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Analysis of high fat diet induced genes during
mammary gland development: identifying role
players in poor prognosis of breast cancer
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Abstract

Background: Epidemiological studies have shown that consumption of a high-fat diet (HFD) increases the risk of
developing breast cancer (BC). Studies in rodents have shown HFD causes changes in the genetic programming of
the maturing mammary gland (MG) increasing the susceptibility of developing the disease. Less is known about
how HFD induced genes impact BC development. HFD exposure two weeks before conception to six weeks of age
was previously shown to dramatically change MG gene expression in 10 week old mice. Therefore, we investigated
these differentially expressed HFD-induced genes for their expression in BC using the NKI 295 breast tumor dataset.

Results: To examine the potential role of HFD induced genes in BC, we first investigated whether these HFD-induced
genes in mouse MGs were differentially expressed in different types of human BC. Of the 28 HFD induced genes that
were differentially expressed between BC subtypes in the NKI set, 79% were significantly higher in basal-like BC. Next,
we analyzed whether HFD induced genes were associated with BC prognosis utilizing gene expression and survival
data for each HFD induced gene from the NKI data and constructed Kaplan Meier survival plots. Significantly, 93% of
the prognosis associated genes (13/14) were associated with poor prognosis (P = 0.002). Kaplan Meier analysis with 249
non-basal-like BC found that all but one of the genes examined were still significantly associated with poor prognosis.
Furthermore, gene set enrichment analysis (GSEA) with HFD microarray data revealed that invasive BC genes where
enriched in HFD samples that also had lost expression of luminal genes.

Conclusions: HFD exposed mouse MGs maintain differential expression of genes that are found highly expressed in
basal-like breast cancer. These HFD-induced genes associate with poor survival in numerous BC subtypes, making them
more likely to directly impact prognosis. Furthermore, HFD exposure leads to a loss in the expression of luminal genes
and a gain in expression of mesenchymal and BC invasion genes in MGs. Collectively, our study suggests that HFD
exposure during development induces genes associated with poor prognosis, thus identifying how HFD diet may
regulate BC development.
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Diet-induced genes
Background
Recent evidence suggests that dietary content is one
causal lifestyle factor that may contribute to breast cancer
(BC) development. Studies focusing on migrant popula-
tions have shown that women migrating from low (Asian,
Latin American) to high BC incidence rate countries
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(United States and other Western countries) acquire a
higher risk for BC similar to those in the new country
[1-6]. These studies suggest that dietary changes might be
a strong contributing factor to the increased incidence
rates observed in these migrating populations. A study
analyzing the effects of dietary patterns and the risk of BC
in women of different ethnicities concluded that women
consuming a Western diet had a higher risk of BC [7].
The Western diet consists of foods primarily high in fat. A
higher intake of dietary fat has been shown to increase BC
risk in adults [8,9].
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A high-fat diet (HFD) may also determine the type of
BC that will develop translating to a more precise treat-
ment strategy increasing patient survival. Breast cancer
tumors have been previously classified into subtypes
based on their unique molecular/genetic expression pro-
files that correlate with phenotypic characteristics and
clinical outcome [10-13]. The expression of estrogen re-
ceptor (ER) is a distinguishing marker between these tu-
mors subtypes in combination with other molecular
cues. Luminal subtype A (luminal A) and luminal sub-
type B (luminal B) are tumors that have high expression
levels of ER (ER+) and are associated with a favorable
prognosis. ERBB2 is overexpressed in HER2 positive
breast cancers whereas basal epithelial-like (basal-like)
tumors are ER negative (ER-). HER2 and basal-like tu-
mors are associated with a poor prognosis [10,11,13,14].
Strikingly, the five year survival rate for patients with lu-
minal A is 90% compared to as low as a 30% five year
survival rate for patients with HER2 and basal-like BC
tumors [14-16]. This difference is due, in part, to the dif-
ficulty in predicting a clinical course, tumor stage at
diagnosis and availability of targeted therapy [14,17].
Obesity significantly increases the risk of developing
basal-like BC in premenopausal women, predicting a
poor outcome in these individuals [18]. Commensur-
ately, obese individuals are much less likely to develop
luminal BC. Therefore, identifying the impact a HFD has
on the type of BC a women develops may be critical in
identifying the disease early to help predict a clinical
course of action that would increase that patient’s
survival.
The impact that HFD has on developing BC in

humans has yet to be fully elucidated, in part, due to the
limited number of human studies (and ability) to ad-
equately assess the effect diet has on genetic regulation
of the developing mammary gland (MG). Studies using
rodent models have provided the most compelling evi-
dence linking developmental exposure to a HFD to
breast carcinogenesis [19-21]. These studies culminate
to identify several theories to how consumption of a
HFD during pre and/or postnatal development may
cause BC including genetic reprogramming of the MG
[22-25]. However, it is unclear as to how HFD might
contribute to the development of specific types of BC
correlating to the severity of the disease and patient sur-
vival. Thus, identifying MG HFD-induced transcriptional
programs that are pertinent to specific types of human
BC could have a tremendous impact on understanding
the etiology of diet induced BC.
The purpose of this study was to examine genes in-

duced by exposure to a HFD during MG development in
the mouse for the role they may play in human BC.
Luitjen et. al. [25] previously identified genes that were
differentially expressed in 10 week old MGs after
developmental HFD exposure. Strikingly, these changes
were sustained even after HFD exposure, suggesting a
long-term effect. To investigate how HFD may influence
the development of BC, we examined the experimentally
identified HFD-induced genes from the study by Luitjen
et al. [25] in human breast tumors. The expression of
HFD- induced genes was examined in BC by utilizing
the widely studied NKI BC dataset from the Netherlands
Cancer Institute, which contains gene expression and
patient follow up/survival data from 295 women be-
tween the ages of 26 and 53 [10]. The NKI BC data set
had been previously classified into five breast cancer
subtypes [10]. Using Kaplan Meier analysis and gene set
enrichment analysis (GSEA) we found that HFD induced
genes were associated with poor prognosis and invasive
BC. We also found that HFD leads to a loss in luminal
gene expression and a gain in basal-like gene expression.
Our data shows for the first time that HFD-induced
genes are highly expressed in BCs that are of the basal-
like subtype and are associated with poor prognosis.

Methods
Collection of HFD-induced genes and gene expression
analysis in BC subtypes
Microarray data of differentially expressed genes was ob-
tained from a study analyzing the effects of early diet on
the genetic programming of the MG in wild-type mice
[25]. As described previously [25], FVB wild-type mice
were fed a HFD diet consisting of either a 24% high fat
content of either n-6 (corn oils) or n-3 (flaxseed oil)
PUFAs (polyunsaturated fatty acids) from two weeks
prior conception to 6 weeks of age. Control animals
were fed standard rodent chow (5% fat) during the same
period. Gene expression profiling of the MG was per-
formed at 10 weeks of age. Luitjen et al. [25] utilized the
data from both types of fat (n-3 and n-6) in ANOVA
analysis to identify differentially expressed genes. We ex-
amined the top one hundred differentially expressed
genes that were induced by HFD with a p-value of
0.0001 or less based on the Luitjen ANOVA analysis for
representation in the NKI dataset. The NKI dataset con-
tains gene expression and survival data for 295 human
breast tumors; these samples have also been previously
classified based on breast cancer subtypes (basal-like =
46 tumors; HER2 positive = 49 tumors; luminal A = 88
tumors; luminal B = 81 tumors; normal-like = 31 tumors)
[10,11]. Our analysis focused on the HFD-induced genes
found in the NKI data set (41 total). The average expres-
sion of each HFD-induced gene was determined for each
BC sub-type. In order to determine whether HFD genes
were differentially expressed between breast cancer sub-
types, we performed the two tiered, type two T-test to
determine whether each gene was expressed signficantly
different between the basal-like subtype and the other
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sub-types of BC (HER2, luminal A, luminal B and normal-
like). The T-test gave the same p-value as one way
ANOVA, however a T-test anaylsis was used given we
were only examining a single factor between two groups
at a time. The false discovery rate (FDR) was calculated
for differentially expressed genes to correct for multiple
hypothesis testing. Changes in gene expression between
subtypes that had an FDR of 0.01 or less were considered
to be signifcant. It is improtant to note that the data sets
utilized in this article were from experiemnts previously
approved by their respective institutial ethics commitees
and follow their national legeslation [10,25].

Survival analysis
A Kaplan Meier survival analysis for each HFD induced
gene was performed using the NKI dataset and MedCalc
software (Mariakerke, Belgium) for each gene to be ana-
lyzed. The association with prognosis of human breast
cancer for each gene was obtained from this analysis:
poor prognosis; good prognosis; no association. 295
breast tumors were divided into two equal-sized groups
based on the expression of each gene; group one repre-
sented low expression of the gene and group two repre-
sented high expression of the gene. All availabe time
points were utilized. P-values of less than 0.05 were con-
sidered significant associations. Based on the Chang
et al. [11] classification of the NKI database, we utilized
249 breast cancer samples for the non-basal like breast
tumor analysis.

Additional statistical analysis of poor prognosis genes
HFD-induced genes that were associated with poor
prognosis were analyzed as a group for overall differen-
tial expression between BC subtypes using NKI data. We
performed ONE-WAY ANOVA with a Dunnett’s post
test to determine the significance of mean gene expres-
sion between BC subtypes using the basal-like subtype
as the reference group. Probability values of less than
0.05 were considered significant. The PC IBM INSTAT
and PRISM software were used for the statistical ana-
lyses and graphs, respectively (GraphPad, San Diego,
CA, USA).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed
using the Broad Institute platform [26,27]. Samples were
analyzed with weighted, Signal2Noise default settings.
Microarray gene expression data from Luitjen et al. was
grouped based on diet (control low fat diet or HFD sam-
ples) [25]. Both types of HFD (n-3 and n-6 as indicated)
were independently studied by GSEA with similar re-
sults. (Additional file 1: Table S1) contains the list of 361
breast cancer gene sets from the Molecular Signatures
database, Broad Institute, that were utilized for analysis.
The luminal gene sets utilized in GSEA are in (Additional
file 2: Table S2).

Results
HFD during MG development induces basal-like BC genes
Murine MGs exposed to HFD during development (two
weeks before conception to 6 weeks post birth) had dra-
matic changes in gene expression at ten weeks of age
[25]. In order to investigate how HFD may influence BC
development, we examined genes from the Luitjen et al.
study that were induced by HFD with a p-value of
0.0001 or less for expression in BC subtypes by utilizing
data for these genes in the NKI BC dataset. Gene ex-
pression signatures classify breast cancer into 5 basic
subtypes: basal-like, HER2, luminal A, luminal B and
normal-like. The basal-like subtype is associated with
the worst prognosis whereas the luminal A is associated
with the best prognosis [12,13]. The average expression
of each HFD induced gene was determined for each BC
subtype (Table 1). Changes with an FDR of 0.01 or less
were considered significantly different. Twenty-eight out
of the 41 HFD induced genes showed statistically differ-
ent levels of gene expression between the luminal A (as-
sociated with good prognosis) and basal-like (associated
with poor prognosis) subtypes of BC; 79% of these genes
were significantly higher in basal-like BC compared to
luminal A BC. Therefore, HFD exposed glands preferen-
tially maintain induced expression of genes that are
found highly expressed in basal-like BC.

HFD induced genes are strongly associated with poor
prognosis in BC
In order to examine whether HFD induced genes were
associated with BC prognosis, we performed Kaplan
Meier survival analysis using HFD induced genes from
10-week old mammary fat pads and the NKI dataset, as
described in the Methods. A total of fourteen genes out
of forty-one were associated with prognosis in BC (p <
0.05). Only one HFD-induced gene was associated with
good prognosis; the high expression of Esterase D (ESD),
showed a higher survival probability when compared to
the low gene expression (Figure 1, Table 1). Significantly,
93% of the prognosis associated genes (13 out of 14
HFD-induced genes) were associated with poor progno-
sis; the high expression of these genes showed a lower
survival probability when compared to their low expres-
sion (Figure 1, Table 1) (P = 0.002). The AmiGO data-
base [28] was utilized to identify gene ontologies that
were associated with the HFD-induced poor prognosis
genes. We found that the poor prognosis genes were as-
sociated with cell adhesion, proteolysis, immunological
response, ion transport and DNA methylation (Table 2).
Altogether, HFD-induced genes during mammary devel-
opment are highly associated with poor survival in BC.



Table 1 Expression of HFD-induced genes in breast cancer subtypes and association with breast cancer prognosis

Genea Basal-likeb HER2c Luminal Ad Luminal Be Normal-likef Survival associationg

MMP12 0.17 −0.13* −0.24* −0.19* −0.33* Poor prognosis

GPNMB −0.01 0.00 −0.18* −0.06 −0.11 Poor prognosis

CTSL 0.07 0.04 −0.16* −0.03* −0.18* Poor prognosis

ITGAX 0.00 0.07* 0.04 0.05 0.05 -

LILRB4 0.10 0.02 −0.15* −0.04* −0.22* Poor prognosis

TM7SF1 −0.18 0.05* 0.05* 0.01* −0.03* -

DNMT3A 0.09 0.03 −0.08* 0.00* −0.10* Poor prognosis

TYROBP 0.06 0.01 −0.05* −0.01 −0.13* -

DIO1 −0.21 −0.18 −0.04* −0.01* −0.07* -

SLC11A1 0.14 0.01* −0.10* −0.03* −0.15* Poor prognosis

GALNS 0.05 0.03* 0.01 0.03 0.01 -

NCF2 0.11 0.01* −0.15* −0.04* −0.16* Poor prognosis

PTPNS1 0.23 0.00* −0.15* −0.08* −0.14* Poor prognosis

LGALS3 −0.07 0.04* −0.03 −0.01* 0.04* -

MTHFS −0.02 0.00 0.02 0.05* −0.07 -

IL1RN 0.00 −0.17* −0.13* −0.11 −0.05 -

CTSS 0.12 −0.04* −0.17* −0.06* −0.20* -

WBSCR5 0.03 0.01 0.00 0.00 −0.06* -

PRKCD −0.05 0.02* 0.03* 0.04* −0.02 -

CAPG 0.09 −0.03* −0.06* 0.01* −0.07* -

CD68 0.06 0.09 −0.02* 0.02 −0.01* -

ITGB2 0.11 0.04 −0.09* −0.03* −0.11* Poor prognosis

CSTB 0.18 0.02* −0.04* −0.03* −0.07* Poor prognosis

ATF3 0.01 −0.13* −0.12* −0.09* 0.01 -

CSF2RA 0.01 −0.01 −0.02 −0.01 −0.11* -

WFS1 −0.20 0.00* 0.03* 0.06* −0.02* -

PPGB1 0.00 0.07* −0.05* 0.02 −0.07* Poor prognosis

ADAM8 0.12 0.02* −0.09* −0.06* −0.25* Poor prognosis

CCRL2 0.06 0.07 −0.01 0.02 −0.06* -

VTN 0.00 0.00 0.01 0.01 0.06 -

RGS1 0.04 0.01 −0.03* −0.04* −0.13* -

FCGR3 0.09 0.06 −0.03* 0.03* −0.08* Poor prognosis

EMR1 0.06 −0.03 0.01 0.00* 0.03 -

ARPC2 0.06 0.03 −0.06* −0.03* −0.03* -

ESD −0.04 −0.04 0.02* −0.01 0.08* Good prognosis

VAMP4 0.06 0.05 0.05 0.05 −0.03 -

CDKN1C −0.05 −0.05 −0.05 −0.12 0.13* -

HEXB −0.04 0.00 −0.02 −0.02 −0.03 -

NAGLU −0.01 0.05* 0.02 0.04* 0.12* -

KCNH2 0.00 −0.29* −0.21* −0.15* −0.32* -

MSTF1 0.02 0.03 0.04* 0.04* 0.04 -
aHFD induced genes (Luitjen et al.) that were present in the NKI human breast cancer data set as described in the Methods. b-fAverage gene expression among 5
different human breast cancer subtypes for these genes (Tumors: basal-like n = 46; HER2 n = 49; luminal A n = 88; luminal B n = 81; normal-like n = 31). gTotal of 13 genes
associated with poor prognosis and 1 gene associated with good prognosis based on Kaplan Meier survival analysis for the indicated gene with 295 BC samples from
the NKI dataset as described in the Materials and Methods. The plots for the genes that were significantly associated with prognosis are depicted in Figure 1 of this
manuscript. *Gene expression statistically different with respect to basal-like subtype (False discovery Rate [FDR] < 0.01).

Martinez-Chacin et al. BMC Research Notes 2014, 7:543 Page 4 of 12
http://www.biomedcentral.com/1756-0500/7/543



p= 0.0016 p= 0.0007 p=0.0004 p=0.0262

p= 0.006 p= 0.0006 p=0.0122 p<0.0001

p= 0.0296 p= 0.0007 p= 0.0066 p<0.0001

p= 0.0306 p= 0.0034

Good 
Prognosis

Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 HFD-induced genes are strongly associated with poor BC prognosis. HFD induced genes from mouse MGs were examined for an
association with human BC prognosis using Kaplan Meier survival analysis. Gene expression and survival data was obtained from the NKI
(Netherlands Cancer Institute) dataset for each HFD induced gene. 295 breast tumors were divided into two equal-sized groups based on the
expression of the indicated gene; one group represented low expression of the gene and the other group represented high expression of the
gene. Depicted are 14 out of the 41 analyzed HFD induced genes; only these 14 genes showed significant association with breast cancer prognosis.
13 out of 14 HFD induced genes were significantly associated with a poor prognosis.
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The strong association between HFD-induced genes
and poor prognosis in human breast cancer prompted
us to further investigate this phenomena. We first exam-
ined the expression distribution of these genes in the
295 breast cancer tumors by plotting the expression of in-
dividual genes for each breast tumor sample, (Additional
file 3: Figure S1) and (Additional file 4: Figure S2). One
can see that there is a high expression of each poor prog-
nosis associated gene in basal-like breast cancer samples
whereas there is lower expression in luminal A breast can-
cers. Each of the poor prognosis genes is significantly less
well expressed in luminal BC compared to basal-like BC,
Table 1. Genes associated with poor prognosis were ana-
lyzed as a group for differential expression in human
breast cancer subtypes. The average expression of these
genes showed significant statistical difference in HER2, lu-
minal A, luminal B, and normal-like subtypes with respect
to the basal-like subtype (ANOVA p < 0.01, Figure 2). Of
note, the differences in expression were more striking be-
tween basal-like BC samples and luminal A, luminal B
and normal-like tumors, whereas a less dramatic, but still
significant difference was found between basal-like tumors
and HER2 positive tumors. This result is consistent with
the fact that HER2 positive cancer are associated with
poor prognosis as well [12,14].
Table 2 Cellular processes of genes associated with poor prog

Gene Description

Mmp12 Matrix metallopeptidase 12

Gpnmb Glycoprotein (transmembrane)

Ctsl Cathepsin L

Lilrb4 Leukocyte immunoglobulin-like receptor,
subfamily B, member 4

Dnmt3a DNA (cytosine-5-)-methyltransferase 3 alpha

Slc11a1 Solute carrier family 11 (proton-coupled divalent metal ion transp
member 1

Ncf2 Neutrophil cytosolic factor 2

Ptpns1 Signal-regulatory protein alpha

Itgb2 Integrin, beta 2 (complement component 3 receptor 3 and 4 subu

Cstb Cystatin B (stefin B)

Ppgb1 Cathepsin A

Adam8 ADAM metallopeptidase domain 8

Fcgr3 Fc fragment of IgG, low affinity IIIa, receptor (CD16a)

Gene ontologies from the AMIGO database were obtained for HFD induced genes t
Although it is clear that HFD-induced genes are more
strongly expressed in basal-like breast cancer, we were
interested to examine whether these genes were associ-
ated with prognosis in other subtypes of breast cancer.
To investigate this, we performed Kaplan Meier analysis
with 249 non-basal-like NKI samples and found that all
but 1 (92%) of the genes examined (Matrix metallopro-
teinase 12, MMP12) were still significantly associated
with poor prognosis (Table 3). Therefore, HFD-induced
genes associate with poor survival in a broad range of
human breast cancer subtypes, making them likely to
directly impact prognosis and have an influence on sur-
vival in many types of breast cancer.

HFD exposure induces BC mesenchymal and invasion
genes
HFD exposure during development in mice leads to dra-
matic changes in mammary fat pad gene expression.
These changes strongly suggest that the breast tissue ex-
posed to HFD are developmentally altered and may sus-
tainably express programs that parallel those found in
certain types of BC. To investigate this, we performed
GSEA with 361 curated BC gene sets from the Broad In-
stitute Molecular Signatures Database. Each of the 361
examined gene sets contained genes that were previously
nosis

GO reference Gene ontology

GO:0006508 Proteolysis

GO: 0007155 Cell adhesion

GO:0006508 Proteolysis

GO: 0045671 Negative regulation of osteoclast differentiation

GO:0006306 DNA methylation

orter), GO:0070839 Divalent metal ion export

GO:0016175 Superoxide-generating NADPH oxidase activity

GO: 0007155 Cell adhesion

nit) GO:0007155 Cell adhesion

GO:0010466 Negative regulation of peptidase activity

GO: 0006508 Proteolysis

GO: 0006508 Proteolysis

GO:0001788 Antibody-dependent cellular cytotoxicity

hat were found to be associated with poor prognosis.
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Figure 2 Poor prognosis HFD genes are highly expressed in the
basal-like subtype of BC. We calculated the mean (±SEM) expression
of each poor prognosis associated gene (from Figure 1) for each BC
subtype using NKI gene expression data. Poor prognosis genes were
significantly more highly expressed in the basal-like subtype compared
to the other subtypes (Her2, luminal A, luminal B, and normal-like
subtypes) based on ANOVA with Dunnett’s post-test using the
basal-like subtype as the reference group. **p < 0.01.
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determined to be differentially expressed under defined
condition in breast cancer. In GSEA, Kolmogorov-
Smirnov-style statistics are employed to investigate
whether gene sets are more highly expressed (enriched)
between two conditions in microarray analyses. We
compared microarray gene expression data from control
low fat MGs to data from HFD MGs to determine
Table 3 Genes associated with poor prognosis in
non-basal-like breast cancer

Gene Association P-value

GPNMB Poor prognosis P = 0.0011

CTSL Poor prognosis P = 0.0022

LILRB4 Poor prognosis P = 0.0274

DNMT3A Poor prognosis P = 0.0246

SLC11A1 Poor prognosis P = 0.0461

NCF2 Poor prognosis P = 0.0011

PTPNS1 Poor prognosis P = 0.0008

ITGB2 Poor prognosis P = 0.0013*

CSTB Poor prognosis P = 0.0332

PPGB Poor prognosis P = 0.0009

ADAM8 Poor prognosis P = 0.0007

FCGR3 Poor prognosis P = 0.0053

MMP12 - P = 0.1092

Kaplan Meier analysis was performed with all non-basal breast cancer samples
(249) from the NKI dataset and the HFD genes that were found to be associated
with prognosis (from Figure 1 and Additional file 1: Table S1). *5 year Kaplan
Meier curve was used instead of all time points for ITGB2. Strikingly, 12 out of 13
genes were still strongly associated with poor prognosis in non-basal breast
cancer samples.
whether any of the BC gene sets were significantly
enriched in HFD samples. We found that genes associ-
ated with BC invasion were significantly enriched in
HFD samples, Figure 3 and Table 4. Enrichment plots
are depicted in Figure 3 in which genes are ranked based
on their association with given phenotypes, in this case
the phenotypes are HFD (on the right) or control diet
(on the left). The lines underneath the enrichment plot
depict genes that are contained on the gene list being in-
vestigated. One can see a striking enrichment of invasion
genes in HFD treated samples, Figure 3. Therefore, HFD
leads to an increase in the expression of genes involved
in BC invasion.
To further examine HFD mediated changes in gene

expression in the MG with regard to BC development,
we performed GSEA with 53 luminal BC gene sets from
the Molecular Signatures database, Broad Institute. We
found that genes that are normally down-regulated in
the luminal subtype of BC (and are highly expressed in
mesenchymal BC) were enriched in HFD treated sam-
ples, suggesting that these mice may have altered breast
development to a more basal phenotype (Figure 4 A-B,
Table 5). Enrichment plots for analysis with gene sets
that are down in luminal BC and high in mesenchymal
BC (Charafe_luminal_versus_mesenchymal_DN) indicate
a clear increase in mesenchymal BC genes upon HFD
treatment, Figure 4. Furthermore, we found that stromal
genes from poor prognosis BC (gene-set FINAK_
BREAST_CANCER_SDPP_SIGNATURE, SDPP is an
abbreviation for stroma-derived prognostic predictor of
BC disease outcome), were strongly associated with
HFD MGs with a Normalized Enrichment Score (NES)
of 1.87, p = <0.001 (Table 4). One of the top enriched
genes in our GSEA was the mesenchymal marker
Vimentin. We assessed the average Vimentin expression
in control MGs versus HFD fed MGs using the Luitjen
et al. [25] microarray dataset and found that HFD ex-
posed MGs expressed significantly higher levels of the
basal-like BC marker Vimentin. The average expression
of Vimentin was strikingly tenfold higher with n-3 HFD
and 20 fold higher with n-6 HFD (Figure 4C). In sum,
HFD exposure leads to a loss in the expression of lu-
minal genes and a gain in expression of mesenchymal
and BC invasion genes in MGs.

Discussion
BC is a heterogeneous disease. Identifying dietary factors
that contribute to the development of different BC sub-
types is important for the prevention and treatment of
the disease. A HFD has been shown to increase BC risk
in humans [8,9] and several studies using rodent models
have shown that exposure to a HFD in utero and/or dur-
ing postnatal development significantly increase carcino-
gen stimulated MG tumorigenesis [19-21]. However, the



p<0.001 p<0.002

A B

HFD                 Control Diet HFD                 Control Diet

Figure 3 BC invasion genes are enriched in HFD microarray samples. Gene set enrichment analysis (GSEA) was performed with microarray
data from 10 week old mice treated with HFD (labeled F) or control diet (labeled C) and 361 curated genes sets from the Molecular Signatures
Database, Broad Institute; enrichment plots for two of the analyzed gene sets are shown. In these analyses, genes are ranked based on their
association with the HFD phenotype or the control phenotype. Genes most strongly associated with HFD would be on the far right. Enrichment
scores (ES) are calculated using a weighted Kolmogorov-Smirnov-style statistic. Lines underneath the graph depict the genes that are contained
in the investigated gene set. A-B, genes associated with invasion in BC were highly associated with HFD samples. P values are indicated on plots.
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developmental processes in the MG impacted by a HFD
that mediate the heterogeneity of BC are unclear. Re-
cently, work by Luitjen et al. [25] revealed that HFD ex-
posure during MG development leads to sustained
changes in gene expression. In the present study, we
found that genes induced by a HFD in the mouse develop-
ing MG were strongly expressed in the human basal-like
subtype of BC, suggesting that HFD exposed MGs may
have abnormal basal-like characteristics. In line with this,
we found increased expression of mesenchymal genes by
GSEA including the well described marker Vimentin in
HFD gland samples. Our analysis reveals that HFD expos-
ure during development leads to an increase in basal-like
characteristics in MGs along with a concomitant loss of
luminal gene expression (Figures 3–4), which may pro-
mote an increase in basal-like BC development. This pat-
tern of gene expression parallels the increase in basal-like
BC/decrease in luminal BC that is found in obese women
Table 4 Breast cancer gene sets that are enriched in HFD mic

GENE SET NAME S

SMID_BREAST_CANCER_NORMAL_LIKE_UP

POOLA_INVASIVE_BREAST_CANCER_UP

BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP

FINAK_BREAST_CANCER_SDPP_SIGNATURE

FINETTI_BREAST_CANCER_KINOME_GREEN

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP

SMID_BREAST_CANCER_LUMINAL_B_DN

JOHNSTONE_PARVB_TARGETS_3_UP

Gene set enrichment analysis was preformed with microarray data from high fat an
breast cancer gene sets on the Molecular Signatures Database, Broad Institute. In G
Kolmogorov-Smirnov-style statistic. The ES indicates how strongly associated a gen
p-value) using on a phenotype based permutation comparing ES with a null distrib
based on the number of genes in each examined set. Gene sets with a nominal P-v
of 1.5 or greater are shown. These data suggest that common genes are expressed
[18]. It remains to be determined as to which HFD ex-
posed cells express the basal-like genes and whether
the MG architecture is dramatically altered in a sus-
tained manner in these models and in humans. None-
theless, HFD profoundly affects MG gene expression in
a sustained way, inducing genes that are expressed in
basal-like BC.
Here we show that of the HFD-induced genes that were

significantly associated with prognosis in BC, a striking
93% was significantly associated with poor prognosis. All
but one these genes were still strongly associated with
poor prognosis in the non-basal-like set of BCs (249
tumors examined). Therefore, the association between
HFD-induced genes and prognosis in BC is highly com-
pelling and spans many subtypes. While some skepticism
could be drawn due to the relevance of cross-species ana-
lysis, a strong body of evidence has demonstrated the par-
allels between rodent and human MG structures, MG
roarray samples

IZE ES NES NOM

p-value

348 0.50 2.13 <0.001

215 0.51 1.96 <0.001

142 0.46 1.91 <0.001

21 0.65 1.87 <0.001

15 0.75 1.86 <0.001

266 0.44 1.77 <0.001

412 0.36 1.69 <0.001

306 0.34 1.64 <0.001

d low fat diet as described in the Materials and Methods and 361 curated
SEA enrichment scores (ES) are calculated for each gene set using a
e set is with a given phenotype or not. GSEA generates nominal p-values (NOM
ution. Normalized enrichment scores (NES) are adjusted enrichment scores
alue (NOM p-value) of 0.001 or less and a normalized enrichment score (NES)
in mammary fat pads from mice treated with HFD and invasive breast cancer.
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geneset. A-B, genes associated with mesenchymal characteristics in BC were significantly associated with the HFD samples. C, the average
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indicated on graphs.
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development and carcinogenesis [29-33]. Furthermore,
mouse MG tumors have been shown to replicate the di-
versity of human BCs including tumor initiation, hormone
dependency and histopathology across multiple MG end-
points [31-33]. Thus, our data suggests a model in which
HFD impacts MG development to promote poor progno-
sis cancer.
Interestingly, we provide evidence that a HFD, regard-

less of content (n-3 or n-6 PUFAs), may preferentially
promote basal-like BC. Epidemiological evidence sup-
ports the idea that a HFD increases BC risk. Whether
Table 5 HFD leads to a loss in the expression of luminal gene

GENE SET NAME

SMID_BREAST_CANCER_NORMAL_LIKE_UP

BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP

FINETTI_BREAST_CANCER_KINOME_GREEN

SMID_BREAST_CANCER_LUMINAL_B_DN

FARMER_BREAST_CANCER_CLUSTER_1

CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN

HOWLIN_PUBERTAL_MAMMARY_GLAND

Gene set enrichment analysis was performed with 53 gene sets containing luminal
Broad Institute). In GSEA enrichment scores (ES) are calculated for each gene set using
gene set is with a given phenotype or not. GSEA generates nominal p-values (NOM p-
distribution. Normalized enrichment scores (NES) are adjusted enrichment scores base
down-regulation of luminal genes were enriched in the HFD samples.
this risk is a consequence of overall percentage of fat in
an individual’s diet or type of PUFAs in the diet has long
been debated. Numerous rodent studies have investi-
gated the dietary impact of (n-3) and (n-6) PUFAs on
BC risk. While rodent studies support the notion that
diets high in (n-6) PUFAs increase breast carcinogenesis
[34-37], diets primarily consisting of n-3 PUFAs have
been suggested to protect against BC [38,39]. However,
Hilakivi-Clarke et al. [22], showed that prepubertal rats
exposed to a high (n-3) PUFA diet resulted in key bio-
logical changes within the MG reflecting an increased
s

Size ES NES NOM

p-value

348 0.50 2.09 <0.001

142 0.47 1.95 <0.001

15 0.75 1.84 0.01

412 0.37 1.70 <0.001

25 0.66 1.70 0.01

325 0.33 1.53 0.01

60 0.40 1.50 0.03

genes in breast cancer denoted (form the Molecular Signatures Database,
a Kolmogorov-Smirnov-style statistic. The ES indicates how strongly associated a
value) using on a phenotype based permutation comparing ES with a null
d on the number of genes in each examined set. We found that gene sets with
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susceptibility to BC. Furthermore, studies in adult rats
have shown that exposure to a diet high in (n-3) PUFAs
do not inhibit carcinogen induced mammary tumorigen-
esis, but may promote it [40,41]. While the timing of ex-
posure could play a factor (fetal, adolescence, adult),
human studies have yet to provide conclusive evidence
that diets consisting of primarily (n-3) or (n-6) PUFAs
play a profound role in increasing or decreasing BC risk.
[42-44]. Thus, the influence of a HFD on BC develop-
ment maybe more a consequence of the amount fat con-
sumed regardless of the source and our data supports
this hypothesis.

Conclusions
Given the striking association between HFD-induced
genes during development and prognosis in BC, it is im-
perative to examine these phenomena in humans. The
greatest strides in decreasing cancer mortality have been
made by prevention as with the link between smoking
and lung cancer. It will be important to determine
whether developmental HFD exposure as in this study
and/or exposure in adults lead to the induction of poor
prognosis genes. Also, it will be critical to determine
whether these changes are permanent or require the
presence of HFD or are maintained for only a certain
period of time. It will also be crucial to determine how
any of the maintained changes in gene expression are
propagated. Based on the HFD mediated induction of
DNA (cytosine-5-)-methyltransferase 3 alpha (DNMT3A),
perhaps an epigenetic change is responsible for these sus-
tained shifts in gene expression. DNMT3A functions in de
novomethylation, is important in development and altered
expression levels have been found in several different
types of human cancers [45]. If the link between poor
prognosis in breast cancer and developmental HFD expos-
ure bare out in humans, efforts can be made to prevent
such exposures. In addition, if this link holds true in hu-
man breast cancer, it may be possible to identify women
who are more susceptible to poor prognosis cancers based
on the expression of these newly identified HFD-induced
basal-like characteristics such as the mesenchymal marker
Vimentin. Importantly, vimentin has been shown to play a
significant role in the epithelial-mesenchymal transition
(EMT) process in BC [46,47]. EMT is a cellular repro-
graming process that changes the shape of epithelial
cells to exhibit a more motile mesenchymal phenotype
(reviewed in [48]). In vitro Vimentin over expression in
human BC cells has been shown to contribute to this
process, thus increasing BC cell motility and invasive
properties [47]. In human breast cancer samples,
vimentin expression is found in high-grade ductal car-
cinomas with low ER expression levels [49]. Thus, iden-
tifying early changes in vimentin expression in breast
epithelium due to HFD exposure might be used to
predict clinical outcomes translating to better prevent-
ive treatment strategies.
In sum, we show that HFD induces the expression of

genes that are associated with poor prognosis in BC.
HFD exposed MGs showed high expression of the mes-
enchymal marker Vimentin as well as a loss in luminal
markers. We propose that developmental HFD exposure
leads to sustained changes in gene expression that pro-
mote the development of poor prognosis cancers includ-
ing basal-like BC.
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within the article and in supplementary materials.
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Additional file 1: 361 breast cancer gene sets that were utilized in
GSEA. This excel file details the 361 breast cancer gene sets from the
Molecular Signatures Database that were utilized for gene set enrichment
analysis with the HFD microarray data. NAME denotes the gene set
name, original size denotes the number of genes in the curated gene
set, after restricting to data set denotes the number of genes that were
found on both the gene list and the HFD microarray data set, and status
denotes whether the gene list was included in the analysis or not. A
small number of gene lists were not included in the analysis, if there
were not enough genes.

Additional file 2: 53 luminal breast cancer gene sets that were
utilized in GSEA. This excel file details the 53 breast cancer gene sets
from the Molecular Signatures Database that were utilized for gene set
enrichment analysis with the HFD microarray data. NAME denotes the set
name, original size denotes the number of genes in the curated gene
set, after restricting to data set denotes the number of genes that were
found on both the gene list and the HFD microarray data set, and status
denotes whether the gene list was included in the analysis or not. A
small number of gene lists were not included in the analysis, if there
were not enough genes.

Additional file 3: Poor prognosis associated HFD-induced genes
MMP12, GPNMB, CTSL and LILRB4 are highly expressed in basal-like BC.
Depicted are histograms with log ration expression values for the indicated
gene for each tumor (from the 295 NKI breast tumor dataset). Tumors are
grouped together based on subtype. These subtypes are indicated at the
top of the figure: Basal-like tumors are 1–46, HER2 are 47–95, Luminal A are
96–183, Luminal B are 184–264 and Normal-like tumors are 265–295.

Additional file 4: Poor prognosis associated HFD-induced genes
DNMT3A, SLC11A1, NCF2 and PTPNS1 are highly expressed in
basal-like BC. Depicted are histograms with log ration expression values
for the indicated gene for each tumor (from the 295 NKI breast tumor
dataset). Tumors are grouped together based on subtype. These subtypes
are indicated at the top of the figure: Basal-like tumors are 1–46, HER2 are
47–95, Luminal A are 96–183, Luminal B are 184–264 and Normal-like
tumors are 265–295.
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