >0.01
βlow 0.167 0.316 0.307 0.029 0.255 0.073 0.225 0.020 0.143 0.145 0.164 0.092
mean 0.167 0.260 0.349 0.190 0.117 0.261

wPLI

θ 0.104 0.468 0.028 0.845 na na 0.248 0.010 0.300 0.001 na na
µ 0.418 0.002 0.352 0.012 na na 0.075 0.444 0.482 >0.01 na na
βlow 0.269 0.058 0.203 0.155 na na 0.202 0.037 0.346 >0.01 na na
mean 0.263 0.194 0.175 0.376

PLV

θ 0.471 >0.01 0.406 0.003 na na 0.086 0.378 0.088 0.368 na na
µ 0.454 0.001 0.627 0 na na 0.066 0.497 0.261 0.006 na na
βlow 0.425 0.002 0.305 0.030 na na 0.064 0.514 0.317 0.001 na na
mean 0.450 0.445 0.074 0.222

We also consider the case of multiple linear regression, involving both graph index
predictors. Table 2 shows the effect of multiple regression remains still controversial for the
tested EEG data because no suitable values of R-squared can be accomplished using either
scenario of input arrangement representation.
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Table 2. Prediction performance of the multiple linear regression for the graph indexes extracted
from the resting-state data.

Ω
DBI DBII

Average Multichannel Average Multichannel

R2 p-val R2 p-val R2 p-val R2 p-val

θ 0.192 0.180 0.312 0.026 0.234 0.102 0.085 0.387
µ 0.134 0.351 0.173 0.228 0.213 0.137 0.121 0.222

βlow 0.032 0.822 0.008 0.951 0.101 0.484 0.116 0.239
mean 0.120 0.164 0.183 0.107

4.2. Network Regression Prediction of Pre-training Desynchronization

Next, we employ the multichannel matrix indicator extracted from the whole subject
set to predict the pre-training desynchronization. We also analyze the joint characterization
of both graph indexes (strength and clustering coefficient), concatenating their vector
representations of each subject into a single supervector. Besides, we take advantage of the
wide path to feed the Wide&Deep neural network with different training sets simultaneously
that are learned by the first layer separately. The next layer merges all input predictor sets,
exploring common relations among them. In particular, we contrast the network regression
fed by the connectivity indicators extracted within all three frequency rhythms against the
widely used extracting approach from µ and βlow.

Besides the R-squared value, the estimates of MAE and RMSE are also computed
to evaluate the DRN performance, accounting for the influence of the adopted leave-
one-out cross-validation strategy on the DRN performance. Concerning the examined
graph indexes, Table 3 shows that the strength and clustering coefficient result in similar
prediction performance. Also, their combination performs comparably to their separate
training. In turn, the use of indicators directly based on phase synchronization allows
producing comparative assessments with the graph indexes, meaning that the network
regression can handle FC indicators with a lower complexity of computation.

Table 3. Obtained prediction performance of the Wide&Deep neural network regression fed by
the tested functional connectivity predictors extracted from the resting-state data, contrasting two
different wide path configurations of rhythm extraction: considered rh and µ + βlow.

θ+ µ + βlow

Ω
DBI DBII

R2 RMSE MAE R2 RMSE MAE

Strength 0.787 0.488 0.424 0.412 0.440 0.393
Clus. Coefficient 0.804 0.444 0.367 0.472 0.471 0.436

Both indexes 0.800 0.419 0.353 0.321 0.367 0.314
wPLI 0.791 0.476 0.396 0.591 0.448 0.391
PLV 0.785 0.468 0.395 0.465 0.421 0.374
mean 0.793 0.454 0.386 0.452 0.390 0.343

µ + βlow

Strength 0.766 0.470 0.388 0.525 0.406 0.342
Clus. Coefficient 0.695 0.475 0.396 0.456 0.372 0.316

Both indexes 0.788 0.464 0.382 0.392 0.404 0.338
wPLI 0.772 0.544 0.480 0.525 0.354 0.305
PLV 0.700 0.426 0.353 0.362 0.405 0.350
mean 0.744 0.485 0.410 0.429 0.367 0.309

Overall, the network regression reaches an R-squared value as high as 0.79 on average
across the FC indicators extracted from DBI and 0.45 from DBII, respectively, outperforming
all previous baseline linear regression outcomes displayed in Table 1. Moreover, the joint
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use of all frequency bands achieves better predictive performance than the two-rhythms
ensemble in each EEG collection evaluated. Nevertheless, the prediction errors assessed
by MAE and RMSE are still high. Even worse, the corresponding error values for DBI are
lower than those estimated for DBII due to its greater variability.

Still, the DRN’s performance can be enhanced by evaluating its robustness against
the noisy input sets, making the data-driven the data-driven regressor provide overfitting
prediction assessments. To cope with this issue, we consider two strategies for improving
the DRN robustness: Firstly, the thresholding method is incorporated, usually performed
in functional connectivity analysis at the preprocessing stage, to remove false connections
and noise. Following the procedure in [53], we fix the proportional thresholding rule to 0.7,
preserving a sufficient amount of links under a value of p ≤ 0.1. Secondly, the leave-one-
out cross-validation is further refined by incorporating the Monte Carlo dropout layers,
containing neurons with a probability of being ignored during training and validation.
Therefore, both assessments in Equations (8) and (9) are recomputed by averaging over Q
iterations of the Monte Carlo dropout applied to the dense DRN layers. It should be noted
that the dropout rate is expected to be low due to the relatively small amount of input data
in both databases tested. So, we fix the dropout rate heuristically to 0.2 while the number
of iterations adjusts to Q=100.

Table 4 displays the regression performance computed by the leave-one-out cross-
validation together with Monte Carlo dropout, revealing that the prediction improves
notably because of the neurons with a probability of being ignored during training and
validation. On average, the R-squared value reduces by 10% for DBI, but the prediction
errors of MAE and RMSE fall by nearly half. In the case of DBII, the R-squared value rises
by 20% while the prediction errors shrink by almost 40%. Once again, the extraction from
three frequency rhythms is more effective. Additionally, the performance results using the
thresholding procedure seem to improve the prediction assessment (for which the input
predictor sets are denoted with *), but to some extent. As a result, the improved validation
procedure combined with thresholding reduces the overfitting prediction effect, making it
more effective in input measures with higher variability.

Table 4. Prediction performance of the Wide&Deep neural network regression fed by the tested
functional connectivity indicators extracted from the resting-state data, employing the validation
procedure that includes the Monte Carlo dropout layers combined with the threshold procedure.
The input predictor sets denoted with * are thresholded. Bold numbers show the best result of
each experiment.

θ+ µ + βlow

Ω
DBI DBII

R2 RMSE MAE R2 RMSE MAE

Strength 0.731 0.247 0.212 0.341 0.293 0.247
Strength * 0.763 0.184 0.142 0.646 0.216 0.179

Clus. Coefficient 0.453 0.238 0.192 0.635 0.240 0.201
Clus. Coefficient * 0.753 0.208 0.174 0.698 0.242 0.202

Both indexes 0.810 0.145 0.110 0.741 0.165 0.127
Both indexes * 0.672 0.186 0.145 0.701 0.167 0.132

PLV 0.730 0.183 0.140 0.519 0.391 0.355
wPLI 0.795 0.146 0.112 0.573 0.216 0.173
mean 0.713 0.192 0.153 0.606 0.241 0.202
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Table 4. Cont.

θ+ µ + βlow

Ω
DBI DBII

R2 RMSE MAE R2 RMSE MAE

µ + βlow

Strength 0.666 0.200 0.151 0.270 0.252 0.198
Strength * 0.781 0.168 0.128 0.439 0.277 0.239

Clus. Coefficient 0.795 0.155 0.126 0.816 0.202 0.177
Clus. Coefficient * 0.676 0.186 0.155 0.771 0.180 0.150

Both indexes 0.597 0.208 0.158 0.629 0.232 0.187
Both indexes * 0.666 0.182 0.150 0.693 0.207 0.170

PLV 0.742 0.210 0.173 0.344 0.272 0.213
wPLI 0.864 0.123 0.098 0.763 0.212 0.185
mean 0.660 0.226 0.153 0.547 0.229 0.189

For interpretation purposes, Figure 4 depicts the DNR weights that mostly support the
prediction performance, produced by wPLI and PLV after introducing the leave-one-out
cross-validation. For DBI, the former measure weights (left column) are robust and spread
all over the scalp, as happens with the latter FC measure (third column). DBII faces a
similar situation (fifth and seventh columns), though providing fewer estimates. This
result can be explained because of the higher complexity of DBII. Next, the use of leave-
one-out cross-validation with Monte Carlo dropout (noted with †) allows the number of
contributing links to decrease sharply, therefore avoiding the DNR overfitting, as seen in all
even columns regardless of the validated data collection. Note that in this case, all rhythms
contribute, though to a different extent. Besides, most of the relevant links appear over the
frontal-occipital and parietal-occipital areas directly related to the MI responses [54].

DBI DBII
wPLI wPLI† PLV PLV† wPLI wPLI† PLV PLV†
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Figure 4. DNR weights mostly supporting the prediction performance, learned for wPLIand PLVpredictors using two
validation scenarios: leave-one-out cross-validation and leave-one-out cross-validation with Monte Carlo dropout (noted
with †).

4.3. Enhanced DNR Prediction Assessment Using Subject Efficiency Clustering

To improve the regression performance, we determine the differences in neural re-
sponses among the categorized users depending on their motor skills as a critical factor
affecting the data-driven estimator in Equation (6). Therefore, we find the number of
subject groups from the MI classification performance using a clustering approach. The
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Silhouette score-based cost is utilized, finding three clusters and then applying the k-means
algorithm to compute each subject membership.

The classification performance is presented in Figure 5 for the studied databases. A
feature selection strategy is applied over the well-known CSP-based features to predict
the MI label based on a Linear Discriminant Analysis classifier. A 10×10-fold cross-
validation scheme is adopted. Thus, the three obtained groups are depicted in color bars:
Group I contains the subjects performing the best (denoted by the green color), Group
II with the subjects with intermediate accuracy (yellow color), Group III with the worst-
performing subjects (red color). As seen, while DBI holds compactly distributed clusters,
the neighboring groups are mixed in DBII. Of note, Group I includes the lowest number of
individuals (10% in DBII), whereas groups II and III involve the remaining part.12 of 20

(a) DBI

(b) DBII

Figure 5. Partitions of individuals clustered by the CSP-based accuracy within the motor imagery
interval. Each subject performance is painted according to his appraised inefficiency partition: Group I
(green), Group II (yellow), and Group III (red).

each database presents the assessments computed for the sensorimotor zone (denoted with ?), showing354

that the channel selection strategy also improves the performance of every subject partition compared355

to the corresponding values in Table 4 obtained by the whole set of individuals. Nevertheless, the356

incorporation of the total number of electrodes increases in a higher degree the DNR prediction.357

To provide further interpretation of the assessed regression weights, Fig. 6 draws their estimates358

over the scalp surface performed by each subject partition. In DBI, the topograms of groups I and II359

are similar regardless of the extracted rhythm, especially for both graph indexes’ relevance values.360

Instead, Group-III subjects behave differently and tend to be smaller and more spread, as noticed on361

the topograms performed by either connectivity measure. Note that the FC measures emphasize the362

sensorimotor more than the graph indexes that highlight the occipital and frontal zones related to363

attention and visual tasks. Therefore, the figures performed by DBII are comparable to DBI but hold364

more variability.365

4.4. Network Regression Prediction of Initial-training Synchronization366

To assess the initial training synchronization, we evaluate the DNR performance of predicting the367

MI accuracy at each run, which holds few trials and is affected by the learning changes. We evaluate368

two wakefulness data situations for extracting the FC predictor (namely, before the cue-onset of the369

conventional MI trial timing noted as T0 and resting-state noted as Trs). As the FC predictor, we only370

consider the PLVmeasure that, together with the single-run target accuracy vector, feeds the DNR371

estimator. This choice of FC is conditioned by its feasibility to be extracted in a single-trial mode from372

wakefulness data.373

Table 6 presents the prediction capability of the synchronization behavior appraised by DNR in374

each subject partition. Compared to the all set performance, the FC extracted from resting-state data375

increasing each group’s prediction, meaning that the network can predict under a reduced number376

of trials per run to some extent. The alternative case of extracting PLVfrom T0 enables a further377

improvement in each group’s prediction capability. It is worth noting that the R-squared value remains378

Figure 5. Partitions of individuals clustered by the CSP-based accuracy within the motor imagery interval. Each subject
performance is painted according to his appraised inefficiency partition: Group I (green), Group II (yellow), and Group
III (red).

For these cases, we calculate the DRN prediction with the performance improved. That
is, we test the functional connectivity indicators of all three frequency rhythms extracted
from resting-state data together with the leave-one-out cross-validation, including Monte
Carlo dropout layers. Table 5 shows that the prediction analysis improves (the values
of R-squared increase while the errors decrease) regardless of the subject group under
consideration. Moreover, the improvement becomes higher for DBII, which means that the
regression analysis using partitions can be also effective in databases with more complex
EEG measurements.

The next aspect refers to the assessment of resting-state activation on a reduced number
of electrodes. To this end, we evaluate the DRN performance for the predictor sets extracted
over the sensorimotor area, selecting the following electrodes, as suggested in [44]: (FC1,
FC2, FC3, FC4, FC5, FC6, Cz, C1, C2, C3, C4, C5, C6, CPz, CP1, CP2, CP3, CP4, CP5, and
CP6). In Table 5, the lower part of each database presents the assessments computed for
the sensorimotor zone (denoted with ?), showing that the channel selection strategy also
improves the performance of every subject partition compared to the corresponding values
in Table 4 obtained by the whole set of individuals. Nevertheless, the incorporation of the
total number of electrodes increases in a higher degree the DNR prediction.
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To provide further interpretation of the assessed regression weights, Figure 6 draws
their estimates over the scalp surface performed by each subject partition. In DBI, the
topograms of groups I and II are similar regardless of the extracted rhythm, especially
for both graph indexes’ relevance values. Instead, Group-III subjects behave differently
and tend to be smaller and more spread, as noticed on the topograms performed by either
connectivity measure. Note that the FC measures emphasize the sensorimotor more than
the graph indexes that highlight the occipital and frontal zones related to attention and
visual tasks. Therefore, the figures performed by DBII are comparable to DBI but hold
more variability.

Table 5. DNR Performance of the functional connectivity (FC) predictors derived from the resting-
state data achieved by each subject partition. Prediction is carried employing Monte Carlo dropout
and the wide path configuration of all extracted rhythms (θ + µ + βlow).

DBI

Ω
I (8) II(15) III (27)

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Strength 0.625 0.311 0.255 0.868 0.140 0.111 0.799 0.152 0.115
Clus.

Coefficient 0.792 0.260 0.170 0.853 0.160 0.105 0.777 0.179 0.137

Both
indexes 0.828 0.248 0.198 0.767 0.229 0.166 0.750 0.169 0.134

wPLI 0.872 0.228 0.190 0.907 0.141 0.113 0.958 0.073 0.061
PLV 0.947 0.164 0.124 0.883 0.140 0.112 0.939 0.095 0.072
mean 0.813 0.242 0.187 0.856 0.162 0.121 0.845 0.134 0.104

Gain [%] +14 +74 78 +20 −16 −21 +18 −30 −32

Strength ? 0.860 0.210 0.191 0.636 0.265 0.166 0.788 0.161 0.136
Clus.

Coefficient ? 0.973 0.109 0.075 0.690 0.214 0.160 0.798 0.142 0.108

Both
indexes ? 0.946 0.192 0.147 0.819 0.171 0.115 0.671 0.190 0.146

wPLI ? 0.570 0.317 0.241 0.921 0.109 0.080 0.830 0.152 0.119
PLV ? 0.841 0.189 0.103 0.802 0.185 0.141 0.739 0.167 0.135
mean 0.838 0.203 0.151 0.773 0.188 0.132 0.765 0.162 0.128

Gain [%] ? +17 +6 −1 +8 −2 −14 +7 −15 −16

DBII

I (11) II (43) III (51)

Strength 0.878 0.139 0.119 0.723 0.197 0.163 0.837 0.193 0.157
Clus.

Coefficient 0.940 0.089 0.075 0.618 0.213 0.173 0.885 0.128 0.099

Both
indexes 0.884 0.127 0.090 0.499 0.297 0.240 0.846 0.157 0.13

wPLI 0.971 0.066 0.039 0.716 0.185 0.150 0.749 0.142 0.110
PLV 0.824 0.166 0.118 0.804 0.161 0.137 0.833 0.130 0.103
mean 0.899 0.117 0.088 0.672 0.210 0.172 0.830 0.150 0.119

Gain [%] +48 −51 −56 +11 −13 −15 +37 −38 −41

Strength ? 0.806 0.164 0.105 0.626 0.288 0.250 0.715 0.268 0.231
Clus.

Coefficient ? 0.803 0.183 0.147 0.713 0.224 0.184 0.673 0.673 0.308

Both
indexes ? 0.889 0.159 0.113 0.130 0.286 0.229 0.631 0.221 0.167

wPLI ? 0.618 0.286 0.238 0.656 0.198 0.154 0.638 0.210 0.173
PLV ? 0.882 0.128 0.092 0.740 0.132 0.100 0.825 0.155 0.125
mean ? 0.799 0.184 0.139 0.573 0.225 0.183 0.696 0.305 0.200

Gain [%] ? +32 −24 −31 −5 −7 −9 +15 +26 −1
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Figure 6. Topograms depicting the DNR weights performed by each inefficiency subject partition using FC predictors .

4.4. Network Regression Prediction of Initial-Training Synchronization

To assess the initial training synchronization, we evaluate the DNR performance
of predicting the MI accuracy at each run, which holds few trials and is affected by the
learning changes. We evaluate two wakefulness data situations for extracting the FC
predictor (namely, before the cue-onset of the conventional MI trial timing noted as T0
and resting-state noted as Trs). As the FC predictor, we only consider the PLVmeasure
that, together with the single-run target accuracy vector, feeds the DNR estimator. This
choice of FC is conditioned by its feasibility to be extracted in a single-trial mode from
wakefulness data.

Table 6 presents the prediction capability of the synchronization behavior appraised
by DNR in each subject partition. Compared to the all set performance, the FC extracted
from resting-state data increasing each group’s prediction, meaning that the network can
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predict under a reduced number of trials per run to some extent. The alternative case of
extracting PLVfrom T0 enables a further improvement in each group’s prediction capability.
It is worth noting that the R-squared value remains high over the run sequence, particularly
in Group III with the subjects that need more guidance for promoting BCI skills. Overall,
this test result of T0 raises the possibility of the initial-training assessment carried out
without additional EEG data acquisition. In the database DBII with considerable variability,
however, the target response vector computed within each run yields a very low accuracy
due to the lack of statistics (only 14 trials per run) so that the DRN performance drops
noticeably, resulting in R-squared values below 0.2.

Utilizing a transfer-learning approach, we train the DNR estimator to cope with this
issue, gathering the values learned from each run’s MI data with the weights inferred at
the predecessor run. For DBI and DBII, Table 6 also displays the outcomes achieved by
both EEG collections (extracting PLVfrom T0) and shows that the DNR prediction ability
outperforms in all three subject partitions the former strategies evaluated for predicting
Initial-training Synchronization. As a result, each subject’s competence can be prognosti-
cated with a high enough level after each run to carry out procedures, aiming at improving
his performance in practicing MI tasks.

It is worth noting that the use of functional connectivity measures in BCI inefficiency
prediction is still in the exploring stage rather than the power-based predictors extracted
from the sensorimotor rhythms. Table 7 compares several works recently presented that
employ correlates between accuracy and SMR or FC indicators, showing that the latter
predictors combined with DNR are promising.

Table 6. DNR performance in predicting initial-training Synchronization, employing Monte Carlo dropout and the wide
path configuration of all extracted rhythms (θ + µ + βlow). The network regression is fed by the PLVpredictor as the only
single-trial FC indicator.

DBI

Run
I(8) II(15) III(27) All Set

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Resting-State vs. Single-Run Accuracy Target

1 0.601 0.245 0.192 0.627 0.214 0.143 0.888 0.126 0.085 0.814 0.192 0.158
2 0.897 0.200 0.158 0.745 0.214 0.176 0.874 0.117 0.087 0.795 0.141 0.109
3 0.862 0.184 0.121 0.655 0.275 0.146 0.910 0.123 0.099 0.756 0.226 0.226
4 0.917 0.172 0.123 0.972 0.069 0.053 0.936 0.110 0.090 0.890 0.109 0.089
5 0.550 0.293 0.217 0.906 0.131 0.106 0.819 0.171 0.130 0.689 0.231 0.190

mean 0.765 0.219 0.162 0.781 0.181 0.125 0.885 0.129 0.098 0.789 0.180 0.154

single-run before-unset interval vs. single-run accuracy target

1 0.733 0.318 0.280 0.751 0.171 0.110 0.914 0.110 0.080 0.809 0.134 0.104
2 0.966 0.113 0.074 0.782 0.187 0.116 0.777 0.209 0.162 0.791 0.140 0.107
3 0.900 0.189 0.129 0.678 0.248 0.135 0.855 0.167 0.123 0.806 0.168 0.126
4 0.924 0.134 0.100 0.943 0.120 0.093 0.893 0.102 0.083 0.847 0.131 0.110
5 0.678 0.265 0.233 0.911 0.130 0.102 0.741 0.192 0.137 0.835 0.165 0.136

mean 0.840 0.204 0.163 0.813 0.171 0.111 0.836 0.156 0.117 0.818 0.148 0.117

single-run before-unset interval vs. all-run accuracy target using transfer learning

1 0.875 0.187 0.142 0.864 0.144 0.109 0.956 0.077 0.058 0.848 0.129 0.101
2 0.954 0.143 0.102 0.918 0.122 0.093 0.947 0.102 0.081 0.813 0.150 0.127
3 0.965 0.137 0.094 0.943 0.105 0.086 0.924 0.089 0.067 0.758 0.156 0.110
4 0.983 0.107 0.089 0.932 0.109 0.089 0.941 0.088 0.065 0.786 0.192 0.160
5 0.981 0.105 0.085 0.952 0.095 0.070 0.942 0.086 0.059 0.733 0.248 0.210

mean 0.952 0.136 0.102 0.922 0.115 0.089 0.942 0.085 0.066 0.788 0.175 0.142
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Table 6. Cont.

DBI

Run
I(8) II(15) III(27) All Set

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

DBII

single-run before-unset interval vs all-run accuracy target using transfer learning

1 0.746 0.201 0.127 0.629 0.185 0.152 0.708 0.175 0.138 0.340 0.236 0.190
2 0.792 0.184 0.150 0.630 0.220 0.173 0.596 0.225 0.176 0.482 0.282 0.233
3 0.877 0.146 0.115 0.755 0.168 0.134 0.577 0.225 0.183 0.441 0.269 0.231

mean 0.805 0.177 0.131 0.671 0.191 0.153 0.627 0.208 0.166 0.421 0.262 0.218

Table 7. Performance comparison with works recently presented that employ correlates between accuracy and sensorimotor rhythms
(SMR) or FC indicators. S denotes the number of subjects in respective datasets.

SMR [41] FC [55] ERSP [38] FC [44] DRN DBI DRN DBII

R2 sub R2 sub R2 LI R2 CAS sub R2 R2 single-run sub R2 R2 single-run sub R2 R2 single-run sub

0.37 80 0.53 80 -0.73 0.64 34 0.31 0.54 54 0.86 0.84 50 0.81 0.48 104

5. Concluding Remarks

Here, we develop a methodology for predicting MI practicing’s neurophysiological
inefficiency using EEG phase synchronization measures. A deep network regression evalu-
ates over 150 subjects’ predicting capability in assessing the pre-training desynchronization
and the initial training synchronization. The prediction estimates should help determine
whether a specific user needs to undergo an additional calibration, supplying interpretation
of subjects’ learning properties. Although our algorithm training can be time-consuming,
growing considerably as the database set increases, such a training stage can be imple-
mented offline. Once the Deep Network Regressor’s weights are learned, our predictor
evaluation is as fast as baseline models, enabling real-time applications like the run-based
prediction of initial-training synchronization.

From the obtained results of validation, the following aspects are to be emphasized:
Electrophysiological predictors based on functional connectivity. We explore the Phase

Locking Value and Weighted Phase Locking Index as connectivity measures together with
their brain graph predictors (strength and clustering coefficient) to build a predictive
regression model of BCI control. From the obtained results for the linear regression model
(simple Table 1 and multiple Table 2), we can conclude that the FC predictors extracted
from resting-state enable fair values of prediction performance (R-squared below 0.4) with
notable variations, regardless of the input arrangement configuration employed. This
behavior worsens in DBII that is an EEG collection with greater structure variableness.

With regard to DNR, all considered FC predictors present similar and even perfor-
mance, reaching more competitive prediction values (see Tables 3–5). In terms of providing
interpretation, the DNR weights mostly supporting the prediction performance are com-
parable in wPLIand PLVpredictors (see Figure 4). One more consideration is the limited
effectiveness of the thresholding method, usually performed to remove false connections
and noise. The thresholding performance may be jeopardized by the high intrasubject
variability, demanding the application of subject-related tuning algorithms. Therefore, the
network regression models ease the need for elaborate feature extraction procedures based
on functional connectivity analysis. It is worth noting that the network regression estimator
benefits from all considered rhythms (i.e., θ + µ+ βlow), though each contributes differently.

Quality of network regression models. While widely-common procedures can appraise
linear regression models’ statistical significance, assessing and enhancing network regres-
sion models’ prediction quality is a much more challenging task because of the risk of
overfitting [56]. Here, we propose the leave-one-out cross-validation that includes Monte
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Carlo dropout layers (holding neurons with a probability of being ignored during training
and validation) for decreasing the probability that the learned rules from specific training
data cannot be generalized to new observations. As a result, the DNR prediction errors of
MAE and RMSE fall by nearly half (see Table 4). Furthermore, including the Monte Carlo
dropout layers allows selecting a reduced set of FC links enhancing the prediction perfor-
mance (see Figure 4). Consequently, this aspect improves the physiological interpretability
of network regression models.

In practice, assessment of resting-state activation is frequently performed with a re-
duced number of electrodes to reduce computational complexity and the set-up time. To
this end, we evaluate the DRN performance for the predictor sets extracted over the sensori-
motor area, showing that the channel selection strategy underperforms the whole electrode
set’s inclusion. This issue becomes more manifest in subjects with a more prominent EEG
variability (that is, high BCI inefficiency). As suggested in [57], the learned network weights
depend on the variability resulting from the channel selection used, making the prediction
performance vary notably from one subject partition to another.

Regression assessments using subject clustering of BCI inefficiency. One more issue im-
pacting the regression prediction is the user’s categorization depending on their SMR
activity and classifier performance during the MI runs. The obtained results show that
the prediction performance improves (the values of R-squared increase while the errors
decrease) regardless of the subject group under consideration. Therefore, we hypothesize
that the regression analysis using partitions may be more effective in databases with com-
plex EEG measurements. Consequently, clustering combined with DNR models enhances
understanding of the factors influencing subjects’ accuracy performance with significant
BCI inefficiency.

DNR prediction with transfer learning. We also assess the DNR performance of predicting
the MI accuracy at each run using the single-trial PLVpredictor of wakefulness data.
However, we associate the values learned from each run’s MI data with the weights
inferred at the predecessor run to deal with the few-trials sets. Thus, compared to the all
set performance, the initial-training synchronization prediction increases in each group
of individuals.

For future work, the authors plan to enhance FC predictors’ feature extraction, provid-
ing a better understanding of their impact and interaction on BCI-related tasks to identify
potential non-learners.

Profiting from MI-based BCI learning progression, dynamic network regression mod-
els must be developed to capture the sequence regression’s latent trends. In this line of
analysis, the cluster-based enhancing procedure and the vector accuracy response should
also account for FC predictors’ dynamic behavior. Intending to improve the DNR predic-
tion, an extended panel of standardized and validated psychological questionnaires are to
be included within the network estimator, accounting for user’s specific characteristics like
daily motor activity and age.

One more aspect to explore is to adjust the DNR pipeline to learn the weights for
supporting prediction in a broader clinical application class, relying on the ability of deep
learning architectures to extract complex random structures from EEG data.
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