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The emergence of immunotherapy for cancer treatment bears considerable clinical

promise. Nevertheless, many patients remain unresponsive, acquire resistance, or suffer

dose-limiting toxicities. Immune-editing of tumors assists their escape from the immune

system, and the tumor microenvironment (TME) induces immune suppression through

multiple mechanisms. Immunotherapy aims to bolster the activity of immune cells against

cancer by targeting these suppressive immunomodulatory processes. Natural Killer (NK)

cells are a heterogeneous subset of immune cells, which express a diverse array of

activating and inhibitory germline-encoded receptors, and are thus capable of directly

targeting and killing cancer cells without the need for MHC specificity. Furthermore, they

play a critical role in triggering the adaptive immune response. Enhancing the function of

NK cells in the context of cancer is therefore a promising avenue for immunotherapy.

Different NK-based therapies have been evaluated in clinical trials, and some have

demonstrated clinical benefits, especially in the context of hematological malignancies.

Solid tumors remain much more difficult to treat, and the time point and means of

intervention of current NK-based treatments still require optimization to achieve long

term effects. Here, we review recently described mechanisms of cancer evasion from

NK cell immune surveillance, and the therapeutic approaches that aim to potentiate NK

function. Specific focus is placed on the use of specializedmonoclonal antibodies against

moieties on the cancer cell, or on both the tumor and the NK cell. In addition, we highlight

newly identified mechanisms that inhibit NK cell activity in the TME, and describe how

biochemical modifications of the TME can synergize with current treatments and increase

susceptibility to NK cell activity.
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INTRODUCTION

NK Cells and Cancer
In recent years, the field of immunotherapy has emerged as one of the most promising approaches
for treating cancer (1). Though most immunotherapies have traditionally focused on T-cells, NK
cell-based therapies are rapidly emerging in research and in the clinic (2, 3).

NK cells are cytotoxic innate lymphoid cells (ILCs), which can target and eliminate cancer
cells through secretion of cytolytic granules, and trigger an immune response via secretion of
immunomodulatory cytokines (4). In contrast to T- and B-cells, NK cells express a multitude of
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intrinsic germline-encoded activating and inhibiting membrane
receptors, and therefore do not require antigen specificity (5,
6). Immune-editing of the tumor promotes evasion from the
anti-tumor immune response; a common remodeling event is
downregulation of β2-microglobulin, which leads to reduced
MHC presentation. The selective pressure leading to low MHC
presentation impairs T-cell anti-tumor activity (7). NK cell
function is therefore partially complementary to T-cells, as they
can target and lyse MHC-I deficient cells, in a process known
as “missing-self recognition” (8, 9). In addition to missing-self
recognition, activation of NK cells relies on the equilibrium
between activating and inhibitory signals derived from surface
receptors engaged with cognate ligands on target cells (10, 11).
Central activating and co-activating NK cell receptors include
the natural cytotoxicity receptors (NCRs) NKp46, NKp30, and
NKp44, CD16, NKG2D, NKG2C, DNAX Accessory Molecule-
1 (DNAM-1), and 2B4 (12, 13). In parallel, the important
inhibitory receptors on NK cells engage with MHC-I ligands
to down modulate the NK cell response, and these include
the Killer-cell immunoglobulin-like receptors (KIRs), and the
CD94/NKG2A heterodimer (12). NK cells express additional
checkpoint inhibitory receptors, which play important roles in
constraining their activity when engaged with cognate ligands, as
will be discussed below.

Various approaches have been developed to bolster NK
cell activity against cancer, some of which are being utilized
in pre-clinical and clinical trials (3, 14). Significant hurdles
still persist, however, for immunotherapeutic treatments in
general, and for NK cells in particular. These include concerns
regarding potential autoimmune cytotoxicity for therapies such
as cytokine administration and immune checkpoint inhibitors,
the magnitude of the patient response to treatment, and
patient relapse due to innate or acquired resistance (15–
18). Moreover, though some NK cell based treatments have
shown promising results for hematological malignancies, NK
cells generally have low capacity to infiltrate solid tumors,
and so far, the efficacy against advanced cancers and solid
tumors remains relatively low (19). Cytolytic immune cells
such as NK cells and CD8+ T-cells are also suppressed
through multiple pathways in the tumor microenvironment
(TME) (20, 21).

Recent comprehensive reviews provide detailed descriptions
and delineate the obstacles remaining in multiple NK-based
treatments that have been developed and tested in pre-
clinical and clinical trials. These reviews cover topics including
cytokine therapy, hematopoietic stem cell transplantation
(HSCT), adoptive cell transfer, and CAR-NK therapy (2, 3,
22–25). Here, we summarize recent pre-clinical and clinical
evidence regarding NK cell expression of checkpoint molecules
and some of the most recent NK-based immunotherapeutic
strategies. These approaches include targeting NK surface
receptors, NK cell ligands on tumors, and identification and
modulation of pathways in the TME for sensitization to
NK cell activity. We highlight newly developed technologies
that may increase NK cell activation, infiltration, survival,
and proliferation.

Triggering of Adaptive Immunity and
Cancer Immune Surveillance by Subsets of
NK Cells
Besides their potential for direct elimination of cancer cells, the
crosstalk between NK cells and additional immune cells such
as T-cells and dendritic cells (DCs) in the TME initiates potent
anti-tumor effects. This interplay between NK cells and DCs can
promote DC uptake of tumor antigens in secondary lymph nodes
for presentation to and activation of T-cells, which facilitate
additional anti-tumor responses (23). Recently, it was shown that
NK cells recruit conventional type 1 DCs through secretion of the
chemo attractants CCL5, XCL1, and XCL2, and the extent of this
process correlates with cancer patient survival (26). Furthermore,
production of the cytokine FLT3L by NK cells increased the
frequency of conventional type 1 DCs in tumors, and frequencies
of NK cells and conventional type 1 DCs correlate with responses
to anti-PD-1 therapy (27). Moreover, in a recently established
murine model of lung adenocarcinoma, expression of NK cell
ligands on tumors and their activation facilitated the adaptive
response of tumor-specific T-cells and reduction in tumor growth
(28). These studies and others (29, 30) illustrate some of the
indirect roles NK cells may play in mediating the immune
response in the TME, warranting development of novel NK-
based immunotherapies.

NK cells are not a uniform immune cell subset, but rather very
heterogeneous, and can be segregated into subsets with distinct
tissue residency, phenotypes, and functional activity. NK cells
are traditionally classified into the CD56bright CD16dim subset
and CD56dim CD16bright subset. CD56bright CD16dim cells are
generally found in certain peripheral tissues (such as lymph
nodes, gut, tonsils, uterus, and skin) and considered immature,
with low KIR expression and high expression of CD94/NKG2A;
these cells primarily secrete chemokines and cytokines such as
IFNγ and TNFα (13, 31, 32). The CD56dim CD16bright subset is
the major subset in peripheral blood and is considered terminally
differentiated with high KIR expression; these cells exert their
cytotoxic activity through secretion of perforin and granzyme
(33). Over the last few years, additional NK cell subpopulations
with distinct phenotypic expression profiles have been further
identified and classified in different tissues (34) and in both
solid and hematological malignancies (35). In addition to these
findings, the characterization of ILCs over the past decade has
demonstrated overlapping surface marker expression between
NK cells and other ILC subsets in certain tissues (such as ILC1
and 3) (36). ILC1s, which have poor cytotoxic capacity but potent
cytokine secretion share multiple common markers with NK
cells, including NKp46 (37). Therefore, due to the similarity
between ILCs and NK cell subtypes, their classification has
considerable importance in the prism of immunotherapy for the
specificity of treatment. Recently, it was shown that NK cells
can be converted into ILC1s in the TME by a TGF-β dependent
mechanism, and these converted ILC1s lose the capacity to
control tumor growth and dissemination, and may promote
tumorigenicity (38). The plasticity of NK cells in response to
TGF-β is further exemplified by evidence of their conversion to
decidual NK-like cells in the TME, which promote angiogenesis
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(39). The heterogeneity and plasticity of NK subsets adds an
additional layer of complexity to treatment, yet it also opens
doors toward fine tuning and enhancing the NK-based response;
in the case of TGF-β mediated conversion, targeting TGF-β
pathways (as discussed below) or identifying the intracellular
pathways leading to NK cell conversion can offer new therapeutic
opportunities. Further identification of NK cell/ILC markers and
phenotypes, as well as molecular mechanisms regulating their
effector function during tissue homeostasis or disease should
greatly contribute to future therapeutic efficacy.

THE TUMOR MICROENVIRONMENT
RESTRAINS NK CELL ACTIVITY

The extent of NK cell infiltration into solid tumors is an
intensively debated subject, though there is consensus that such
infiltration may contribute to improved clinical prognosis (40–
42). Though some tumors, such as colorectal cancers, may
almost completely exclude NK cell subsets (43), others such as
breast, renal, lung, and head and neck squamous cell carcinoma
(HNSCC) tumors are infiltrated by NK cells with possible clinical
benefit (44–47). Poor NK cell homing and infiltration to the TME
may be attributed to interference with NK chemotactic signaling
and activation, and physical properties of the tumor bed such as
vasculature density and ECM composition (40, 48–50).

Inside the tumor, immune cells are confronted with a
suppressive milieu. The TME harbors an assortment of cell
types that down modulate the immune response, including
stromal cells, fibroblasts, regulatory T-cells (Tregs), and myeloid
derived suppressor cells (MDSCs) (51, 52) which can induce
specific changes in cytotoxic lymphocyte phenotype, metabolic
program, transcriptional profile, and epigenetic profile (21,
53, 54). The TME induces inhibitory effects on immune cells
through a variety of processes, specifically chronic immune cell
activation and an inflammatory microenvironment, secretion
of immunomodulatory cytokines and soluble factors, induction
of hypoxia, and upregulation of inhibitory checkpoint ligands,
which down-regulate immune cell activation when engaged with
immune checkpoint receptors, such as Programmed cell death
protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein
4 (CTLA-4) (51, 55). For example, MDSCs (which include
myeloid progenitor cells and immature mononuclear cells) are
recruited to the TME and can induce immune cell down-
modulation through production of arginase, nitric oxide, TGF-β,
and IL-10 (56). Tumor-derived macrophages are also recruited
to the TME, and can suppress immune cells via secretion of
TGF-β and IL-10. They can also recruit Tregs, which have
immune-suppressive properties (57, 58). Tregs-enriched in the
TME can inhibit CD8+ T-cells and NK cells directly or via
secretion of TGF-β, and IL-10 (59, 60), inducing upregulation
of inhibitory checkpoint receptors (61). Although IL-10 has
immunosuppressive effects on NK cells, it has pleotropic effects
on the regulation of tumor-promoting inflammation, and thus
has been tested in clinical trials to augment CD8+ T-cell
function against cancer (62). Therefore, it appears that multiple

immunosuppressive pathways in the TME collaborate in the
down-modulation of immune cell activity.

Exhausted T-cells demonstrate impaired effector functions
including reduced cytotoxicity and cytokine secretion, impaired
proliferation, reduced responses to cytokine stimulation,
upregulation of inhibitory checkpoint receptors, and may
ultimately undergo apoptosis (63–68). NK cells also undergo
functional exhaustion when exposed to the conditions prevalent
in the TME. These phenotypes in NK cells are induced by
high expression of checkpoint ligands on tumors (such as
Programmed death-ligand 1 (PD-L1) and HLA-E) (69, 70),
inhibitory cytokines and inhibitory soluble factors (such as
TGF-β and IL-10) (71–73), hypoxia (74, 75), exposure to tumor
suppressor cells (i.e., Tregs, tumor associated macrophages, and
MDSCs) (76–78), and sustained chronic activation (such as
sustained activation through the activating NKG2D receptor)
(79, 80).

Checkpoint Receptors Modulating NK Cell
Activity
ExhaustedNK cells share some phenotypes with exhausted CD8+

T-cells, namely downregulation of effector cytokines such as
IFN-γ, impaired degranulation and cytotoxicity, downregulation
of activating receptors such as NKG2D, upregulation of
inhibitory receptors such as NKG2A, and transcriptional changes
that promote exhaustion, i.e., downregulation of transcription
factors including Eomesodermin and T-bet (20, 81–86). Recent
studies further characterized inhibitory checkpoint receptors that
promote NK cell dysfunction during malignancy. These studies
show that NK cells, in addition to T-cells, can contribute to the
efficacy of inhibitory checkpoint inhibition (ICI) through direct
or indirect anti-tumor immunity. Therefore, understanding
which checkpoint receptor is upregulated on specific NK subsets,
and how such upregulation modulates the cell’s capacity to
generate an immune response, provides valuable information
for treatment and combinatorial strategies. Table 1 lists some
of the markers found on NK cells that may act as inhibitory
checkpoint molecules.

PD-1
PD-1 is an inhibitory checkpoint molecule expressed by activated
T-cells (114, 115), and was also shown to be expressed on NK
cells (116, 117). It marks CD56dimNKG2A−KIR+CD57+ mature
NK cells from Human Cytomegalovirus (HCMV) seropositive
subjects (117), and may indicate an exhausted NK cell subset
with memory-like features (118). PD-1 expression on NK cells
is upregulated in several cancers, including head and neck
cancer (69), thyroid cancer (87), Hodgkin lymphoma (HL) (88),
digestive cancers (esophageal, liver, colorectal, gastric and biliary)
(89), breast cancer (93), NK/T cell lymphomas (119), Kaposi
sarcoma (90), renal cell carcinoma (91), and multiple myeloma
(92). Such upregulated expression of PD-1 by NK cells in the
TME is associated with the down-modulation of NK cell activity,
manifested by reductions in cytotoxicity, cytokine secretion
(e.g., IFN-γ, TNF-α, and GM-CSF), and proliferation (20).
PD-1 blockade can unleash T-cells against PD-L1-expressing
tumors; however, MHC-I loss on the tumor surface can impact
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TABLE 1 | NK cell inhibitory checkpoint receptors: Expression on NK cells and

modulation of NK cell effector functions in different cancers-evidence from

patients, animal models, and in-vitro studies.

NK cell Marker Experimental Systems-NK cell markers from

patients/animal models/in-vitro induction

PD-1 Patients

Head and Neck cancer patients (69)

Anaplastic thyroid cancer patients (87)

Hodgkin lymphoma/diffuse large B-cell lymphoma patients (88)

Gastric cancer patients (89)

Kaposi sarcoma patients (90)

Renal cell carcinoma patients (91)

Multiple Myeloma patients (92)

In-vitro studies

Breast cancer cell lines (93)

TIM-3 Patients

Metastatic melanoma patients (94–96)

Lung adenocarcinoma patients (97)

Colorectal cancer patients (96, 98)

Bladder cancer patients (96, 99)

Endometrial cancer patients (100)

Esophageal cancer patients (101)

Animal models

Murine lung metastases model (96)

Murine esophageal carcinoma model (101)

TIGIT Patients

Colon cancer patients (102, 103)

Myelodysplastic Syndrome patients (104)

Animal models

Colon/breast/melanoma murine models (103)

In-vitro studies

Fap2 mediated inhibiton (102)

Monocyte and MDSC co-culture (104)

Breast cancer cell lines (105)

CD96 Patients

Hepatocellular carcinoma patients (106)

Animal models

Murine melanoma and fibrosarcoma models (107)

Murine melanoma, lung carcinoma, prostate carcinoma, colon

carcinoma, and breast tumor models (108, 109)

NKG2A Patients

Breast cancer patients (110)

Neuroblastoma patients (111)

CLL patients (high HLA-E expression) (112)

Head and neck, Squamous cell carcinoma, colorectal

carcinoma (46)

Animal models

B/T-cell lymphoma murine models (46)

In-vitro studies

Upregulation following cytokine induction (NKs from multiple

myeloma patients) (113)

Erythroleukemia, B-cell lymphoma, head and neck, squamous

cell carcinoma, ovarian tumor cell lines (46)

the efficacy of treatment. Therefore, contribution of NK cells
also appears important in PD-1 blockade, especially in the
context of MHC-I loss on tumors. Indeed, PD-1/PD-L1 blockade
in mice bearing PD-L1+ MHC-I− tumors demonstrated the
importance of NK cells for the efficacy of these treatments (120).
Interestingly, some PD-L1 negative tumors respond to anti-PD-
L1 therapy, and a recent study demonstrated that this effect may

be mediated by PD-L1+ NK cells. PD-L1+ NK cells treated with
anti-PD-L1 showed enhanced activation and effector function,
possibly identifying a novel biomarker of the NK PD-L1+ subset
for immunotherapy (121).

TIM-3
Activation of T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3) by antibody cross-linking initially showed
significant decrease of NK cell function (122), and its expression
marks mature and exhausted NK cells (122). TIM-3+ NK
cells isolated from peripheral blood of metastatic melanoma
patients are functionally exhausted, and inhibitory antibodies
against TIM-3 can reverse this NK cell dysfunction (94, 95).
Higher expression of TIM-3+ NK cells is also apparent in lung
adenocarcinoma with lymph node metastases at the progressive
tumor stage, and is correlated with decreased patient survival
(97). Here, as well, blocking TIM-3 with antibodies increased
NK cell cytotoxicity and cytokine secretion. Additional recent
studies identified TIM-3 expression as a marker of NK cell
dysfunction and disease severity in colorectal cancer, esophageal
cancer, endometrial cancer, and bladder cancer (96, 98–101).
Interestingly, TIM-3 engagement was initially shown to
increase the expression of IFN-γ by NK cells in response to
galectin-9, the β-galactoside binding lectin (123). Since TIM-3
can bind additional ligands [such as phosphatidylserine and
CEA-related cell adhesion molecule-1 (124, 125)], its activity,
whether stimulatory or repressive, may be ligand dependent.
Therefore, additional characterization of TIM-3 ligands and
their downstream signaling mechanisms is needed for a better
understanding of its targeting in immunotherapy. TIM-3
upregulation may also be associated with adaptive resistance to
PD-1 blockade, emphasizing its importance as an alternative
checkpoint, which should be considered in patients with anti-
PD-1 resistant tumors (126). Therefore, anti-TIM-3 monoclonal
antibodies such as TSR-022 (NCT02817633, NCT03680508) and
Sym023 (NCT03311412) are under evaluation in clinical trials in
combination with anti-PD-1 therapy for advanced solid tumors.

TIGIT
T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a
suppressive receptor in T-cells (127) that was recently shown to
contribute to NK cell dysfunction in cancer. TIGIT is expressed
on activated human NK cells, competing for the DNAM-
1 ligands PVR/CD155 and PVRL2/CD112 (128) and thereby
downregulating NK cell activation. Recent studies demonstrated
that blockade of TIGIT significantly enhances anti-tumor NK cell
activity against breast cancer and endometrial cancer (100, 105),
and can bypass MDSC-mediated supression (104). Interestingly,
NK cell inhibition through the TIGIT receptor in the tumor
microenvironment may also contribute to carcinogenesis by
binding to inhibitory ligands of the onco-bacteria, Fusobacterium
nucleatum (FN) (102). The Fap2 protein expressed on FN directly
binds TIGIT on NK cells in colon adenocarcinoma tumors,
reducing NK cell activity and enabling tumor evasion. Though
TIGIT clearly suppresses NK cell activity, the role it plays in
maintaining NK cell tolerance in cancer was not fully understood
until recently. Zhang et al. revealed that TIGIT expressing NK
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cells are a functionally exhausted subset in colon cancer and
mousemodels of melanoma and breast cancer (103). TIGIT+ NK
cells demonstrated low cytotoxicity and cytokine production, a
phenotype that was reversed in TIGIT-deficient mice or under
TIGIT antibody blockade. Interestingly, blockade of TIGIT in
NK cells alone appeared necessary for themost potent anti-tumor
responses mediated by CD8+ T-cells, and generated a memory
response against secondary tumor challenge. This requires
further study, but raises the exciting possibility of memory
responses against cancer mediated by NK cell activity. Since
TIGIT blockade synergizes with anti-PD-1 treatment (129), it is
also undergoing testing in combination in multiple clinical trials
for solid tumors (NCT04047862, NCT03563716, NCT03628677).

CD96
T cell activation, increased late expression (tactile)/CD96 shares
sequence similarity to TIGIT, and promotes NK cell adhesion
by binding CD155 (130). More recently, it was also shown
to down modulate NK cell activity (107). CD96-deficient mice
are resistant to carcinogenesis and lung metastases (107), and
blocking CD96 unleashes NK cell activity in mouse models
of lung metastases, significantly suppressing metastatic growth
(108, 109). Recent work by Sun et al. identified a subset of
CD96+ NK cell infiltrates in hepatocellular carcinoma associated
with a transient increase in disease-free survival in patients, and
enhanced overall survival (106). This NK cell subset had low
production of IFNγ and TNFα, as well as low perforin and
granzyme B gene expression. Mechanistically, TGF-β1 appears
to sustain CD96 expression on NK cells from hepatocellular
carcinoma patients, further emphasizing its role in promoting
NK cell exhaustion in the TME. These data potentially suggest
a dual CD96/TGF-β1 targeting approach (106) which may also
synergize with anti-TIGIT blockade, as they both share the
CD155/CD112 ligands, and both may provide a synergistic effect
with other immune checkpoint receptors such has PD-1 (103).
It is interesting to speculate that CD96+, like TIGIT+ NK
cells represent an exhausted subset, and the interplay between
TIGIT/CD96 and DNAM-1 expression may provide a credible
biomarker for identifying and characterizing exhausted NK cells
in the TME.

LAG-3
The inhibitory function of Lymphocyte-activation gene 3 (LAG-
3) on NK cells is less well-characterized. LAG-3 is expressed
on activated NK cells, binding MHC II, and the C-type lectin
receptor, LSECtin, which is upregulated on various types of
tumors (131–133). Early reports based on LAG-3 deficient mice
showed that NK cells from these mice were defective in their
ability to lyse certain tumor targets, suggesting a role for this
receptor in facilitating NK cell killing (134). However, MHC-
I mismatched targets were successfully lysed by NK cells from
these LAG-3 deficient mice. Moreover, blocking LAG-3 with
mAbs had no effect on NK cell lysis of various target cells (135).
This may suggest a role for LAG-3 in the NK cell maturation
and receptor repertoire, affecting the cell’s capacity to distinguish
between MHC-I matched healthy and transformed cells, but not
in directly inhibiting NK cell killing efficacy. By contrast, a recent

report showed that chronic stimulation of adaptive NK cells
from HCMV seropositive donors via NKG2C and IL-15, NKp30,
or NKG2D increased PD-1 and LAG-3 surface expression,
downregulating NK activity during subsequent interactions
with tumor targets (136). These experiments provide primary
evidence of LAG-3 as a potential exhaustion marker on NK
cells following chronic stimulation. It would be interesting
to speculate that these NK cells could have their cytotoxic
capacity restored by blocking LAG-3 on their surface. This
would provide further insight regarding its function on the NK
cell surface. Accordingly, blocking LAG-3 in a murine lung
metastases model restored the capacity of NK cells to clear
metastasis (137). In line with these findings, a role for LAG-3
was also recently demonstrated in NK cells with a deficiency in
Wiskott-Aldrich syndrome protein (WASp). WASp is a critical
actin nucleation promoting factor in hematopoietic cells, and
along with the WASp interacting protein (WIP), plays a critical
role in NK cell activation (138–142). WASp-deficient NK cells
display deficient effector functions against tumor targets, and
were shown to express increased exhaustion markers, including
LAG-3 (143). Thus, it is appears that LAG-3 expression correlates
with low overall NK cell activation status and effector function,
and NK cells could contribute to the effects of anti-LAG-3
mAb therapy. Several anti-LAG-3 mAbs are being tested in
multiple clinical trials for advanced solid tumors, either alone,
or in combination with anti-PD-1 (3) (e.g., NCT03489369,
NCT04080804, NCT03250832, NCT01968109).

KIR/NKG2A
HLA-E, a ligand for CD94/NKG2A is upregulated in certain
cancers (144), and tumors can inhibit NK cells through
expression of HLA molecules (145). Targeting the KIR and
CD94/NKG2A inhibitory NK cell receptors to generate missing-
self recognition is therefore another primary strategy to unleash
NK cell activity (84, 110–113, 146, 147). Drugs introduced to
block these inhibitory molecules, such as antibodies against
KIRs- Lirilumab, which targets KIR2DL1-3 and KIR2DS1/2,
and IPH4102, which targets KIR3DL2, are currently being
tested in various clinical trials (https://clinicaltrials.gov) (146,
148, 149). In pre-clinical models, anti-KIR antibodies showed
potent effects on NK cell activity (145, 150, 151). Lirilumab
is effective in AML and multiple myeloma (MM) patients
with low toxicity and minimal adverse events (152, 153).
In the study by Vey et al., however, Lirilumab treatment
did not significantly improve leukemia-free survival in AML
(154), and no clinical efficacy was observed in a phase II
trial of smoldering MM (155). Interestingly, Carlsten et al.
suggest that one possible mechanism impeding the efficacy of
this treatment is the downregulation of KIR2D on the NK
cell surface following infusion of anti-KIR antibodies. Since
NK cell licensing requires engagement of KIR receptors with
cognate MHC-I ligands (156, 157), administration of anti-KIR
mAbs may counterintuitively lead to down-modulation of NK
cell activity (158). One possible solution involves lower or
alternating dosing regimens (30). Furthermore, anti-KIR mAbs
can synergize well with other mAb therapies such as Rituximab
and anti-PD-1 (151, 159). Additional evaluation of Lirilumab

Frontiers in Immunology | www.frontiersin.org 5 February 2020 | Volume 11 | Article 275

https://clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ben-Shmuel et al. Next Generation NK Cell Immunotherapy

for clinical use is warranted, and it is currently being tested
as a combination treatment for various malignancies, including
bladder cancer (NCT03532451) and advanced and metastatic
tumors (NCT03203876, NCT01714739, NCT03347123).

The inhibitory NKG2A receptor was also shown to
be a beneficial target for NK-based therapy. NKG2A
targeting may be especially significant given the higher
HLA-E expression on certain cancerous tissues relative
to other classical HLAs (85, 144, 160). Recent work from
the Vivier group has shown the potent effect of anti-
NKG2A antibody (Monalizumab) on NK cell and CD8+

cell effector functions. Monalizumab increases NK and
CD8+ antibody-dependent cellular cytotoxicity (ADCC)
and synergizes with anti-PD-1/PD-L1 blockade and anti-
epidermal growth factor receptor (EGFR) (Cetuximab)
treatment (46). Interim results from clinical studies of
Monalizumab + Cetuximab/ Durvalumab (anti-PD-L1) appear
well-tolerated, with encouraging efficacy profiles (NCT02643550,
NCT02671435) (46, 161).

TARGETING TUMORS FOR
REINVIGORATION OF NK CELL ACTIVITY

Toxicities and poor patient response to immunotherapies,
especially against advanced/solid tumors, remain challenging
(15, 162). Non-specific augmentation of immune cell activity
can generate immune-related adverse events, and advanced
tumors have powerful immunosuppressive properties and
are difficult to infiltrate (163, 164). For example, cytokine
therapy, such as administration of IL-2, 12, 15, and 21 can
promote the proliferation, survival, and activation of NK
cells in-vitro and in-vivo. However, their use in clinical trials
has shown dose-dependent toxicities such as hypotension,
thrombocytopenia, neutropenia, and an increase of Alanine
transaminase/Aspartate transaminase (ALT/AST) levels. NK
cells, in addition to other immune cell subsets such as T-
cells, may also be involved in some of these toxic side effects
(165–168). In addition, though therapies targeting inhibitory
checkpoint receptors expressed on NK cells, such as anti-PD-1

FIGURE 1 | Examples of NK cell immunotherapies targeting NK cells and tumors. Multiple approaches are being developed to unleash NK cell activity against tumors,

thereby increasing potency and specificity of NK cell based treatments. (A) Antibodies that bind tumor ligands (e.g., anti-EGFR, anti-CD20) induce NK cell ADCC

through ligation to CD16. (B) NK cell engagers can target multiple activating NK cell receptors in addition to CD16 (172), together with tumor ligands such as CD20,

thereby facilitating NK cell activation and ADCC. (C) Drugs that modulate the TME, such as histone deactetylase inhibitors, induce upregulation of the NKG2D ligands,

MICA/B, promoting NK cell infiltration and cancer cell lysis. (D) Masking tumor checkpoint ligands, such as PD-L1 and PCNA can unleash NK cell activity in the TME.
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and the PD-1 ligand, PD-L1, increase NK cell activity (121,
169, 170), they may inadvertently cause various dose-dependent
immune-related adverse events, such as pneumonitis, colitis,
hepatotoxicity, endocrinopathies, and neurological and cardiac
toxicities (171).

Harnessing modalities that can target ligands expressed
predominantly on tumors and not on healthy tissues,
rather than unleashing immune cell activity in a systemic
fashion (e.g., systemic administration of cytokines and
checkpoint inhibitors), have the potential to overcome
some of these obstacles (Figure 1). Such strategies
may increase the activation and infiltration of NK
cell subsets in-situ by promoting localized anti-tumor
immune responses.

Antibodies to Direct NK Cell Activity
Toward Cancer Cells
Antibodies for NK Cell Mediated ADCC
Monoclonal antibodies (mAbs) which target tumor-specific
ligands have been used for treatment of hematological and
solid malignancies for the last two decades (173). mAbs can
have several mechanisms of action, including initiation of
ADCC, mediated by engagement of the CD16 (FcγRIII)
activating receptor on the NK cell with the Fc portion
of the antibody that is directed toward the tumor ligand
(174). The relative contribution of NK cells to the success
of mAb therapies is not completely clear, but evidence
of their role has increased in recent years (175). Several
recent studies demonstrated enhanced efficacy of NK cell

mediated ADCC using novel tumor-specific antibodies
(Table 2).

Clinically utilized mAbs- recent evidence of NK cell

contribution and optimization of treatment
Anti-EGFR: cetuximab. Cetuximab, is an anti-EGFR mAb used
clinically for cancer treatment. Cetuximab can activate NK cell
ADCC in-vitro and in-vivo, and initiate an adaptive immune
response through activation of NK cell:DC crosstalk (180–
182). Ex-vivo stimulation of NK cell ADCC with Cetuximab
may also be predictive of clinical responses in patients (183).
The efficacy of mAb treatment, including that of Cetuximab,
is influenced by FCγR polymorphism (184). The homozygous
genotype of valine at position 158 on the FcγRIIIa receptor
(158 V/V genotypes), as opposed to the 158 V/F or 158 F/F
FcγRIIIa genotypes is often, but not always, associated with
improved clinical outcomes (185–189). Moreover, FCγ receptor
affinity is impacted by patterns of antibody glycosylation (190)
and by particular IgG variants. For example, though IgG1 and
IgG3 appear to bind all Fcgamma receptors, IgG2 and IgG4
demonstrate varying affinity for specific Fcgamma receptors and
their variants (191). In order to overcome these obstacles, much
effort has been placed in IgG engineering to enhance the efficacy
of ADCC. Glyco-engineering of antibodies, such as removal of
fucose from the Fc region to generate non-fucosylated antibodies
can significantly enhance interaction between antibodies and
FcγRIIIa (192). Furthermore, screening for amino acid point
mutations on antibody Fc regions which enhance ADCC has
yielded mAbs which generate superior ADCC relative to their
WT counterparts (190). Cytokine administration together with

TABLE 2 | Antibody-based treatments reported to augment NK cell activity.

Treatment Key elements Current stage of development

Pre-clinical Clinical trials

293C3-SDIE Optimized anti-CD133 (high expression on colorectal cancer) antibody

containing S239D and I332E amino acid substitutions, increasing

affinity for CD16.

X

(176)

VAY736 Optimized anti-BAFF-R (highly expressed on B-ALL) antibody. NCT03400176

CSL362/ Talacotuzumab Humanized anti-CD123 monoclonal antibody (high expression on

Hodgkin lymphoma) with increased affinity for CD16.

NCT03011034

B12 Anti-IL-7 receptor antibody (IL-7 promotes leukemia development and

chemotherapy resistance). Demonstrates rapid internalization and

lysosome trafficking.

X

(177)

MEN1112 Anti-CD157 antibody (high expression on primary AML cells). NCT02353143

7C6 mAb Monoclonal antibody directed against MICA α3 domain, preventing

proteolytic shedding of MICA/MICB from tumors.

X

(178)

Elotuzumab Antibody against SLAMF7 (high expression on multiple myeloma). 28 active/recruiting clinical trials as of

February 2020 (www.clinicaltrials.gov)

F1 Antibody against the aspartic protease cathepsin D (high production

and secretion by breast cancer cells).

X

(179)

hu14.18K322A Anti-GD2 antibody (high expression on neuroblasts). NCT02159443, NCT01857934

Codrituzumab Antibody targeting oncofetal protein glypican-3 (high expression on

hepatocellular carcinoma).

NCT01507168 (completed phase II)

BI 836858 Anti-CD33 antibody (high expression on AML cells). NCT02240706, NCT02632721
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Cetuximab increases efficacy of NK cell activation and function
(180, 193), and therefore Cetuximab was recently utilized in
clinical trials for unresectable primary or recurrent HNSCC
in conjunction with IL-12 administration (194). Combination
treatment was generally well-tolerated. About half of the patients
in this study demonstrated an average prolonged progression-
free survival of 6.5 months, although neither complete nor
partial responses to therapy were observed. It is important to
note that patients in the study were already heavily pretreated
and many underwent chemotherapy, radiotherapy, and surgical
regimens without therapeutic effect. Moreover, peripheral blood
mononuclear cells (PBMCs) from patients enrolled in the
second phase of this trial, who were treated with IL-12, or
patients with progression-free survival over 100 days showed an
increase in ADCC against tumor cells coated with Cetuximab.
It is possible, as suggested by the authors in this study, that
Cetuximab may exhibit an off target effect by increasing the
frequency of CTLA-4+ Tregs in the TME, thereby suppressing
NK cell function (194). Accordingly, treatments incorporating
anti-CTLA-4 mAbs or transient Treg depletion could potentially
increase efficacy (195). Cetuximab in conjunction with toll-like
receptor agonists, PD-1 blockade, and CD137 agonists, may
also enhance efficacy, in addition to cytokine administration
(69, 181, 182, 196–200). Moreover, combination treatment with
super agonist cytokines (discussed below) may substantially
potentiate Cetuximab activity, as recently described for the IL-
15 super agonist ALT-803 (201). Interestingly, treatment with
Nimotuzumab, a different anti-EGFR mAb, also promoted cross-
talk between NK cells and DCs, leading to EGFR-specific CD8+

T-cell priming, and unlike Cetuximab, did not increase the
abundance of Tregs (202). Nevertheless, both Cetuximab and
Nimotuzumab may upregulate the expression of TIM-3 on the
NK cell surface (202), potentially leading to exhaustion. Thus,
the anti-EGFR pathway may require additional investigation in
future treatments and could possibly be bypassed through a
combination treatment of Cetuximab/Nimotuzumab with anti-
TIM-3 antibodies.

Anti-HER2: Trastuzumab. Trastuzumab is a clinically used anti-
HER2 mAb commonly used for treating HER2+ tumors. NK
cells can mediate ADCC against Trastuzumab coated target cells
and recruit T-cells through chemokine secretion. Trastuzumab
treatment is also associated with high numbers of tumor
infiltrating NK cells (203–205), and higher NK cell function
and expansion may also correlate with response to Trastuzumab
treatment (206, 207). A recent phase I clinical study used adoptive
NK cell therapy together with Trastuzumab administration,
showing good tolerability, and induction of immune activity
(208). Nevertheless, several patients still display intrinsic and
acquired resistance to Trastuzumab therapy (209). Interestingly,
a recent study demonstrated that the number of circulating
CD57+ NK cells from primary breast cancer patients receiving
Trastuzumab therapy correlates with resistance to therapy
(210). These NK cells showed reduced CXCR3 expression and
proliferation, suggesting a phenotype exhibiting poor homing
to and survival in the tumor niche. CD57+ circulating NK
cells may therefore provide a novel prognostic biomarker

for Trastuzumab treatment, and it would be interesting to
consider reinvigorating this NK subset to increase the efficacy
of Trastuzumab administration; it is possible that approaches
involving upregulation of chemokine receptors (211) (such
as CXCR3) or utilization of antibody-based homing proteins
designed to increase NK cell homing along chemokine gradients
(212) may restore their redirection to tumors, however a
broader understanding of the molecular mechanisms and surface
receptors governing the responsivity of the subset during
Trastuzumab treatment are required. Enhancing the activation
and proliferation of NK cells may thus benefit anti-HER2
targeting approaches. Indeed, aside from cytokine administration
(IL-2/15/12) and glyco-optimization, additional approaches,
which include anti-PD-1/TIGIT blockade, and CD137/Toll-
like receptor agonists have been shown to potentially augment
Trastuzumab efficacy in combinatorial studies (213). Another
effective strategy to improve NK cell ADCC is incorporation of
Trastuzumab in the bispecific antibody format (discussed below).
Bispecific Trastuzumab antibody [(HER2)2xCD16] significantly
enhanced ADCC compared to Trastuzumab treatment (214).

Anti CD20: Rituximab/Obinutuzumab. Rituximab and
Obinutuzumab are clinically utilized mAbs targeting CD-
20, which is expressed on the surface of mature B-cells and
on the surface of most malignant B-cells (215). Evidence for
the involvement of ADCC in the mechanism of Rituximab
stems from the correlation between FcγR polymorphism
and clinical responses in some hematologic malignancies, in
addition to lack of therapeutic effects in FcγR deficient mice
(216–218). Therefore, in order to improve effector function
mediated by mAbs targeting CD-20, Obinutuzumab was glyco-
modified to reduce Fc fucosylation (219). Indeed, Obinutuzumab
demonstrated superior ADCC in xenograft models and in-vitro
efficacy assays compared to Rituximab (218). Furthermore, the
glyco-engineered Obinutuzumab appears to be less affected
by the inhibitory effects of KIR/HLA ligation compared to
Rituximab (220). Several lines of evidence, from in-vitro and
animal studies show that NK cells are involved in the mechanism
of action of Rituximab/ Obinutuzumab (221–224), yet their
exact role in clinical settings are not completely understood. A
recent clinical study suggested that lower peripheral NK cell
counts in follicular lymphoma and lower peripheral and tumor
infiltrated NK cell numbers in diffuse large B-cell lymphoma
associate with transient progression-free survival in response to
therapy (225). NK cell count could therefore potentially serve as
a prognostic biomarker for efficacy of anti-CD20 treatment. As
additional means to augment NK-mediated anti-CD20 therapy
(apart from glyco-optimization), combination with cytokines
such as IL-15/21 was shown to increase the efficacy of anti-CD20
treatment (226–228). Lenalidomide, an immunomodulatory
drug commonly used for multiple myeloma also enhances
the effect of anti-CD20 administration on NK cell effector
function, in part by promoting nanoscale reorganization of the
cytoskeleton at the immunological synapse (229–231). Moreover,
a recent study revealed a CD56hi CD16− PD-1hi NK population
in HL patients. It is tempting therefore to speculate that anti-
CD20 treatment might synergize well with PD-1/PD-L1 blockade
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in HL (88), and that incorporation of modulatory drugs such as
lenalidomide may even enhance these combinations further.

mAbs in clinical trials- targeting tumor ligands for

optimization of NK cell activity
Though it is clear that NK cells mediate some of the effects of
clinically utilized immunotherapeutic mAbs, additional clinical
studies are required to understand the full extent of their
contribution. In addition to the caveats of mAb therapy
mentioned above, it has become clear that reduction of ligand
expression (internalization and shedding) and ligand specificity
are critical parameters, which are starting to be addressed in
recent pre-clinical and clinical studies (232).

One of the major challenges of current treatments for acute
lymphoblastic leukemia (ALL), which target CD19 (such as
CAR T-cell therapy), is the loss of CD19 surface expression
(233). Therefore, identification of additional antigens that retain
their expression on drug-resistant and relapsed ALL cells,
may provide additional avenues for treatment (234). A recent
study addressed this need through an optimized anti- B-cell
activating factor receptor, BAFF-R antibody (VAY736), based on
BAFF-R overexpression on B-ALL cells (234). Drug resistant
and relapsed ALL cells maintained expression of BAFF-R, and
VAY736 treatment decreased disease burden and increased NK
cell activity. Nevertheless, advanced stages of the disease showed
resistance to therapy, possibly due in part to NK cell exhaustion.
Thus, patients with advanced stages of ALL may benefit
from additional combinatorial treatments. Indeed, resistance to
VAY736 therapy could be overcome with combination treatment
using anti TGF-β antibody in this study. VAY736 is currently in
phase I trials for CLL (NCT03400176), and it will be interesting
to determine if it may synergize well with other ICIs that could
restore NK cell functionality in patients.

In acute myeloid leukemia (AML), Krupka et al. demonstrated
high CD157 expression on a majority of primary AML cells
in samples from both newly diagnosed and relapsed patients.
Since the antigen is not rapidly internalized, it provides a
stable and attractive target for potential antibody-based therapy
for AML. Utilizing a non-fucosylated anti-CD157 antibody
(MEN1112) can induce potent anti-leukemic activity mediated
through NK cells ex-vivo (235). Though MEN1112 showed
promising effects mediated through NK cells against AML
cell lines and primary AML cells, it had varying effects on
NK cells derived from AML patients, emphasizing that NK
cells from AML patients are functionally impaired. A recently
described subset of ILC1-like cells in AML patients, with NK
cell-like cytotoxic capabilities is functionally impaired by high
levels of TGF-β in patients’ serum and high HLA-E expression
on leukemic blasts (236). Therefore, MEN1112 treatment may
benefit from specific timing of administration during disease
progression, and may also benefit from additional combinatorial
approaches such as ICI (NKG2A blockade)/TGFβ blockade to
negate NK cell exhaustion and to maximize efficiency. A phase
I study for relapsed/refractory AML patients using MEN1112
(NCT02353143) is expected to shed light on its tolerability and
potential future use in single/combination therapy.

NK cells are largely excluded from the TME in HL, and
peripheral blood and tumor infiltrating NK cells from HL
patients are severely impaired (237). Therefore, enhancing their
activity in HL may greatly benefit treatment. A recent study
describes targeting CD123 (IL-3Rα), expressed on most HL cells
with an anti-CD123 antibody (CSL362) (238) to induce NK
cell ADCC as a potential therapy (239). CSL362 incorporates
the S239D and I332E substitution in the Fc region to improve
binding affinity (240). This study demonstrated for the first time
the feasibility of targeting HL through NK cells using antibody
therapy. CSL362 increased primary NK cell mediated-killing of
HL targets, though it stimulated high-affinity Fcγ-receptor NK-
92 cells (haNK cells) to a greater degree than primary NK cells
isolated from donors (239). Ernst et al. suggest that as haNK cells
are less impacted by CD16 polymorphism, it is possible that they
display higher cytotoxicity compared to primary NK cells. Thus,
it currently appears that this treatment may be most effective
in combination with adoptive NK cell treatment. It would be
informative to analyze Fc polymorphism of the cohorts in a
clinical setting to determine if indeed this is themajormechanism
explaining discrepancy between autologous NK and haNK cells.
Furthermore, analysis of NK cell subsets from HL patients may
reveal additional avenues of treatment that may synergize with
CSL632. CSL362 is being evaluated in a phase II clinical study for
patients with myelodysplastic syndromes (NCT03011034).

mAbs in pre-clinical development–targeting tumor antigens

for augmentation of NK cell activities
Previous clinical trials for AML showed limited efficacy when
antigens such as such as CD123 (241) were targeted for treatment.
Moreover, CD33 was also targeted with mAb therapy for
AML, yet its limited clinical efficacy may have been caused
by antigenic shift (242). Therefore, antibody engineering and
targeting of different antigens may enhance NK cell activity
and efficacy of treatment. Koerner et al. previously reported
an optimized anti-CD133 antibody, 293C3-SDIE for AML,
which was also recently tested by Schmied et al. for colorectal
cancer (176, 243). 293C3-SDIE was engineered with Fc portion
containing the S239D and I332E substitutions to enhance
binding affinity for ADCC. In the AML study, 293C3-SDIE
significantly decreased AML burden in xenograft mouse models,
and was superior in anti-leukemic activity in vitro compared to
WT 293C3. Interestingly, there appears to be large variability
in the anti-leukemic effects of 293C3-SDIE, possibly due to
differing expression patterns of CD133 between patients. This
may also be in part due to evidence of HLA dimorphism and
NK cell ligand expression impacting AML therapy (244, 245).
Furthermore, as described above, autologous patient NK cells
may have been functionally impaired, relative to allogeneic NK
cells (176). Additional examination of NK cell receptor repertoire
from healthy individuals and patients may be informative, to
possibly screen for specific checkpoints that could synergize
with 293C3-SDIE. Though the colorectal study utilizing 293C3-
SDIE was conducted in-vitro, the preclinical data demonstrate
it has a potent effect on NK cell activity against colorectal
cell lines (243). Though additional study is required to test
the effect of 293C3-SDIE against physiological solid tumors,
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this treatment may have important significance for NK cells
against the CD133 tumor antigen, which is implicated inmultiple
cancer types (246). It would be interesting to follow effects of
this antibody in future clinical settings, to validate efficacy and
the lack of off-target toxicity against healthy cells expressing
CD133, such as healthy hematopoietic progenitor cells and
others (246, 247).

An anti-IL-7 receptor (IL-7Rα) antibody, B12, has also
recently been described to induce potent NK cell-mediated
ADCC against T-ALL (177). Studies previously showed that IL-7
is an important factor in the progression of T-ALL, enhancing cell
expansion and survival (248), making it an attractive target for
antibody therapy. In addition to stimulating NK cell ADCC, B12
appears to be rapidly internalized and trafficked into lysosomes of
leukemic cells, demonstrating its additional therapeutic potential,
such as for intracellular drug delivery. B12 administration into
mice was not sufficient to halt the progression of the disease
but did prolong mouse survival. Thus, in addition to NK cell
stimulation, the treatment could be beneficial against disease
in combination with additional drugs such as dexamethasone,
which the authors reported to have an additive effect with B12
(177). It is also possible that blocking pathways that were reported
to interfere with T-ALL progression using small molecule
inhibitors, such as ones targeting JAK/STAT signaling pathways,
may also synergize well with anti IL-7Rα mAb treatments (249).
Moreover, a recent report showed that NK cells from T-ALL
patients have reduced expression of activating receptors and
reduced terminal differentiation, which may be bypassed by pre-
activation of autologous NK cells with IL-12, IL-15, and IL-18
(250). Therefore, combining B12 with pre-treated NK cells may
potentially show synergistic effects.

An approach that may synergize well with additional
antibody-based treatments aims at maintaining tumor antigens
on the cancer cell surface in order to abrogate their shedding
or internalization. A recent study aimed at increasing NK
cell activity against cancer cells utilized antibodies against the
proteolytic shedding domains of MICA and MICB (the tumor
ligands for NKG2D), which are often shed by the TME to
inhibit NK cell function (178). This strategy was shown to
preventMICA/B shedding and to increase their expression on the
tumor surfaces, ultimately inducing potent NK cell activity and
inhibiting tumor growth (178). This approach may be applicable
to several cancer types that upregulateMICA/B antigens andmay
have an additive effect with additional treatments. It is interesting
to suggest that additional ligands [e.g., PVR and NKp30 ligands
(232)] that are shed by cancer cells may also be targeted in a
similar fashion to increase ADCC. Moreover, studies focused
on CD16-mediated-killing demonstrate that CD16 undergoes
significant proteolytic downregulation following activation (251).
CD16 shedding is regulated through metalloproteases such as
ADAM17 (252, 253). This mechanism may serve to facilitate NK
cell detachment from targets and thereby increase their mobility
(254). Inhibition of CD16 shedding through ADAM17 blockade
may increase NK cell activation in the TME, thereby potentiating
antibody treatments targetingNK cells (251, 255, 256). Sustaining
this CD16 mediated activity may be especially important, as the
Cerwenka group showed that NK cell engagement through CD16

might prime NK cells against cancers by providing them with
memory-like effects (257).

Additional antibodies potentially involving NK cell activation
and ADCC as mechanism of action were reviewed byWang et al.
(175). More recent reports of NK cell activating antibodies with
varying combinatorial treatments are listed in Table 2, including
anti-SLAMF7, Elotuzumab, for multiple myeloma (258); anti-
cathepsin-D, F1, for Triple Negative Breast Cancer (179); anti-
GD2, Dinutuximab and hu14.18K322A, for neuroblastoma (259,
260); anti-PD-L1, Avelumab, for Triple Negative Breast Cancer
(261); anti-CD38, Daratumumab, for multiple myeloma (262,
263); anti- GPC3, Codrituzumab, for hepatocellular carcinoma
(264); and anti-CD33, BI 836858, for AML (265).

Engagers of NK Cells to Unleash NK Cell Activity
BiKEs and TriKEs are multi-specific antibodies composed of a
single-chain variable fragment from the heavy and light variable
chains of an antibody that are joined by a short peptide linker and
connected to the single-chain variable fragment of an additional
antibody (BiKE) or two antibodies (TriKE) of interest. Usually,
one of the components incorporates an anti-CD16 moiety to
induce NK cell-mediated ADCC (266, 267). Thus, BiKEs and
TriKEs can overcome the limitations described above when
utilizing standard antibodies to induce ADCC. For example, the
affinity of CD16 for the IgG Fc region of therapeutic antibodies
of different isotypes can be increased by incorporating anti-CD16
into BiKEs and TriKEs (268). Additional advantages include
superior bio-distribution, low immunogenicity, and relatively
rapid construction (266).

Utilization of BiKEs and TriKEs to boost NK cell activity
as a therapeutic approach was demonstrated in multiple
malignancies, among which are Non-HLs, leukemia, metastatic
breast cancers, EGFR expressing tumors, and carcinomas
(266). The Vivier group recently showed the potency of a
multifunctional NK cell engager composed of two antibody
domains targeting, on the one hand, the activating NK cell
receptor, NKp46, and on the other hand, specific antigens such
as CD19, CD20, and EGFR (172), with an additional optimized
Fc fragment for the binding of CD16. The multifunctional NK
cell engager was injected into mice at different concentrations
after tumor inoculation, and demonstrated enhanced NK cell
infiltration into tumors and promoted tumor clearance in in-
vivo models. Importantly, this study demonstrated how NK
cell engagers could surpass the efficacy of current antibodies in
clinical use, such as Rituximab, Obinutuzumab, and Cetuximab
in in-vitro and in-vivo models. An additional important aspect
of this technology is that in addition to promoting NK cell
infiltration, it leverages the expression of NKp46 in the tumor
microenvironment of multiple solid tumors, overcoming the
issue of low CD16 expression on tumor-infiltrating lymphocytes
(269). Moreover, harnessing the activating potential of multiple
stimulatory receptors (CD16 and NKp46) on the NK cell surface
can synergize to overcome inhibition, and fully potentiate NK
cell activity (270). Thus, it would be interesting to follow
this technology in clinical settings, and observe how different
potential modifications such as alternative targetingmoietiesmay
be optimal for treatment of certain solid/hematological tumors.
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One potential modification for improving efficacy of NK
cell engagers is the inclusion of IL-15 moieties to induce NK
cell proliferation and activation. TriKE 161519 was recently
described by Felices et al. (271) for treatment of chronic
lymphocytic leukemia (CLL); this antibody consists of anti-
CD19 and anti-CD16 fragments, with an additional IL-15moiety.
Inclusion of the IL-15 moiety may be beneficial in CLL patients,
who display low numbers and survival of mature and functional
NK cells (272). TriKE 161519 induced superior NK cell activity
against lymphoma cell lines and primary CLL patient cells
compared to Rituximab, and, importantly, promoted NK cell
survival and proliferation. The IL-15 moiety on this TriKE
may also reduce off-target toxicities caused by general IL-15
administration by activating NK cells selectively through CD16.
Similarly, previously described TriKE constructs (TriKE 161533,
and TriKE 1615133) (273), which incorporate an IL-15 linker and
contain anti-CD16 and anti-CD33 fragments (161533 TriKE),
or anti-CD16 and anti CD133 fragments (1615133 TriKE), were
described for activating NK cells against neoplastic mast cells,
myelodysplastic syndrome cells, and cancer stem cells (273–
275), as well as providing NK cells with sustained survival
and proliferation signals. The plasticity of NK cell engagers
enables them to simultaneously target additional moieties, as
demonstrated by Schmohl et al., who constructed a TetraKE
that binds CD16 on NK cells, EpCAM on carcinoma cells,
and CD133 on cancer stem cells, while containing an IL-
15 linker (1615EpCAM133) (276). This construct improved
NK cell-mediated ADCC, NK cell survival, and NK cell
proliferation without excessive IFN-γ secretion. Furthermore,
the simultaneous targeting of the small cancer stem cell niche
(with the anti-CD133 moiety), which is resistant to most
conventional therapies, could potentially be a powerful addition
to other mAb-based approaches. Current NK cell engagers
appear to enhance NK cell therapy in a safe manner by targeting
tumor antigens, sustaining NK cell proliferation and survival,
surpassing some clinically utilized mAbs. Clinical trials testing
TriKE 161533 will be starting imminently (NCT03214666), and
it will be interesting to observe the development and clinical
progress of the additional constructs.

The challenges facing therapy involving NK cell engagers
include the complexity of the design process, screening,
production yield, and selection of the proper tumor antigen
(277). Often, tumor antigens are expressed on otherwise
healthy tissue, adding an obstacle to possible on-target/off-tumor
toxicity, requiring proper screening prior to development (17).
Variance in CD16 affinity for Fc IgG, CD16 polymorphism, and
varying expression of CD16 on tumor-infiltrating lymphocytes
also remain a challenge, perhaps to be overcome by Fc glyco-
optimization and targeting alternative activating receptors on the
NK cell surface, such as NKp46. Furthermore, the proteolytic
cleavage of CD16 during NK cell activation is also an issue
that may be overcome by using metalloprotease inhibitors in
combination with current treatments (253, 267).

Sensitizing Tumors for NK Cell Killing
Additional strategies may synergize with current mAb
therapy/ICI therapy by reducing the NK cell activation

threshold. This could be achieved by masking tumor checkpoint
ligands [i.e., anti-PD-L1, Avelumab, which can also initiate NK
cell ADCC (69, 120, 169, 261, 278, 279), or the TIGIT ligands
CD112/CD155 (105, 280, 281)], activating NK cells in-situ with
cytokine variants, and modulating tumors via bio-chemical
modifications or inhibitors, making them more susceptible to
NK cell-mediated lysis.

Cytokines for NK Cell Activation in the TME
As mentioned above, systemic administration of cytokines
such as IL-2/IL-12/ IL-15 is associated with adverse toxicities.
Moreover, though IL-2 stimulates NK cell proliferation and
activation, it concurrently enhances Treg expansion through
the high affinity IL-2 receptor subunit-α (IL-2Rα) expressed
on Tregs; these cells downregulate NK cell activity through
secretion of TGF-β (76). In order to circumvent Treg expansion,
much effort has been directed at generation of cytokine variants.
Prominent examples includes the IL-2 “superkine,” with increases
binding for IL-2Rβ expressed on resting T effector and NK cells,
which can preferentially activate them without Treg expansion,
and PEGylated IL-2, which preferentially activates IL-2Rβ (282,
283). Furthermore, IL-15 can substantially increase NK cell
expansion and activation without stimulating Treg development;
however it exhibits a short half-life in-vivo and thus requires
frequent dosing for efficacy (284). Therefore, an IL-15 super
agonist (ALT-803) was generated with a longer in-vivo half-life,
and it is being tested in 25 clinical trials at the recruiting and
active stages (www.clinicaltrials.gov) (285–287). Nevertheless,
delivery of immune-stimulatory cytokines directly to the TME
for local enhancement of NK cell survival and proliferation
may be preferable to avoid systemic adverse immune events
and to promote immune cell activation in-situ. Hutmacher
et al. recently reported utilization of the fusion protein F8-
IL2, consisting of IL-2 fused to the F8 antibody, specific to
the alternatively-spliced EDA domain of fibronectin, which is
expressed in multiple solid tumors and lymphomas (288), to
increase NK cell activity in murine models. F8 can therefore
direct IL-2 activation of NK cells to the TME. F8-IL2 was most
effective when used in combination with immune checkpoint
blockade (anti-CTLA-4) to increase NK cell infiltration and to
unleash NK cells in the TME, delaying tumor growth in mouse
models. Besides minimizing potential autoimmune toxicities,
this approach can also increase the time window of cytokine
stimulation overcoming the relatively short half-life of IL-2 (289).
Conversely, inhibitory immunomodulatory cytokines such as
TGF-β may be targeted in situ, specifically in the TME, to
reduce their suppressive effects on NK cells. Once again, specific
targeting of TGF-β in the TME is important due to potential
toxicities associated with anti-TGF-β therapies administered
systemically (290). Knudson et al. reported an anti-PD-L1/TGF-
β fusion protein (M7824), which depletes TGF-β signaling
in the TME. This treatment promoted an activated NK cell
phenotype and tumor clearance in murine models (291). Thus,
this treatment appears to have a dual effect, both blocking PD-
L1 and sequestering TGF-β to overcome tumor resistance to
immune cell function. In initial clinical trials, M7824 appeared
to be well-tolerated in patients with pre-treated advanced solid
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tumors (NCT02517398) with early signs of efficacy (292), and is
involved inmultiple clinical trials as part of different combination
therapies (www.clinicaltrials.gov).

Novel NK Cell Inhibitory Checkpoints/Tumor Antigens

for Blockade
Novel NK cell checkpoint ligands expressed on cancer cells could
be desirable targets for new immune checkpoint blockers with
favorable toxicity profiles compared to other established immune
checkpoints (171). Recently, it was demonstrated that the NKp44
isoform1 receptor, a splice variant of the activating NKp44
receptor, can bind membrane proliferating cell nuclear antigen
(PCNA) upregulated on cancer cells, inhibiting NK cell activation
(293, 294). This is a potentially attractive target due to its different
expression profile in healthy proliferating cells vs. cancer cells. In
healthy cells, PCNA appears to be expressed in the nucleus and is
involved in DNA replication and repair (295), whereas in cancer
cells, it is overexpressed on the cell surface (296). By constructing
a monoclonal antibody against PCNA (14-25-9), the Porgador
group was able to demonstrate that blocking this tumor antigen
unleashes NK cell activity in-vitro and in-vivo, and promotes
tumor clearance in murine xenograft models of autologous
HNSCC patient NK cells (294). It is interesting to suggest that
splice variants of additional activating NK receptors may restrain
NK cell activity when interacting with atypical ligands, and their
expression on tissue resident/tumor infiltrating NK cell subsets
should be characterized. This could potentially provide multiple
new avenues for mAb-mediated blockade and combinations
with established mAb therapy. Thura et al. have also recently
taken advantage of high cell surface expression of the oncogenic
phosphatase of regenerating liver 3 (PRL3) on hepatocellular
carcinoma cells for targeted therapy. Overexpression of PRL3
is associated with heightened tumorigenicity and metastatic
spread and is thus an attractive immunotherapeutic target
(297). Blocking PRL3 with a humanized antibody (PRL3-
zumab) enriched NK cells in the tumor niche and promoted
tumor clearance in mouse models (298). Since this study also
demonstrated elevated expression of PRL3 on multiple patient-
derived tumor samples with little expression on the matched
healthy tissue, this therapeutic approach may be beneficial for
additional malignancies, and may provide enhanced specificity
for immunotherapy. PRL3-zumab is involved in two clinical trials
for advanced solid tumors (NCT03191682, NCT04118114).

Turning “Cold” Tumors “Hot” for NK Cell Immune

Surveillance With Synthetic Targeting
Identification of tumor-specific antigens for immunotherapy
remains a difficult task due to the heterogeneity of the tumor and
tumor infiltrating immunological niche, antigen internalization
and shedding, antigen mutations, and differential expression
profiles between patients (232, 299). Furthermore, many antigens
on tumors may also be expressed on healthy tissue. Therefore,
several recent studies suggested modulating tumors through
synthetic biochemical modifications in order to enhance NK
cell infiltration and function. Two recent studies demonstrate
that tumors can be coated with antibodies and antibody Fc
fragments, exposing them to NK cell-mediated ADCC. These

studies take advantage of specific biochemical characteristics of
the TME, such as lower pH levels and high sialic acid expression,
to directly coat tumors with antibody fragments (300, 301).
Subsequently, NK cells can recognize these Fc IgG fragments
and become activated in-situ to promote tumor clearance in
in-vivo models. The antibody coating treatments also appear
to be non-toxic and to additionally promote adaptive immune
responses against tumors. It would be interesting to consider
whether additional ligands for NK cell receptors [such as NCRs
to deliver synergistic signals (302)] can be coated together with
Fc IgG fragments to provide additive effects and to ensure the
safety and efficacy of these approaches in pre-clinical and clinical
studies. Furthermore, combinations of treatments to stimulate
NK cell expansion and activation (such as IL-15 administration)
and checkpoint blockade may potentially enhance the efficacy of
these approaches.

A similar recent approach includes induced expression
of certain genes in tumors that may synergize with other
immunotherapies. Meraz et al. demonstrated “forced” expression
in tumors of tumor suppressor candidate 2 (TUSC2/ FUS1) by
an engineered expression plasmid delivery system, in a mouse
model of lung cancer. TUSC2 is reduced in a significant number
of lung cancers, and this reduced expression is associated with
worse prognosis (303). Therefore, counteracting this down-
regulated state may be an effective strategy to sensitize tumors for
immunotherapy. Indeed, forced induction of TUSC2 expression
in lung cancer cells increased NK cell infiltration and stimulated
NK cell activation. Interestingly, TUSC2 modulated the TME to
facilitate homing and altered the infiltrating immune populations
through an increase of IL-15 and of the chemo-attractants Ccl3/4.
This is especially important due to low NK cell infiltration and
proliferation in solid tumors, and may open avenues for targeting
tumor suppressor genes to increase IL-15 in the tumor bed, since
its expression by the pro-inflammatory milieu in tumors was
recently shown to play a critical role in NK cell infiltration and
activation (304). TUSC2 treatment promoted the survival of mice
in the lung metastasis model, and synergized with conventional
anti-PD1/CTLA-4 therapy (305). An active trial is currently
underway with TUSC2 in combination with the EGFR inhibitor
Erlotinib for stage IV lung cancer (NCT01455389). It would be
interesting to evaluate TUSC2 administration in future clinical
settings in combination with immune checkpoint blockade.

Upregulation of NK Cell Ligands
Additional therapeutic approaches harness chemical compounds
that induce the expression of NK cell-activating ligands on
tumors, or that inhibit tumor pathways promoting NK cell
immunosuppression (306). Such strategies may increase tumor
susceptibly to immune surveillance, and synergize with current
therapies such as mAb treatment and checkpoint blockade,
since downregulation of activating ligands promotes tumor
escape (29). For example, recently reported approaches include
upregulation of the activating NKG2D NK cell ligands on
colon cancer cells, multiple myeloma cells, and hepatocellular
carcinoma cells, through administration of spironolactone
(SPIR) (307), upregulation of Liver X receptor (308), and
inhibition of Enhancer of zeste homolog 2 (EZH2) (309).
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Previous studies also reported sensitizing tumors to NK cell
activity by targeting alternate signaling pathways in tumors,
including inhibition of BRAF (V600E) (310), STAT3 inhibition
(311), and modulation of cancer cell autophagy (312, 313).

An approach that may activate NK cell activity in the TME
and is being investigated in the clinic is inhibition of histone
deacetylases (HDACs) (314). Through epigenetic alteration of
their genomes, cancer cells may acquire advantages that facilitate
their immune escape. HDAC inhibition may increase antigen
presentation on the surface of cancer cells, making them more
susceptible to immune cell surveillance, thereby potentially
enhancing the efficacy of additional immunotherapies (315).
Hicks et al. recently studied the use of HDAC inhibitors in
conjunction with standard anti PD-1/PD-L1 therapy (316).
HDAC inhibitors induced upregulation of the NKG2D stress
ligands MICA/B on different carcinoma cell lines, increased the
activated phenotype of patient-derived NK cells, and sensitized
tumors to NK cell killing. Likewise, Stone et al. demonstrated use
of DNA methyltransferase and histone deacetylase inhibitors on
ovarian cancer cells, showing that this treatment increases NK
cell infiltration and activation in the TME, as well as extending
the life of animal models (317). Therefore, screening and
identification of tumors with lowNK activating ligand expression
(such as MICA/B) in patients may favor utilization of HDAC
inhibitors to increase their susceptibility to NK cell immune
surveillance. Ongoing clinical trials involving HDAC inhibitors
with anti-PD-1/PD-L1 therapy (NCT02708680, NCT02915523,
and NCT02900560) may shed additional light on the efficacy and
safety of these treatments.

Friedman et al. recently utilized an inhibitor for the WEE1
kinase (AZD1775) on head and neck cancer cells, which
reversed G2/M cell cycle checkpoint activation of the cancer
cells, resulting in increased DNA damage and susceptibility to
NK cell-mediated killing (318). Interestingly, DNA cell cycle
checkpoint in this study did not impact surface expression of
MHC-I, PD-L1, or NKG2D ligands (RAE, H60, MULT-1) on
cancer cells, despite increasing their susceptibility to NK cells.
These data may suggest a global sensitization mediated through
AZD1775 that could bypass the need for anti-PD-1 or anti-
NKG2D checkpoint blockade, and it is interesting to consider
utilizing it universally for multiple NK-based approaches on
tumors with low PD-L1/NKG2D ligand expression. Stimulation
of NK cells in the TME via administration of the Heparan
sulfate (HS) mimetic Pixatimod (PG545) has also recently
been reported. This treatment inhibits the tumor Heparanase
enzyme, which promotes extracellular matrix degradation and
tumor invasion/metastases. By activating DC production of
IL-12, PG545 enhanced the anti-tumor function of NK cells
in murine lymphoma models. Therefore, this treatment may
synergize well with other immunotherapeutic treatments to
stimulate NK cell activity in the TME due to the pleotropic
effects of IL-12, and it is interesting to consider its utilization
together with mAb therapies to maintain infiltrating NK cell
activity. Pixatimod can also be utilized in combination with
anti-PD-1 treatment to elicit an even greater anti-tumor effect
(319, 320). Furthermore, inhibition of another common enzyme
in the TME, arginase 1 (Arg1), using the small molecule

inhibitor CB-1158 (clinical trials in combination with checkpoint
inhibitors for advanced solid tumors- NCT02903914), was
also shown to activate NK cells, promote their infiltration
into the TME, and synergize with checkpoint inhibition to
promote tumor clearance. This pathway is mediated through
inhibition of MDSCs in the TME, which express Arg1 and
lead to a decrease of L-arginine, which is required for NK cell
proliferation and function (321). It is possible that enzymes such
as Arg1 and IDO-1 (322) confer some resistance of tumors to
current treatments such as checkpoint blockade, by depleting
essential metabolites such as arginine and tryptophan in the
TME. Therefore, identification and targeting of novel inhibitory
pathways in the TME is warranted, and may significantly bolster
the efficacy of current treatments if administered in combination.
It is also tempting to consider simultaneous targeting of
multiple suppressive pathways in addition to clinically utilized
treatments, though first testing for efficacy and specificity
of treatment.

Modulating Tumor Metabolites
Finally, modulation of metabolites in the TME appears to be
an attractive strategy to increase anti-tumor NK cell activity.
Cancer cells metabolize glucose more rapidly compared to
normal cells, producing large amounts of lactate, in a process
known as the Warburg effect (323). This metabolic shift has
important ramifications on the TME, and thus, on tumor-
infiltrating immune cells (324). One metabolite that is present
at higher concentrations in the TME is adenosine. Studies
show the inhibitory effect of adenosine accumulation in the
TME on immune cell function in general, and NK cell
activity, primarily through engagement with the adenosine
receptor A2AR (325, 326). Adenosine signaling in the TME
can reduce NK cell proliferation and activation, as well as
its effector function (327–329). Blocking adenosine-catalyzing
enzymes and purinergic signaling in the TME (such as
antibodies against CD73, CD39, and CD38, which mediate
the production of extracellular adenosine, and blockade of
A2AR) is therefore being investigated in multiple clinical
trials in combination with immune checkpoint blockade
(330) and may synergistically enhance tumor-resident NK cell
activity (330–338).

PERSPECTIVE

It is evident that NK cells elicit potent anti-tumor responses
by complimenting T-cell recognition, and by initiating cross-
talk with the tumor-resident immune-cell milieu. As recently
demonstrated, they are an attractive addition to T-cell therapy
due to their ability to trigger potent immune responses in
the TME, promoting adaptive anti-tumor activity. Harnessing
NK cells for immunotherapy is also highly attractive due to
their innate ability to recognize transformed cells. Evidence
is mounting demonstrating the potential for activation of NK
cells in-vivo, and though we are beginning to understand the
mechanisms that suppress NK cell immune surveillance in
cancer, more research is required to clarify the circuits that
ultimately dictate their capacity to elicit anti-tumor responses.
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Current in-vivo approaches mostly seek to increase the activation
and expansion of the overall NK population. It would be
interesting to consider, given our increasing understanding
of NK cell subpopulations and NK cell tissue/intratumor
residency, the harnessing of specific NK effector populations
in-vivo that may generate the most robust anti-tumor responses,
while avoiding tolerant subsets or regulatory ILCs, which
can inadvertently hamper therapy. Furthermore, current
approaches such as CAR-T therapy, ICI therapy, and small
molecule inhibition are subject to adaptive and acquired
resistance, resulting from the complex immune-cancer
landscape and immune-editing (15). Alternatively, it may
be possible that adopting a “bottom-up” approach, that is, first
enhancing the innate immune landscape (such as NK cells
and ILCs) over different time regimens, secondly, targeting
the suppressive TME milieu to negate exhaustion, and finally,
enhancing adaptive immune responses, could sustain greater

anti-tumor effects. Though this is an intriguing concept,
additional studies and safety measures must be implemented
to evaluate its efficacy. It is likely that a combinatorial
approach, involving more than one facet of therapy, will
be most effective, and could hold great promise in clinical
settings (339).
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