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Abstract

As the industry gradually enters the stage of unmanned and intelligent, factories in the future

need to realize intelligent monitoring and diagnosis and maintenance of parts and compo-

nents. In order to achieve this goal, it is first necessary to accurately identify and classify the

parts in the factory. However, the existing literature rarely studies the classification and identi-

fication of parts of the entire factory. Due to the lack of existing data samples, this paper stud-

ies the identification and classification of small samples of industrial machine parts. In order

to solve this problem, this paper establishes a convolutional neural network model based on

the InceptionNet-V3 pretrained model through migration learning. Through experimental

design, the influence of data expansion, learning rate and optimizer algorithm on the model

effectiveness is studied, and the optimal model was finally determined, and the test accuracy

rate reaches 99.74%. By comparing with the accuracy of other classifiers, the experimental

results prove that the convolutional neural network model based on transfer learning can

effectively solve the problem of recognition and classification of industrial machine parts with

small samples and the idea of transfer learning can also be further promoted.

1. Introduction

With the advancement of industrial technology and the transformation and development of

modern factories, the manufacturing industry has gradually entered an unmanned and intelli-

gent stage. In order to enable the entire production workshop to complete tasks systematically,

orderly and independently, intelligent monitoring and maintenance are an important link. In

order to improve the accuracy of monitoring and maintenance, accurate recognition of parts

and machine parts of the entire industrial workshop is the primary goal.

In order to realize unmanned and intelligent factories, in literature [1], a method of recog-

nizing the position, location and orientation of irregular machine parts with a complex outline

of the external contour is suggested. In literature [2], a geometric part measurement system for

shaft parts based on machine vision is presented. These studies have potential applications for

the development of manufacturing. However, there is no research on the identification of

small samples of parts in the whole factory.
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In order to realize the accurate recognition of various machine parts, it is necessary to research

the image recognition of industrial machine parts. Image recognition refers to the technology of

recognition of images with the same characteristics in different modes and environments via the

use of computers to process, analyze and understand a large number of images. Traditional image

recognition processes include image acquisition, image preprocessing, feature extraction and

image recognition. Literature [3] evaluates the performance of the developed MLP and SOM NN

based classifier for detection of four conditions of three phase induction motor and examined the

results. The cross-validation method in the paper is worth learning, but its calculation is more

complicated and there are fewer classification types, and the effect cannot be determined in the

face of small samples and multiple classifications, and the accuracy of the results can be further

improved. At the same time, the literature only studies the induction motor, and does not extend

to the parts of the entire factory. In recent years, deep learning based on convolutional neural net-

works (CNN) [4] have been used for various types of image recognition and achieved very good

results. In 2012, the CNN network model reduced the error rate from 25.77% to 15.319% for the

first time in the ImageNet Large Acale Visual Recognition Challenge (ILSVRC) competition. And

at the 2017 competition, the lowest error rate has dropped to 2.251%.

Although CNN plays a certain role in image feature extraction and recognition, they all

require a large amount of sample data for iterative training of neural networks. However, for

this specific field of industrial machine component recognition, there is not enough sample

data. If the small sample data is directly trained by CNN, the obtained model will have a large

error and is difficult be promoted. In order to solve the problem of image recognition with

small sample, Gene Kitamura realized the detection and recognition of small samples of ankle

fractures through a new training and multi-view merged CNN [5] and the final recognition

accuracy reached 81%. Jufeng Yang proposed a self-paced learning algorithm for small sample

recognition of clinical rare skin diseases [6]. Qian Huang proposes a new blood cell classifica-

tion framework based on medical hyperspectral imaging in order to complete the task of white

blood cell classification under small sample training, combining the modulated Gabor wavelet

and CNN kernel [7]. In the field of industrial machine parts recognition, there are few algo-

rithms related to its specific research. In order to solve the problem of recognition and classifica-

tion of industrial machine parts under the condition of small samples, a recognition method of

industrial machine parts based on transfer learning [8–15] with CNN is proposed. Not only can

further improve the recognition accuracy, but also save the time of model training. And the

related parameters are flexible and can be adjusted according to different target images and rec-

ognition tasks. It also has a good promotion effect in related research and industrial practice.

The first part of this article explains the necessity and current situation of the research on

this subject, aiming to solve the problem that the factory will realize the accurate classification

and recognition of industrial machine parts in the plant under a small sample data set in the

future. The second part introduces and constructs the basic theory and basic framework of

transfer learning based on CNN. The third part introduces the source and classification of the

experimental data set, designs the experimental grouping and studies the influence of different

variables on the model training effect. The fourth part summarizes the experiment and puts

forward the research direction of the next stage.

2. Construction of convolutional neural network model based on

transfer learning

2.1. Convolutional neural network

CNN in deep learning is a neural network specifically used to process data with a grid struc-

ture. CNN includes multiple convolutional layers, pooling layers, and fully connected layers
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[16]. Based on the feed-forward neural network, the model updates the parameter weights by

iteratively training the loss function to feed back the errors to each network layer. As the itera-

tive training progresses, the parameter weights are continuously updated to achieve the desired

training effect.

The role of the convolution layer is to perform feature mapping of the input through the

convolution kernel to extract the features of the image [17–19]. The convolution operation for-

mula is

Sði; jÞ ¼ ðK�IÞði; jÞ ¼
X

m

X

n

Iðiþm; jþ nÞKðm; nÞ ð1Þ

Where S (i, j) represents the output tensor of the convolution layer, I (i+m, j+n) represents

the input tensor of the convolution layer, K (m, n) represents the convolution kernel, i, j repre-

sent the coordinate values of the tensor, m, n represent the coordinate value of the convolution

kernel.

The function of the pooling layer is to further process the feature mapping results obtained

by the convolution operation. The pooling function will statistically summarize the feature val-

ues of a position in the plane and its adjacent positions, and use the summarized result as the

value of this position in this plane. Common pooling functions include average pooling, maxi-

mum pooling, and random pooling. Taking the maximum pooling function with a size of

2 × 2 as an example, its calculation formula is

fpool ¼ Maxðsi;j; siþ1;j; si;jþ1; siþ1;jþ1Þ ð2Þ

Where fpool represents the result after pooling, si,j represents the element whose position on

the feature map tensor is (i, j).
The fully connected layer is a dimensionality reduction and tiling of the results obtained by

the convolutional layer and the pooling layer and then performs non-linear transformation

through the activation function. Finally, the results are input into the classifier for

classification.

2.2. Transfer learning and model building

2.2.1. Transfer learning. Transfer learning is a new machine learning method that uses

existing knowledge to solve different but related domain problems. For CNN, the convolu-

tional layer and pooling layer are retained. The CNN’s convolutional layer trained on a large

amount of sample data can perform feature extraction on another image data. The extracted

feature vector is processed by the pooling layer and then processed. Add a new fully connected

layer to form a new network model. To put it simply, it retains the model’s feature extraction

and recognition capabilities and adds new object orientation to enable itself to complete new

image recognition and classification tasks.

2.2.2. InceptionNet-V3 convolutional network model. Commonly used pretrained

models contain Resnet [20], VGG [21], Alexnet [22, 23] and InceptionNet-V3 [24], etc. Com-

pared with other models, InceptionNet-V3’s classifier has a smaller number of operations,

which can reduce the training time, and can also reduce the structural redundancy through

convolution. At the same time, we can see from the literature [25] that on the classification

problem based on transfer learning, InceptionNet-V3 achieved good results. Therefore, this

article first considers the use of InceptionNet-V3 for transfer learning. This paper uses Incep-

tionNet-V3 convolutional network model for transfer learning. InceptionNet-V3 was pro-

posed in the paper "Rethinking the Inception Architecture for Computer Vision" in December

2015. InceptionNet-V3 has two main improvements over InceptionNet-V2. The first is to
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optimize the structure of the Inception Module. The second is to introduce a larger two-

dimensional convolution into two smaller one-dimensional convolutions in InceptionNet-V3.

This is called the "Factorization into small convolutions" idea. This asymmetric convolutional

structure split is more effective than symmetric structures in dealing with more and richer spa-

tial features and increasing feature diversity. The architecture diagram of the InceptionNet-V3

model is shown in Fig 1.

The InceptionNet-V3 model has a total of 46 layers and consists of 11 Inception modules,

including 96 convolutional layers. The convolutional layers are implemented by TensorFlow’s

Slim tool.

2.2.3. Construction of transfer learning model. InceptionNet-V3 completed training on

the ImageNet data set and the number of training samples reached 1.2 million [26–28]. How-

ever, the number of images of industrial machine parts is not yet large enough. Therefore, the

transfer learning method is used to recognize and classify industrial machine parts based on

the InceptionNet-V3 model. For the trained InceptionNet-V3 model, the parameters of all

convolutional layers are retained and the last fully connected layer is replaced. The previous

network layer of this fully connected layer is called the bottleneck layer, which is the last

Fig 1. InceptionNet-V3 model architecture diagram.

https://doi.org/10.1371/journal.pone.0245735.g001
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Dropout layer in InceptionNet-V3. The results of the new fully connected layer are passed to a

Softmax layer, and new recognition tasks can be processed. The modified module process of

industrial machine parts recognition is shown in Fig 2.

The gradient descent optimizers that can be used in training mainly include stochastic gra-

dient descent, AdaGrad, RMSProp and Adam optimizers. Take the Adam algorithm as an

example to introduce the principle of its optimization method.

First set the global learning rate σ. The exponential decay rate of moment estimation is ρ1

and ρ2, and in the interval [0,1], the default is 0.9 and 0.990. The initialized parameter is ω. A

small constant created for numerical stability δ, default takes δ = 10−8. The first and second

moment variables s and r with initial values of 0. And an event step count t, t is initialized with

t = 0. Then execute the following steps in a loop without stopping before the stop condition.

(1) Take out the mini-batch data of m samples from the training set {x1,x2,� � �,xm}, and the

target corresponding to the data is represented by yi.
(2) Calculate the gradient as follows.

g  
1

m
rm

X

i

Lðf ðxi;oÞ; yiÞ ð3Þ

(3) The refresh time steps are as follows.

t  t þ 1 ð4Þ

(4) Update the first-order partial moment estimation.

s r1r þ ð1 � r1Þg � g ð5Þ

(5) Update the second-order biased moment estimation.

r  r2r þ ð1 � r2Þg � g ð6Þ

(6) Correct the deviation of the first-order moment.

ŝ  
s

1 � rt
1

ð7Þ

(7) Correct the deviation of the second moment.

r̂  
r

1 � rt
2

ð8Þ

(8) Calculate the update amount of the parameter.

Do ¼ � s
ŝ
ffiffiffiffiffiffiffiffiffiffiffi
dþ r̂
p ð9Þ

(9) Update the parameters according to Δω.

o ¼ oþ Do ð10Þ

Assume that the output of the original neural network is y1, y2, . . . yn, then the output after

softmax [29] regression processing is

softmaxðyÞ ¼
expðyiÞXn

i¼1
expðyiÞ

ð11Þ
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Fig 2. Modified flowchart of recognition of industrial machine parts.

https://doi.org/10.1371/journal.pone.0245735.g002
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3. Model training and analysis of experimental results

3.1. Data set

The data set used in the experiment came from a field shooting of a factory, includeing 11

types of industrial machine parts such as control panels, plate, robotic arms, and assembly, etc.

with a total of 1002 images. As shown in Fig 3A–3K are sample images of each type of image

set. Table 1 summarizes the number of each category. In the experiment, the image is aug-

mented to 4008 images through rotation, flip, etc. 80% of the data set is used for training, 10%

is used for validation and 10% is used for testing.

In Fig 3, from top to bottom, from left to right, control panels, robotic arms, interactive

module, assembly, big machines, engine, hangar, old machinery, plates, tech parts and others

are in turn.

The classification and recognition process of industrial machine parts based on transfer

learning can be obtained as shown in Fig 4.

Compared with other models, the novelty of the model in the paper is as follows:

Fig 3. Examples of dataset image.

https://doi.org/10.1371/journal.pone.0245735.g003
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1. The training process is simplified, the amount of calculation is reduced, and training time

is saved.

2. In the case of limited samples, better training results can be achieved.

3. The redundancy of the structure is reduced, which is conducive to further expansion,

improvement and supplementation.

3.2 Experimental design

The experiments were completed under the software environment of Python 3.7.0 and Tensor-

Flow 1.15.0. In the hardware environment, the CPU uses Intel Corei5-6200U and the main fre-

quency is 2.3GHz; the GPU uses NVIDIA GeForce 950M and 2GB video memory.

Table 1. Summary of the number of each category.

Numbers Types of industrial machine parts Number of dataset

1 Control panels 56

2 Robotic arms 79

3 Interactive module 32

4 Assembly 79

5 Big machines 146

6 Engine 137

7 Hangar 52

8 Old Machinery 72

9 Plates 81

10 Tech parts 193

11 Others 75

https://doi.org/10.1371/journal.pone.0245735.t001

Fig 4. Classification and recognition process of industrial machine parts based on transfer learning.

https://doi.org/10.1371/journal.pone.0245735.g004
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The hyperparameters of the training neural network are set as follows: the initial learning

rate is set to 0.01, the batch size is set to 32 and the total number of iteration training times is

set to 40,000.

In order to get better training results, the experiment set different contrast experimental

groups:

1. Comparison of the original data set (1002 images) and the model of the data set (4008

images) after simple flipping, folding and other operations.

2. Comparison of models obtained under different learning rates.

3. Comparison of models obtained using different gradient descent optimizers.

3.3 Analysis of experimental results

3.3.1 Impact of image data augmentation on models. For this experimental sample,

under the condition that the learning rate is set to 0.01 and the optimizer uses a stochastic gra-

dient descent optimizer, the two trained models are compared. The trend of the accuracy of

the training set and validation set with the number of iterative trainings is shown in the Figs 5

and 6.

It can be seen that during the training process, the training set accuracy of the original data

and the augmented data both reached 100% after 10,000 iterations of training. The accuracy of

recognition of the augmented data validation set is significantly higher than the original data

after 25,000 iterations of training. Then compare the value of the loss function during training,

as shown in Fig 7. It can be found that the value of the loss function of the augmented data is

always slightly higher than the value of the loss function of the original data, which also shows

that as the number of data sets increases, it is necessary to increase the number of trainings to

obtain more ideal training results.

Fig 5. The trend of the accuracy of the training set of the original data and the augmented data with the number

of iterative training.

https://doi.org/10.1371/journal.pone.0245735.g005
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After the model training is completed, the test set divided by the experiment is used to test

the model and the training effect of training data set and validation data set is summarized as

shown in Table 2.

From Table 2, after 40,000 iterations of training, the accuracy of recognition of the training

set has reached 100%. By expanding the image through operations such as rotation and

Fig 6. The trend of the accuracy of the validation set of the original data and the augmented data with the number

of iterative training.

https://doi.org/10.1371/journal.pone.0245735.g006

Fig 7. The change trend of the loss function value of the original data and the augmented data with the number of

iterative training.

https://doi.org/10.1371/journal.pone.0245735.g007
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folding, the accuracy of recognition of the validation set of the model is increased by 6.26 per-

centage points, and the accuracy of recognition of the test set is increased by 1.52 percentage

points. The accuracy of recognition of the test set is improved, but the amplitude is not large.

The reason is that operations such as rotation and folding do not change the features and qual-

ity of the image. At the same time, the model has been trained on large data sets due to transfer

learning model. A better feature extraction ability is obtained, so on the other hand, the effect

of simple expansion of small sample data is also weakened.

3.3.2 Impact of different learning rates on models. For the augmented data, under the

condition of using a stochastic gradient descent optimizer, different learning rates are set and

the loss function value is observed during the training of the model. Compare the loss function

values of the first 200 iterations of training with learning rates [30–32] of 0.0001, 0.001, 0.01

and 0.1 respectively, as shown in Fig 8.

It can be obtained from Fig 8 that if the learning rate is too small (for example, the learning

rate is set to 0.0001), the value of the loss function will fluctuate continuously, but the conver-

gence cannot be reduced. The reason is that the learning rate is too small, the convergence

speed is slow and no obvious convergence effect can be obtained with a small number of itera-

tive training times. At the same time, it can be found that in the case of the experimental sam-

ples and settings, when the learning rate is 0.1, a significant gradient explosion occurs at the

beginning of training. In order to eliminate the chance, further testing whether the learning

rate is too large will cause a gradient explosion. Under the same conditions, the learning rate is

set to 1 and 3 for iterative training. The loss function value of the first 200 iterations is shown

in Fig 9.

Table 2. Comparison of model accuracy between original and augmented data.

Different data sets Training set accuracy / % Validation set accuracy / % Test set accuracy / %

Raw data 100.00 90.62 96.40

Augmented data 100.00 96.88 97.92

https://doi.org/10.1371/journal.pone.0245735.t002

Fig 8. The trend of the loss function value at different learning rates with the number of iterative training.

https://doi.org/10.1371/journal.pone.0245735.g008
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It can be obtained from Fig 9 that with the continuous increase of the learning rate, the

peak value of the loss function at the beginning of training also increases and the effect of the

gradient explosion is more significant. At the same time, in the subsequent iterative training,

the value of the loss function continuously oscillated, proving that the model parameters are

updated too quickly and the difference is large, destroying the previously trained weight infor-

mation, causing the model to fail and the transfer learning to be meaningless.

Fig 9. The trend of loss function value with the number of iterative training at large learning rates.

https://doi.org/10.1371/journal.pone.0245735.g009

Fig 10. The trend of the accuracy of the training set with the number of iterative training at learning rates of

0.001 and 0.01.

https://doi.org/10.1371/journal.pone.0245735.g010
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After filtering the learning rate, select the accuracy of the data training set and validation set

of the models at learning rates of 0.001 and 0.01, as shown in Figs 10 and 11.

It can be obtained from Figs 10 and 11, during the iterative training process, the accuracy of

recognition of the training set and validation set of the model with a learning rate of 0.01 is

always higher than the model with a learning rate of 0.001. Then compare the change of the

Fig 11. The trend of the accuracy of the validation set with the number of iterative training at learning rates of

0.001 and 0.01.

https://doi.org/10.1371/journal.pone.0245735.g011

Fig 12. The trend of loss function value with the number of iterative training at learning rates of 0.001 and 0.01.

https://doi.org/10.1371/journal.pone.0245735.g012
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loss function value with the number of iterative training times under the two learning rate val-

ues, as shown in Fig 12.

It can be obtained from Fig 12 that under the experimental samples, neither of the two

models of learning rate take the case of non-convergence or gradient explosion. The loss func-

tion value of the model with a learning rate of 0.01 is smaller than that of the model with a

learning rate of 0.001. The convergence is faster and the fluctuation range is smaller.

After 40,000 iterations of training are completed, the test set is used to test the two learning

rate models and the training effect of training data set and validation data set is summarized as

shown in Table 3.

According to Table 3, after 40,000 iterations of training, the accuracy of recognition of the

validation set of the model with a learning rate of 0.01 is the same as that of the model with a

learning rate of 0.001, but the accuracy of recognition of the test set of the model with a learn-

ing rate of 0.01 is increased by 6.77 percentage points.

3.3.3 Impact of different gradient descent optimizers on models. In order to further

optimize the model and improve the accuracy, for the augmented data, the training results of

the model are observed under the condition that the learning rate is set to 0.01 and a stochastic

gradient descent optimizer and adaptive learning rate optimizers [33–35] based on AdaGrad

algorithm, RMSProp algorithm, and Adam algorithm are used. Among them, for the adaptive

learning rate optimizer based on the AdaGrad algorithm, initial_accumulator_value is set to

0.1. For the adaptive learning rate optimizer based on RMSPop algorithm, decay is set to 0.9,

momentum is set to 0.0 and epsilon is set to 1e-10 by default. For Adaptive learning rate

Table 3. Comparison of model accuracy rates at different learning rates.

Different learning rates Training set accuracy / % Validation set accuracy / % Test set accuracy / %

0.001 100.00 96.88 91.15

0.01 100.00 96.88 97.92

https://doi.org/10.1371/journal.pone.0245735.t003

Fig 13. The trend of the accuracy of the training set and validation set with the number of iterative training under

different optimizers.

https://doi.org/10.1371/journal.pone.0245735.g013
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optimizer based on Adam algorithm, beta1 is set to 0.9, beta2 is set to 0.999 and epsilon is set

to 1e-10 by default. In order to facilitate the comparison of the trends in the accuracy of the

training set and the accuracy of the validation set under different optimizers, the result of

40,000 iterative training is taken every 1000 times to map, as shown in Figs 13 and 14.

It can be obtained from Figs 13 and 14 that under the experimental samples, the accuracy

with the stochastic gradient descent optimizer and the AdaGrad adaptive learning rate

Fig 14. The trend of the accuracy of the validation set with the number of iterative training under different

optimizers.

https://doi.org/10.1371/journal.pone.0245735.g014

Fig 15. The trend of loss function value with the number of iterative training under different optimizers.

https://doi.org/10.1371/journal.pone.0245735.g015
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optimizer has almost no difference and the accuracy with the Adam adaptive learning rate

optimizer is higher than the other three optimizers. At the same time, it was found that the

model with the adaptive learning rate optimizer based on RMSProp algorithm has lower accu-

racy of recognition of training set and validation set than the other three optimizer models and

the fluctuation range is large. Combining the change of the loss function value under different

optimizers (as shown in Fig 15), during the training of the optimizer of the RMSProp algo-

rithm, the value of the loss function continuously oscillates and does not converge. It can be

obtained that the adaptive learning rate optimizer based on RMSProp algorithm is not applica-

ble to this experimental sample.

On the basis of Fig 15, remove the RMSprop adaptive learning rate optimizer and compare

the loss function values of the other three optimizers, as shown in Fig 16. It can be found that

the Adam adaptive learning rate optimizer has a small loss function value and fast conver-

gence. After 7000 iterations of training, it has approached 0 and the change value is less than

0.005. The optimizer experienced a brief fluctuation during 6000 iterations, but the fluctuation

range was less than 0.4, which did not affect the parameter update.

After 40,000 iterations of training were completed, the test set was used to test the models

under the four optimizers and the training effect of training data set and validation data set is

summarized as shown in Table 4.

It can be obtained from Table 4 that, for the experimental sample, the accuracy of the recog-

nition of training set, validation set and test set of the model based on Adam adaptive learning

Fig 16. The trend of loss function value with the number of iterative training under different optimizers.

https://doi.org/10.1371/journal.pone.0245735.g016

Table 4. Comparison of model accuracy rates under different gradient descent optimizers.

Different optimizers Training set accuracy / % Validation set accuracy / % Test set accuracy / %

Stochastic gradient descent optimizer 100.00 96.88 97.92

AdaGrad adaptive learning rate optimizer 100.00 100.00 98.20

RMSProp adaptive learning rate optimizer 100.00 84.38 89.25

Adam adaptive learning rate optimizer 100.00 100.00 99.04

https://doi.org/10.1371/journal.pone.0245735.t004
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rate optimizer are higher than the other three optimizers and the model training effect is

better.

3.3.4 Further optimization of results. Since the above experiment is based on 80% of

dataset used for training, under normal circumstances it is easy to lead to overfitting. There-

fore, the samples are divided into different groups for model training. The final accuracy rates

of training set, validation set and test set are shown in Table 5.

It can be seen from the results that when the ratio is 8:1:1, no overfitting occurs, and when

the ratio of the training set is reduced, the accuracy of the test set obtained decreases. This

paper analyzes this phenomenon and the main reasons are as follows.

1. Compared with big data, the number of the data set of this article is relatively small. If the

proportion of the training set is further reduced, the training sample will be too small and

the model fitting effect will be poor.

2. The InceptionNet-V3 used in this article has been trained by ImageNet and has good fea-

ture extraction capabilities. Unlike ordinary deep learning, transfer learning solves research

problems with small samples.

3. It can be seen from the above training results that the accuracy of the test set has reached

99.04%, so it is judged that there is no overfitting.

Since the model will be applied to large sample data in the future, it is necessary to further

optimize the model to achieve higher accuracy. This paper draws on the ideas and algorithms

of literature [36], and considers the method of k-fold cross-validation to improve the model.

Take 10% of the original data set as the final test set, and perform 10-fold cross-validation on

the remaining 90% of the data. The accuracy rates of the 10 validation sets and test set obtained

are shown in Table 6.

Table 5. Accuracy of results of different groups.

Different ratio Training set accuracy / % Validation set accuracy / % Test set accuracy / %

6: 2: 2 100.00 100.00 96.35

7: 1.5: 1.5 100.00 100.00 97.91

7.5: 1.25: 1.25 100.00 100.00 97.46

8:1:1 100.00 100.00 99.04

https://doi.org/10.1371/journal.pone.0245735.t005

Table 6. 10-fold cross-validation training results.

Data set Accuracy / %

10-fold cross-validation Fold-1 100.00%

Fold-2 100.00%

Fold-3 100.00%

Fold-4 96.88%

Fold-5 100.00%

Fold-6 100.00%

Fold-7 100.00%

Fold-8 100.00%

Fold-9 100.00%

Fold-10 100.00%

Average accuracy of 10-fold cross-validation validation set 99.69%

Final test set accuracy 99.74%

https://doi.org/10.1371/journal.pone.0245735.t006
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It can be seen from Table 6 that the model has been further optimized by using 10-fold

cross-validation. Except for one validation set with an accuracy rate of 96.88%, the accuracy

rates of the remaining 9 validation sets are all 100%, and the accuracy rate of the final test set

reaches 99.74%, which is 0.7% higher than the optimal result in Table 5. This proves the effec-

tiveness and superiority of the 10-fold cross-validation method.

3.4 Comparison of classification results of different classifiers

In order to prove the superiority of the method adopted in this paper, after the feature extraction

of the image, different classifiers are used for training and the accuracy of the obtained results is

shown in Table 7. The parameter settings of the classifiers here are general values or default values,

and the ratio of the training set to the test set of the classifier is 4:1. The k-fold cross-validation

method is not used here, because it can be seen from the results that the accuracy rate obtained is

much lower than the method used in this paper, so even if other classifiers use k-fold cross-valida-

tion, they cannot achieve quite high accuracy. It can be seen that for the recognition of industrial

machine parts in factories with small samples, transfer learning based on CNN has obtained very

good results and can be applied in the intelligent construction of factories in the future.

4. Conclusion

Based on the transfer learning of the InceptionNet-V3 convolutional neural network model,

this paper identifies and classifies 11 types of components of industrial machines. Through

Table 7. Accuracy of classification results of different classifiers.

Numbers Types of classifier Accuracy / %

1 Support vector machines (SVM) Linear SVM 80.42

2 Quadratic SVM 82.33

3 Cubic SVM 82.43

4 Medium gaussian SVM 74.51

5 Coarse gaussian SVM 55.48

6 Nearest neighbor classifier (KNN) Fine KNN 81.67

7 Medium KNN 70.71

8 Coarse KNN 44.74

9 Cosine KNN 79.39

10 Cubic KNN 71.26

11 Weighted KNN 74.14

12 Decision trees Complex tree 44.27

13 Medium tree 43.54

14 Simple tree 37.33

15 Discriminant analysis Linear discriminant 71.64

16 Quadratic discriminant 73.44

17 Ensemble Boosted trees 57.22

18 Bagged Trees 64.41

19 Subspace discriminant 83.03

20 Subspace KNN 82.29

21 RUSBoosted Trees 61.82

22 Artificial neural networks Back propagation neural network 88.65

23 Transfer learning based on InceptionNet-V3 99.74

24 Transfer learning based on Resnet 94.24

25 Transfer learning based on VGG16 91.50

26 Transfer learning based on Alexnet 82.14

https://doi.org/10.1371/journal.pone.0245735.t007
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data augmentation, setting different learning rates and different gradient descent optimizers,

the accuracy of recognition of training set accuracy, validation set and test set of the trained

model are compared based on 40,000 iterations of training. In the end, after the data augmen-

tation, the initial learning rate is taken as 0.01 and the optimizer uses the Adam adaptive learn-

ing rate gradient descent optimizer, the obtained training model is optimal. Through the

analysis of the data set division ratio and 10-fold cross-validation, the final accuracy rate of the

test set is 99.74%. By comparing with the accuracy of other classifiers, it can be seen that the

method adopted in this paper has a better effect. This provides a basis and foundation for each

factory to carry out intelligent monitoring based on its own parts and components in the

future industrial background. Due to the complexity of model calculations, we will continue to

study how to simplify calculations so that the model can be quickly applied in industry.
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