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Abstract: (1) Background: Whether goal-directed fluid therapy (GDFT) provides any outcome benefit
as compared to non-goal-directed fluid therapy (N-GDFT) in elective abdominal laparoscopic surgery
has not been determined yet. (2) Methods: A systematic literature search was conducted in MEDLINE,
Embase, CENTRAL, Web of Science, and Scopus. The main outcomes were length of hospital stay
(LOHS), time to first flatus and stool, intraoperative fluid and vasopressor requirements, serum
lactate levels, and urinary output. Pooled risks ratios (RRs) with 95% confidence intervals (CI)
were calculated for dichotomous outcomes and weighted mean difference (WMD) with 95% CI for
continuous outcomes. (3) Results: Eleven studies were included in the quantitative, and fifteen in
the qualitative synthesis. LOHS (WMD: −1.18 days, 95% CI: −1.84 to −0.53) and time to first stool
(WMD: −9.8 h; CI −12.7 to −7.0) were significantly shorter in the GDFT group. GDFT resulted in
significantly less intraoperative fluid administration (WMD: −441 mL, 95% CI: −790 to −92) and
lower lactate levels at the end of the operation: WMD: −0.25 mmol L−1; 95% CI: −0.36 to −0.14.
(4) Conclusions: GDFT resulted in enhanced recovery of the gastrointestinal function and shorter
LOHS as compared to N-GDFT.

Keywords: enhanced recovery after surgery; goal-directed fluid therapy; intraoperative fluid man-
agement; haemodynamic monitoring; laparoscopic abdominal surgery; perioperative care

1. Introduction

Laparoscopic surgical techniques have become the first choice over the last decade
due to the lower incidence of postoperative surgical complications, faster recovery, and less
postoperative pain compared to the traditional open techniques [1]. Although the surgical
trauma is substantially less with laparoscopic than with open surgery [2,3], the increased
intraabdominal pressure caused by the insufflation of the peritoneum can lead to hemody-
namic instability, resulting in unfavourable neuroendocrine responses and outcomes [4,5].
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Furthermore, laparoscopic surgery may lengthen procedural time compared to laparotomy,
which can also pose a special challenge during the anaesthetic management [6].

It is well known that inappropriate intraoperative fluid administration as part of hemo-
dynamic management increases the rates of postoperative complications, could delay the
recovery of gastrointestinal function, and therefore may lead to prolonged length of hospital
stay [7]. The Early Recovery After Surgery (ERAS) Society highlights the importance of
fluid management in its guidelines. Inadequate and/or uncontrolled fluid administration
can lead to unnecessary fluid restriction or fluid overload [8–10]. The elevated intraabdom-
inal pressure and Trendelenburg and reverse Trendelenburg positions during laparoscopic
surgery may reduce renal and splanchnic blood flow [11,12]. This phenomenon is poten-
tially escalated by inadequate intraoperative fluid administration, especially in vulnerable
patients suffering from chronic cardiovascular diseases and obesity [13,14].

Defining the appropriate amount of fluid for an individual patient is not easy. One of
the potential alternatives is goal-directed fluid therapy (GDFT) [15]. The beneficial effects
of GDFT on postoperative complications in high-risk surgical patients have been shown in
previous meta-analyses [16,17]. However, a recent randomised clinical trial was unable to
demonstrate the clinical benefit of GDFT in elective colectomy patients managed according
to the ERAS guideline [18]. Therefore, which patients would benefit from GDFT within the
context of the ERAS concept remains unclear [19].

The recent meta-analyses assessing GDFT and N-GDFT [20–28] and the guidelines for
intraoperative fluid therapy of ERAS and the American Society for Enhanced Recovery
do not contain clear recommendations for fluid therapy in laparoscopic surgery [29–31].
Therefore, we decided to conduct a systematic review and meta-analysis to assess the effects
of GDFT on several postoperative outcomes in patients undergoing elective laparoscopic
abdominal surgery.

2. Materials and Methods
2.1. Registration and Protocol

Our systematic review and meta-analysis were reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [32]. The study
protocol was registered with the International Prospective Register of Systematic Reviews
(PROSPERO) in January 2021 (CRD42021230286). After gathering the statistical results for
urinary output and operation time, we considered it feasible to standardise the intraopera-
tive urinary output to the length of the operation, which gave more adequate information
about the diuresis per hour of the patients, and thus we decided to deviate from the
previously registered protocol in this particular case. There were no other deviations.

2.2. Eligibility Criteria

Goal-directed fluid therapy (GDFT) versus non-goal-directed fluid therapy (N-GDFT)
was compared in adults undergoing abdominal laparoscopic surgery. Only randomised
controlled trials (RCTs) were eligible for inclusion. GDFT was defined as the protocolised
administration of fluids and vasoactive and inotropic agents on the basis of haemodynamic
assessment, targeted to reach the therapeutic goals [33]. A list of accepted haemodynamic
measurement devices is shown in Table S1. Central venous pressure (CVP)-guided fluid
therapy was not considered as GDFT [34]. All laparoscopic abdominal, urological, and
gynaecological surgical interventions were included in the analysis, except for laparoscopic
cholecystectomy, where we did not consider the application of advanced haemodynamic
monitoring feasible due to the short operation times. RCTs reporting data for laparoscopic
subgroups separately were also accepted.

2.3. Data Items

The following outcomes were evaluated: length of hospital stay (days) defined as the
time elapsed between the admission and discharge of the patients, 30-day readmission rate
(percentage), reoperation rate (percentage), overall complications (number of patients with
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at least one undesired event defined by the individual study) within 30 days, appearance
of the time to first flatus and first stool after the intervention (hours), intraoperatively
administered fluids (mL), number of patients receiving any vasoactive agents during the
intraoperative period, urinary output standardised to the length of surgery (mL h−1), and
serum lactate level at the end of the operation (mmol L−1).

2.4. Search Strategy and Information Sources

A systematic search was conducted in MedLine via PUBMED®, Embase®, Cochrane
Central Register of Controlled Trials (CENTRAL), Web of Science, and SCOPUS® without
any language restrictions and date filters. The last search took place on the 16th of December
2021. Our search key is included in Table S2.

2.5. Selection Process

Duplicates were removed by using a reference management software (EndNote X9,
Clarivate Analytics). Title and abstract, and finally the full-text selection were conducted
independently by two of the authors (M.V. and M.R.) according to the predefined eligibility
criteria. To measure inter-rater reliability, Cohen’s kappa was calculated at the end of each
selection step, and the calculated values were considered between 0.41 and 0.60 as moderate,
0.61 and 0.80 as substantial, and 0.81 and 1 as an almost perfect agreement [35]. In the case
of a discrepancy, conflicts were resolved by a third review author (K.O.). Reference lists
of eligible studies to the qualitative synthesis were also assessed manually to identify any
additional records.

2.6. Data Collection Process

The following data were collected by M.V. and T.L. independently into standard-
ised electronic spreadsheets in Microsoft Excel 2019® (Microsoft, Redmond, WA, USA),
including characteristics of studies (year of publication, number of centres and country), de-
mographic data of patients (i.e., age, Physical Status Classification System of the American
Society of Anesthesiology), type and duration of surgery, characteristics of the induction
and the maintenance of anaesthesia, aspects of perioperative treatment including protocol
of goal-directed fluid regimen and the applied haemodynamic devices in the intervention
group, protocol of fluid administration in the control group, protocol of pre- and postop-
erative fluid therapy, postoperative overall complications with predefined criteria of the
studies, length of hospital stay, quantity and type of fluids administered intraoperatively,
intraoperative urinary output, lactate levels at the end of the operation, and time to first
flatus and stool in the postoperative period.

2.7. Synthesis of Results and Effect Measures

Forest plots were used to display the results of the meta-analysis. Pooled risk ratios
(RRs) with 95% confidence intervals (CI) were calculated for dichotomous outcomes and
weighted mean difference (WMD) with 95% CI for continuous outcomes. In the case
of urinary output, standardised mean difference (SMD) was calculated for the average
operation length. Data were converted from median and first and third quartile to mean
and standard deviation, if data were reported in the former, according to the method of Wan
(2014) [36]. Sensitivity analyses were also carried out, omitting one study and calculating
the summary of RR, WMD, or SMD with 95% CI to investigate the influence of a single
study on the final estimation.

A random-effect model was applied in all analyses with the estimation of DerSimonian
and Laird [37]. Statistical heterogeneity was analysed using the I2 and χ2 tests to gain
probability values; p < 0.10 was defined to indicate significant heterogeneity. The I2 test
represents the percentage of total variation across studies because of heterogeneity. I2 values
of 25–50%, 50–75%, and 75–100% corresponded to low, moderate, and high heterogeneity,
respectively, on the basis of the Cochrane’s handbook [38]. All data management and
statistical analyses were performed with Stata 16 SE (Stata Corp, College Station, TX, USA).
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2.8. Study Risk of Bias Assessment and Reporting Bias Assessment

To identify the risk of bias of the included studies, two review authors (M.V. and
M.R.) used RoB 2, a revised Cochrane Collaboration’s risk of bias tool for randomised
trials [39]. The included studies were evaluated according to all five domains for each
outcome (randomisation process, deviations from intended interventions, missing outcome
data, measurement of the outcome, selections of the reported result) and finally, the overall
risk of bias was classified as low, some concerns, or high. Discrepancies were resolved
by a third review author (K.O.). The presence of publication bias was assessed by visual
inspection of Funnel plots for lack of asymmetry [40]. The Egger’s test was not performed
due to the low number of studies.

2.9. Certainty Assessment

Quality of evidence (QoE) was evaluated by M.V. and supervised by Z.M. with the
help of the GRADE profiler (GRADEpro) according to the GRADE approach recommended
by the Cochrane Collaboration [41–43]. The following domains were appraised: risk of
bias; indirectness of evidence; serious inconsistency; imprecision of effect estimates; and
other considerations such as publication bias, large effect, and plausible confounding.

3. Results
3.1. Study Selection

The selection process is detailed in Figure 1. Our search resulted in 5485 records
from five databases (PUBMED®, Embase®, CENTRAL, Web of Science, and SCOPUS®).
Finally, 15 RCTs were included in the qualitative synthesis [44–58], and in one RCT (Cho
and colleagues), two types of GDFT protocols were implemented [46]. According to
our selection criteria, it was not possible to decide which group should be included in the
quantitative synthesis, and therefore we decided to include this study only in the qualitative
synthesis. Eleven studies were included in the quantitative synthesis [47–54,56–58].

3.2. Study Characteristics

Baseline characteristics and demographic data for the included studies are presented
in Table 1 and Table S3. A total of 835 patients from 11 studies were included in the
quantitative synthesis. During the intraoperative period, 419 patients received GDFT, and
416 received N-GDFT. Nine out of eleven studies reported data on age; the mean age was
55.6 years in the GDFT group and 54.8 years in the N-GDFT group. The rest of the patients’
baseline characteristics and length of operation are detailed in Table S3 and Figure S1.
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Table 1. Characteristics of included studies.

Author (Year) Type of
Surgery

Preoperative
Fluid Protocol

Intraoperative Fluid Protocol
Postoperative
Fluid Protocol

Primary OutcomeHaemodyamic
Technology

Primary
Goal Bolus Type of Fluid Basis Type of Fluid

Brandstrup
(2012) [44]

Elective
laparoscopic

colorectal
resection

0.9% saline UD *

Oesophageal
Doppler SV < 10% 200 mL VOLUVEN®

Replacement of
lost blood

volume only
VOLUVEN®

daily 2000 mL Overall postoperative
complications

N-GDFT 200 mL VOLUVEN®
Replacement of

lost blood
volume only

VOLUVEN®

Calvo-Vecino
(2018) [45]

Laparoscopic
gastrointestinal,

urological,
gynaecological

N/A
Oesophageal

Doppler SV < 10% 250 mL VOLUVEN®,
Lactated Ringer 0 mL kg−1 bw−1 None N/A Moderate or severe

postoperative
complicationsN-GDFT AAE VOLUVEN®,

Lactated Ringer 3–5 mL kg−1 bw−1 Lactated Ringer

Cho (2021) [46]
Laparoscopic

sleeve
gastrectomy

4/2/1

Arterial
waveform-

derived
SVV < 10% 100 mL 6% hydroxyethyl

starch 130/0.4 4 mL kg−1 bw−1 Lactated Ringer
or Saline 0.9%

N/A
Postoperative nausea

and vomiting
Arterial

waveform-
derived

SVV < 10% 100 mL Lactated Ringer 4 mL kg−1 bw−1 Lactated Ringer
or Saline 0.9%

N-GDFT AAE 6% hydroxyethyl
starch 130/0.4 4 mL kg−1 bw−1 Lactated Ringer

or Saline 0.9%

Demirel (2017)
[47]

Laparoscopic
RYGB surgery N/A

Pulse oximetry PVI < 14% 250 mL Gelofusine® 2 mL kg−1 bw−1 0.9% NaCl or
Lactated Ringer

N/A
Perioperative lactate,

creatinine levels,
hemodynamic variablesN-GDFT 250 mL Gelofusine® 4–8 mL kg−1 bw−1 0.9% NaCl or

Lactated Ringer

Gomez-
Izquierdo
(2017) [48]

Laparoscopic
colorectal

4/2/1

Oesophageal
Doppler SV < 10% 200 mL VOLUVEN® 1.5 mL kg−1 bw−1 Lactated Ringer 1.5 mL kg−1/bw−1/h−1

In PACU 15 mL h−1

in Surgical
Department

Primary postoperative
ileusN-GDFT 5 mL kg−1 bw−1 VOLUVEN® 4/2/1 Rule Lactated Ringer

Joosten (2018)
[49]

Laparoscopic
colorectal,

gynaecological,
urological

N/A

Arterial
waveform-

derived
SVV < 13% 100 mL PlasmaLyte® 0 mL kg−1 bw−1 None

N/A

Percentage of
intraoperative time spent

within defined
haemodynamic targets

(CI ≥2.5 L/min/m2

and/or an SVV <13%)

N-GDFT AAE 6% hydroxyethyl
starch 130/0.4 4 mL kg−1 bw−1 PlasmaLyte®

Li (2021) [50]

Laparoscopic
radical

resection of
lower cervical

cancer

N/A

Arterial
waveform-

derived
SVV < 13% 250 mL 6% hydroxyethyl

starch 130/0.4 500 mL Lactated Ringer
N/A

Appearance of first bowel
sounds, time to first flatus,

lengths of hospital stay,
incidence of postoperative

nausea and vomiting
N-GDFT AAE 6% hydroxyethyl

starch 130/0.4 N/A Lactated Ringer

Liu (2019) [51] Laparoscopic
colorectal

5 mL kg−1 bw−1

before
anaesthesia

Arterial
waveform-

derived
SVV < 13% 200 mL Colloid solution

UD 2 mL kg−1 bw−1 Lactated Ringer
N/A

Haemodynamic variables
and tissue oxygen

saturations
intraoperatively and at

the end of operation
N-GDFT AAE Colloid solution

UD 5 mL kg−1 bw−1 Lactated Ringer
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Table 1. Cont.

Author (Year) Type of
Surgery

Preoperative
Fluid Protocol

Intraoperative Fluid Protocol
Postoperative
Fluid Protocol

Primary OutcomeHaemodyamic
Technology

Primary
Goal Bolus Type of Fluid Basis Type of Fluid

Mei (2018) [52]
Laparoscopic

precision
hepatectomy

N/A

Arterial
waveform-

derived
SVV < 13% 3 mL kg−1 bw−1 Colloid solution

UD 6–10 mL kg−1 bw−1 Crystalloid UD
N/A

MAP, SVV, CVP, and
lactate levels through the
intraoperative period and

at the end of surgery
N-GDFT 10 mL kg−1 bw−1 Crystalloid UD 6–10 mL kg−1 bw−1 Crystalloid UD

Mühlbacher
(2021) [53]

Laparoscopic
gastric bypass

500 mL
Lactated-

Ringer

Oesophageal
Doppler SV < 10% 250 mL Lactated Ringer 2 mL kg−1 bw−1 Lactated Ringer

AAE in PACU

Perioperative
subcutaneous tissue

oxygen tension
(upper arm)

N-GDFT AAE Lactated Ringer N/A Lactated Ringer

Ratti (2016)
[54]

Laparoscopic
liver resection

ERAS **

Arterial
waveform-

derived
SVV < 12% N/A Crystalloid UD N/A Crystalloid UD ERAS ** Rate and reasons of

conversion
N-GDFT N/A Crystalloid UD N/A Crystalloid UD

Senagore
(2009) [55]

Laparoscopic
colorectal

N/A

Oesophageal
Doppler SV < 10% 300 mL Lactated Ringer 5 mL kg−1 bw−1 Lactated Ringer

N/A Length of hospital stay
N-GDFT AAE

6% hydroxyethyl
starch 130/0.4/,
Lactated Ringer

5 mL kg−1 bw−1 Lactated Ringer

Tang (2021)
[56]

Laparoscopic
radical

gastectomy

250 mL warm
sugar water

per os

Arterial
waveform-

derived
SVV < 13% 250 mL 6% hydroxyethyl

starch 130/0.4 N/A Crystalloid UD
N/A

Incidence of
postoperative
complicationsN-GDFT AAE 6% hydroxyethyl

starch 130/0.4 N/A Crystalloid UD

Wen (2016) [57] Laparoscopic
gastrectomy N/A

Arterial
waveform-

derived
SVV < 13% 3 mL kg−1 bw−1 6% hydroxyethyl

starch 130/0.4 5 mL kg−1 bw−1 Lactated Ringer
N/A

Changes of
haemodynamic variables

and application of
vasoactive drugsN-GDFT 5 mL kg−1 bw−1 6% hydroxyethyl

starch 130/0.4 7 mL kg−1 bw−1 Lactated Ringer

Yin (2018) [58] Laparoscopic
colorectal

N/A
Bioreactance SVV < 13% 250 mL 6% hydroxyethyl

starch 130/0.4 8 mL kg−1 bw−1 Saline UD
N/A

Moderate or severe
postoperative

complications within
30 days

N-GDFT 250 mL 6% hydroxyethyl
starch 130/0.4 8 mL kg−1 bw−1 Saline UD

Included in systematic review only. Included both in the quantitative and qualitative synthesis. *: if fluid intake was under 500 mL; **: according to ERAS protocol for liver surgery;
4/2/1: 4 mL per kilograms of bodyweight for the first 10 kg, 2 mL kg−1 bw−1 to the second 10 kg, 1 mL−1 kg−1 bw−1 to the other kg bw−1. Abbreviations: N-GDFT: non-goal-directed
fluid therapy, SV: stroke volume, SVV: stroke volume variation, PVI: Pleth Variability Index, UD: undetermined, AAE: according to the anaesthetist evaluation, N/A: data not available,
PACU: post-anaesthesia care unit, CI: Cardiac Index, CVP: central venous pressure, NaCl: natrium chloride, RYBG: Roux-en-Y gastric bypass surgery, MAP: mean arterial pressure,
ERAS: enhanced recovery after surgery, bw: bodyweight.
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3.3. Results of Syntheses and Individual Studies
3.3.1. Length of Hospital Stay

Length of hospital stay was significantly shorter in the GDFT group (WMD: −1.18 days,
95% CI: −1.84 to −0.53) according to data from eight RCTs [48–52,54,56,58], but data were
considered highly heterogeneous (I2 = 80.1%, p < 0.01) (Figure 2). As an implementation of
the ERAS protocol could have a substantial effect on hospital stay, we performed subgroup
analysis on studies that used ERAS protocols and those that did not. Only three studies
implemented ERAS [48,54,56], and no significant difference was found between GDFT
and N-GDFT (WMD: −1.18 days, 95% CI: −2.79 to 0.43). In those studies that did not use
the ERAS protocol, a significant difference was detected between the two groups (WMD:
−1.28 days, 95% CI: −2.12 to −0.44); however, high heterogeneity was detected (I2 = 85.5%,
p < 0.01). No influential study was identified by the leave-one-out sensitivity analysis
(Figure S17). Data for length of hospital stay were presented in one further study (Cho and
colleges) that was not included in our meta-analysis [46], for reasons detailed previously.
Nevertheless, no significant differences were observed between the two goal-directed
groups and the controls (4.40 and 4.40 days in the two GDFT groups versus 4.52 days in
the non-goal-directed group, p = 0.78).
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Figure 2. Length of hospital stay (days). Length of hospital stay was significantly shorter in patients
who received GDFT (WMD = −1.18 days; 95% CI = −1.84 days to −0.53 days) and also in the non-
ERAS subgroup (WMD = −1.28 days; 95% CI = −2.12 days to −0.44 days). However, in the ERAS
subgroup, our result was not significant (WMD = −1.18 days; 95% CI = −2.79 days to 0.43 days).
Heterogeneity was high both in overall and in the non-ERAS group (I-squared = 80.1%; p < 0.01 and
I-squared = 85.5%; p < 0.01), and moderate in the ERAS subgroup (I-squared = 64.4%; p = 0.06).

3.3.2. Readmission and Reoperation Rate

A 30-day readmission to the surgical ward and the emergency department were
detailed only by Gomez-Izquierdo et al. [48]. No significant differences were found
(8 out of 64, 12.0% versus 6 out of 64, 9.4%, p = 0.35; 3 out of 64, 20.0% versus 9 out
of 64, 14.0%, p = 0.58, respectively). The reoperation rate was reported by both Gomez-
Izquierdo et al. and Joosten et al. [48,49]. No significant differences were found between
the GDFT and N-GDFT groups (1 out of 19, 5.0% versus 2 out of 20, 10.0%, p = 0.58; 1 out of
64, 3.1% and 3 out of 64, 4.7%, p = 0.62, respectively).
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3.3.3. Overall Complications within 30 Days

Nine studies reported data for overall complications [44,45,48,49,51,54,56–58]; how-
ever only two fulfilled our criteria [44,48], and hence we were unable to perform a quanti-
tative synthesis. In these two studies, there were no significant differences regarding this
outcome (43.8% versus 39.1%, p = 0.59; 28.1% versus 26.3%, p = 0.86, respectively).

3.3.4. Recovery of Gastrointestinal Function as Indicated by Time to Firs Flatus and Time to
First Stool

Five trials evaluated time to first stool [49,51,52,57,58], which was significantly re-
duced in patients receiving GDFT (WMD: −9.8 h, 95% CI: −12.7 to −7.0; Figure 3A). The
leave-one-out sensitivity analysis did not identify any influential study (Figure S18). Five
further studies reported time to first flatus with significant difference between the two
groups (WMD: −5.63 h, 95% CI: −10.9 to 0.4 h) [48–50,56,57], but heterogeneity was high
(I2 = 92.0%, p < 0.01; Figure 3B). According to the leave-one-out sensitivity analysis, omis-
sion of studies published by Tang, Wen, and Li would change the statistical significance
(Figure S19).
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Figure 3. Time to first stool and time to first flatus. Time to first stool (A) was significantly reduced in
patients receiving GDFT compared to the controls (WMD = −9.81 h; 95%; CI = −12.66 h to −6.97 h). No
evidence was found for heterogeneity (I-squared = 0.0%; p = 0.85). Time to first flatus (B) was significantly



J. Pers. Med. 2022, 12, 734 10 of 17

shortened in the GDFT group compared to the controls (WMD = −5.63 h; 95% CI = −10.87 h to 0.38 h).
High heterogeneity was detected (I-squared = 92.0%; p < 0.01). WMD: weighted mean difference,
SD: standard deviation, GDFT: goal-directed fluid therapy, N-GDFT: non-goal-directed fluid therapy,
CI: confidence interval. p < 0.1 was considered significant.

3.3.5. Intraoperative Clinical Outcomes: Intraoperative Fluid and Vasopressor
Requirement, Standardised Intraoperative Urinary Output and Lactate Levels at the End of
the Operation

Data for clinical outcomes are shown in Figure 4. According to seven studies reporting
data for intraoperative fluid requirement [48,49,51,53,56–58], patients undergoing GDFT
received significantly less fluid than controls (WMD: −441 mL, 95% CI: −790 to −92 mL),
with high heterogeneity (I2 = 96.9%, p < 0.01). Leave-one-out sensitivity analysis did not
report any influential study (Figure S20). Cho and colleges reported similar data indicating
that significantly less fluid (colloid) boluses were administered in the GDFT group versus
controls (858 mL versus 1639 mL; p < 0.01) [46]. On the basis of the results of eight studies,
fewer patients required vasopressors in the GDFT group [47–49,52,53,56,58], but statistical
significance was not reached (RR: 0.90, 95% CI: 0.71 to 1.14). No influential study was
detected by the leave-one-out sensitivity analysis (Figure S21). Cho et al. also provided
data on intraoperative vasopressor requirement with no significant difference between the
two GDFT groups as compared to the controls (44% and 24% versus 28%; p = 0.38) [46].
No significant difference was found in the intraoperative urinary output standardised for
length of surgery (SMD: 5.69 mL h−1, 95% CI: −2.16 to 13.54 mL h−1). The leave-one-out
sensitivity analysis did not identify any influential study (Figure S22). Serum lactate levels
at the end of operation in the GDFT group were significantly lower compared to the N-
GDFT group (WMD: −0.25 mmol L−1, 95% CI: −0.36 to −0.14). There was no evidence
of heterogeneity (I2 = 42.7%, p = 0.175). Leave-one-out sensitivity analysis could not be
performed due to the low number of studies.
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Figure 4. Clinical outcomes at the end of operation. Intraoperative fluid requirement (A) was signif-
icantly lower (WMD = −440.84 mL; 95% CI: −789.73 mL to −91.96 mL) in the GDFT group. High
heterogeneity was detected (I-squared = 96.9%, p < 0.01). There was no significant difference in the num-
ber of patients requiring vasopressors intraoperatively (B) between the goal- and the non-goal-directed
groups. (RR = 0.90; 95% CI = 0.71 to 1.14). Low heterogeneity was found (I-squared = 44.0%; p < 0.01).
There was no significant difference in intraoperative urinary output standardised for length of surgery
(C) between the two groups (SMD = 5.69 mL h−1; 95% CI = −2.16 mL h−1 to 13.54 mL h−1). Data were
not considered heterogeneous (I-squared = 0.0%; p = 0.96). Serum lactate levels (D) were significantly
lower in the GDFT group compared to N-GDFT (WMD = −0.25 mmol L−1; 95% CI −0.36 mmol/ to
−0.14 mmol L−1). There is no evidence for heterogeneity (I-squared = 42.7%; p = 0.18). WMD: weighted
mean difference, SMD: standardised mean difference, RR: risk ratio, SD: standard deviation. GDFT: goal-
directed fluid therapy, N-GDFT: non-goal-directed fluid therapy, CI: confidence interval. p < 0.1 was
considered significant.

3.4. Risk of Bias in Studies and Certainty of Evidence

Figures S8–S16 summarise the risk of bias assessment for all outcomes. All studies
were judged as low risk or with some concerns.

A certainty of evidence table, including reasons for downgrading of the evidence
level, is detailed in Table S4 and Figures S2–S7. Certainty of evidence was considered very
low for intraoperative fluid requirement, intraoperative vasopressor requirement, urinary
output, time to first flatus, and length of hospital stay, whereas it was low for serum lactate
levels at the end of the operation and time to first stool after the operation (Table S4).

4. Discussion

The main findings of our meta-analysis are that patients treated with GDFT received
less fluid during surgery, had lower serum lactate levels, both the first flatus and stool
appeared earlier, and their hospital stay was also reduced compared to the N-GDFT-
treated patients.

4.1. Summary of Evidence

Laparoscopic surgery may inflict profound effects on macro haemodynamic variables,
resulting in elevated central venous and right atrial pressure, decreased cardiac output
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and stroke volume, and higher mean arterial pressure and systemic vascular resistance,
due to elevated intraabdominal pressure and hypercarbia [4,5,59]. These can lead to
decreased renal and splanchnic circulation, which are often responsible for unfavourable
postoperative outcomes [5,60].

Adequate fluid management during surgery is of utmost importance to maintain ade-
quate perfusion and oxygen delivery to the tissues. As both hypo- and hypervolaemia can be
harmful, targeting fluid therapy to the patients’ individual needs is mandatory [61,62]. Fluid
restriction per se, recommended in several guidelines as superior to liberal strategy [29,30],
may reduce blood flow to the gastrointestinal tract, which may prolong the gastrointestinal
recovery [5,63–65], impairing renal perfusion and leading to higher incidence of acute
kidney injury after surgery [66]. Both effects can be precipitated during the pneumoperi-
toneum. Hypervolaemia and excessive fluid administration can also be harmful by causing
interstitial oedema, which also impairs perfusion and oxygen uptake [67], which may lead
to higher chance to surgical postoperative morbidity [68].

Conventional variables, such as heart rate and blood pressure, cannot predict fluid
responsiveness and tell us little about tissue perfusion. Advanced haemodynamic mon-
itoring (invasive, less invasive, non-invasive) has been tried and tested intensively for
decades [69], but discussing these are beyond the scope of the current article. One advan-
tage of using haemodynamic monitoring is being able to implement GDFT [62,70]. In the
current meta-analysis, we included studies that compared GDFT to N-GDFT in patients
undergoing laparoscopic surgery.

Our results suggest that GDFT may lead to a shorter length of hospital stay. This
finding was significant and can also be considered compelling in the clinical practice.
This observation is in accordance with previously reported results [71–73]. However, no
significant difference was detected in those studies that implemented the ERAS. Further
investigations are necessary whether GDFT combined with ERAS or other fast-track surgery
protocols provides additional benefit of shorter hospitalisation or not.

One of the most important results of the current meta-analysis is that GDFT was
associated with faster gastrointestinal recovery as indicated by shorter time to first stool.
Although this outcome may be seen as of particular importance only after bowel surgery,
there is substantial evidence to support that any abdominal surgery that applies pneu-
moperitoneum can lead to impaired bowel function [5,74]. Former studies suggested that
the best way to evaluate the functional recovery of the gastrointestinal tract after surgery
is the time to tolerate solid food and to pass the first stool. This is in alignment with
our findings. These findings suggest that using GDFT may help to individualise fluid
management and had not been shown in the two previous meta-analyses [23,24].

Conventional monitoring of heart rate and blood pressure have been shown to be
inadequate measures of perfusion in general, and hence normal values do not exclude
splanchnic hypoperfusion causing decreased oxygen delivery, resulting in anaerobic gly-
colysis and accumulation of lactate. The latter is an important marker to detect insufficient
oxygen supplementation [75]. Although the lactate levels at the end of the operation
were in the acceptable therapeutic range in both groups, levels were lower in the GDFT
patients as compared to the N-GDFT group, indicating that the lesser amount of intra-
operative fluid administration did not cause underfilling and/or consequential hypop-
erfusion. Unfortunately, previous meta-analyses did not report on serum lactate levels
directly following the operation. However, our findings are in accordance with that of
Forget et al. [76]. In their study, significantly lower lactate levels were reported in the GDFT
group (GDFT: 1.2 mmol L−1; CI: 1–1.4 CI versus N-GDFT 1.6 mmol L−1; CI: 1.2–2.0). It is
important to note that they confined their investigation to the intraoperative period.

4.2. Strengths and Limitations

This is the first meta-analysis that has investigated the effects of GDFT versus N-GDFT
specifically in laparoscopic abdominal surgery. Our study reflects on both physiological
issues at the end of the operation and measures of gastrointestinal recovery, length of



J. Pers. Med. 2022, 12, 734 13 of 17

hospital stay, and overall complications and readmission rate. Furthermore, the trials
originate from several countries and continents, which increases the representative value
of the results. Finally, the studies included in our analysis were published mainly in the
last five years, and hence our results provide data that have not been considered yet in
recent guidelines.

Our meta-analysis also has some limitations. First, most of the trials were single-
centre RCTs with a low number of patients, which probably decreases the external validity
of the studies. This may explain the high heterogeneity of several analyses. Second,
the applied haemodynamic monitoring technologies in the GDFT group and the fluid
administration regimens in the controls showed great variability, which may also point out
the high heterogeneity for length of hospital stay, time to first flatus, and intraoperative
fluid requirement. Third, we were unable to perform subgroup analysis on the type fluids
used (i.e., crystalloids vs. colloids) due to the quality and quantity of the data reported
on the outcomes we investigated. Furthermore, we were unable to perform a quantitative
analysis for the overall complication rates due heterogeneous reporting on complications.

5. Conclusions

To our knowledge, this is the first and most comprehensive meta-analysis to date that
reports on the effects of intraoperative GDFT resulting in less intravenous fluid adminis-
tration, lower postoperative lactate levels, and enhanced recovery of the gastrointestinal
function, which may lead to reduced hospital stay in patients undergoing elective abdomi-
nal laparoscopic surgery. Whether GDFT would result in overall advantageous outcomes
including healthcare costs as compared to the generalised “fluid restriction” strategy
recommended by the ERAS protocols in laparoscopic surgery has to be determined by
further research.
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