
StreamPipes Connect: Semantics-Based
Edge Adapters for the IIoT

Philipp Zehnder(B), Patrick Wiener, Tim Straub, and Dominik Riemer

FZI Research Center for Information Technology,
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

{zehnder,wiener,straub,riemer}@fzi.de

Abstract. Accessing continuous time series data from various machines
and sensors is a crucial task to enable data-driven decision making
in the Industrial Internet of Things (IIoT). However, connecting data
from industrial machines to real-time analytics software is still techni-
cally complex and time-consuming due to the heterogeneity of proto-
cols, formats and sensor types. To mitigate these challenges, we present
StreamPipes Connect, targeted at domain experts to ingest, harmonize,
and share time series data as part of our industry-proven open source
IIoT analytics toolbox StreamPipes. Our main contributions are (i) a
semantic adapter model including automated transformation rules for
pre-processing, and (ii) a distributed architecture design to instantiate
adapters at edge nodes where the data originates. The evaluation of a
conducted user study shows that domain experts are capable of connect-
ing new sources in less than a minute by using our system. The presented
solution is publicly available as part of the open source software Apache
StreamPipes.

Keywords: Industrial Internet of Things · Edge processing ·
Self-service analytics

1 Introduction

In order to exploit the full potential of data-driven decision making in the
Industrial Internet of Things (IIoT), a massive amount of high quality data
is needed. This data must be integrated, harmonized, and properly described,
which requires technical as well a domain knowledge. Since these abilities are
often spread over several people, we try to enable domain experts with little
technical understanding to access data sources themselves. To achieve this, some
challenges have to be overcome, such as the early pre-processing (e.g. reducing)
of the potentially high frequency IIoT data close to the sensor at the edge, or
to cope with high technological complexity of heterogeneous data sources. The
goal of this paper is to simplify the process of connecting new sources, harmo-
nize data, as well as to utilize semantic meta-information about its meaning, by
providing a system with a graphical user interface (GUI).
c© Springer Nature Switzerland AG 2020
A. Harth et al. (Eds.): ESWC 2020, LNCS 12123, pp. 665–680, 2020.
https://doi.org/10.1007/978-3-030-49461-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49461-2_39&domain=pdf
https://doi.org/10.1007/978-3-030-49461-2_39

666 P. Zehnder et al.

Fig. 1. Motivating scenario of a manufacturing company

Our solution, StreamPipes Connect, is made publicly available as part of the
open-source, self-service data analytics platform Apache StreamPipes (incubat-
ing)1. StreamPipes [14] provides a complete toolbox to easily analyze and exploit
a variety of IoT-related data without programming skills. Therefore, it leverages
different technologies especially from the fields of big data, distributed comput-
ing and semantic web (e.g. RDF, JSON-LD). StreamPipes is widely adopted in
the industry and is an incubating project at the Apache Software Foundation.

Figure 1 shows a motivating scenario of a production process in a company
with several plants. It further illustrates the potentially geo-distributed heteroge-
neous data sources that are available in such a company. However, the challenge
is how to enable domain experts to connect and harmonize these distributed
heterogeneous industrial streaming data sources. First we show how our app-
roach differs from existing related work in Sect. 2. To cope with the distributed
setting we leverage a master worker paradigm with a distributed architecture
(Sect. 3). Adapters are deployed on edge devices located within a close proximity
to sources, to early filter and transform events. We use a semantics based model
to describe adapters and to employ transformation rules on events (Sect. 4). The
model covers standard formats and protocols as well as the possibility to connect
proprietary data sources. In Sect. 5, the implementation of our approach and the
GUI is explained in detail. We present results of a conducted user study to eval-
uate the usability of our system, in addition to the performance tests carried out
in Sect. 6. Lastly Sect. 7 concludes our work and presents an outline of planned
future work.

1 https://streampipes.apache.org/.

https://streampipes.apache.org/

StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT 667

2 Related Work

Data flow tools with a GUI are commonly used to process and harmonize data
from various sources. Applications like Talend2, or StreamSets3 can be used for
Extract, Transform, Load (ETL) tasks, wich is a well elaborated field where
the goal is to gather data from many heterogeneous sources and store it in a
database. Using such tools still requires a lot of technical knowledge, especially
because they are not leveraging semantic technologies to describe the meaning
of data. Another tool in this field is Node-RED4, which describes itself as a
low-code solution for event-driven applications. Node-RED is designed to run on
a single host. However, our approach targets distributed IIoT data sources like
machines or sensors. Therefore, data can be processed directly on edge devices,
potentially reducing network traffic. There are also approaches leveraging seman-
tic technologies for the task of data integration and harmonization. WInte.r [9]
supports standard data formats, like CSV, XML, or RDF, further it supports
several strategies to merge different data sets with a schema detection and unit
harmonization. In contrast to our approach, it focuses on data sets instead of
IIoT data sources. The goal of Spitfire [12] is to provide a Semantic Web of
Things. It focuses on REST-like sensor interfaces, not on the challenge of inte-
grating sensors using industrial protocols and high-frequency streaming data,
that require local preprocessing. The Big IoT API [6] enables interoperability
between IoT platforms. Thus the paper has a different focus, we focus on domain
experts to connect data, especially from IIoT data sources.

Distributed architectures like presented in [8] are required to cope with the
distributed nature of IIoT data sources. In the paper, a lightweight solution
to ease the adoption of distributed analytics applications is presented. All raw
events are stored in a distributed storage and are later used for analytics. The
authors try to adopt a very lightweight approach and do not describe the seman-
tics of events or transform them. In our approach, data is transformed and
harmonized directly in the adapter at the edge. This eases the analytics tasks
downstream usually performed by a (distributed) stream processing engine, such
as Kafka Streams. Such engines provide solutions to connect to data sources with
Kafka Connect5. It is possible to create connectors that publish data directly to
Kafka. They provide a toolbox of already integrated technologies, such as sev-
eral databases or message brokers. Still, a lot of configuration and programming
work is required to use them.

Other industry solutions to cope with the problem of accessing machine data
are to build custom adapters, e.g. with Apache PLC4X6. This requires a lot of
development effort and often is targeted at a specific use case. We leverage such
tools to enable an easy to configure and re-usable approach. Another way to

2 https://www.talend.com/.
3 https://streamsets.com/.
4 https://nodered.org/.
5 https://www.confluent.io/connectors/.
6 https://plc4x.apache.org/.

https://www.talend.com/
https://streamsets.com/
https://nodered.org/
https://www.confluent.io/connectors/
https://plc4x.apache.org/

668 P. Zehnder et al.

access machine data is to use a unified description, like the Asset Administra-
tion Shell (AAS) [2]. It is introduced by the Platform Industry 4.0 and provides
a unified wrapper around assets describing its representation and technical func-
tionality. There are also some realizations of the concept, as described in [16].
In our approach we try to automatically create an adapter by extracting sample
data and meta-data from the data source. Thus, this allows us to work with data
sources that do not have a specific description like the AAS.

3 Architecture

The main design decisions for our architecture are based on the goal of creating
a system for both small, centralized as well as large, distributed environments.
Therefore, we decided to implement a master/worker paradigm, where the mas-
ter is responsible for the management and controlling of the system and the
workers actually access and process data. To achieve this, we need a lightweight
approach to run and distribute services. Container technologies offer a well suited
solution and are particularly suitable for edge and fog processing scenarios [7].
Figure 2 provides an overview of our architecture showing the data sources and
the compute units located close to the sources, running the services of the sys-
tem. The StreamPipes backend communicates with the master, which manages
all the worker containers, as well as the adapter instances running in the workers.
For the communication between the individual components we use JSON-LD.
The master persists the information about the workers and running adatpers in
a triple store.

Fig. 2. Architectural overview of our system

Once a new worker is started, it is registered at the master, providing infor-
mation which adapter types (e.g. PLC, MQTT) are supported. When an adapter

StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT 669

instance is instantiated to connect a new machine, the data is directly forwarded
to a distributed message broker, as shown in Fig. 2. New worker instances can
be added during runtime to extend the system and the master schedules new
adapters accordingly. The master coordinates and manages the system. For the
transmission of the harmonized data we rely on already existing broker tech-
nologies, e.g. Apache Kafka.

4 Adapters

The adapter model is the core of our approach and provides a way to describe
time series data sources. Based on this model, adapters are instantiated, to
connect and harmonize data according to pre-processing rules applied to each
incoming event. Such adapter descriptions are provided in RDF serialized as
JSON-LD.

4.1 Adapter Model

Figure 3 shows our semantic adapter model. The Adapter concept is at the core
of the model. Each adapter has a StreamGrounding describing the protocol and
format used to publish the harmonized data. Additionally to sending unified data
to a message broker, adapters are capable of applying Transformation Rules.

DataSets and DataStreams are both supported by the model. For a better
overview of the Figure, we present a compact version of the model with the
notation {Stream, Set}, meaning there is one class for streams and one for sets.
From a modeling and conceptual point of view, there is no difference in our
approach between the two types. We treat data sets as bounded data streams,
which is why we generally refer to data streams from here onwards.

Fig. 3. Core of our adapter model

Further, there are two types of Data Stream Adapters, GenericDataStrea-
mAdapters and SpecificDataStreamAdapters. A GenericDataStreamAdapter con-
sists of a combination of a DataStreamProtocol (e.g. MQTT), responsible for

670 P. Zehnder et al.

connecting to data sources and formats (e.g. JSON) that are required to convert
the connected data into the internal representation of events. Since not all data
sources comply with those standards (e.g. PLC’s, ROS, OPC-UA), we added the
concept of a SpecificDataStreamAdapter. This can also be used to provide custom
solutions and implementations of proprietary data sources. User configurations
for an adapter can be provided via StaticProperties. They are available for For-
mats, Protocols, and Adapters. There are several types of static properties, that
allow to automatically validate user inputs (e.g. strings, URLs, numeric values).
Configurations of adapters (e.g., protocol information or required API keys) can
be stored in Adapter Templates, encapsulating the required information. List-
ing 1.1 shows an instance of a GenericDataStreamAdapter, with MQTT as the
protocol and JSON as a format.

1 @pref ix sp : <https : // streampipes . apache . org / vocabulary /v1/> .

2

3

4 <sp : adapter1>

5 a sp : GenericDataStreamAdapter ;

6 r d f s : l a b e l ”Temperature Sensor ” ;

7 sp : hasProtoco l <sp : p ro to co l / stream/mqtt> ;

8 sp : hasFormat <sp : format/ json> ;

9 sp : hasDataStream <sp : dataStream1> ;

10 sp : hasRule <sp : t rans fo rmat ionru l e1> .

11

12 <sp : p ro to co l / stream/mqtt>

13 a sp : DataStreamProtocol ;

14 r d f s : l a b e l ”MQTT” ;

15 sp : c on f i g <sp : s t a t i cp rope r ty1 >, <sp : s t a t i cp rope r ty2> .

16

17 <sp : format / json>

18 a sp : Format ;

19 r d f s : l a b e l ”JSON” .

20

21 <sp : s t a t i cp rope r ty1>

22 a sp : FreeTextStat i cProperty ;

23 r d f s : l a b e l ”Broker URL” ;

24 sp : hasValue ” tcp ://mqtt−host . com:1883” .

25

26 <sp : s t a t i cp rope r ty2>

27 a sp : FreeTextStat i cProperty ;

28 r d f s : l a b e l ”Topic” ;

29 sp : hasValue ” senso r / temperature ” .

Listing 1.1. Example for a MQTT adapter instance

StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT 671

4.2 Transformation Rule Model

Oftentimes, it is not sufficient to only connect data, it must also be transformed,
reduced, or anonymized. Therefore we introduce transformation rules, visualized
in Fig. 4, to either change the value of properties, schema, or the stream itself.

Fig. 4. Model of the transformation rules with all Value-, Schema-, and StreamTrans-
formationRules

Our approach uses transformation rules to describe the actual transforma-
tion of events. Based on these rules, pre-processing pipelines are automatically
configured in the background, which run within an adapter instance. The fol-
lowing table presents an overview of an extensible set of transformation rules,
which are already integrated.

Scope Rule Example

Schema Add Fix Property {} → {“id”: “sensor5”}
Add Nested {} → {“a”: {}}
Move {“a”: {“b”: 1}} → {“a”: {}, “b”: 1}
Add Timestamp {} → {“timestamp”: 1575476535373}
Rename {“old”: 1} → {“new”: 1}
Delete {“a”: 1} → {}

Value Privacy (SHA-256) {“name”: “Pia”} → {“name”: “ca9...”}
Unit (◦C → ◦F) {“temp”: 41} → {“temp”: 5}
Timestamp {“time”: “2019/12/03 16:29”} →{“time”: 1575476535373}

Stream Remove Duplicates {“a”: 1},...,{“a”: 1} → {“a”: 1}
Aggregate {“a”: 2},...,{“a”: 1} → {“a”: 1.5}

Listing 1.2 shows an example instance of the UnitTransformationRule. It
is part of the adapter model in Listing 1.1 and describes how to transform
the temperature value form the unit degree celsius into degree Fahrenheit. All
instances of the rules look similar. The configuration parameters of the individual
rules differ, for example instead of the fromUnit and toUnit, the rename rule
contains the old and the new runtime name.

672 P. Zehnder et al.

1 <sp : t rans fo rmat ionru l e1>

2 a sp : UnitTransformRule ;

3 sp : runtimeKey ” temperature ” ;

4 sp : fromUnit ” http :// qudt . org /vocab/ un i t#DegreeFahrenheit ” ;

5 sp : toUnit ” http :// qudt . org /vocab/ un i t#DegreeCe l s ius ” .

Listing 1.2. Unit transformation rule instance example

4.3 (Edge-) Transformation Functions

Events of connected data sources are transformed directly on the edge according
to the introduced transformation rules, by applying transformation functions,
event by event. A function takes an event e and configurations c as an input and
returns a transformed event e′. The model is expandable and new features can be
added by a developer. An instance of an adapter contains a set of functions which
are concatenated to a pre-processing pipeline. Equation (1) shows how an event
is transformed by multiple functions. Each function represents a transformation
rule from our model. To ensure that the transformations are performed correctly
the rules must be applied in a fixed order. First the schema, then the value, and
last the stream transformations.

F (e) = fn(f...(f1(e, c), ...), c) = e′ (1)

The unit transformation function for example takes the property name, the
original unit and the new unit as a configuration input. Within the function the
value of the property is transformed according to the factors in the qudt ontol-
ogy7. Figure 5 shows a complete pre-processing pipeline of our running example.
On the left the raw input event e is handed to the first function f1 that changes
the schema. The result of each function is handed to the next function in addi-
tion to the configurations. In the end, the final event e′ is sent to the defined
StreamGrounding of the adapter.

Fig. 5. Example of a pre-processing pipeline

7 https://www.qudt.org/.

https://www.qudt.org/

StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT 673

5 Implementation

We integrated our implementation into the open source software Apache
StreamPipes (incubating), which is publicly available on GitHub8.

5.1 Adapter Marketplace

Figure 6 shows the adapter marketplace containing an overview of all proto-
cols, specific adapters, and adapter templates. Currently, we integrated 25 dif-
ferent adapters and we continually integrate new ones. For streaming protocols,
PLCs (e.g. Siemens S7), OPC-UA9, ROS [13], MQTT [3], FTP, REST (iterative
polling), MySQL (subscribing to changes), InfluxDB, Kafka, Pulsar are inte-
grated. Further we support several data set protocols like files (can be uploaded),
HDFS, FTP, REST, MySQL, InfluxDB. Additionally to those generic adapters,
we have integrated several open APIs, like openSenseMap10 resulting in specific
adapters. This number is also constantly growing, since adapters can be stored
and shared as adapter templates. Templates are serialized into JSON-LD, that
can be exported and imported into other systems. They are also listed in the
data marketplace.

5.2 Adapter Modeling Process

Once a user selects the adapter that should be connected, a guided configura-
tion process is started. This process is the same for data sets and data streams
and just differs slightly between generic and specific adapters. We illustrate the

Fig. 6. Overview of the data marketplace

8 https://github.com/apache/incubator-streampipes.
9 https://opcfoundation.org/.

10 https://opensensemap.org/.

https://github.com/apache/incubator-streampipes
https://opcfoundation.org/
https://opensensemap.org/

674 P. Zehnder et al.

modeling process of a generic adapter with the example of a temperature sen-
sor introduced in Fig. 5. The sensor values are provided over MQTT and are
serialized in JSON:

1. Select adapter/protocol: First a user must select the specific adapter or
protocol form the marketplace, shown in Fig. 6.

2. Configure adapter/protocol: In the next step a configuration menu is
presented to the user. In 1 of Fig. 7 an example for the MQTT protocol is
shown. The broker URL, optional credentials for authentication and the topic
must be provided.

3. Configure format (optional): For generic adapters additionally the format
must be configured. In our example a user must select JSON.

4. Refine event schema: So far the technical configurations to connect data
sources were described, now the content of the events must be specified.
Figure 7 in 2 shows the event schema. Users can add, or delete properties, as
well as change the schema via a drag-and-drop user interface. Further shown
in 3 additional information can be added to individual properties, like a
description, the domain property, or the unit. Based on the user interaction
the transformation rules are derived in the background.

5. Start adapter: In the last step a name for the adapter must be provided.
Additionally a description or an icon can be added. In this step it is also
possible to define a maximum frequency for the resulting data stream, or
to filter duplicate events. Again, rules are derived from the user interaction.
Users just interact with the GUI and the system creates the rules, resulting
in an intuitive way of interacting with the system without worrying about
the explicit modeling of the rules.

Fig. 7. Screenshots of adapter modeling process

StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT 675

5.3 Semantics Based User Guidance

We try to use the semantic model and meta-data as much as possible to help
and guide the user through the system. All user inputs are validated in the
GUI according to the information provided in the adapter model (e.g. ensure
correct data types or URIs). Additionally, the system uses information of the
data sources, when available, during the configuration steps 2./3., described
in the previous section. Unfortunately, the usefulness of those interfaces highly
depends on the selected adapter/protocol, since not all provide the same amount
of high quality information. For example, some message brokers provide a list
of available topics. Other technologies, like PLCs often have no interface like
that and the users have to enter such information manually. But still, this user
input is checked and when an error occurs during the connection to the source
a notification with the problem is provided to the user.

Furthermore, the schema of the events is guessed by reading sample data
from the source. Once the endpoint of the source is connected, we establish
a connection to gather some sample data. Based on this data a guess of the
schema is provided and suggested to the user in the GUI. The realization for
the individual implementations of this schema guess is again very different. For
CSV files for example it depends if they have a header line or not. For message
brokers sending JSON a connection has to be established to gather several events
to get the structure of the JSON objects. Other adapters like the one for OPC-
UA can leverage the rich model stored in the OPC server to already extract as
much meta-information as possible. All of this information is harmonized into
our semantic adapter model, where we also integrate external vocabularies, and
presented in the GUI to the user. Users are able to refine or change the model.

Also on the property level we try to leverage the semantics of our model to
easily integrate different representations of timestamps, by providing a simple
way to harmonize them to the internal representation of UNIX timestamps.
Another example are unit transformations. Based on the qudt ontology only
reasonable transformations are suggested to the user.

6 Evaluation

In our evaluation we show that domain experts with little technical knowledge
are able to connect new sources. Additionally, we present performance results of
adapters and where the system is already deployed in production.

676 P. Zehnder et al.

6.1 User Study

Setup: For our user study, we recruited 19 students from a voluntary student
pool of the Karlsruhe Institute of Technology (KIT) using hroot [4]. The user
study took place at the Karlsruhe Decision & Design Lab (KD2Lab)11 at the
KIT. The overall task was to connect two data sources with measurements of
environment sensors as a basis, to create a live air quality index, similar to
the one in [1]. Since most of the participants did not have a technical back-
ground and never worked with sensor data before, we gave a 10 min introduction
about the domain, the data sources, what it contains (e.g. particulate matter
PM2.5/PM10, nitrogen dioxide NO2, . . .), and how an air quality index might
look like. After that, the participants went into an isolated cabin to solve the
tasks on their own, without any further assistance by the instructors. As a first
task, they had to connect data from the openSenseMap API [11], an online
service for environmental data. The goal of the second task was to connect
environmental data from official institutions, therefore data provided by the
‘Baden-Wuerttemberg State Institute for the Environment, Survey and Nature
Conservation’ was used. This data is produced by officially standardized air mea-
suring stations distributed all over the state. After finishing the two tasks, the
participants were forwarded to an online questionnaire, where they had to answer
several questions to assess how usable the system was in their experience. For
the questions, we used three standardized questionnaires as well as additional
questions. To ensure that the participants answer the questions carefully, we
added control questions to the questionnaire. Three participants answered those
control questions wrong, resulting in a total of 16 valid answers.

Fig. 8. Results of SUS & UEQ

Results: First, we present the results of the System Usability Scale (SUS) [5],
which measures how usable a software system is by comparing results to the
average scores of 500 websites12. A score above 71.4 is considered as good result.
We use the same colors to indicate how well the score is compared to the other
11 http://www.kd2lab.kit.edu/.
12 https://www.trymyui.com/sus-system-usability-scale.

http://www.kd2lab.kit.edu/
https://www.trymyui.com/sus-system-usability-scale

StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT 677

systems. On the left of Fig. 8, the overall result of 72.2 can be seen. Since we
have a high variance of technical expertise within our participants we grouped
the results according to the technical experience. First we grouped them into two
groups, whether they stated to be able to connect sensors with any programming
language of their choice or not. Participants not able to develop a connector for
sensors with a programming language find the system more useful (good system,
mean: 75.0) than participants who are able to connect a sensor with a program-
ming language of their own choice (acceptable system, mean: 67.5). Second, we
grouped them according to their technological affinity from high to low. For
that, we adopted the items of the Technology Readiness Index (TRI) [10] in
order to frame the questions on the expertise in using programming IDE’s and
data tools. We can use this as a control to measure how affine participants are
in using technologies (e.g. IDE’s). Participants with a high technology affinity
(quantile > 0.75) find the system not as useful as less technology affine partici-
pants, but still acceptable (mean: 63.1). Participants with an average technology
affinity find the system the most useful (good system: mean: 76,9). Participants
with a low technology affinity (quantile < 0.25) find the system good as well,
however a bit less useful as the average class (mean: 71,9). This is in line with
the assumption, that such a tool is especially useful for non-technical users. The
SUS gives the tool a rating of a good system. The participants used the system
for the first time and only for a duration of 15 to 20 min. In this respect, this
is already a very good score and it is likely to assume that the score would be
higher when more experienced users would have participated.

For the second questionnaire, the User Experience Questionnaire (UEQ) was
chosen [15]. It consists of six categories: Attractiveness, Perspicuity, Efficiency,
Dependability, Stimulation, and Novelty. For each of these categories, a Likert
scale is provided to indicate how good the system is compared to other systems
evaluated with the UEQ. Figure 8 shows the results of the UEQ on the right. All
the results of the individual categories are above average. The results of the cat-
egories Attractiveness, Perspicuity, Efficiency, and Dependability are considered
as good. The result of the Novelty of the system is even rated as excellent. The
figure also reveals that the results of all categories are equally good meaning we
do not have to focus on a single aspect. It also suggests that there is still room
for further improvement, but for a first user study the results are already very
promising. Together with the results from the SUS, this means that the system
is not only usable (i.e. fulfils its purpose) but also gives a good experience when
using it (i.e. fun experience).

Additionally, we added own questions to the questionnaire to get some infor-
mation which is especially relevant for our work. To see how technical the stu-
dents were, we asked them whether they are able to connect new sensors in a
programming language of their choice or not. Just 5 of the participants answered
with yes, while 11 gave a negative answer. This indicates we had a good mix
of technical experience of the participants, as our system focuses on less techni-
cal users with little to no programming experience. We asked the participants,
if they think, once they are more familiar with the system, they are able to

678 P. Zehnder et al.

connect new data sources in under one minute. 14 answered with yes and 2
with no. This shows that our approach is simple to use and efficient, as even
the less technical participants state they can connect new data sources in under
one minute, which is usually a technical and time-consuming task. Regarding
the question whether they think they are capable of connecting new real-time
sensor data with our system, all of the participants answered with yes. This
means all participants are capable of creating new adapters with the system.
We also monitored the interaction of the users with the system to find out how
long they approximately needed to complete the individual tasks. The result was
that users took between 3 to 5 min for each task. Overall, the results of the user
study show that StreamPipes Connect is already rated as a good system, which
can be used by domain experts to quickly connect new data sources.

6.2 Performance Evaluation

Setup: For the evaluation we connected the events of the joint states of a robot
arm via ROS. The frequency of the data stream is 500 Hz and the event size is 800
Bytes. This data was connected and processed with the ROS adapter without
any delays. To discover the limits of our system we created an adapter with
a configurable data generator. Therefore, we used the temperature event and
transformed it with the same rules as in our example in Fig. 5. For the test setup
we used a server running the StreamPipes backend and two different commonly
used edge devices for the worker instance. We used a Raspberry Pi 4 and an
Intel NUC. To test the maximum performance of an adapter within a worker
we produced events as fast as the worker could process them. For each device
we ran 6 different set-ups, all with a different lengths of the pipeline shown in
Fig. 5.

Results: Figure 9 shows the results of the performance test. Each test ran 15
times and the mean of sent Events per second is plotted in the chart. For the
NUC we produced 10.000.000 events per test and for the Raspberry Pi 5.000.000
events.

The results of the figure show that if no pre-processing pipeline is used the
events are transmitted the fastest and the longer the pre-processing pipeline is,
the less events are processed. The only exception is the delete function, which
removes a property of the event and thus increases the performance. The NUC
performs significantly better then the raspberry Pi, but for many real-world use
cases a Pi is still sufficient, since it also processes 54.000 events per second (with
no pre-processing function). The add timestamp and transform unit functions
have an higher impact on the performance than the other tested functions.

6.3 Usage

Apache StreamPipes (incubating) was developed as an open source project over
the last couple of years by the authors of this paper at the FZI Research Center
for Information Technology. Since November 2019, we transitioned the tool to
the Apache Software Foundation as a new incubating project.

StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT 679

30k

40k
50k
60k

100k

700k

1M

1.4M

0
[None]

1
[+Rename]

2
[+Move]

3
[+Delete]

4
[+Add Timestamp]

5
[+Transform Unit]

Pipeline Length

M
ea

n
Ev

en
ts

 /
s

Edge Device NUC Pi

Fig. 9. Performance test results over 15 test runs

We successfully deployed StreamPipes in multiple projects in the manufactur-
ing domain. One example is condition monitoring in a large industrial automa-
tion company. We connected several robots (Universal Robots) and PLCs to
monitor a production process and calculate business-critical KPIs, improving
the transparency on the current health status of a production line.

7 Conclusion and Future Work

In this paper, we presented StreamPipes Connect, a self-service system for inges-
tion and harmonization of IIoT time series data, developed as part of the open
source IoT toolbox Apache StreamPipes (incubating).

We presented a distributed, event-based data ingestion architecture where
services can be directly deployed on edge devices in form of worker nodes. Work-
ers send real-time data from a variety of supported industrial communication
protocols (e.g., PLCs, MQTT, OPC-UA) to a centralized message broker for
further analysis.

Our approach makes use of an underlying semantics-based adapter model,
which serves to describe data sources and to instantiate adapters. Generated
adapters connect to the configured data sources and pre-process data directly at
the edge by applying pipelines consisting of user-defined transformation rules. In
addition, we further presented a graphical user interface which leverages semantic
information to better guide domain experts in connecting new sources, thus
reducing development effort.

To achieve the goal of providing a generic adapter model that covers the
great heterogeneity of data sources and data types, the flexibility of semantic
technologies was particularly helpful. Especially the reuse of vocabularies (e.g.
QUDT) facilitates the implementation significantly. The user study has shown
us that modeling must be easy and intuitive for the end user.

680 P. Zehnder et al.

For the future, we plan to further support users during the modeling process
by recommending additional configuration parameters based on sample data of
the source (e.g. to automatically suggest message formats).

References

1. Air quality in Europe (2017). https://doi.org/10.2800/850018
2. Adolphs, P., et al.: Structure of the administration shell. Continuation of the devel-

opment of the reference model for the Industrie 4.0 component. ZVEI and VDI,
Status Report (2016)

3. Banks, A., Gupta, R.: MQTT version 3.1.1. OASIS Stand. 29, 89 (2014)
4. Bock, O., Baetge, I., Nicklisch, A.: hroot: Hamburg registration andorgani-

zation online tool. Eur. Econ. Rev. 71, 117–120 (2014). https://doi.org/10.
1016/j.euroecorev.2014.07.003. http://www.sciencedirect.com/science/article/pii/
S0014292114001159

5. Brooke, J., et al.: SUS-A quick and dirty usability scale. In: Brooke, J., Jordan,
P.W., Thomas, B., Weerdmeester, B.A., McClelland, I.L. (eds.) Usability Evalua-
tion Industry, pp. 184–194. CRC Press, London (1996)

6. Bröring, A., et al.: The big IoT API - semantically enabling iot interoperabil-
ity. IEEE Pervasive Comput. 17(4), 41–51 (2018). https://doi.org/10.1109/MPRV.
2018.2873566

7. Ismail, B.I., et al.: Evaluation of docker as edge computing platform, pp. 130–135.
IEEE (2015). https://doi.org/10.1109/ICOS.2015.7377291

8. Kirmse, A., Kraus, V., Hoffmann, M., Meisen, T.: An architecture for effi-
cient integration and harmonization of heterogeneous, distributed data sources
enabling big data analytics. In: Proceedings of the 20th International Confer-
ence on Enterprise Information Systems, Funchal, Madeira, Portugal, pp. 175–182.
SCITEPRESS - Science and Technology Publications (2018). https://doi.org/10.
5220/0006776701750182

9. Lehmberg, O., Brinkmann, A., Bizer, C.: WInte.r - a web data integration frame-
work, p. 4 (2017)

10. Parasuraman, A.: Technology readiness index (TRI) a multiple-item scale to mea-
sure readiness to embrace new technologies. J. Serv. Res. 2(4), 307–320 (2000)

11. Pfeil, M., Bartoschek, T., Wirwahn, J.A.: Opensensemap-a citizen science platform
for publishing and exploring sensor data as open data. In: Free and Open Source
Software for Geospatial (FOSS4G) Conference Proceedings. vol. 15, p. 39 (2015)

12. Pfisterer, D., et al.: Spitfire: toward a semantic web of things. IEEE Commun.
Mag. 49(11), 40–48 (2011). https://doi.org/10.1109/MCOM.2011.6069708

13. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA work-
shop on open source software. vol. 3, p. 5. Kobe, Japan (2009)

14. Riemer, D., Kaulfersch, F., Hutmacher, R., Stojanovic, L.: Streampipes: solving
the challenge with semantic stream processing pipelines. In: Proceedings of the 9th
ACM International Conference on Distributed Event-Based Systems, pp. 330–331.
ACM (2015)

15. Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the user experience ques-
tionnaire (UEQ) in different evaluation scenarios. In: Marcus, A. (ed.) DUXU
2014. LNCS, vol. 8517, pp. 383–392. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07668-3 37

16. Tantik, E., Anderl, R.: Integrated data model and structure for the asset adminis-
tration shell in Industrie 4.0. Proc. CIRP 60, 86–91 (2017)

https://doi.org/10.2800/850018
https://doi.org/10.1016/j.euroecorev.2014.07.003
https://doi.org/10.1016/j.euroecorev.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0014292114001159
http://www.sciencedirect.com/science/article/pii/S0014292114001159
https://doi.org/10.1109/MPRV.2018.2873566
https://doi.org/10.1109/MPRV.2018.2873566
https://doi.org/10.1109/ICOS.2015.7377291
https://doi.org/10.5220/0006776701750182
https://doi.org/10.5220/0006776701750182
https://doi.org/10.1109/MCOM.2011.6069708
https://doi.org/10.1007/978-3-319-07668-3_37
https://doi.org/10.1007/978-3-319-07668-3_37

	StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT
	1 Introduction
	2 Related Work
	3 Architecture
	4 Adapters
	4.1 Adapter Model
	4.2 Transformation Rule Model
	4.3 (Edge-) Transformation Functions

	5 Implementation
	5.1 Adapter Marketplace
	5.2 Adapter Modeling Process
	5.3 Semantics Based User Guidance

	6 Evaluation
	6.1 User Study
	6.2 Performance Evaluation
	6.3 Usage

	7 Conclusion and Future Work
	References

