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A B S T R A C T   

Efficient, non-destructive cabbage harvesting is crucial for preserving its flavor and quality. 
Current cabbage harvesting mainly relies on mechanized automatic picking methods. However, a 
notable deficiency in most existing cabbage harvesting devices is the absence of a root posture 
recognition system to promptly adjust the root posture, consequently impacting the accuracy of 
root cutting during harvesting. To address this issue, this study introduces a cabbage root posture 
recognition method that combines deep learning with traditional image processing algorithms. 
Preliminary detection of the main root Region of Interest (ROI) areas of the cabbage is carried out 
through the YOLOv5s deep learning model. Subsequently, traditional image processing methods, 
the Graham algorithm, and the method of calculating the minimum circumscribed rectangle are 
employed to specifically detect the inclination angle of cabbage roots. This approach effectively 
addresses the difficulty in calculating the inclination angle of roots caused by occlusion from 
outer leaves. The results demonstrate that the precision and recall of this method are 98.7 % and 
98.6 %, respectively, with an average absolute error of 0.80◦ and an average relative error of 
1.34 % in posture. Using this method as a reference for mechanical harvesting can effectively 
mitigate cabbage damage rates.   

1. Introduction 

With the rapid global development of agricultural mechanization and automation technology, mechanized harvesting has emerged 
as pivotal approach to augment agricultural production efficiency. Cabbage is a popular green vegetable worldwide, known for its 
delicious taste, high yield, and resistance to storage and transportation. Harvesting methods for cabbage mainly including manual and 
mechanical harvesting. While manual harvesting minimizes cabbage damage and ensures high precision in root cutting, it remains 
time-consuming and labor-intensive [1]. Conversely, mechanical harvesting methods are efficient, cost-effective, and more suitable for 
large-scale cabbage farming. However, inherent factors such as the natural tilt of cabbage roots or collisions with harvesting machinery 
during operation may alter the relative positioning of the root and the axis of the cabbage, posing challenges in maintaining alignment 
with the disc knife of the root cutting mechanism. Consequently, this could lead to inaccurate root cutting and potential cabbage 
damage [2]. To solve this problem, adjusting the posture of the cabbage before root cutting is important, and precision identification of 
the cabbage tilt degree is a critical foundation for such adjustment [3]. 

This study addresses the significant influence of root inclination on the efficiency and quality of mechanized cabbage harvesting, 
aiming to develop a model that integrates deep learning with image processing techniques for precise and prompt identification of 
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cabbage root inclination. While previous research has acknowledged the effectiveness of both non-image sensors and image sensors in 
detecting plant tilt, challenges persist in achieving robust stability in dynamic testing scenarios and addressing issues such as leaf 
occlusion and intricate testing environments. Thus, the fusion of image sensing technology and deep learning models presents 
heightened potential in terms of recognition accuracy, adaptability, and information extraction capability. 

While there are precedents for crop identification using deep learning, reports on methods for cabbage root inclination recognition 
are scarce. In light of this, this article proposes a cabbage root tilt recognition method that integrates the YOLOv5s model with image 
processing technology, which significantly improves both the speed and accuracy of cabbage root recognition, leading to enhanced 
efficiency and quality in mechanized harvesting. The main contributions are summarized as follows:  

(1) Based on the combination of the YOLOv5s model and traditional image processing methods, the proposed method achieves 
rapid and efficient recognition of cabbage root under limited hardware resources, thus meeting the real-time operational re-
quirements of harvesting machinery.  

(2) By introducing the Graham algorithm and the method of minimum circumscribed rectangle calculation, the interference of 
outer leaves on cabbage posture recognition is effectively addressed. This enables precise calculation of the inclination angle of 
cabbage roots, providing a reference basis for actual harvesting.  

(3) The proposed method helps to fill the current gap in research on cabbage root posture recognition, thus providing references 
and insights for subsequent studies. 

The remaining sections of this paper are organized as follows: 
Section 2 provides a comprehensive literature review of previous studies that have utilized conventional image processing methods 

and deep learning techniques for fruit and vegetable pose recognition. In Section 3, the materials and methods are described, including 
the structure and implementation of the cabbage detection algorithm. Section 4 presents the experimental results and comparisons. 
Section 5 discusses and analyzes the experimental results and comparisons. Finally, Section 6 concludes the research and outlines 
future work plans. 

2. Literature review 

Previous research has shown that both non-image sensors and image sensors can effectively identify plant tilt degrees. Non-image 
sensors are advantageous for their high accuracy, ease of use, and quick response in practical applications [4,5]. For instance, Bunce 
et al. developed a biaxial tilt meter using two inclinometers and a data collector to detect slight angle tilts of tree trunks [6]. However, 
this device requires an external power source, and its test stability will be affected by environmental factors. Park et al. used accel-
erometers, gyroscopes, and linear potentiometers to collect the cutting height, angle, and position of the cabbage [7]. Based on Kalman 
filters, they predicted the tilt posture of the cutting device, improving the accuracy of cabbage harvesting. However, the accuracy of 
these sensors tends to degrade over time. In another approach, James et al. used a triaxial accelerometer to predict the tilt angle of the 
tree root area by measuring the dynamic and static tension [8]. Guo et al. used strain sensors and two uniaxial angle sensors to measure 
the tilt angle of corn stalks, assessing the tilt state of corn under applied pressure by utilizing the equivalent force in the vertical 
direction of the stalk [9]. Although the methods mentioned above realized the measurement of plant tilt preliminary, non-image 
sensors often require physical contact with the plant during measurements, demanding high stability for both the sensor and the 
test subject, which is hard to meet the needs of dynamic testing. 

Compared to non-image sensors, image sensors have demonstrated remarkable accuracy, adaptability, and information extraction 
capabilities owing to the rapid advancements in image processing technology, particularly in identifying regular fruit shapes. Features 
such as contours, colors, and textures are commonly employed for this purpose. Roomi et al. used a Bayes classifier to identify fruit 
contours by extracting shape and region features, which showed high accuracy when applied to the classification of Indian mangoes 
[10]. Hannan et al. effectively distinguished oranges from other fruits or objects using shape analysis techniques and machine learning 
algorithms [11]. Similarly, Wei et al. effectively identified mature fruits by extracting new features from the OHTA color space using an 
improved Otsu threshold algorithm, which performs well under complex backgrounds [12]. Rakun et al. used a texture segmentation 
method based on spatial frequency distribution to identify different fruits, overcoming the problems of uneven illumination, fruit 
occlusion, and similar background features in complex environments by clustering pixels with similar texture features [13]. 
Furthermore, Wu et al. proposed an automatic tomato maturity identification algorithm that combines multi-feature fusion, feature 
analysis and selection, a weighted Relevance Vector Machine (RVM) classifier, and a two layer classification strategy, which achieved a 
detection accuracy of 94.90 % on 120 images [14]. These studies illustrate that relying on either single features or feature fusion can 
effectively identify regular fruit shapes. However, these methods encounter limitations in identifying irregular fruit shapes and 
addressing occlusion issues during identification. Given the intricate morphology and posture of cabbage roots, often obscured by 
outer leaves, traditional image processing methods alone cannot accurately identify and locate the root, let alone measure its tilt 
degree. Therefore, the introduction of more precise algorithms and techniques is imperative to address this challenge. 

Existing research has shown that deep learning algorithm models, such as Convolutional Neural Networks (CNN) and Deep 
Convolutional Neural Networks (DCNN), have higher recognition accuracy for irregular fruits compared to traditional image pro-
cessing methods [15]. This heightened accuracy can be attributed to their capability to autonomously learn target features, thereby 
showcasing robustness against target occlusion and variations in lighting conditions [16]. Momeny et al. successfully identified and 
classified the appearance of cherries with regular and irregular shapes by improving the CNN algorithm [17]. Yan et al. proposed an 
improved Faster R–CNN algorithm that successfully identified irregularly shaped prickly pear fruit, achieving an average recognition 
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accuracy of 94.6 % [18]. Wang et al. improved the Faster R–CNN model for detecting multiple targets of tomato maturity under 
complex scenarios of branch occlusion, fruit overlap, and light influence [19]. The improved model outperformed other common 
object detection models, with the average accuracy (mAP) of tomato maturity recognition reaching up to 96.14 %. 

Furthermore, the YOLO (You Only Look Once) model has garnered significant attention across various domains due to its 
exceptional real-time recognition capabilities. Its applicability extends to diverse fields, such as plantar pressure angle detection and 
recognition [20], diagnosis of Alzheimer’s disease [21], detection of lumbar disc protrusion [22], among others. These applications 
highlight the immense potential of the YOLO model in addressing complex recognition challenges. In the field of agriculture, Tian et al. 
improved the YOLOv3 model to detect apples in different growth stages under changing light conditions in orchards [23]. Their 
method facilitated real-time and effective detection of overlapping apples and those under obfuscating conditions. Ji et al. accurately 
identified and located apples in various complex environments using an improved lightweight YOLOv4 method, which also effectively 
enhanced the level of lightness of the model while improving recognition speed [24]. Wang et al. improved the algorithm based on 
YOLOv5 for real-time identification of apple stem. The optimized YOLOv5 achieved an accuracy of 93.89 % in detecting apple stem of 
different varieties [25]. Xie et al. utilized the YOLOv7 target detection model to achieve efficient feature extraction and accurate target 
detection of pear calyx and stem. The test results demonstrate that the proposed model achieves high detection accuracy while 
maintaining low computational complexity and parameter count [26]. Dewi et al. employed the YOLOv8 target detection model to 
distinguish and classify various fruit varieties, achieving a detection accuracy as high as 0.97 % [27]. These models exhibit robustness 
against target occlusion and variations in lighting conditions, delivering exceptional performance in terms of recognition accuracy and 
real-time capability. However, due to problems such as leaf occlusion, complex testing environments, and poor consistency, existing 
algorithms cannot be effectively transplanted into research on cabbage root tilt detection. In addition, mechanical cabbage harvesting 
requires high recognition speeds. While ensuring recognition accuracy, it is necessary to improve the recognition speed as much as 
possible to meet the basic needs of real-time root cutting. 

3. Materials and methods 

3.1. Overview of the cabbage root posture recognition process 

The proposed cabbage root posture recognition algorithm workflow is shown in Fig. 1 and can be delineated into the following 
steps: 

Step 1. The cabbage image dataset is meticulously annotated, and the organized cabbage images are inputted into the pre-trained 

Fig. 1. Workflow of the pose recognition algorithm for cabbage root.  
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YOLOv5s model. This model employs image feature extraction and target detection to identify the main root of the cabbage. During the 
detection phase, the model divides the input cabbage image into multiple grid units, then classifies and locates the bounding box for 
each unit, thereby obtaining the detection box of the cabbage main root. 

Step 2. Based on the location information of the cabbage main root detection box, the ROI of the main root is extracted from the 
original cabbage image and the HSV color threshold method is used to distinguish the background from the main root. 

Step 3. The ROI undergoes image segmentation, followed by binarization of the resulting image. The binarized main root image is 
processed using morphological opening operations to eliminate voids in the main root, remove isolated small blocks, smooth the 
surface of the main root, and obtain the minimum circumscribed rectangle of the main root in combination with the Grayham al-
gorithm, thus obtaining the four-pixel coordinates of the rectangle. 

Step 4. Using the four-pixel coordinates of the main root minimum circumscribed rectangle obtained, calculate the length of the 
rectangle based on the pixel coordinates and calculate the tilt value using the tilt formula to judge the cutting posture of the cabbage. 

3.2. Experimental materials 

The cabbages used for the experiment were collected from Dabanqiao Town, Yunnan Province. The chosen variety was Lotus 
White, and the harvesting took place in August 2022. To ensure freshness, all collected samples were adequately refrigerated for 
preservation. The experimental equipment includes an electronic angle measuring instrument, an industrial-grade CCD camera, and a 
computer. Under the illumination of an LED light source, the cabbage was photographed against a black background for image 
collection. The CCD camera was precisely aimed at the cabbage, and adjustments were made to the object distance and focus to achieve 
optimal image quality. At the same time, setting fixed parameters is conducive to subsequent image collection and video recording, 
facilitating rapid and accurate transmission of collected image data to the computer for analysis and processing. 

3.3. Experimental environment 

In order to ensure data diversity, the cabbages were photographed were photographed from various angles, including the front, 
back, and side, under different light intensities, this resulted in a total of 1500 original images (Fig. 2 (a)). Subsequently, data 
augmentation techniques such as horizontal flipping (Fig. 2 (b)), rotation (Fig. 2 (c)), Gaussian blur (Fig. 2 (d)), brightness 
enhancement (Fig. 2 (e)), and scaling (Fig. 2 (f)) were employed to increase the sample data to 2184 images. The annotation process 
was conducted using the labelImg software and professional cabbage harvesting personnel are invited to verify the accuracy of the 
annotation work. The position of the main root of the cabbage in each image was manually identified and annotated. The annotation 
results were saved as txt annotation files in the YOLO file format, and the annotation process is shown in Fig. 3. The dataset was divided 
into training, test, and validation sets in a 7:2:1 ratio to provide support for the training and evaluation of the model. 

The training process was carried out on a cloud server, its hardware configuration processor is the Inte Xeon Platinum 8255C 
@2.50 GHz, the GPU is the RTX 2080 Ti (11 GB), the python version is 3.8.12, and the cuda version is 11.3.1. Traditional image 
processing was conducted using the OpenCV-python, Numpy, and Matplotlib libraries, and the construction of the YOLOv5 model 

Fig. 2. Image enhancement rendering. (a). Original image, (b). Flip horizontal, (c). Rotated image, (d). Image with Gaussian blur applied, (e). Image 
after brightness enhancement, (f). Resized image. 
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referred to the officially released code. 

3.4. Cabbage root detection algorithm 

3.4.1. YOLOv5s network architecture 
Currently, various deep learning algorithm models can be employed for object detection, including the most common ones are the 

R–CNN [28–30] series, YOLO [31,32] series, and SSD [33] series, etc. Each of these models possesses distinct advantages and limi-
tations, and the choice should be guided by practical application requirements. The R–CNN series models, including Fast R–CNN, 
Faster R–CNN, etc., are renowned for their high accuracy and have found widespread use. However, these models need to perform 
steps such as region and feature extraction during the training process, so they have higher demands on computational performance 
and may not be able to meet the requirements for real-time operation. In contrast, the YOLOv5 model has high detection accuracy and 
relatively low demands on hardware computing capabilities. In addition, YOLOv5 also supports running on different sizes of network 
architectures, making it possible to achieve good performance on limited hardware resources. 

While the YOLO series has progressed to YOLOv8, YOLOv5 remains a prevalent choice due to its stability and maturity. Since its 
launch, YOLOv5 has been recognized for its reliability and performance efficiency, and its codebase, documentation, and community 
support are mature enough for developers to learn and use. In addition, YOLOv5 has shown good compatibility and deployment 
performance on a variety of platforms, which is particularly important for the project of deploying models in cabbage harvester in 
complex environments. In summary, YOLOv5 was chosen as the object detection model for this study owing to its myriad advantages, 
including stability, ease of use, strong community support, balanced performance efficiency, and versatile compatibility and 
deployment capabilities. 

The network architecture of YOLOv5s consists of four primary components: Input, Backbone, Neck, and Head.  

1. Input: By combining four different training images into a large image, more object instances and background changes are displayed 
in a single image, so as to enhance the ability of the model to recognize small objects in complex scenes and provide rich context 
information and object size changes, adaptive anchor box calculation is used to find the best anchor box values in different training 
sets, and adaptive image scaling is used to reduce the amount of computation, thereby improving target detection speed.  

2. Backbone: The Backbone consists of the Focus structure and Cross Stage Partial (CSP) network structure. The Focus structure uses 
slicing operations to split the high-resolution feature map into multiple low-resolution feature maps, which can reduce the in-
formation loss caused by downsampling. The CSP structure splits the original input into two branches, one for convolution op-
erations to reduce the number of channels, and the other for multiple Bottleneck operations, and finally keeps the input and output 
size consistent through concat, so that the model can learn more features.  

3. Neck: The Neck component utilizes the Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) structure. FPN [34] 
upsamples from top to bottom, allowing lower-level features to gain stronger semantic information; PAN downsamples from 
bottom to top, making the top-level features contain stronger feature information. By integrating these two features, it can ensure 
that feature maps of different sizes all contain semantic and feature information, thereby enhancing accurate predictions of images. 

Fig. 3. LabelImg software annotation process.  
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Fig. 4. Yolov5s network model framework.  
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4. Head: This component includes three Detect detectors, using anchors to perform object detection on feature maps of different 
scales, obtaining the category and location information of the target. 

As shown in Fig. 4, with the above architecture and characteristics, the YOLOv5s network can effectively recognize the cabbage 
root. 

3.4.2. Cabbage recognition 
During cabbage recognition, a color background threshold segmentation method based on HSV space is used to perform back-

ground segmentation of the main root ROI image of the cabbage. Given the significant color difference between the cabbage root and 
other parts of the harvester, the YOLOv5s model is used to detect the ROI area of the cabbage root, as shown in Fig. 5 (a). Once the main 
root ROI is determined (Fig. 5 (b)), this image is transformed from RGB space to HSV space (Fig. 5 (c)). Through multiple experiments, 
this study has determined the thresholds for hue (H), saturation (S), and brightness (V) that can best achieve segmentation. After 
completing the above operations, binary calculation is performed to determine the main root position, as shown in Fig. 5 (d). 

After determining the position of the main root of the cabbage, cabbage posture recognition is carried out based on the principle of 
the minimum circumscribed rectangle. The specific algorithm flow is outlined as follows:  

1. Using YOLOv5s for object detection, define the set of points on the detection box at the vertex of the object contour as S =
{r1, r2,…, rn}, where ri = (xi, yi). If multiple points share the same y-coordinate, choose the point with the smallest x-coordinate as 
the starting point. Then traverse all points, and determine whether the y-coordinate of the current point is smaller than that of the 
starting point, or whether the y-coordinate of the current point is equal to the that of the starting point but the x-coordinate is 
smaller than the x-coordinate of the starting point. If these conditions are met, the current point is designated as the new starting 
point, rmin.  

2. According to the Graham algorithm, designate the rmin obtained in step (1) as the origin P0, and connect to the point P1 to form the 
line segment L0, connect to other points respectively and put the obtained line segments into the line segment set L, then calculate 
the angle between the connecting line segment and the x-coordinate, and arrange the points in the set P from small to large ac-
cording to the size of the angle and the length of the line segment, and put them into the point set A.  

3. Connect Ai− 1 and Ai+1 to get the line segment Li, determine whether the current point Ai lies to the left or right of the line segment Li. 
If it lies to the right, then Ai+1 is not the desired point, and thus it is removed from the point set A; Conversely, if it lies to the left (or 
on the line), it is the point we are searching for, and thus it is retained in the point set A. These operations are iterated until the 
condition is met, ultimately resulting in the configuration depicted in Fig. 6 (a).  

4. Traverse the point set P(x,y), where (x,y) represents the pixel position in the binary image, as shown in Eq. (1): 

Fig. 5. The Color background thresholding step is based on HSV color space. (a). YOLOv5 detection, (b). ROI location, (c). HSV color space, (d). 
Binary picture. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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where M00 represents the sum of the binary pixel values within the image, indicating the total number of pixels with a value. Addi-
tionally, M10 and M01 denote the weighted sums of the horizontal and vertical coordinates of the image, respectively, where the 
weights correspond to the pixel coordinates within the image. Consequently, we derive the following Eq. (2): 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xc

=
M10

M00

Yc

=
M01

M00

(2) 

From this, the centroid coordinates are obatained O(Xc,Yc).  

5. Find the maximum and minimum points Xmin, Xmax, Ymin, Ymax, within the horizontal and vertical coordinates of the point set A. 
Subsequently, construct the initial minimum circumscribed rectangle R0 with the centroid coordinates O, and record the area 
AreaMin and the positions of the four points.  

6. Rotate the calculated AreaMin rectangle R1 by an angle α to get the final minimum circumscribed matrix replacing the original R0, 
and calculate and obtain the coordinates of the four vertices of the new rectangle R1. The final minimum circumscribed rectangle is 
obtained, as shown in Fig. 6 (b).  

7. Arrange the coordinates of the obtained four vertices into the set V = (mi, ni) (0 ≤ i ≤ 4, i ∈ Z), according to the distance formula, 
and calculate the distance D (Eq. (3)) and angle θ (Eq. (4)) between two points. Find the maximum, and then use coordinates of the 
corresponding two points to calculate the angle θ of the cabbage root. As shown in Fig. 6 (c). 

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(mi+1 − mi)
2
− (ni+1 − ni)

2
√

(3) 

Fig. 6. The identification step is based on the principle of minimum circumscribed rectangle. (a). Convex hull, (b) Minimum enclosing rectangle, 
(c). Value of skew, (d). Judgment value. 
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θ =

⃒
⃒
⃒
⃒tan− 1

(
n1+1 − n1

m1+1 − m1

) ⃒
⃒
⃒
⃒ (4)    

8. Compare the calculated angle θ with the cutting threshold ε to assess the posture of the cabbage, the calculation formula is shown as 
Eq. (5). If θ is less than or equal to ε, then the cabbage is deemed to be in a normal state, and cutting operations can be performed. If 
θ exceeds ε, indicating cabbage tilt, adjustments are required before cutting operations can commence. This process is shown in 
Fig. 6 (d). 

Cabbage  Posture =

{
normal, if  θ ≤ ϵ

inclined, if  θ > ϵ
(5)  

3.5. Evaluation metrics 

3.5.1. Evaluation metrics for object detection models 
The evaluation metrics for object detection models include Precision, Recall, F1-score, and mean Average Precision (mAP). Pre-

cision reflects the proportion of actual positive samples in the model prediction for positive samples, while Recall shows the proportion 
of actual positive samples correctly predicted by the model. The F1-score is the harmonic mean of Precision and Recall, which can 
comprehensively evaluate the performance of the model, avoiding focusing only on single Precision or Recall. In object detection tasks, 
models with high Recall and low Precision may lead to missed detection of targets, while models with high Precision and low Recall 
may detect non-target objects by mistake. The calculation formulas for Precision, Recall, and F1 score are shown in Eqs. (6)–(8): 

Recall =
TP

TP + FN
(6)  

Precision =
TP

TP + FP
(7)  

F1 =
2 × Recall × Precision

Recall + Precision
(8)  

where TP (True Positive) represents the number of samples that the model correctly predicted as positive samples, False Positive (FP) 
represents the count of samples inaccurately predicted as positive from negative samples, and False Negative (FN) indicates the count 
of samples inaccurately predicted as negative from positive samples. In addition, mAP serves as a crucial metric for assessing object 
detection models, calculated based on the average precision across all recall levels. Specifically, mAP50 is the mAP at an Intersection 
over Union (IoU) threshold of 0.5. Through these metrics, the performance of the object detection model can be more comprehensively 
and accurately evaluated. 

3.5.2. Evaluation metrics for measurement algorithms 
This study uses Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Per-

centage Error (MAPE) metrics to evaluate the accuracy of the measurement algorithm. Among them, MAE represents the average ab-
solute error between the measured tilt value and the actual tilt value. MSE represents the average square error between the measured tilt 
value and the actual tilt value, emphasizing larger errors. RMSE is the square root of MSE. Due to its dimension and scale being the same 
as the original data, it is more superior in interpretability. MAPE represents the average percentage error between the measured tilt value 
and the actual tilt value. It provides a scale-independent error index for comparing various tilt measurement systems, and the smaller 
metric values represent the higher test accuracy. The calculation formulas for MAE, MSE, RMSE, and MAPE are shown in Eqs. (9)–(12): 

MAE =
1
n
∑n

i=1

⃒
⃒
⃒yr − yp

⃒
⃒
⃒ (9)  

MSE =
1
n
∑n

i=1

(
yr − yp

)2
(10)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yr − yp

)2
√

(11)  

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒yr − yp

⃒
⃒
⃒

yr
(12)  

where, yr represents the actual tilt value, yp represents the tilt value measured by the computer, and n represents the number of 
samples. 
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4. Results 

In order to verify the detection performance of the proposed algorithm, alongside implementing experiments using the method 
outlined in this article, five classic object detection models were also tested under the same experimental conditions for comparison. 

4.1. Model training 

During the training process of the YOLOv5s model, the hyperparameters are set as follows: the training period is 100 epochs, with a 
batch size of 32 and 8 working processes. Images were resized to a resolution of (640,640), and both the initial learning rate and 
learning steps are set to 0.01. The weight decay coefficient is 0.0005, and the momentum is set to 0.8. Additionally, to maintain model 
accuracy while reducing the size of the model, comparisons were made among the results data of each weight file provided by the 
official source, as shown in Table 1, YOLOv5s.pt was finally selected as the pre-trained weights. 

The hyperparameters and output indicators during the model training process were automatically recorded through the Wandb 
tool. This tool can dynamically monitoring the status of model training, perform visualization and result comparison, so as to observe 
the impact of the number of training iterations on model performance and equipment status, as shown in Fig. 7. It is evident that during 
the initial 0–20 iterations of the model, box_loss and obj_loss exhibit rapid decreases and convergence, while precision, recall, and 
mAP50 rapid increases. However, as the iterations progress beyond approximately 20–100, the rates of decrease for box_loss and 
obj_loss slow down. Meanwhile, the curves representing precision, recall, and mAP50 tend to plateau, ceasing to show significant 
increases. 

4.2. Detection results of cabbage root under different models 

YOLOv5s, SSD, Fast R–CNN (FRCN), Adaptive Training Sample Selection (ATSS) and RetinaNet were tested and trained based on 
the same method and experimental environment mentioned in section 3.3. The test results are shown in Table 2. According to the 
evaluation indicators of the object detection model in the table, the detection results were compared and analyzed to demonstrate the 
most optimal detection performance. 

According to the findings presented in Table 2, the YOLOv5s model showcased remarkable performance, excelling in key metrics 
such as Precision, Recall, mAP50, and F1, achieving scores of 99.7 %, 99.7 %, 99.5 %, and 99.7 % respectively. With a mere model size 
of 14.4 MB, it demonstrated an impressive processing speed of 285 frames per second. On the other hand, the SSD model exhibited 
commendable Precision and F1 scores of 71.8 % and 83.8 % respectively, but displayed lower performance in Recall and mAP50, 
scoring 98.1 % and 90.2 % respectively, while processing at a slower rate of 22.4 frames per second. Despite its substantial size, the 
FRCN model yielded balanced results across Precision, Recall, mAP50, and F1 metrics, achieving scores of 95.1 %, 97.5 %, 90.4 %, and 
96.3 % respectively, albeit processing only 10 frames per second. The ATSS model exhibited commendable prowess in Recall and 
mAP50, acquiring 99.4 % and 90.1 % respectively, but languished in Precision and F1, recording only 12.3 % and 22 %, processing at a 
rate of 26 frames per second despite its moderate size of 161 MB. The RetinaNet model posted performance metrics of 79.6 %, 98.1 %, 
90 %, and 86.7 % in Precision, Recall, mAP50, and F1 respectively, with a substantial size of 256.4 MB, processing 12 frames per 
second. Upon comprehensive analysis of the six parameters detailed in the table, it is evident that the YOLOv5s model outperformed 
others in detecting the primary root of the cabbage. 

4.3. Comparison of cabbage root tilt tests 

In the cabbage main root tilt detection experiment, this article compared the SE-YOLOv5, HT-YOLOv5, and MER-YOLOv5 algo-
rithms based on YOLOv5. SE-YOLOv5 integrates the Skeleton Extraction principle, HT-YOLOv5 incorporates the Hough Transform 
principle, and MER-YOLOv5 employs the Minimum Circumscribed Rectangle principle, as shown in Table 3. 

There exists a discernible disparity in the prediction accuracy between SE-YOLOv5 and HT-YOLOv5. The MAE, MSE, RMSE, and 
MAPE of SE-YOLOv5 are 6.33◦, 68.70◦, 8.29, and 31.28 %, respectively, while the corresponding values of HT-YOLOv5 are 5.95◦, 
62.20◦, 7.89, and 39.26 %, respectively. These values indicate that the prediction accuracy of HT-YOLOv5 is higher than SE-YOLOv5 in 
terms of MAE, MSE, and RMSE, but its error is more significant when dealing with extreme value prediction. In contrast, the per-
formance of MER-YOLOv5 notably outshines the other methodologies. With substantially smaller prediction errors (MAE, MSE, and 
RMSE) of 1.69◦, 4.90◦, and 2.21, respectively, and a correspondingly lower MAPE of 15.13 %, MER-YOLOv5 not only achieves high 
overall prediction accuracy, but also demonstrates smaller errors in predicting extreme values. 

Table 1 
Comparison of five models with different weights.  

Models Size(pixels) mAP95 (%) mAP50 (%) Params (MB) FLOPs (B) 

YOLOv5n 640 28 45.7 1.9 4.5 
YOLOv5s 640 37.4 56.8 7.2 16.5 
YOLOv5m 640 45.4 64.1 21.2 49.0 
YOLOv5l 640 49.0 67.3 46.5 109.1 
YOLOv5x 640 50.7 68.9 86.7 205.7  
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Fig. 7. Analysis of yolov5s results.  

Table 2 
Comparison test results of different object detection models.  

Models Precision (%) Recall (%) mAP50 (%) F1 (%) Size (MB) Fps 

YOLOv5s 99.7 99.7 99.5 99.7 14.4 285 
SSD 71.8 98.1 90.2 83.8 95 22 
FRCN 95.1 97.5 90.4 96.3 377.4 10 
ATSS 12.3 99.4 90.1 22 161 26 
RetinaNet 79.6 98.1 90 86.7 256.4 12  

Table 3 
Comparison of the results of different methods for identifying cabbage roots.  

Method MAE (◦) MSE (◦) RMSE MAPE (%) 

SE-YOLOv5 6.33 68.70 8.29 31.28 
HT-YOLOv5 5.95 62.20 7.89 39.26 
MER-YOLOv5 1.69 4.90 2.21 15.13  

Fig. 8. Numerical plots of angles measured by different algorithms versus manual measurements.  
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More convincingly, the angle changes measured by the MER-YOLOv5 method is very close to the manually measured tilt angle. In 
contrast, the angles measured by the SE-YOLOv5 and HT-YOLOv5 methods display greater fluctuations compared to the manually 
measured angles, as shown in Fig. 8. This serves as additional evidence supporting the accuracy and reliability of the MER-YOLOv5 
method. 

In conclusion, compared to the SE-YOLOv5 and HT-YOLOv5 methods, the prediction accuracy of the MER-YOLOv5 method is the 
highest, while the error is the smallest. It is the most suitable prediction method for predicting the tilt of the main root of the cabbage. 

5. Discussion 

5.1. Implications 

Much existing research has conducted adaptive threshold, Canny edge detection, and skeleton extraction methods to deal with the 
plant root posture recognition problems. For example, Huipeng et al. [35] obtained the approximate outline of the grape stalk through 
adaptive threshold and Canny edge detection, and finally determined the picking point through the cumulative probability Hough 
transform. However, these methods could not accurately fit the line based on the root outline after morphological processing, as shown 
in Fig. 9 (a) and (b). At the same time, the skeleton extraction method proposed by Qi et al. [36], although it can quickly obtain the 
fitted line, cannot accurately obtain the tilt angle due to the thick root of the cabbage, as shown in Fig. 9 (c) and (d). 

In addressing the limitations of the aforementioned methods, this paper presents a cabbage root inclination detection approach 
based on minimum circumscribed rectangle, which accurately discerns the tilt angle of cabbage, as demonstrated in the earlier 
measurement outcomes and compared against actual measurements. This method surpasses the constraints of previous approaches 
when handling cabbages with intricate morphology and thick roots, thereby enabling more precise detection of cabbage posture tilt 
angles and enhancing prediction accuracy and practicality, as shown in Fig. 9 (e) and (f). 

The significance of this study lies in the development of a novel method for detecting the tilt angle of cabbage roots. This approach 
not only enhances the precision of crop identification and diminishes crop damage during mechanized harvesting but also improves 
harvest efficiency and quality. Additionally, while this study primarily focuses on cabbage, the techniques and methods proposed 
herein hold promise for application to crops with intricate root morphology, highlighting their broad applicability. Furthermore, this 
study offers a fresh perspective and methodology for future investigations in the realm of plant root pose detection, and carries 
substantial significance in terms of both technical innovation and practical application. 

5.2. Limitations 

While the method presented in this study has demonstrated promising experimental outcomes, there remains room for enhance-
ment in both accuracy and generalization, particularly when dealing with small data sample sizes. The experimental results in Fig. 6 
show that the accuracy and loss of the YOLOv5s model reach convergence after approximately 100 training iterations. However, the 
number of data samples in this study is relatively small, which may impact the results. Additionally, to visually assess the measurement 
bias between our method and actual measurements, an error bar chart was generated (Fig. 10). Although some cabbages exhibit 
relatively large absolute errors (up to 6.5◦), contributing factors such as uneven lighting, root damage, and soil occlusion may have 
influenced these errors, as shown in Fig. 11 (a). The impact of these variables during image threshold processing could result in the 
binarized image lacking essential information, as shown in Fig. 11 (b), thereby leading to deviations between subsequent image 
processing and actual measurement results, as illustrated in Fig. 11 (c) and (d). 

Fig. 9. Comparison of different methods for recognizing the posture of cabbage roots. (a). Canny method, (b). Hough transform line, (c). Skeleton 
extraction, (d). Fitting a straight line, (e). Minimum circumscribed rectangle, (f). Real measurement. 
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5.3. Future work 

The follow-up work of this study is expected to proceed on three fronts. Firstly, we plan to further acquire datasets of various 
cabbage varieties for training purposes, aiming to enhance the universality and robustness of the model. Secondly, in the prediction 
method of cabbage root tilt angle, in addition to the methods mentioned in this paper, we will further optimize it through techniques 
such as machine vision and fitting prediction with Bézier curves. Finally, the system will be integrated into a cabbage harvesting 
machine for practical cabbage harvesting assistance, thereby verifying the accuracy of pose recognition and root cutting. 

6. Conclusion 

This study proposes a cabbage posture recognition method that combines deep learning and traditional image processing tech-
niques, demonstrating its ability to accurately identify cabbage postures. A root detection model based on the YOLOv5s network 
structure was used for training, and high-level features of the root were extracted through a deep convolutional network, successfully 

Fig. 10. Test error comparison between test value and actual value.  

Fig. 11. Comparison results with actual measurement. (a). Uneven illumination, (b). Threshold processing, (c). Algorithm measurement results, (d). 
Actual measurement results. 
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overcoming the limitations of traditional image processing algorithms. Comparative analysis against principal detection models such 
as SSD, Fast R–CNN, ATSS, and RetinaNet revealed a substantial enhancement in precision and recall with the YOLOv5s model. The 
measurement based on the minimum circumscribed rectangle algorithm has a good correlation with the actual measurement. From the 
analysis of error indicator performance, the MAE, MSE, and RMSE of this study are 1.69 %, 4.90 %, and 2.21 respectively, and the 
MAPE is 15.13 %. This method reduces cabbage harvest-related damages, enhances operational efficiency, and decreases reliance on 
manual labor, with potential widespread applications in agricultural mechanization. 
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