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Intestinal ischemia-reperfusion (I/R) is a common pathophysiological process, which can
occur in many conditions such as acute enteric ischemia, severe burns, small intestinal
transplantation, etc,. Ischemia-reperfusion of the intestine is often accompanied by distal
organ injury, especially liver injury. This paper outlined the signal pathways and cytokines
involved in acute liver injury induced by intestinal I/R: the NF-κB Signaling Pathway, the
P66shc Signaling Pathway, the HMGB1 Signaling Pathway, the Nrf2-ARE Signaling
Pathway, the AMPK-SIRT-1 Signaling Pathway and other cytokines, providing new
ideas for the prevention and treatment of liver injury caused by reperfusion after
intestinal I/R.
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1 INTRODUCTION

Intestinal ischemia-reperfusion (I/R) is a series of interrelated pathophysiological processes
including vasoconstriction, thrombosis, mitochondrial damage, inflammatory response, cellular
damage and cell death. (Hayase et al., 2019). Intestinal I/R is known to occur in severe conditions
such as extracorporeal circulation, vascular embolism, and small bowel transplantation. It is a very
natural pathophysiological phenomenon (Fan et al., 2019). After intestinal ischemia, the returning
blood supply often causes intestinal epithelial sloughing, bacterial shift, and systemic response. In the
process, patients often develop systemic inflammatory response syndrome (SIRS) andmultiple organ
dysfunction syndrome (MODS) (Li et al., 2019a). The gut and the liver are among the most ischemia-
sensitive tissues (Camara-Lemarroy, 2014). In addition to damage to the intestines, intestinal I/R has
a great impact on other distal organs. When I/R occurs in the intestine, the liver overtakes the
intestine as the organ most vulnerable to injury (Jing et al., 2018). The liver is the first organ to be
affected, which may because the liver is closest to the gut and competes most with it for blood supply,
and its blood vessels are also connected to the intestinal circulation (Hu et al., 2020). The vascular
structure of the liver is related to the intestinal cycle, and the hepatoenteric axis plays a vital part in
I/R-induced liver injury (Wen et al., 2020). Literature suggests that intestinal I/R disrupts the
integrity of the cell membrane, making it a much less effective barrier against invasion by bacteria
and inflammatory cytokines (Jia et al., 2020). When the intestinal barrier is compromised, toxins and
bacteria in the gut are allowed to enter the portal vein and peripheral circulation, by which time the
liver’s defenses have been significantly weakened, further causing the spread of inflammation and
exacerbating the condition (Li et al., 2019b).

For our literature search, the Medical Subject Headings (MeSH) terms and key words were as
follows: intestinal ischemia-reperfusion, acute liver injury, signal transduction pathways, treatment,
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and review. How intestinal I/R leads to the inherent mechanism
of acute liver injury (Table 1) is not clear, and this review will
concentrate on the signal transduction pathways and various
cytokines described in articles on acute liver injury published in
recent years, including the nuclear factor kappa-B (NK-κB)
signaling pathway, P66shc signaling pathway, high mobility
group box1 protein(HMGB1) signaling pathway and nuclear
factor erythroid 2-related factor 2/AU-rich element(Nrf2-ARE)
signaling pathway, explore its potential pathogenesis and
applying biomarkers to targeted therapies.

2 THE NF-ΚB SIGNALING PATHWAY

NF-κB is an important factor in liver injury caused by intestinal
I/R. The proteasome, which plays an important regulatory role
in signaling, is a multi-catalytic protease complex consisting of
two forms, 20 s (700 kDa) and 26 s (2000 kDa). (Bard et al.,
2018; Xie et al., 2019a). The initial phase of intestinal I/R occurs
when bacterial and endotoxin invasion compromises the
intestinal barrier, decreases defenses and immunity, and
bacteria, endotoxin, and oxidation stress take the opportunity
to enter the circulation and activate NF-κB, causing it to be
expressed (Liu et al., 2020). NF-kB translocates to the nucleus
(Bellezza et al., 2018), dissociates from IK-κB and acts as an
enhancer or repressor to regulate transcription of genes, such as
those encoding TNF-a, IL-6, and ICAM-1 (Xie et al., 2019b). By
inhibiting the expression of TNF-α and IL-6, curcumin limits
the activation of leukocytes in the liver and other tissues,
reducing tissue damage caused by inflammatory factors and
proteasome activity by inhibiting NF-κB, and inhibiting
enhanced ICAM-1 and neutrophil infiltration to protect
against liver injury (Fan et al., 2014). After stimulation of
macrophages by lipopolysaccharide, the expression of the
pro-inflammatory factor TNF-α is initiated. PYR-41 inhibited
the stimulation of macrophages by lipopolysaccharide through
dose regulation, inhibiting the expression of TNF-α, thereby

inhibiting the activation of NF-κB, and reducing the expression
of intestinal pro-inflammatory cytokines after I/R (Matsuo et al.,
2018). This reduces the damage to the liver after intestinal I/R.
MG132 can effectively inhibit the NF-κB pathway to reduce
liver injury (Zhao et al., 2010). PYR-41 treatment blocks IκB
degradation and activates the NF-κB pathway (Matsuo et al.,
20182018). N-acetylcysteine (NAC) and atorvastatin not only
protect the liver and kidneys from intestinal I/R injury, but also
have a protective effect on the peripheral circulation, as NAC
inhibits the release of NF-κB and reduces the production of
cytokines TNF- alpha, IL-1 and IL-6, also reducing the damage
to the liver in intestinal I/R (Alexandropoulos et al., 2017). The
natural antioxidant carnosol can reduce liver injury caused by
intestinal I/R by both its own antioxidant action and by
inhibiting the NF-κB pathway (Yao et al., 2009). Mangiferin
(MF) can reduce NF-κB p65, block NF-κB signaling pathway
and protect the liver from post-intestinal I/R damage (El-Sayyad
et al., 2017). Therefore, inhibition of the NF-κB pathway is a
feasible method to reduce hepatic injury after intestinal I/R.
(Figure 1).

3 THE P66SHC SIGNALING PATHWAY

Protein kinase CβII (PKCβII) is a heterodimer of the protein
kinase C (PKC) family that is specifically activated during
intestinal I/R; after intestinal I/R, oxidative stress activates
PKCβII and subsequently the 66 kDa Shc homology 2 domain-
containing protein (p66shc) is phosphorylated (Wang et al.,
2014). The shc locus can be derived from three isoforms, of
which P66SHC is one; it is an oxidative convertase that
mediates the production of mitochondrial OS (Zhao et al.,
2019). Because of the specific NH2 terminal region, it is able to
phosphorylate the serine 36 residue, transferring P66SHC
from the cytoplasmic matrix to the mitochondria (Miller
et al., 2021). The transfer of p66shc results in a decrease in
Ca ion channel responsiveness and an increase in
mitochondrial permeability, further enabling excessive OS
production and apoptosis (Boengler et al., 2017).
Superoxide and peroxide are the main free radicals that
cause intestinal I/R. Under normal physiological conditions,
endogenous antioxidant enzymes neutralize OS in the body,
but when oxygen enters ischemic tissues in large quantities, a
large number of free radicals are generated, producing
oxidative stress, superoxide dismutase is able to scavenge
excess OS and reduce liver damage caused by intestinal I/R,
Pistacia lentiscus oil reduces oxidative stress in the liver,
reduces tissue damage caused by inflammatory mediators,
and reduces liver damage caused by intestinal I/R (Saidi
et al., 2017). FOXO3a is a member of the O subclass of the
forkhead family and has a function in the regulation of
oxidative stress (Baird and Yamamoto, 2020). Manganese
superoxide dismutase (MnSOD) can be regulated by
FOXO3a (Guo et al., 2021). Phosphop66shc can catalyze the
phosphorylation and cytoplasmic translocation of FOXO3a,
downgrade MnSOD expression (Fasano et al., 2019), and
reduce antioxidant capacity. In a state of cellular oxidative

TABLE 1 | Indexes of acute liver injury in different animal models.

Model Indexes of acute liver
injury

Mice AST/ALT, TNF-α, IL-6 Ma et al. (2014)
Level of GSH and the activities of GSH-PX Ma et al. (2014)
Histopathologic analysis Ma et al. (2014)

Rats Histopathologic scores Yao et al. (2007), Alexandropoulos et al. (2017),
Wen et al. (2020)
LDH Wen et al. (2020)
ALT/AST level Yao et al. (2007), Fan et al. (2014), Wen et al. (2020)
SOD and MPO Yao et al. (2007), Fan et al. (2014)
ICAM-1, TNF-6, IL-6 Fan et al. (2014)
TNF-a, IL-6, IL-1b and ICAM-1 Alexandropoulos et al. (2017)
Level of GSH and the activities of GSH-PX Alexandropoulos et al. (2017)
MPO activity Yao et al. (2007)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; TNF, tumor necrosis
factor; IL, interleukin; GSH, glutathione; GSH-PX, glutathione peroxidase; LDH, lactate
dehydrogenase; SOD, superoxide dismutase; MPO. myeloperoxidase; ICAM,
intercellular cell adhesion molecule.
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equilibrium, upon release from the mitochondria, cytosolic
H2O2 binds to GSH to produce GSH-PX and H2O, and the
levels of GSH and GSH-PX can be used as a criterion for the
oxidative capacity of hepatocytes (Barlow-Walden et al., 1995;
Mailloux et al., 2016). After intestinal I/R, there is excessive
production of H2O2, decreased GSH and inactivation of GSH-
PX (Ma et al., 2014), indicators of liver damage. Previous
reports have shown that cleaved cystein-3 and BCI-XL can be
used as sensitive indicators for the evaluation of p66shc-
induced apoptosis (Menini et al., 2006; Cai et al., 2019).
Intestinal I/R-induced phosphorylation of hepatic P66shc,
leading to upregulation of cleaved-caspase3 and a decrease
in BCL-XL, suggesting that intestinal I/R induces liver injury
via the P66shc pathway. From what has been discussed above,
phosphop66shc can catalyze foxo3a phosphorylation and
cytoplasm translocation. The p66shc pathway leads to
FOXO3a activation, MnSOD downregulation and Bcl-xL
expression (Ma et al., 2014). Protocatechuic acid suppresses
foxo3a phosphorylation and enhances MnSOD expression. In
addition, pro-catecholamines are able to inhibit the
upregulation of BCL-XL via p66shc, enhancing the
protection of intestinal epithelial cells and hepatocytes
against damage caused by intestinal I/R (Ma et al., 2014). In
addition, PKCβ plays an important role in the process. The
activation of PKCβ-dependent p66shc phosphorylation by
intestinal I/R and the cascade reaction of cytochrome-
foldase and cystatin-3 activation leads to hepatocyte injury.
By giving LY333531, the activation of PKCβ and p66shc
phosphorylation was inhibited, and the interaction with
cytochrome c was also inhibited, reducing the release of
cytochrome c and decreasing the occurrence of apoptosis
(Wang et al., 2014). This suggests that inhibition of P66shc
phosphorylation may be an effective therapeutic target for liver
injury caused by intestinal I/R, and that protocatechuic acid is
an effective medicine to treat and alleviate acute liver injury
after intestinal I/R. (Figure 2).

4 THE HMGB1 SIGNALING PATHWAY

When produced extracellularly during cell activation, stress, injury
or death, high mobility group box 1 (HMGB1) acts as the
ubiquitous histone that tends to cause inflammation (Andersson
et al., 2018). Although early inflammatory factors and advanced
inflammatory factors are involved in the procedure of intestinal
I/R, because the advanced inflammatory factors have a wider
treatment time window, HMGB1 has attracted more attention
(Wen et al., 2020). According to reports, HMGB1 is released after
intestinal I/R injury, thereby triggering the inflammatory response
and increasing tissue damage (Linkermann et al., 2013). After
intestinal I/R, RIP1 and RIP3 mediate the formation of a necrotic-
inducing protein complex, while causing mixed lineage kinase
domain-like (MLKL) phosphorylation to greatly increase release of
intracellular damage-associated molecular patterns (DAMPs)
(Wen et al., 2020). After intestinal I/R, necrotic enterocytes
release DAMP, of which HMGB1 is the predominant one (Wen
et al., 2017). Catalyzed by endotoxin and endogenous pro-
inflammatory cytokines, HMGB1, originally present in the
nucleus, can translocate into the cytoplasm (Le et al., 2020).
Nec-1 inhibits the RIP1/3 pathway, which in turn inhibits
MLKL phosphorylation and reduces HMGB1 translocation
from the cytoplasm, leading to a reduction in liver injury.
HMGB1-neutralizing antibodies and EP inhibit TLR4 and
RAGE expression, thereby reducing the damage to the liver
caused by intestinal I/R. There are a large number of single
Kupffer cell (KC)s in the liver, which can respond quickly to
oxidative stress injury and are stable sentinel cells (Jenne and
Kubes, 2013; Ye et al., 2020). At present, there are different theories
about how macrophages cause liver damage; however, we found
that after intestinal I/R liver injury, the number of KCs increased,
and M1-type macrophages dominated. HMGB1 neutralization
effectively reduces the polarization of KCs towards M1, and
increases the number of M2-type macrophages (Sica and
Mantovani, 2012), which reduces liver damage to a certain

FIGURE 1 | NF-κB signaling pathway.
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extent. Uric acid (UA) is amolecule produced by themetabolism of
DNA and purines through the xanthine oxidase (XO) pathway (El
Ridi and Tallima, 2017). In response to inflammation, HMGB1, a
DAMP closely associated with distal organ damage, has been
shown to be released from endothelial cells following UA
induction (Yang et al., 2006; Cai et al., 2017). In addition, the
experimental results showed that UA could induce the release of
HMGB1 (Khazoom et al., 2020), increasing liver injury after I/R.
To summarize, HMGB1 plays an important role in liver injury after
intestinal I/R, and inhibition of HMGB1 can effectively reduce liver
injury. This provides a new idea for the treatment of liver injury
after intestinal I/R. (Figure 3).

5 THE NRF2-ARE SIGNALING PATHWAY

The KEAP1-NRF2 pathway plays a major protective role in
oxidation and electrophilicity (Camara-Lemarroy, 2014;
Bellezza et al., 2018; Baird and Yamamoto, 2020). Under
normal conditions, Nrf2 and Keap1 are isolated in the
cytoplasm and degraded by the proteasome under basal
conditions (Bellezza et al., 2018). When cells are subjected to
oxidative stress, the defense mechanism is activated, and NRF2
dissociates from Keap1 and moves to the nucleus to bind with
maf, coordinating with the upregulation of protective genes
(Hassanein et al., 2020). Nrf2 dissociates from Keap1,

FIGURE 2 | P66shc signaling pathway.

FIGURE 3 | HMGB1 signaling pathway.
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translocates from the cytoplasm to the nucleus and binds ARE,
activating the expression of hepatic detoxification genes (Jeong
et al., 2006; Hassanein et al., 2020), and thereby reducing the
reperfusion injury to the liver. Nrf2, activated by sulforaphane,
initiates protection of the liver and reduces damage caused by
intestinal I/R; both GSH-PX and HO-1 provide endogenous
protection for hepatocytes after oxidative stress. Glutamine can
upregulate SOD, GSH and GPx levels after II/R, improve the
liver’s ability to respond to antioxidant damage and reduce liver
damage after II/R (Hartmann et al., 2017). The SFN-treated Nrf2-
ARE pathway was able to upregulate GSH-Px and HO-1 (Zhao
et al., 2010). SFN improves the protection of the liver by activating
the Nrf2-ARE pathway. These are novel targets for prevention
and treatment of acute liver injury after intestinal I/R. (Figure 4).

6 THE AMPK-SIRT-1 SIGNALING PATHWAY

Sirtuin1 belongs to the mammalian sirtuin family, which
regulates mammalian cell energy and lifespan and is a highly
conserved nicotinamide adenine dinucleotide (NAD+)
dependent, deacetylated family (Meng et al., 2020). Adenosine
5′-monophosphate (AMP)-(9) activated protein kinase is a
cellular stress sensor involved in I/R. It has been shown to
enhance sirT-1 activity by increasing cellular NAD + levels.
Autophagy is a pathological phenomenon involving the
degradation of lysosomes and is specific to eukaryotic cells
(Shi et al., 2019). Autophagy is a highly conserved catabolic
process, usually induced under stressful conditions, that
protects cells from damage. During autophagy,
autophagosomes engulf cytoplasmic components while the
cytoplasmic form of LC3-I binds to phosphatidylethanolamine
to form LC3-II in a continuous ubiquitination reaction, and LC3-
II within the autophagosome is degraded, so that intracellular
LC3-II can represent autophagic activity (Tanida et al., 2008). P62
is widely distributed in the cytoplasm and nucleus as well as in

autophagosomes and lysosomes. During oxidative stress, it is
translocated to autophagic substrates. Autophagy is the main
cause of P62 degradation and autophagic damage is accompanied
by a large accumulation of P62, therefore P62 can also represent
autophagic activity (Katsuragi et al., 2015). Beclin1 inhibits
vesicle processing in the late stages of the autophagic cascade,
leading to further cell death, and therefore Beclin1 abundance can
be used as an important indicator of autophagic activity (Shi et al.,
2019). Therefore, LC3Ⅱ, P62/SQSTM1, and Beclin 1 are key
proteins in the autophagic process. Moderate autophagy plays
a protective role. After intestinal I/R stimulation, the expression
of basic autophagy regulatory factors in rat liver decreased (Beclin
1 and LC3-II decreased, P62 increased) (Jing et al., 2018). Hepatic
tissue edema, liver dysfunction and reduced expression of
autophagy-related p-AMPK/AMPK/SIRT-1 protein and
mRNA provide evidence for a role of AMPK/SIRT-1/
autophagy in liver injury due to intestinal I/R. The expression
of three key autophagy proteins was found to be increased in the
liver after I/R stimulation following Fish oil (FO) induction.
Phosphorylation of AMPK is regulated by oxidative stress
(Wang et al., 2018), and AMPK phosphorylation can regulate
SIRT-1 activity (Jing et al., 2014). In addition, p-AMPK/AMPK
and SIRT-1 protein expression decreased in the liver after
intestinal I/R, but after FO induction, pAMPK/AMPK and
SIRT-1 protein expression increased, with results paralleling
autophagy levels. The experimental results confirmed that FO
induced autophagy via the AMPK/SIRT-1 signaling pathway in
intestinal I/R-induced liver injury, providing new therapeutic
ideas for the prevention of intestinal I/R-related liver disease.
(Figure 5).

7 OTHER CYTOKINES

In addition to these pathways, T cells also play a role in regulating
I/R injury in the lung, liver and intestine (Funken et al., 2021).

FIGURE 4 | Nrf2-ARE signaling pathway.
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The γδ T cells are a unique T cell subpopulation which is one of
the earliest developed T cells in all vertebrates (Hayday, 2000;
Chien et al., 2014; Dimova et al., 2015). A study found that
deficiency in γδ T cells significantly reduced the production of
proinflammatory cells and reduced distal organ damage,
especially in the liver (Funken et al., 2021). In addition, there
is evidence that platelets, in combination with complement and
Paneth cell-derived interleukin-17A, can cause liver injury.
Formation of histone and neutrophil extracellular traps leads
to distant liver injury following intestinal ischemic injury.
Blocking the production of histone and neutrophil
extracellular traps by recombinant thrombomodulin is an
effective way to ameliorate liver injury, thus helping to reduce
mortality after intestinal I/R (Hayase et al., 2019). Ethanol is also
involved in the mechanism of hepatic injury caused by intestinal
I/R. Experimental results show that early intake of low dose
ethanol can reduce liver inflammation and damage to liver cell
function caused by intestinal I/R. In contrast, high doses of
ethanol have the opposite effect, exacerbating liver damage
(Yamagishi et al., 2002). IL-17a plays a key role in the
development of intestinal I/R injury and subsequent remote
hepatic and renal dysfunction. It can also regulate various
systemic diseases such as sepsis (Li et al., 2019c; von Stebut
et al., 2019). Intestinal I/R causes IL-17A from Paneth cells
rapidly to release cytokines such as TNF-α and IL-6, resulting
in liver injury. In addition, intestinal I/R inhibited the expression
of FXR, PXR and CAR in the liver (Ogura et al., 2012). Moderate
dose dexmedetomidine alleviates I/R mediated liver injury by
inhibiting NLRP3 inflammasome activation. The gut vascular
barrier (GVB) is a separate unit in the intestinal mucosa that
blocks the spread of bacteria through the portal vein (Bertocchi
et al., 2021). Dexmedetomidine can also act on the GVB/Wnt/β-
catenin signaling pathway, upregulates β-catenin, reduces GVB
damage, prevents inflammatory mediators from entering the
body circulation through the intestinal lumen and then

entering the liver, and reduces liver damage in II/R conditions,
the exact mechanism of which needs to be further investigated
(Zhang et al., 2022). Endothelial nitric oxide synthase (eNOS)
produces the well-known vasodilator nitric oxide (NO) (Khalaf
et al., 2019), sildenafil reduces liver damage from intestinal I/R by
increasing eNOS and increasing NO levels in tissues, thereby
dilating blood vessels (Inan et al., 2013). These findings also
provide a new direction for the prevention and treatment of liver
injury after intestinal I/R injury.

8 CONCLUSION

Intestinal I/R injury is a common type of cell injury that usually
occurs after acute intestinal ischemia, small bowel
transplantation, and severe burns. Intestinal I/R usually causes
distal organ injury. Owing to the special anatomical relationship
between the liver and intestine, intestinal I/R often causes acute
liver injury. This paper reviews the possible signal pathways of
acute liver injury caused by intestinal I/R. Drug regulation of
signal pathways can enhance the protection of liver and reduce
liver damage, providing a new clinical direction for the
prevention and mitigation of liver injury caused by intestinal
I/R, and more targeted drugs remain to be discovered.
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