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Diabetes is a chronic metabolic disease characterized by insulin resistance

(IR). SHP2 has previously been identified as a potential target to reduce

IR in diabetes. Here, we examined the effects of SHP2 on glucose con-

sumption (GC), IR level and the expression of insulin receptor substrate

(IRS), AKT and extracellular signal-regulated kinase (ERK)1/2 proteins in

a cellular and animal model of diabetes. IR was induced in hepatocellular

carcinoma (HCC) cells, and SHP2 was up-regulated or down-regulated in

cells. Diabetic rats were treated with SHP2 inhibitor. GC of cells, and the

weight, total cholesterol, triglycerides, fasting blood glucose, fasting insulin,

homeostasis model assessment-IR index and insulin sensitivity (ISI) of the

rats were analyzed. The levels of SHP2 and the activation of IRS-2, AKT

and ERK1/2 in cells and rats were measured by quantitative real-time PCR

(qRT-PCR) or western blot. GC was reduced, but expression of SHP2 was

enhanced in IR HCC cells. Phosphorylation of IRS-2 and AKT in IR

HCC cells and diabetic rats was decreased, whereas phosphorylation of

ERK1/2 was enhanced. In both the cell and animal models, SHP2 knock-

down enhanced GC, ameliorated IR, activated IRS-2 and AKT, and inhib-

ited ERK1/2 phosphorylation, in contrast with the effects of SHP2

overexpression. SHP2 knockdown may enhance GC and ameliorate IR

through phosphorylation of IRS-2 via regulating AKT and ERK1/2 in

liver.

The incidence of diabetes is steadily increasing [1]. Dia-

betes is a chronic metabolic disease characterized by

hyperglycemia, hyperinsulinemia and insulin resistance

(IR), and the relationship between diabetes and various

system tumors has been widely observed in clinical stud-

ies [2]. Previous findings have shown that diabetes

increases the risk for development of cancers, such as

breast [3], colorectal [4], pancreatic [5] and endometrial

cancers [6]. In addition, increasing evidence supports

the correlation between diabetes and liver cancer, and

indicates that hyperinsulinemia, IR, oxidative stress and

chronic inflammatory response are of concern with the

possibility of patients with type 2 diabetes experiencing

development of liver cancer [7–9]. According to the

statistics, the incidence of liver cancer in patients with

diabetes is obviously higher than in nondiabetic patients
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[10]. Moreover, the pathogenesis of diabetes-related

liver cancer was still unknown.

SHP2, a widely expressed nonreceptor tyrosine

phosphatase, is encoded by PTPNll gene in humans,

contains two SH2 domains and is verified to be

involved in numerous cellular signal transduction path-

ways [11]. It has been shown that SHP2 is closely

related to the occurrence of multiple solid tumors [12].

Moreover, SHP2 has been identified as an indispens-

able component in promoting the development and

progression of liver tumors [13]. Han et al. [14] indi-

cated that the suppression of SHP2 reduces the migra-

tion and adhesion of hepatocellular carcinoma (HCC)

cells and the formation of HCC metastasis in a nude

mouse xenograft assay. In the mechanism of action,

previous findings showed that SHP2 mediated phos-

phoinositide 3-kinase/AKT, RAS/extracellular signal-

regulated kinase (ERK) and other signaling pathways

to affect the growth, invasion and migration of tumor

cells [15]. In addition, SHP2 has already been con-

firmed as a target for diabetes to decrease IR [16].

This study explored the role and its relevant mecha-

nism of SHP2 in diabetes-related organ liver by con-

ducting cell and animal experiments. Diabetes was

induced by IR in HCC cells, and SHP2 was up-regu-

lated or down-regulated in the cells, while diabetic

model rats were treated with SHP2 inhibitor. Further-

more, we determined the effects of SHP2 on glucose

consumption (GC), IR level and the expressions of

insulin receptor substrate (IRS), AKT and ERK1/2
proteins both in cells and in rats. The purpose of this

study was to clarify the function of SHP2 in the dia-

betic liver of diabetes, hoping to provide a potential

treatment for the disease.

Materials and methods

Ethics statement

All animal experiments were approved by the Ethic Com-

mittee of Liaoning Ho’s Medical College. The experimental

operations were performed strictly following the guidelines

of Animal Care and Institutional Ethical Commitee in

China.

Cell culture and induction

Human HCC cells Huh7 were purchased from Chinese

Academy of Typical Culture Collection Cell Bank (Shang-

hai, China) and used to construct IR cell models. All of the

cells were incubated in Dulbecco’s modified Eagle’s med-

ium (DMEM; Gibco, New York, NY, USA) containing

10% FBS (Gibco), 100 U�mL−1 penicillin and 0.1 mg�mL−1

streptomycin (Gibco). Huh7 cells were maintained in an

incubator filled with 5% CO2 at 37 °C, and only cells in

logarithmic growth were used in subsequent experiments.

The IR cell model was constructed as previously described

[17]. Huh7 cells (1 × 104 cells�mL−1) were seeded into 96-

well plates and induced in a high-sugar DMEM culture

medium containing 1 μM dexamethasone (Sigma-Aldrich,

St. Louis, MO, USA) and 10% FBS for 48 h. For compar-

ison, cells with induction (IR) served as controls.

Cell transfection

To investigate the effect of SHP2 on the IR cell models, we

transfected the Huh7 cells with empty vector as negative

control (NC), silencing negative control (siNC), SHP2-

pcDNA3.1 or siSHP2, and the transfection efficiency was

detected by RT-PCR. Besides, cells were transfected with

siSHP2 plus NC, siNC plus SHP2-pcDNA3.1 or NC plus

siNC; then the transfected cells (1 × 104 cells�mL−1) were

seeded into 96-well plates and induced in a high-sugar

DMEM culture medium containing 1 μM dexamethasone

and 10% FBS for 48 h for subsequent assays. The transfec-

tion was performed using Lipofectamine 2000 transfection

reagent (Invitrogen, Carlsbad, CA, USA) according to the

instructions. The base sequences involved in this study were

synthesized by Gene Pharma (Suzhou, China).

Glucose content detection

The GC in the medium of different groups was then deter-

mined using a glucose assay kit (#F006-1-1; Nanjing Jian-

cheng Bioengineering Institute, Nanjing, China) according

to the manufacturer’s instructions: GC = the initial glucose

level − the remaining glucose level in the medium.

Diabetic rat model

A total of 60 male Sprague-Dawley rats (6 weeks old,

weighing 180–220 g) were purchased from the Guangdong

Medical Laboratory Animal Center (Guangdong, China).

All of the rats were raised under a sterile condition at the

temperature of (21 � 2 °C) with the relative humidity of

50–70% and 12-h dark/light cycle, and were allowed to

have access to food and water freely. After 1 week of adap-

tive feeding, the rats were divided into normal diet group

(normal, n = 10), high-fat diet group (HFD; n = 25) and

HFD + SHP099 group (n = 25). The HFD was composed

of 10% commission powder, 10% saccharose, 20% lard

and 60% normal diet. The rats in the HFD + SHP099

group were orally administrated with SHP2 inhibitor

(SHP099 solution, 30 mg�kg−1; #HY-100388; MedChemEx-

press, Monmouth Junction, NJ, USA) on the basis of

HFD. The rats were all fed for 9 weeks, and their weight

was recorded once a week.
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Blood detection

After 9 weeks of feeding, all of the rats were fasted for

8 h. The blood samples of rats were then collected

through the posterior orbital venous plexus under ether

anesthesia. The serum was obtained by centrifuging the

blood samples at 3500 g for 10 min. The serum level of

rat lipids, including total cholesterol (TC) and triglyc-

erides (TGs), was detected by an automatic analyzer

(AU2700; Olympus, Tokyo, Japan). The fasting blood

glucose (FBG) content in the rat serum was assessed by

the CareSens blood glucose meter and corresponding

paper (i-SENS, Seocho-gu, Seoul, Korea). The level of

fasting insulin (FINS) was measured by the ELISA

according to the kit instructions (#XF02128-96T; Shang-

hai Xinfan Biotechnology Co., Ltd, Shanghai, China).

Furthermore, the homeostasis model assessment-insulin

resistance index (HOMA-IR) and insulin sensitivity (ISI)

were calculated: HOMA-IR = (FBG × FINS)/22.5 and

ISI = ln [1/(FBG × FINS)].

Tissue samples

At the end of the experiment, the rats were sacrificed by

intraperitoneal injection of pentobarbital sodium

(150 mg�kg−1) to collect their liver tissues. The tissue sam-

ples were then fixed in 4% paraformaldehyde for 24 h,

sliced into 5-µm sections, paraffin embedded and reserved

at −80 °C for further detection.

Quantitative real-time PCR assay

The expression of SHP2 in the treated Huh7 cells and rats

was determined by quantitative real-time PCR (qRT-PCR)

assay. In detail, the total RNAs of cells and tissues were

separated by TRIzol reagent (Invitrogen), and the quality

and integrity of the separated RNAs were respectively eval-

uated by the NanoDrop-2000c spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA) and 1% agarose

modified gel electrophoresis. The first-strand cDNAs were

synthesized from the isolated RNA (1 µg) with the Prime-

Script RT Master Mix Perfect Real Time (TaKaRa, Shiga,

Japan) following the instructions. qRT-PCR assay was con-

ducted in the ABI Prism 7500 Fast Real-time PCR System

(Applied Biosystems, Foster City, CA, USA) under the fol-

lowing reaction conditions: 3 min at 94 °C, 40 cycles of

30 s at 50 °C and 50 s at 72 °C, followed by 8 min at

72 °C. The mRNA expression was determined by the com-

parative 2�ΔΔCt method [18], and GAPDH was used as an

internal reference. The sequences of primers were purchased

from Gene Pharma and are listed in Table 1.

Western blot analysis

The expression levels of SHP2, IRS-2, Akt and ERK in the

treated Huh7 cells and rats were analyzed by western blot

(WB). In brief, the total proteins of cells and tissues were

lysed using radioimmunoprecipitation assay buffer (Bey-

otime Institute of Biotechnology, Jiangsu, China), and the

protein concentration was measured by Bicinchoninic Pro-

tein Assay kit (Pierce, Rockford, IL, USA). Forty micro-

grams protein samples was separated on 10% SDS/PAGE

(Beyotime, Shanghai, China) and then electrotransferred

onto polyvinylidene fluoride membranes (Millipore, Biller-

ica, MA, USA). Next, the membranes were blocked with

5% nonfat dry milk at room temperature for 1 h and then

exposed to the following primary antibodies (Abcam, Cam-

bridge, MA, USA) overnight at 4 °C: SHP2 (1 : 1000,

ab131541), phosphorylated (p)-IRS-2 (1: 3000, ab3690),

IRS-2 (1 : 2000, ab134101), p-AKT (1 : 1000, ab38449),

AKT (1 : 10 000, ab179463), p-ERK1/2 (1 : 1000,

ab214362), ERK1/2 (1 : 1000, ab17942) and GAPDH

(1 : 1000, ab181602), which was an internal reference. Sub-

sequently, the homologous secondary antibody goat anti-

(rabbit IgG H&L) (HRP; 1 : 7000, ab97051) was added at

room temperature for another hour. The blots were devel-

oped with the enhanced chemiluminescence-detecting kit

(ECL; Thermo Fisher).

Statistical analysis

STATISTICAL PACKAGE OF THE SOCIAL SCIENCES 20.0 software

(SPSS, Inc., Chicago, IL, USA) was used for data analysis.

The data were presented as mean � standard deviation

(SD). The difference between groups was compared by one-

way ANOVA followed by Tukey’s t-test. All experiments

were performed in triplicate. A P value <0.05 was consid-

ered statistically significant.

Table 1. Primer base sequence.

Gene Forward (50–30) Reverse (50–30)

SHP2

Human ACGGCAAGTCTAAAGTGA AGGTCCGAAAGGTGGTATT
Rat GCAGTGCTGGGATTGGCCGGACAGGAAC CAGTCCAACCCCGGCGAGCTTCTGAACAC

GAPDH

Human ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA
Rat GCATGGCCTTCCGTGTTCCTA AGTGTTGGGGGCTGAGTTGG
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Results

SHP2 expression was increased in IR HCC cell

models

Compared with control cells, the GC of IR HCC cell

models was observably reduced (P < 0.001; Fig. 1A).

WB results revealed that the expression of SHP2 was

obviously elevated in IR HCC cell models, whereas

the expressions of p-IRS-2 and IRS2 were decreased

(P < 0.001; Fig. 1B,C). Accordingly, the ratio of p-

IRS-2/IRS2 was decreased visibly in IR HCC cell

models in comparison with the control cells

(P < 0.001; Fig. 1D).

SHP2 knockdown alleviated IR by promoting

phosphorylation of IRS-2, Akt and ERK

To explore the effect of SHP2 on the IR HCC cell

models, this study up-regulated and down-regulated

the expression of SHP2 in IR HCC cell models. First,

the transfection efficiency of siSHP2 and SHP2 was

detected by qRT-PCR, and the expression of SHP2 in

cells transfected with siSHP2 was significantly down-

regulated, but up-regulated in cells transfected with

SHP2 (P < 0.001; Fig. 2A,B). After IR treatment,

compared with cells in the NC + siNC group, both

qRT-PCR and WB experiments verified that the

expression of SHP2 in cells of the siSHP2 + NC group

was significantly decreased but noticeably increased in

the cells of the siNC + SHP2 group (P < 0.001;

Fig. 2C–E). GC of IR HCC cell models was promoted

by the down-regulation of SHP2 but reduced by the

overexpression of SHP2 (P < 0.001; Fig. 2F). In addi-

tion, as shown in Fig. 3, WB analysis indicated that

SHP2 knockdown in IR HCC cell models increased

the expressions of p-IRS-2, IRS-2 and p-AKT and

reduced that of p-ERK1/2 (P < 0.05). Correspond-

ingly, the ratios of p-IRS-2/IRS-2 and p-AKT/AKT

were increased noticeably under SHP2 knockdown,

whereas the ratio of p-ERK1/2/ERK1/2 was decreased

greatly (P < 0.001). In addition, the effects of overex-

pressed SHP2 on the expressions of earlier proteins in

IR HCC cell models were completely opposite to those

of SHP2 knockdown.

SHP2 inhibitor improved diabetic rats by

promoting the phosphorylation of IRS-2, Akt and

ERK

To further investigate the role of SHP2 in diabetes, we

constructed the diabetic rat models and treated them

with a selective inhibitor of SHP2 (SHP099). Com-

pared with normal diet, the body weight of diabetic

rat models induced by HFD increased significantly,

whereas SHP2 inhibitor mitigated overweight caused

by HFD (P < 0.05; Fig. 4A). In blood detection, the

experimental results demonstrated that the levels of

TC, TGs, FBG, FINS and HOMA-IR were increased

and ISI was reduced noticeably in HFD-induced rats,

Fig. 1. SHP2 expression was up-regulated

in IR HCC cell models. (A) The GC levels

of IR HCC cell models and control cells

were determined using a glucose assay

kit. (B, C) The expressions of SHP2, p-IRS-

2 and IRS-2 in IR HCC cell models and

control cells were analyzed by WB

analysis, and (D) the ratio of p-IRS-2/IRS-2
was further calculated. ***P < 0.001,

versus control. n = 3. Data were

presented as mean � SD. Statistical

differences were compared by ANOVA

followed by Tukey’s t-test.
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which, however, could be rescued by the intervention

of SHP2 inhibitor (P < 0.05; Fig. 4B–G). In WB anal-

ysis, we observed that the expression of SHP2 was

notably increased in HFD-induced rats but was sup-

pressed by SHP2 inhibitor (P < 0.001; Fig. 5A–C).
Moreover, p-IRS-2 and p-AKT were reduced and p-

ERK1/2 was evidently promoted in HFD-induced rats,

but these changes could be reversed by SHP2 inhibitor

(P < 0.05; Fig. 5D,E). The ratios of p-IRS-2/IRS-2

and p-AKT/AKT were reduced, and that of p-ERK1/
2/ERK1/2 was elevated accordingly in HFD-induced

rats, which, however, could be reversed under the

treatment of SHP2 inhibitor (P < 0.05; Fig. 5F–H).

Discussion

A large amount of epidemiological evidence indicates

that diabetes is distinctively correlated with the

development of tumors, and patients with diabetes are

more likely to experience liver cancer than those without

[19]. At present, how diabetes affects liver cancer still

remains unclear. Some evidence suggested that diabetes-

related liver cancer may be caused by IR, dyslipidemia

and hyperglycemia [20–22]. In recent years, some studies

found that SHP2 molecule and its mutants are closely

involved in the disease courses of many malignancies

[23]. Previously it has been reported that SHP2 was

anomalously distributed and overexpressed in

hematopoietic malignant tumors [24]. We simulated dia-

betes-related liver cancer cell models by inducing IR to

HCC cells and discovered that the expression of SHP2

was increased in cell models, suggesting that SHP2

could promote the occurrence of IR and thus trigger the

progression of diabetes-related liver cancer.

Liver is the main target organ of insulin action, and

patients with diabetes-related liver cancer show a high

Fig. 2. SHP2 knockdown alleviated IR in

HCC cells. (A, B) The transfection

efficiency of siSHP2 and SHP2 was

detected by qRT-PCR. (C–E) After IR
treatment, the expression of SHP2 in

transfected cells was analyzed by (C, D)

WB analysis and (E) qRT-PCR assay. (F)

The GC level of transfected cells was

determined using a glucose assay kit.

***P < 0.001, versus control. ###P <
0.001, versus NC. ^^^P < 0.001, versus

NC + siNC. n = 3. Data were presented

as mean � SD. Statistical differences

were compared by ANOVA followed by

Tukey’s t-test.
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IR, which is characterized by the decreased sensitivity

of cells and tissues to insulin, thus resulting in the

decreased consumption of glucose [25]. At the molecu-

lar level, IR is mainly manifested as the blockage of

intracellular signaling pathway after insulin binds to

its receptors [26]. IRS is one of the most common sub-

strates of insulin receptor, and its dysfunction and the

decrease of expression will affect the transmission of

insulin signaling, resulting in IR [27]. An animal study

showed that IRS-2 could rescue insulin signaling

defects in mice, suggesting that IRS-2 protein might be

an important mediator of IR and related signaling

pathway dysfunction [28]. Therefore, we speculated

that improving IR and promoting IRS-2 activation

may have positive significance for diabetes-related liver

cancer. In this study, GC level and IRS-2 phosphory-

lation in IR HCC cell models were suppressed greatly,

indicating that establishing diabetes-related liver cancer

models in HCC cells by inducing IR to the cells was

successful.

In liver diseases, SHP2 has been reported to pro-

mote hepatocyte regeneration after liver injury through

regulating the AKT and ERK1/2 signaling pathways,

and SHP2 knockout mice displayed very similar phe-

notypes of defective liver regeneration triggered by

partial hepatectomy, including blunted ERK1/2 activa-

tion and AKT inhibition [29]. In addition, Chen et al.

[30] also pointed out that the ERK1/2 and AKT sig-

naling pathways were involved in the proliferation and

metastasis of HCC cells. AKT and ERK, which

belong to serine threonine kinases, play a key role in

glucose metabolism, protein synthesis, and cell survival

and proliferation [31–33]. AKT is a major downstream

signaling pathway of insulin and can be activated after

insulin binds to IRS to trigger glucose transforming

protein and ultimately complete glucose uptake [34].

Fig. 3. SHP2 knockdown alleviated IR by promoting phosphorylation of IRS-2, Akt and ERK. In this figure, HCC cells were transfected with

scrambled sequences (NC), siSHP2 plus NC or siNC plus SHP2 before IR induction. (A, B) The activations of IRS-2, Akt and ERK in

transfected cells were analyzed by WB analysis, and (C–E) the ratios of p-IRS-2/IRS-2, p-AKT/AKT and p-ERK1/2/ERK1/2 were further

calculated. ^P < 0.05, ^^P < 0.01, ^^^P < 0.001, versus NC + siNC. n = 3. Data were presented as mean � SD. Statistical differences were

compared by ANOVA followed by Tukey’s t-test.
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Activated ERK1/2 in a high-glucose environment con-

tributes to the development of diabetic complications

[35]. Thus, AKT phosphorylation and ERK1/2 inhibi-

tion contribute to glucose uptake and IR. We deter-

mined that SHP2 knockdown effectively increased the

GC in IR-induced HCC cells, promoted the activation

of IRS-2 and AKT, and inhibited ERK1/2 phosphory-

lation. Thus, we speculated that SHP2 may stimulate

the occurrence of diabetes-related liver cancer, whereas

SHP2 silencing could inhibit IRS-2 phosphorylation

by regulating the activation of AKT and ERK1/2, thus
ameliorating glucose uptake and IR.

To further test our hypothesis, this study con-

structed in vivo diabetes rat models by feeding the rats

with HFD and then analyzing the effect of SHP2 inhi-

bitor on the rats. After feeding with HFD, the rat

weight and levels of TC, TGs, FBG, FINS and

HOMA-IR in rats were increased significantly, but ISI

value was decreased, indicating that the establishment

of diabetes rat models was successful. In contrast, WB

analysis demonstrated that the phosphorylation levels

of IRS-2 and AKT in HFD rats were obviously

inhibited, but ERK1/2 was abnormally activated.

Interestingly, all of these changes were reversed by the

addition of SHP2 inhibitor, which was consistent with

our previous cell experiment results suggesting that

inhibiting SHP2 can improve glucose uptake disorder

and IR in HFD rats via regulating the phosphoryla-

tion of IRS-2, AKT and ERK1/2.
The study showed that the effect of SHP2 in the

liver might contribute to IR. However, the oral admin-

istration of SHP2 inhibitor may involve the effects of

tissues on facilitating restoration of TC, TGs and

FBG to the near-normal levels, and this was a limita-

tion of this study.

The limitation of this study was not determining

whether ERK inhibition alone also increases GC or

whether SHP2 inhibition combined with AKT inhibi-

tion would abolish the effects on GC.

Conclusions

In summary, our experimental finding verified that

SHP2 expression was up-regulated and IRS-2

Fig. 4. SHP2 inhibitor improved IR in diabetic rats. In this figure, a total of 60 rats were divided into normal diet group (normal, n = 10), HFD

group (n = 25) and HFD + SHP099 group (n = 25). (A) Rats in each group were fed for 9 weeks, and their weight was recorded once a

week. The levels of (B) TC, (C) TGs, (D) FBG, (E) FINS, (F) HOMA-IR and (G) ISI of rats in different groups were detected and calculated,

respectively. *P < 0.05, **P < 0.01, ***P < 0.001, versus normal; ^P < 0.05, ^^P < 0.01, ^^^P < 0.001, versus HFD. n = 3. Data were

presented as mean � SD. Statistical differences were compared by ANOVA followed by Tukey’s t-test.
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phosphorylation was significantly suppressed in the

HCC cell-based IR models. Furthermore, both in vivo

and in vivo assays confirmed that SHP2 knockdown

promoted GC and improved IR through activating

IRS-2 phosphorylation via the regulation of AKT and

ERK1/2 signaling pathways. The study demonstrated

Fig. 5. SHP2 inhibitor improved the diabetic rats by promoting phosphorylation of IRS-2, Akt and ERK. In this figure, a total of 60 rats were

divided into normal diet group (normal, n = 10), HFD group (n = 25) and HFD + SHP099 group (n = 25). The expression level of SHP2 in

treated rats was analyzed by (A) qRT-PCR assay and (B, C) WB analysis in liver tissues. (D, E) The activations of IRS-2, Akt and ERK in liver

tissues of rats were analyzed by WB analysis, and (F–H) the ratios of p-IRS-2/IRS-2, p-AKT/AKT and p-ERK1/2/ERK1/2 were further

calculated in liver tissues. *P < 0.05, ***P < 0.001, versus normal; ^P < 0.05, ^^P < 0.01, ^^^P < 0.001, versus HFD. n = 3. Data were

presented as mean � SD. Statistical differences were compared by ANOVA followed by Tukey’s t-test.
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that SHP2 in the diabetic mice could promote IR in

the liver. The current findings improve the understand-

ing of the role of SHP2 in diabetes and provide further

experimental evidence for the treatment of the disease.
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