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Abstract

Hepatitis B virus (HBV) is a major human pathogen that causes liver diseases. The main HBV RNAs are unspliced transcripts 
that encode the key viral proteins. Recent studies have shown that some of the HBV spliced transcript isoforms are predictive 
of liver cancer, yet the roles of these spliced transcripts remain elusive. Furthermore, there are nine major HBV genotypes 
common in different regions of the world, these genotypes may express different spliced transcript isoforms. To systematically 
study the HBV splice variants, we transfected human hepatoma cells, Huh7, with four HBV genotypes (A2, B2, C2 and D3), fol-
lowed by deep RNA-sequencing. We found that 13–28 % of HBV RNAs were splice variants, which were reproducibly detected 
across independent biological replicates. These comprised 6 novel and 10 previously identified splice variants. In particular, a 
novel, singly spliced transcript was detected in genotypes A2 and D3 at high levels. The biological relevance of these splice vari-
ants was supported by their identification in HBV-positive liver biopsy and serum samples, and in HBV-infected primary human 
hepatocytes. Interestingly the levels of HBV splice variants varied across the genotypes, but the spliced pregenomic RNA SP1 
and SP9 were the two most abundant splice variants. Counterintuitively, these singly spliced SP1 and SP9 variants had a 
suboptimal 5′ splice site, supporting the idea that splicing of HBV RNAs is tightly controlled by the viral post-transcriptional 
regulatory RNA element.

DATA SUMMARY
The raw RNA-sequencing (RNA-seq) libraries for this study 
have been deposited in the Gene Expression Omnibus 
(GSE155983). The PacBio circular consensus sequencing reads 
analysed in this study have been previously published and can 
be found in the European Nucleotide Archive (PRJEB12450) 
[1]. The RNA-seq libraries of hepatitis B virus (HBV)-positive 
biopsy samples of human liver tumours and tissues, and 
portal vein tumour thrombosis (129, 182 and 92 libraries, 
respectively), and HBV-infected primary human hepatocytes 
(83 libraries) and human cultured cells HepaRG (4 libraries) 
and HepG2-NTCP (11 libraries) were downloaded from the 

Sequence Read Archive [2–18] (see the metadata in Table S1, 
available with the online version of this article).

INTRODUCTION
Hepatitis B virus (HBV) is a common human pathogen that is 
a major cause of liver cirrhosis and liver cancer. The genomic 
DNA of HBV is approximately 3.2 kb, but can be transcribed 
into the greater than genome length pregenomic RNA 
(pgRNA), preC RNA (pcRNA) and long X RNA (lxRNA) 
[19, 20]. The pgRNA encodes the core (C) and polymerase 
(P) proteins, whereas the pcRNA encodes the pre-core (PC) 
protein that is subsequently processed into the hepatitis B e 
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antigen (HBeAg). The HBV genome is also transcribed into 
several subgenomic transcripts, namely the preS1, preS2, 
S and X mRNAs. The preS1, S2 and S mRNAs encode the 
three surface (S) structural proteins of the HBV particles and 
subviral particles (HBsAg). The X mRNA encodes the HBx 
protein.

Many strains of HBV have arisen from distinct geographical 
distributions of the world. This is partly due to the long 
history of virus–host coevolution (over 50 000 years) and the 
lack of proofreading function of the viral reverse transcriptase 
[21–23]. These strains were grouped into nine major geno-
types (A to I) and putative J, and about 30 sub-genotypes 
[23, 24]. There are marked differences in replication pheno-
type and disease natural history across HBV genotypes 
[25, 26], yet the pathogenicity of different HBV genotypes and 
their implications for treatment are still not fully understood. 
For example, it is possible that severe liver injury caused by 
genotype C is related to its high replication capacity [27] and/
or its more frequent mutations at the basal core promoter 
(BCP) and pre-core regions [28, 29].

In addition, different HBV genotypes may produce distinct 
spliced transcript isoforms whose precise roles are largely 
unknown [30–33]. At least 18 spliced transcripts of pgRNA 
[1, 33–44] and 4 spliced transcripts of preS2/S [45, 46] were 
identified in various sources including liver, serum and trans-
fected cells. Interestingly, a recent study showed that HBV 
RNA splicing is more efficient in human hepatoma cells than 
other tested cell types [33]. Furthermore, spliced pgRNA 
SP1 is the most commonly detected [35, 36, 38, 40, 47–50], 
although SP3 and SP9 have also been commonly observed in 
some studies [1, 32, 33]. These abundant HBV splice variants 
were previously shown to produce duplex linear DNA and 
apparent ssDNA species, but rarely relaxed circular DNA 
[41]. However, their roles in the normal viral life cycle are 
still unclear.

Notably, HBV splice variants can be encapsidated to form 
defective viral particles, with replication and envelopment 
requiring polymerase and envelope proteins supplied in 
trans by wild-type HBV [37, 39, 40, 51]. The SP1 transcript 
also encodes the hepatitis B spliced protein (HBSP) [47], 
as well as a truncated (by one amino acid) PC p22 protein 
that has been shown to inhibit wild-type HBV replication by 
interfering with wild-type capsid assembly [52]. The HBSP 
is a fusion product of the first 46 amino acid residues of 
the P protein and 47 amino acid residues from a distinct 
reading frame. A recent breakthrough study showed that 
HBSP could reduce liver inflammation in vivo [50]. Three 
other splice variants that have coding potential are SP7, 
SP10 and SP13. SP7 encodes the hepatitis B doubly spliced 
protein (HBDSP), a putative pleiotropic activator, which 
has been shown to increase replication of wild-type HBV in 
co-transfection cell culture experiments [53]. SP13 encodes 
the polymerase-surface fusion protein (P-S FP), a structural 
protein that could substitute the large HBV surface protein 
[54]. This fusion protein could inhibit HBV replication and 
may play a role in persistent infection. Interestingly, SP10 

could also act as a functional RNA that reduces wild-type 
HBV replication through interaction with the TATA box 
binding protein [55].

An increasing number of studies have shown that the HBV 
splice variants are associated with the development and 
recurrence of hepatocellular carcinoma (HCC) [49, 56, 57], 
and poor response to interferon treatment [43]. Therefore, 
we aimed to utilize RNA-sequencing (RNA-seq) on cells 
that had been transfected with replication-competent clones 
of different HBV genotypes to (i) quantify the composi-
tion of splice variants at the RNA level, (ii) investigate the 
effects of sequence variations on splicing efficiency, (iii) 
determine the usage of splice sites, and (iv) understand the 
host response to viral replication across the major HBV 
genotypes A to D.

METHODS
Cell culture
Cell culture and transfection experiments were carried out as 
previously described with the following modifications [25]. 
Huh7 cells were seeded in six-well plates at partial conflu-
ence. After overnight incubation, the cells were transiently 
transfected with pUC57 constructs harbouring 1.3-mer HBV 
genomes (genotypes A2, B2, C2 and D3) using FuGENE 6 
transfection reagent, according to the manufacturer’s instruc-
tions (Promega). The generation of plasmids has been previ-
ously described and this transient expression system relies on 
the endogenous promoters of HBV for transcription [25]. The 
empty pUC57 vector was used as a control. Two independent 
biological replicates were performed, which included two 
technical replicates for each treatment.

Impact Statement

Hepatitis B virus (HBV) infection affects over 257 million 
people worldwide. HBV is a major cause of liver diseases, 
including cancer, and there is no cure. Although not crit-
ical for HBV replication, some HBV RNAs are spliced and 
the abundant splice variants have been found previously 
to be associated with liver cancer. The role of these HBV 
splice variants is still poorly understood. HBV exists as 
nine genotypes worldwide with marked differences in 
replicative capacity and disease sequelae. Whether HBV 
splice variants vary for the different genotypes is yet to 
be investigated in depth. Here, we sequenced RNAs from 
four major HBV genotypes using a cell culture system. 
We found 6 new and 10 previously known splice variants 
across these genotypes. Some novel HBV splice variants 
were present at high levels not only in our cell culture 
system, but also in HBV-positive liver biopsy samples 
and HBV-infected primary human cells, suggesting they 
could be functionally important.

https://paperpile.com/c/Jc5sH5/GQTYo
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RNA-seq
Total RNA samples were purified using an RNeasy kit (Qiagen) 
and submitted to the Otago Genomics and Bioinformatics 
Facility at the University of Otago (Dunedin, New Zealand) 
under contract for library construction and sequencing. The 
libraries were prepared using a TruSeq stranded total RNA 
sample preparation kit with Ribo-Zero (Illumina) according 
to the manufacturer’s protocol, and sequenced using HiSeq 
2500 (Illumina), generating 125 bp paired-end reads (see the 
RNA-seq analysis workflow in Fig. 1).

Quality control (QC) of RNA-seq
The fastq files were examined using fastqc v0.11.5 [58]. Most 
files passed most of the analysis modules except ‘per base 
sequence content’, ‘sequence duplication levels’ and ‘k-mer 
content’, which are common warnings for Illumina TruSeq 
reads (fastqc documentation). However, some fastq files 
failed at per base sequence quality and per base N content 
due to decrease of the quality score over position 100. Some 
fastq files also failed at per tile sequence quality due to loss of 
quality at random positions and cycles, which is likely due to 
the overloading of the flow cell. Both of these issues should 
have minimum impact on downstream analysis, because the 
regions of poor base calling were soft-clipped during align-
ment. In addition, only uniquely mapped reads were used for 
gene counting and transcript assembly.

As a post-alignment QC, the mapping statistics of the non-
redundant RNA-seq reads were examined. About 60 % of the 
reads were uniquely mapped reads to the human genome 
(Table S2). The distribution of aligned reads was then analysed 
using the CollectRnaSeqMetrics program of picard 2.10.2 
(http://​broadinstitute.​github.​io/​picard). Over 55 and 27 % of 
the bases of these reads were mapped to the coding sequences 
(CDS) and untranslated regions (UTRs), respectively (Table 
S3). Only 10 % or lower of the bases of the sequencing reads 
were aligned to intronic or intergenic regions. These metrics 
are comparable with previous findings [59], indicating that 
our RNA-seq libraries are reliable.

Sequence alignment
Adapter sequences were trimmed from RNA-seq reads using 
skewer v0.2.2 [60]. To detect novel splice junctions, RNA-seq 
reads were aligned to the human genome and HBV pgRNAs 
using star v2.7.6a in 2-pass mode [61]. Duplicated reads 
were removed and uniquely mapped reads were retained 
using samtools v1.2 [62] or picard MarkDuplicates.

The PacBio circular consensus sequencing (CCS) reads of 
the whole-genome sequencing of HBV were downloaded 
from the European Nucleotide Archive (PRJEB12450). This 
dataset was previously generated from the liver explant 
and post-transplant blood specimens of a patient with 

Fig. 1. RNA-seq analysis of the HBV and host transcriptomes. QC checking of the paired-end RNA-seq libraries was carried out using 
fastqc. Adapter sequences were trimmed from the RNA-seq reads using skewer. Trimmed reads were aligned to the human genome 
and HBV pgRNAs using star in 2-pass mode. Duplicated and multi-mapped reads were discarded from the binary alignment map 
(BAM) files using samtools. A post-alignment QC check was performed using picard tools. PacBio CCS reads were aligned to the HBV 
pgRNA using minimap2. HBV splice junctions were extracted and corrected using 2passtools and flair, respectively. Reference-based 
transcriptome assembly and quantification were carried out using stringtie, with a post-processing step focusing on the HBV spliced 
transcript isoforms. Splice site sequence contexts were scored using maxentscan. Completeness of RNA splicing was evaluated using 
ipsa. Reads mapped to human genes were quantified using mmquant, followed by differential gene expression analysis using deseq2. A 
list of differentially expressed genes was submitted to the david webserver for functional annotation analysis.

http://broadinstitute.github.io/picard
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chronic HBV infection in a longitudinal study [1]. The 
CCS reads were aligned to a pgRNA sequence (HBV geno-
type D, GenBank accession no. X02496.1) using minimap 
v2.17 in splice mode [63]. Splice junctions were extracted 
and corrected using 2passtools and flair, respectively 
[64, 65]. The BED output file was converted into genotype-
specific GTF annotation files using UCSC kentutils [66].

HBV genotyping
HBV genomic sequence alignment was downloaded from 
HBVdb [67]. The genomic sequences were converted into 
pgRNA sequences, split by genotype (A to H), and realigned 
using muscle v3.7 [68]. A profile hidden Markov model 
(HMM) was built for each genotype using the hmmbuild 
program of hmmer v3.3.1 [69]. The RNA-seq reads mapped 
to HBV were searched against the profile HMMs using 
nhmmer [70]. A median bit score was calculated for hits 
to each genotype, in which the highest-scoring genotype 
was assigned to the RNA-seq BioSamples. As validation, 
this method accurately predicted the HBV genotypes of the 
transfected Huh7 and infected primary human hepatocyte 
(PHH) samples.

Transcriptome assembly
HBV splice variants were detected using stringtie v1.3.3b 
[71] and guided by the HBV transcript annotation obtained 
from the above long-read analysis. Only the splice variants 
supported by a minimum splice junction coverage of two and 
with complete, exact match intron chains across independent 
biological replicates were reported.

Annotations of the spliced transcript isoforms were merged 
by biological replicates using gtfmerge (https://​github.​
com/​Kingsford-​Group/​rnaseqtools) and gffcompare [72]. 
Only the assembled spliced transcripts that were found in 
both biological replicates were reported (intersection of 
complete, exact match intron chain). After merging the 
BAM (binary alignment map) files by biological replicates 
using samtools, a spliced graph of HBV transcripts was 
plotted using gviz v1.32.0 and genomicfeatures v1.40.1 
[73, 74]. Transcription start sites were annotated according 
to a published cap analysis of gene expression [75].

Splice site analysis
Splice site sequence contexts were scored using 
maxentscan [76]. This tool is a key plugin of the Ensembl 
Variant Effect Predictor [77] and performed the best in a 
recent benchmark [78]. Splice site mapping frequencies 
were parsed from the ​SJ.​out.​tab file from star. ipsa was 
used to calculate the completed splicing index (coSI) score 
of 5′ and 3′ splice sites (https://​github.​com/​pervouchine/​
ipsa) [79]. weblogo 3.5.0 was used to plot the nucleotide 
frequencies surrounding the splice sites [80].

Differential gene expression analysis
To examine the reproducibility of the biological replicates, the 
uniquely mapped reads were first counted and summarized 

at the gene level using mmquant v1.3 [81]. The correlation of 
samples was analysed. The Spearman’s correlations between 
the biological replicates were >0.9, suggesting a good repro-
ducibility (Fig. S1). However, the Spearman’s correlations 
between biological replicates were smaller than those within 
the same batch (e.g. A2_rep1 versus A2_rep2 is 0.938, whereas 
A2_rep1 versus B2_rep1 is 0.996). These results suggest the 
presence of batch effects, which is likely due to the second 
biological replicate being performed a year after. This was 
further examined using principal component analysis (PCA). 
Indeed, the samples were clustered by batches (Fig. S2).

To resolve the issue of batch effects, read counts were trans-
formed using the vst (variance-stabilizing transformation) 
function of deseq2 [82]. Transformed read counts were 
examined using the plotPCA function of deseq2 before and 
after correction using the removeBatchEffect function of 
limma [83]. To take batch effects into account, differential-
expression analysis was carried out using batch as a linear 
term in the DESeqDataSetFromMatrix function. Differen-
tially expressed genes were examined using david functional 
annotation tools v6.8 [84, 85].

Statistical analysis
Welch two-sample t-tests and permutation tests were 
performed using the exactranktests R package [86, 87]. 
Plotting was carried out using ggplot2, unless otherwise 
stated [88].

Code and data availability
Scripts and data for the analysis can be found at https://​github.​
com/​lcscs12345/​HBV_​splicing_​paper_​2020.

RESULTS AND DISCUSSION
Six of sixteen HBV splice variants detected were 
novel transcripts
Cells were transfected with four different genotypes and 
total RNA extracted after 24 h, depleted of rRNAs and deep-
sequenced. In addition to the well-established subgenomic 
and spliced transcripts, this method allowed us to detect 
spliced transcripts with greater sensitivity. The Huh7 cell 
transfection system showed that HBV genotypes A to D 
expressed a large proportion of spliced transcript isoforms. 
These splice variants represented 13–28 % of the HBV tran-
scriptomes detected (Fig. 2a), showing that HBV splicing was 
common, and found across the genotypes. HBV genotype B2 
expressed the highest level of HBV transcripts, followed by 
A2, C2 and D3 [4812, 5442, 4708 and 3972 TPM (transcripts 
per kilobase million mapped reads), respectively; see also Fig. 
S3, Table S4 for read counts].

A total of 16 splice variants were consistently detected across 
two independent biological replicates, in which 6 of them 
were novel (Figs 2b, 3 and S4, labelled pSP). In particular, 
a novel, singly spliced RNA (pSP12) was expressed at high 
levels in the genotypes A2 and D3 (4.5–6.2 % of HBV splice 
variants).

https://github.com/Kingsford-Group/rnaseqtools
https://github.com/Kingsford-Group/rnaseqtools
https://github.com/pervouchine/ipsa
https://github.com/pervouchine/ipsa
https://paperpile.com/c/Jc5sH5/CFej
https://github.com/lcscs12345/HBV_splicing_paper_2020
https://github.com/lcscs12345/HBV_splicing_paper_2020
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Previously reported splice variants SP1, 4, 5, 6, 7, 9, 11, 13, 14 
and 18 were detected in the HBV genotypes [30, 33, 41, 43, 55] 
(Figs 2–4, Table S5). Notably, these known splice variants were 
consistently detected in all four genotypes, except for SP4 
and SP5. As expected, SP1 was the major spliced transcript 
detected, ranging from 7.2 to 17 % of the HBV transcriptomes, 
which is in agreement with previous findings [30, 32, 89]. 
SP9 was the second most abundant spliced transcript, ranging 
from 0.9 to 4.7 % of the HBV transcriptomes. We also detected 
high but variable levels of SP13 and SP14 across the geno-
types, whereas SP6 was the next most abundant.

Condition- and genotype-specific expression 
profiles of splice variants in human liver and 
infected primary cells
To explore the biological relevance of these splice variants 
identified in a transfection model, we analysed 501 publicly 
available RNA-seq libraries (Table S1). These came from a 
diverse range of studies from HBV-positive liver biopsy 
samples, and HBV-infected PHHs, and different cell lines 
(HepaRG and HepG2-NTCP).

Significantly, most of the splice variants detected in Huh7 cells 
were detected in the biopsy samples and PHHs (Figs 4, S5 and 
S6, Table S1). Our analysis showed that the novel (pSP12) 
and known (SP1, SP6, SP9, SP13 and SP14) splice variants 
were also expressed at high levels in these clinical samples 
and PHHs.

Furthermore, liver tumour and portal vein tumour throm-
bosis (PVTT) (portal vein invasion at advanced-stage 
cancer) samples expressed lower levels of HBV RNAs than 

non-neoplastic tissue samples (Fig. S7, Table S6). This has 
been observed in independent studies [90–92], suggesting that 
HBV replication is less active in tumours. Strikingly, tumour 
samples expressed SP13 at significantly higher proportions of 
HBV RNAs than other samples except for PVTT (Figs 4 and 
S5, Wilcoxon rank sum tests, Bonferroni–Holm adjusted P 
value <0.05). Notably, SP13 encodes a P-S FP that has been 
shown to inhibit HBV replication [54].

Interestingly, we observed some genotype-specific expression 
profiles of splice variants across the different systems (HBV-
transfected Huh7 cells, non-neoplastic liver tissue samples 
and HBV-infected PHHs; Figs 4 and S5). In particular, HBV 
genotype D expressed pSP12 and SP6 at significantly higher 
proportions of HBV RNAs than other three genotypes 
(Wilcoxon rank sum tests, Bonferroni–Holm adjusted P value 
<0.05).

Overall, we obtained higher numbers of uniquely mapped 
reads to HBV in Huh7 cells, followed by PHHs, non-neoplastic 
tissue, tumour and PVTT samples (Fig. S7, Table S6). The 
HBV read counts per library were also more reproducible 
in HBV-transfected Huh7 cells. In contrast, we detected 
low numbers of HBV reads in HBV-infected HepaRG and 
HepG2-NTCP cells. However, their median library sizes were 
a quarter or a third larger than other libraries (Fig. S7, Table 
S6).

Sequencing depth has little effect on splice variant 
detection
To investigate how sequencing depth affects splice variant 
detection, we analysed the correlation between the number of 

Fig. 2. HBV genotypes expressed a wide variety of spliced transcript isoforms. (a) Proportions of the spliced transcripts in HBV RNAs. Only 
the spliced transcripts present in both biological replicates are shown. (b) Relative abundance of the HBV splice variants in genotypes A 
to D. See also Tables S4 and S5.
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Fig. 3. Distinct splicing profiles were observed across the HBV genotypes. The lollipop plot indicates the positions of splice sites relative 
to the EcoRI site of genotype C2. Blue and red colours indicate 5′ and 3′ splice sites, respectively. SP and pSP denote the known and 
putative spliced pgRNA transcripts, respectively (splice variants panel). These splice variants were reproducibly detected across the 
independent biological replicates of HBV-transfected Huh7. Grey dotted lines denote the positions of initiation codons of C, P, preS1 
and X reading frames (ORFs panel). Read coverage is shown in grey (coverage panel). Arcs represent RNA-seq reads mapped across 
the splice junctions (supporting read counts in red colour). Only the splice junctions supported by ≥100 reads are shown for readability 
purposes. Blue and red vertical lines indicate the MaxEntScan scores of the 5′ and 3′ splice sites, respectively (coverage panel). A positive 
MaxEntScan score predicts a good splice site sequence context, whereas a negative score predicts a poor splice site sequence context. 
Three main scenarios were observed. ① The presence and absence of spliced reads at position 2087 were predicted by MaxEntScan 
scores, in which reads were found to map across the 5′ splice sites with strong positive scores (B2 and C2), but not those with strong 
negative scores (A2 and D3). ② Varying spliced read counts could not be explained by similar scores. ③ Most spliced reads were mapped 
across a weak splice donor site. See also Fig. S4, Table S8.
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unique RNA-seq reads mapped to HBV and library size. Strik-
ingly, we observed weak correlations between the number 
of uniquely mapped reads (and spliced reads) to HBV and 
library size (Fig. S7, Kendall’s Tau coefficients of 0.20 and 0.13, 
P values of 5.6×10−11 and 1.7×10−5, respectively). Moreover, 
HBV spliced reads between biopsy samples could differ by an 
order of magnitude (Table S6). These results show that splice 
variant detection differs with genotypes and/or experimental 
conditions rather than only sequencing depth.

We observed that sequence alignment using a matched HBV 
genotype is critical in splice variant detection (Fig. S8). A total 
of 103 of 449 RNA-seq libraries have no uniquely mapped 
reads to HBV genotype A2 with 11 476 reads missing on 
average. By mapping to the corresponding HBV genotypes, 
we were able to detect splice variants in 267 of 501 publicly 
available RNA-seq libraries. Therefore, mapping RNA-seq 
reads to the HBV reference sequence may not be an appro-
priate approach and may partly explain the lack of prior 
reporting. However, most of the reports describing these 501 
libraries did not look for splice variants and had other foci.

Taken together, the above findings suggest that Huh7 and 
PHH systems are more suitable for studying splice variants 
than clinical samples as: (i) HBV transcription and splicing 
were more reproducible in Huh7 and PHH systems than other 
biological materials and systems (Figs S5 and S7, Table S6), 
(ii) HBV RNAs in clinical samples could be very complex 
due to the presence of HBV quasispecies (in particular with 
deletions; Fig. S6), and (iii) the expression of HBV–human 
chimeric genes as a result of HBV integration [9, 91].

Deletions at the X reading frame or BCP detected in 
HBV-positive biopsy samples
Deletions and splicing in the X reading frame have been 
reported previously [31, 45, 46, 93–95]. A careful examination 
of the RNA variants detected revealed three distinct deletions 
at the X reading frame or BCP (Fig. S6, Table S7). The deletion 
at positions 1757–1777 (20 bases) was the most common, 
which was detected in 6 of 41 HCC patients from two conti-
nents [7, 9]. In contrast, the 1719–1740 and 1749–1770 dele-
tions (21 bases) were each detected in only one HCC patient. 

Fig. 4. Expression profiles of HBV splice variants in HBV-transfected Huh7 cells, HBV-infected PHHs and biopsy samples. The heatmaps 
show the mean percentages of HBV RNAs that were spliced. The RNA-seq libraries that had ≥5 splice variants are shown. The known 
(SP) and putative (pSP) splice variants were reproducibly detected across the independent biological replicates of HBV-transfected 
Huh7. Other splice variants are represented with PacBio CCS read names (see Methods). See also Figs S4–S6, Table S1.

https://paperpile.com/c/Jc5sH5/KhJQ+VJhp
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Two of these variants 1719–1740 and 1757–1777 co-locate 
with canonical splice sites (GU-AG), although they could be 
attributed to DNA mutations.

Interestingly, two of these deletions (1757–1777 and 
1749–1770) were previously identified in the DNA of HBV 
quasispecies (Table S7) [93–95]. No matches were found for 
the 1719–1740 deletion, this in-frame deletion is novel. These 
findings suggest that aberrant splicing may be an avenue 
for the generation of quasispecies, in which the aberrantly 
spliced pgRNAs may be packaged and reversed transcribed. 
Moreover, deletions at X/BCP may contribute to the develop-
ment of HCC [23, 96].

Sequence variations surrounding the HBV splice 
sites affect splicing efficiency
We next investigated whether the sequence contexts of splice 
sites would be predicted to contribute to the different types 
and abundance of splice variants observed across genotypes. 
MaxEntScan scoring of the HBV splice sites showed that 
sequence variation was predicted to affect the strength of the 
splice sites of the different HBV genotypes (Fig. 3, Table S8).

In general, splice sites with weak sequence contexts (negative 
MaxEntScan scores) were less likely to be used for splicing 
and vice versa. For example, the splice donor site at position 
2087 in genotypes A2 and D3 had poor sequence contexts and 
spliced reads associated with this site were not detected (see 
① in Fig. 3, Table S8). In contrast, the same donor position in 
genotypes B2 and C3 had strong sequence contexts and were 
supported by over 100 spliced reads. This indicates that the 
splicing efficiencies of the HBV RNAs are strongly influenced 
by the HBV sequence variants surrounding the splice sites. 
Indeed, SP5 was not detected in the genotypes A2, D3 and a 
patient, who was a chronic carrier of HBV genotype D.

However, we also observed a discordance between splice site 
sequence contexts and splice read counts. For example, all the 
genotypes had similar scores at the splice acceptor position 
1385, but the splice read counts were markedly different (see 
② in Fig. 3, Table S8). In particular, the most frequently used 

5′ splice site that was used for SP1 and SP9 had a negative 
MaxEntScan score (see ③ or position 2447 in Fig. 3, Table S8).

Taken together, these results suggest that the splicing of this 
splice junction may be controlled by other cis regulatory 
elements, such as the HBV post-transcriptional regulatory 
RNA element (PRE) [19]. Indeed, deleting a PRE component 
called the splicing regulatory element-1 (SRE-1) was previ-
ously found to inhibit pgRNA splicing and the production of 
SP1 [89]. Regulation of alternative splicing may play a crucial 
role in viral–host interactions [97].

HBV encoded more alternative 3′ splice sites than 
5′ splice sites
A closer examination of the HBV splicing profiles revealed 
that HBV encoded more alternative 3′ splice sites than 5′ 
splice sites (Figs 3, S4 and S6, Table S8). Indeed, a trend was 
observed for more spliced reads mapped across the 5′ splice 
sites than 3′ splice sites, which reached statistical significance 
for HBV genotype B2 (Fig. 5). In contrast, host RNAs had 
balanced numbers of 5′ and 3′ splice sites (53 009 and 52 998, 
respectively), as well as the supported read counts (Fig. 5, 
median read counts of 87 for both the 5′ and 3′ splice sites).

To quantify the rates of splicing in HBV versus host cell RNAs, 
we scored the 5′ and 3′ splice sites using coSI. The 5′ splice 
sites of HBV showed higher coSI scores than 3′ splice sites (9 % 
versus 5 % on average; see also Fig. 5). In contrast, splicing 
was 87 and 86 % completed at the host 5′ and 3′ splice sites, 
respectively. These results showed that the 5′ splice sites of 
HBV tend to be more frequently spliced than 3′ splice sites 
(e.g. see ② in Fig. 3), but were much less efficiently utilized 
than host splice sites.

To identify the key differences between the HBV and human 
genomic splice sites, we compared their splice site contexts 
using the frequencies of the uniquely mapped, spliced reads to 
estimate the most frequently used splice sites. This approach 
showed that the nucleotide frequency distributions of human 
splice sites were similar to previous studies (Fig.  6) [98]. 
Notably, the most frequently used splice sites differed between 

Fig. 5. HBV 5′ splice sites are more likely to be spliced than 3′ splice sites. (a) More spliced reads were mapped across the 5′ splice sites 
of HBV than 3′ splice sites. Similar results were obtained from Welch two-sample t-test (one-sided) and permutation test (e.g. P values 
of 0.04 and 0.06 were obtained for genotype B2, respectively). Solid black lines indicate median values. (b) Completeness of splicing at 
the 5′ and 3′ splice sites. Only the splice sites supported by ≥10 reads were included for comparison.
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the virus and host, e.g. −1 positions of the splice donor sites 
(Fig. 6, left panel, U versus G shaded in grey). The differences 
between the HBV genotypes were marginal, as the spliced 
reads were predominantly mapped to SP1 and SP9 (Figs 2b 
and 3).

HBV replication had little effect on host gene 
expression in a transfection model
HBV genomes that were transfected into cells could poten-
tially have significant effects on cellular gene expression, even 

Fig. 6. Most frequently used splice sites differed between HBV and the host. The nucleotide frequencies surrounding the splice sites 
are represented by the spliced reads. Exon boundaries are shaded in grey. Only the splice sites supported by ≥10 reads were included.

Fig. 7. MA plots [log ratio versus mean expression (log scale)] show differential gene expression between the HBV-treated and control 
samples. Normalized counts indicate the counts divided by the normalization factors (as computed using the deseq2 default function). 
Red points denote the FDR-adjusted P value of <0.05. Unfilled triangles denote the genes that have undergone twofold changes in 
expression. See also Table S9.
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after only 24 h. To understand the impact of HBV replica-
tion on the host, we carried out differential gene expression 
analysis using deseq2 [82]. We found that only 1 and 12 
genes were significantly differentially expressed in A2 and B2 
treated samples, respectively, compared to the empty plasmid 
control [Figs 7 (red points) and 8, Table S9, FDR-adjusted P 
value <0.05]. Interestingly, both the A2 and B2 genotypes also 
showed relatively higher levels of HBV transcriptomes than 
the C2 and D3 genotypes (Fig S3, Tables S4 and S5). The accu-
mulation of HBV transcripts may induce a stress response 
as the stress-related genes INHBE, FAM129A, SESN2, ASNS 
and CHAC1 were all upregulated (Fig. 8; see also Table S10 
for functional annotation). Indeed, previous studies have 
also shown that HBV infection could lead to endoplasmic 
reticulum stress [99–101], including upregulation of INHBE 
[8, 102]. Interestingly, three significantly upregulated genes 
(ADM2, AKNA and SH3BP2) were previously shown to 
correlate with the Ishak fibrosis stage [103]. In particular, 
ADM2, a gene that is involved in ADORA2B-mediated 
production of anti-inflammatory cytokines, was also previ-
ously found to be differentially expressed in liver tumours [3].

Concluding remarks
Our study has shed light on the complexity of splicing in four 
major HBV genotypes in cell lines and patient samples. We 
identified a number of novel splice variants, as well as previ-
ously identified variants, by mapping RNA-seq reads to specific 
HBV genotypes. Although previous studies have shown that 
HBV splice variants can be encapsidated, it is expected that 
the resulting virus particles are defective [1, 37, 39, 40, 51]. 

While this may apply to the splice variants with a disrupted P 
reading frame, the deletions or aberrant splicing that we have 
detected in X/BCP may produce viable quasispecies – their 
full-length genomic DNAs have been previously sequenced 
[93–95]. These deletions may be contributing to the develop-
ment and/or recurrence of HCC [49, 56, 57].

We acknowledge that this study is limited to one member of 
each of the genotypes, and needs to be expanded to include 
additional HBV genotypes and subgenotypes. Nonetheless, 
this study demonstrates that HBV has a large capacity for 
alternative splicing, likely controlled by cis-acting elements 
such as the PRE [19], which results in high-levels of SP1 
and SP9 mRNAs, despite the suboptimal context of the 5′ 
splice site. The role of the SP9 variant in particular needs to 
be further explored. With up to a quarter of all HBV mRNAs 
being of spliced origin, the importance of these molecules 
in the HBV ‘life cycle’ and pathogenesis requires further 
investigation.
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